1
|
Abstract
Most enveloped viruses encode viral fusion proteins to penetrate host cell by membrane fusion. Interestingly, many enveloped viruses can also use viral fusion proteins to induce cell-cell fusion, both in vitro and in vivo, leading to the formation of syncytia or multinucleated giant cells (MGCs). In addition, some non-enveloped viruses encode specialized viral proteins that induce cell-cell fusion to facilitate viral spread. Overall, viruses that can induce cell-cell fusion are nearly ubiquitous in mammals. Virus cell-to-cell spread by inducing cell-cell fusion may overcome entry and post-entry blocks in target cells and allow evasion of neutralizing antibodies. However, molecular mechanisms of virus-induced cell-cell fusion remain largely unknown. Here, I summarize the current understanding of virus-induced cell fusion and syncytia formation.
Collapse
Affiliation(s)
- Maorong Xie
- Division of Infection and Immunity, UCL, London, UK.
| |
Collapse
|
2
|
Parsons AJ, Ophir SI, Duty JA, Kraus TA, Stein KR, Moran TM, Tortorella D. Development of broadly neutralizing antibodies targeting the cytomegalovirus subdominant antigen gH. Commun Biol 2022; 5:387. [PMID: 35468974 PMCID: PMC9038728 DOI: 10.1038/s42003-022-03294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/17/2022] [Indexed: 11/08/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus that increases morbidity and mortality in immunocompromised individuals including transplant recipients and newborns. New anti-HCMV therapies are an urgent medical need for diverse patient populations. HCMV infection of a broad range of host tissues is dependent on the gH/gL/gO trimer and gH/gL/UL28/UL130/UL131A pentamer complexes on the viral envelope. We sought to develop safe and effective therapeutics against HCMV by generating broadly-neutralizing, human monoclonal antibodies (mAbs) from VelocImmune® mice immunized with gH/gL cDNA. Following high-throughput binding and neutralization screening assays, 11 neutralizing antibodies were identified with unique CDR3 regions and a high-affinity (KD 1.4-65 nM) to the pentamer complex. The antibodies bound to distinct regions within Domains 1 and 2 of gH and effectively neutralized diverse clinical strains in physiologically relevant cell types including epithelial cells, trophoblasts, and monocytes. Importantly, combined adminstration of mAbs with ganciclovir, an FDA approved antiviral, greatly limited virus dissemination. Our work identifies several anti-gH/gL mAbs and sheds light on gH neutralizing epitopes that can guide future vaccine strategies.
Collapse
Affiliation(s)
- Andrea J Parsons
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sabrina I Ophir
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - J Andrew Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Thomas A Kraus
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kathryn R Stein
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas M Moran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
3
|
A Novel Strain-Specific Neutralizing Epitope on Glycoprotein H of Human Cytomegalovirus. J Virol 2021; 95:e0065721. [PMID: 34160252 DOI: 10.1128/jvi.00657-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that causes severe clinical disease in immunosuppressed patients and congenitally infected newborn infants. Viral envelope glycoproteins represent attractive targets for vaccination or passive immunotherapy. To extend the knowledge of mechanisms of virus neutralization, monoclonal antibodies (MAbs) were generated following immunization of mice with HCMV virions. Hybridoma supernatants were screened for in vitro neutralization activity, yielding three potent MAbs, 6E3, 3C11, and 2B10. MAbs 6E3 and 3C11 blocked infection of all viral strains that were tested, while MAb 2B10 neutralized only 50% of the HCMV strains analyzed. Characterization of the MAbs using indirect immunofluorescence analyses demonstrated their reactivity with recombinantly derived gH. While MAbs 6E3 and 3C11 reacted with gH when expressed alone, 2B10 detected gH only when it was coexpressed with gB and gL. Recognition of gH by 3C11 was dependent on the expression of the entire ectodomain of gH, whereas 6E3 required residues 1 to 629 of gH. The strain-specific determinant for neutralization by Mab 2B10 was identified as a single Met→Ile amino acid polymorphism within gH, located within the central part of the protein. The polymorphism is evenly distributed among described HCMV strains. The 2B10 epitope thus represents a novel strain-specific antibody target site on gH of HCMV. The dependence of the reactivity of 2B10 on the simultaneous presence of gB/gH/gL will be of value in the structural definition of this tripartite complex. The 2B10 epitope may also represent a valuable tool for diagnostics to monitor infections/reinfections with different HCMV strains during pregnancy or after transplantation. IMPORTANCE HCMV infections are life threatening to people with compromised or immature immune systems. Understanding the antiviral antibody repertoire induced during HCMV infection is a necessary prerequisite to define protective antibody responses. Here, we report three novel anti-gH MAbs that potently neutralized HCMV infectivity. One of these MAbs (2B10) targets a novel strain-specific conformational epitope on gH that only becomes accessible upon coexpression of the minimal fusion machinery gB/gH/gL. Strain specificity is dependent on a single amino acid polymorphism within gH. Our data highlight the importance of strain-specific neutralizing antibody responses against HCMV. The 2B10 epitope may also represent a valuable tool for diagnostics to monitor infections/reinfections with different HCMV strains during pregnancy or after transplantation. In addition, the dependence of the reactivity of 2B10 on the simultaneous presence of gB/gH/gL will be of value in the structural definition of this tripartite complex.
Collapse
|
4
|
Schultz EP, Yu Q, Stegmann C, Day LZ, Lanchy JM, Ryckman BJ. Mutagenesis of Human Cytomegalovirus Glycoprotein L Disproportionately Disrupts gH/gL/gO over gH/gL/pUL128-131. J Virol 2021; 95:e0061221. [PMID: 34132577 PMCID: PMC8354327 DOI: 10.1128/jvi.00612-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
Cell-free and cell-to-cell spread of herpesviruses involves a core fusion apparatus comprised of the fusion protein glycoprotein B (gB) and the regulatory factor gH/gL. The human cytomegalovirus (HCMV) gH/gL/gO and gH/gL/pUL128-131 facilitate spread in different cell types. The gO and pUL128-131 components bind distinct receptors, but how the gH/gL portions of the complexes functionally compare is not understood. We previously characterized a panel of gL mutants by transient expression and showed that many were impaired for gH/gL-gB-dependent cell-cell fusion but were still able to form gH/gL/pUL128-131 and induce receptor interference. Here, the gL mutants were engineered into the HCMV BAC clones TB40/e-BAC4 (TB), TR, and Merlin (ME), which differ in their utilization of the two complexes for entry and spread. Several of the gL mutations disproportionately impacted gH/gL/gO-dependent entry and spread over gH/gL/pUL128-131 processes. The effects of some mutants could be explained by impaired gH/gL/gO assembly, but other mutants impacted gH/gL/gO function. Soluble gH/gL/gO containing the L201 mutant failed to block HCMV infection despite unimpaired binding to PDGFRα, indicating the existence of other important gH/gL/gO receptors. Another mutant (L139) enhanced the gH/gL/gO-dependent cell-free spread of TR, suggesting a "hyperactive" gH/gL/gO. Recently published crystallography and cryo-electron microscopy studies suggest structural conservation of the gH/gL underlying gH/gL/gO and gH/gL/pUL128-131. However, our data suggest important differences in the gH/gL of the two complexes and support a model in which gH/gL/gO can provide an activation signal for gB. IMPORTANCE The endemic betaherpesvirus HCMV circulates in human populations as a complex mixture of genetically distinct variants, establishes lifelong persistent infections, and causes significant disease in neonates and immunocompromised adults. This study capitalizes on our recent characterizations of three genetically distinct HCMV BAC clones to discern the functions of the envelope glycoprotein complexes gH/gL/gO and gH/gL/pUL128-13, which are promising vaccine targets that share the herpesvirus core fusion apparatus component, gH/gL. Mutations in the shared gL subunit disproportionally affected gH/gL/gO, demonstrating mechanistic differences between the two complexes, and may provide a basis for more refined evaluations of neutralizing antibodies.
Collapse
Affiliation(s)
- Eric P. Schultz
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, USA
| | - Qin Yu
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Cora Stegmann
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Le Zhang Day
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Biochemistry and Biophysics Program, University of Montana, Missoula, Montana, USA
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Brent J. Ryckman
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, USA
- Biochemistry and Biophysics Program, University of Montana, Missoula, Montana, USA
| |
Collapse
|
5
|
Specialization for Cell-Free or Cell-to-Cell Spread of BAC-Cloned Human Cytomegalovirus Strains Is Determined by Factors beyond the UL128-131 and RL13 Loci. J Virol 2020; 94:JVI.00034-20. [PMID: 32321807 DOI: 10.1128/jvi.00034-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022] Open
Abstract
It is widely held that clinical isolates of human cytomegalovirus (HCMV) are highly cell associated, and mutations affecting the UL128-131 and RL13 loci that arise in culture lead to the appearance of a cell-free spread phenotype. The bacterial artificial chromosome (BAC) clone Merlin (ME) expresses abundant UL128-131, is RL13 impaired, and produces low infectivity virions in fibroblasts, whereas TB40/e (TB) and TR are low in UL128-131, are RL13 intact, and produce virions of much higher infectivity. Despite these differences, quantification of spread by flow cytometry revealed remarkably similar spread efficiencies in fibroblasts. In epithelial cells, ME spread more efficiently, consistent with robust UL128-131 expression. Strikingly, ME spread far better than did TB or TR in the presence of neutralizing antibodies on both cell types, indicating that ME is not simply deficient at cell-free spread but is particularly efficient at cell-to-cell spread, whereas TB and TR cell-to-cell spread is poor. Sonically disrupted ME-infected cells contained scant infectivity, suggesting that the efficient cell-to-cell spread mechanism of ME depends on features of the intact cells such as junctions or intracellular trafficking processes. Even when UL128-131 was transcriptionally repressed, cell-to-cell spread of ME was still more efficient than that of TB or TR. Moreover, RL13 expression comparably reduced both cell-free and cell-to-cell spread of all three strains, suggesting that it acts at a stage of assembly and/or egress common to both routes of spread. Thus, HCMV strains can be highly specialized for either for cell-free or cell-to-cell spread, and these phenotypes are determined by factors beyond the UL128-131 or RL13 loci.IMPORTANCE Both cell-free and cell-to-cell spread are likely important for the natural biology of HCMV. In culture, strains clearly differ in their capacity for cell-free spread as a result of differences in the quantity and infectivity of extracellular released progeny. However, it has been unclear whether "cell-associated" phenotypes are simply the result of poor cell-free spread or are indicative of particularly efficient cell-to-cell spread mechanisms. By measuring the kinetics of spread at early time points, we were able to show that HCMV strains can be highly specialized to either cell-free or cell-to-cell mechanisms, and this was not strictly linked the efficiency of cell-free spread. Our results provide a conceptual approach to evaluating intervention strategies for their ability to limit cell-free or cell-to-cell spread as independent processes.
Collapse
|
6
|
Sandonís V, García-Ríos E, McConnell MJ, Pérez-Romero P. Role of Neutralizing Antibodies in CMV Infection: Implications for New Therapeutic Approaches. Trends Microbiol 2020; 28:900-912. [PMID: 32448762 DOI: 10.1016/j.tim.2020.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Cytomegalovirus (CMV) infection elicits a potent immune response that includes the stimulation of antibodies with neutralizing activity. Recent studies have focused on elucidating the role of neutralizing antibodies in protecting against CMV infection and disease and characterizing viral antigens against which neutralizing antibodies are directed. Here, we provide a synthesis of recent data regarding the role of neutralizing antibodies in protection against CMV infection/disease. We consider the role of humoral immunity in the context of the global CMV-specific immune response, and the implications that recent findings have for vaccine and antibody-based therapy design.
Collapse
Affiliation(s)
- Virginia Sandonís
- Unit of Infectious Diseases, Hospital Universitario '12 de Octubre', Instituto de Investigación Hospital '12 de Octubre' (i+12), Madrid, Spain
| | - Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael J McConnell
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
7
|
Polymorphisms in Human Cytomegalovirus Glycoprotein O (gO) Exert Epistatic Influences on Cell-Free and Cell-to-Cell Spread and Antibody Neutralization on gH Epitopes. J Virol 2020; 94:JVI.02051-19. [PMID: 31996433 DOI: 10.1128/jvi.02051-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) glycoproteins H and L (gH/gL) can be bound by either gO or the UL128 to UL131 proteins (referred to here as UL128-131) to form complexes that facilitate entry and spread, and the complexes formed are important targets of neutralizing antibodies. Strains of HCMV vary considerably in the levels of gH/gL/gO and gH/gL/UL128-131, and this can impact infectivity and cell tropism. In this study, we investigated how natural interstrain variation in the amino acid sequence of gO influences the biology of HCMV. Heterologous gO recombinants were constructed in which 6 of the 8 alleles or genotypes (GT) of gO were analyzed in the backgrounds of strains TR and Merlin (ME). The levels of gH/gL complexes were not affected, but there were impacts on entry, spread, and neutralization by anti-gH antibodies. AD169 (AD) gO (GT1a) [referred to here as ADgO(GT1a)] drastically reduced cell-free infectivity of both strains on fibroblasts and epithelial cells. PHgO(GT2a) increased cell-free infectivity of TR in both cell types, but spread in fibroblasts was impaired. In contrast, spread of ME in both cell types was enhanced by Towne (TN) gO (GT4), despite similar cell-free infectivity. TR expressing TNgO(GT4) was resistant to neutralization by anti-gH antibodies AP86 and 14-4b, whereas ADgO(GT1a) conferred resistance to 14-4b but enhanced neutralization by AP86. Conversely, ME expressing ADgO(GT1a) was more resistant to 14-4b. These results suggest that (i) there are mechanistically distinct roles for gH/gL/gO in cell-free and cell-to-cell spread, (ii) gO isoforms can differentially shield the virus from neutralizing antibodies, and (iii) effects of gO polymorphisms are epistatically dependent on other variable loci.IMPORTANCE Advances in HCMV population genetics have greatly outpaced understanding of the links between genetic diversity and phenotypic variation. Moreover, recombination between genotypes may shuffle variable loci into various combinations with unknown outcomes. UL74(gO) is an important determinant of HCMV infectivity and one of the most diverse loci in the viral genome. By analyzing interstrain heterologous UL74(gO) recombinants, we showed that gO diversity can have dramatic impacts on cell-free and cell-to-cell spread as well as on antibody neutralization and that the manifestation of these impacts can be subject to epistatic influences of the global genetic background. These results highlight the potential limitations of laboratory studies of HCMV biology that use single, isolated genotypes or strains.
Collapse
|
8
|
Chéneau C, Coulon F, Porkolab V, Fieschi F, Laurant S, Razanajaona-Doll D, Pin JJ, Borst EM, Messerle M, Bressollette-Bodin C, Halary F. Fine Mapping the Interaction Between Dendritic Cell-Specific Intercellular Adhesion Molecule (ICAM)-3-Grabbing Nonintegrin and the Cytomegalovirus Envelope Glycoprotein B. J Infect Dis 2019; 218:490-503. [PMID: 29648611 PMCID: PMC6049025 DOI: 10.1093/infdis/jiy194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/03/2018] [Indexed: 12/22/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) is a leading cause of virally induced congenital disorders and morbidities in immunocompromised individuals, ie, transplant, cancer, or acquired immune deficiency syndrome patients. Human cytomegalovirus infects virtually all cell types through the envelope glycoprotein complex gH/gL/gO with or without a contribution of the pentameric gH/gL/pUL128L. Together with gH/gL, the HCMV envelope glycoprotein B (gB) contributes to the viral fusion machinery. Methods We previously showed that gB is a ligand for the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) contributing to HCMV attachment to and infection of DC-SIGN-expressing cells. However, the features of the DC-SIGN/gB interaction remain unclear. To address this point, the role of glycans on gB and the consequences of mutagenesis and antibody-mediated blockades on both partners were examined in this study. Results We identified DC-SIGN amino acid residues involved in this interaction through an extensive mutagenesis study. We also showed the importance of high-mannose N-glycans decorating the asparagine residue at position 208, demonstrating that the antigenic domain 5 on gB is involved in the interaction with DC-SIGN. Finally, antibody-mediated blockades allowed us to identify DC-SIGN as a major HCMV attachment receptor on monocyte-derived dendritic cells. Conclusions Taken together, these results have permitted us to fine-map the interaction between DC-SIGN and HCMV gB.
Collapse
Affiliation(s)
- Coraline Chéneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, France.,Institut de Transplantation Urologie Néphrologie, Centre Hospitalier Universitaire (CHU) Nantes, France
| | - Flora Coulon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, France.,Institut de Transplantation Urologie Néphrologie, Centre Hospitalier Universitaire (CHU) Nantes, France
| | - Vanessa Porkolab
- Université Grenoble Alpes, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institute de Biologie Structurale, Grenoble, France
| | - Franck Fieschi
- Université Grenoble Alpes, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institute de Biologie Structurale, Grenoble, France
| | | | | | | | - Eva Maria Borst
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Céline Bressollette-Bodin
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, France.,Institut de Transplantation Urologie Néphrologie, Centre Hospitalier Universitaire (CHU) Nantes, France.,Service de Virologie Clinique, CHU Hotel Dieu, Nantes, France
| | - Franck Halary
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, France.,Institut de Transplantation Urologie Néphrologie, Centre Hospitalier Universitaire (CHU) Nantes, France
| |
Collapse
|
9
|
Human Cytomegalovirus Cell Tropism and Host Cell Receptors. Vaccines (Basel) 2019; 7:vaccines7030070. [PMID: 31336680 PMCID: PMC6789482 DOI: 10.3390/vaccines7030070] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
In the 1970s–1980s, a striking increase in the number of disseminated human cytomegalovirus (HCMV) infections occurred in immunosuppressed patient populations. Autopsy findings documented the in vivo disseminated infection (besides fibroblasts) of epithelial cells, endothelial cells, and polymorphonuclear leukocytes. As a result, multiple diagnostic assays, such as quantification of HCMV antigenemia (pp65), viremia (infectious virus), and DNAemia (HCMV DNA) in patient blood, were developed. In vitro experiments showed that only low passage or endothelial cell-passaged clinical isolates, and not laboratory-adapted strains, could reproduce both HCMV leuko- and endothelial cell-tropism, which were found through genetic analysis to require the three viral genes UL128, UL130, and UL131 of the HCMV UL128 locus (UL128L). Products of this locus, together with gH/gL, were shown to form the gH/gL/pUL128L pentamer complex (PC) required for infection of epithelial cells/endothelial cells, whereas gH/gL and gO form the gH/gL/gO trimer complex (TC) required for infection of all cell types. In 2016, following previous work, a receptor for the TC that mediates entry into fibroblasts was identified as PDGFRα, while in 2018, a receptor for the PC that mediates entry into endothelial/epithelial cells was identified as neuropilin2 (Nrp2). Furthermore, the olfactory receptor family member OR14I1 was recently identified as a possible additional receptor for the PC in epithelial cells. Thus, current data support two models of viral entry: (i) in fibroblasts, following interaction of PDGFRα with TC, the latter activates gB to fuse the virus envelope with the cell membrane, whereas (ii) in epithelial cells/endothelial cells, interaction of Nrp2 (and OR14I1) with PC promotes endocytosis of virus particles, followed by gB activation by gH/gL/gO (or gH/gL) and final low-pH entry into the cell.
Collapse
|
10
|
From recognition to execution-the HCMV Pentamer from receptor binding to fusion triggering. Curr Opin Virol 2018; 31:43-51. [PMID: 29866439 DOI: 10.1016/j.coviro.2018.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 01/17/2023]
Abstract
The β-herpesvirus human cytomegalovirus (HCMV) is the leading viral cause of neonatal developmental disabilities. In HCMV, the conserved herpesvirus glycoprotein B (gB) mediates membrane fusion between the viral and host cell membranes, whereas the trimeric gH/gL/gO or the pentameric gH/gL/UL128/UL130/UL31A complexes (Pentamer) bind to cell-specific receptors and provide the triggering signal to gB. Recent structural and functional studies have provided new insights into Pentamer structure, conformational flexibility, location of epitopes for neutralizing antibodies and potential binding sites for cell surface receptors. Together, these data suggest a model where receptor binding triggers a conformational change in Pentamer, allowing it to interact with gB and initiate the membrane fusion process.
Collapse
|
11
|
Close WL, Anderson AN, Pellett PE. Betaherpesvirus Virion Assembly and Egress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:167-207. [PMID: 29896668 DOI: 10.1007/978-981-10-7230-7_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Virions are the vehicle for cell-to-cell and host-to-host transmission of viruses. Virions need to be assembled reliably and efficiently, be released from infected cells, survive in the extracellular environment during transmission, recognize and then trigger entry of appropriate target cells, and disassemble in an orderly manner during initiation of a new infection. The betaherpesvirus subfamily includes four human herpesviruses (human cytomegalovirus and human herpesviruses 6A, 6B, and 7), as well as viruses that are the basis of important animal models of infection and immunity. Similar to other herpesviruses, betaherpesvirus virions consist of four main parts (in order from the inside): the genome, capsid, tegument, and envelope. Betaherpesvirus genomes are dsDNA and range in length from ~145 to 240 kb. Virion capsids (or nucleocapsids) are geometrically well-defined vessels that contain one copy of the dsDNA viral genome. The tegument is a collection of several thousand protein and RNA molecules packed into the space between the envelope and the capsid for delivery and immediate activity upon cellular entry at the initiation of an infection. Betaherpesvirus envelopes consist of lipid bilayers studded with virus-encoded glycoproteins; they protect the virion during transmission and mediate virion entry during initiation of new infections. Here, we summarize the mechanisms of betaherpesvirus virion assembly, including how infection modifies, reprograms, hijacks, and otherwise manipulates cellular processes and pathways to produce virion components, assemble the parts into infectious virions, and then transport the nascent virions to the extracellular environment for transmission.
Collapse
Affiliation(s)
- William L Close
- Department of Microbiology & Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ashley N Anderson
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Philip E Pellett
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
12
|
Kalser J, Adler B, Mach M, Kropff B, Puchhammer-Stöckl E, Görzer I. Differences in Growth Properties among Two Human Cytomegalovirus Glycoprotein O Genotypes. Front Microbiol 2017; 8:1609. [PMID: 28878758 PMCID: PMC5572245 DOI: 10.3389/fmicb.2017.01609] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/07/2017] [Indexed: 11/22/2022] Open
Abstract
Glycoprotein O (gO) of the human cytomegalovirus (HCMV) is the critical subunit of the envelope trimer gH/gL/gO as it interacts with platelet-derived growth factor alpha receptor upon fibroblast entry, and triggers gB-mediated fusion for fibroblast and epithelial cell infection. Eight genotypes (GT) of the highly polymorphic gO gene are described, yet it is unclear whether the distinct GTs differ in their function. Thus, we aimed to elucidate potential functional differences between two highly diverse gO GTs in an otherwise genomically identical HCMV strain. Therefore, resident gO GT1c sequence of strain TB40-BAC4-luc was entirely replaced by gO GT4 of strain Towne and both, GT1c and GT4 viruses, were investigated for their growth properties in fibroblasts and epithelial cells. In addition, two conserved gO cysteines involved in gH/gL/gO stabilization were mutated to serine either in GT1c (C218S and C343S) or GT4 (C216S and C336S) and their effects on cell-free infectivity were assessed. GT4 viruses displayed a significantly enhanced epithelial cell tropism and this resulted in higher virus release upon replication in epithelial cells when compared to GT1c viruses. Further, when the two cysteines were individually mutated in gO GT1c no impairment in cell-free infectivity was observed. This, however, was in sharp contrast to gO GT4, in which both of the corresponding cysteine mutations led to a substantial reduction in cell-free infectivity which was even more pronounced upon mutation of GT4-C336 than of GT4-C216. In conclusion, these findings provide evidence that the two highly diverse gO genotypes, GT1c and GT4, differ in their functional properties as revealed by their different infection capacities for epithelial cells and by their different responsiveness to mutation of strictly conserved cysteine residues. Thus, it is likely that the gO heterogeneity influences cell-free infectivity of HCMV also in vivo which may have important implications for virus host transmission.
Collapse
Affiliation(s)
- Julia Kalser
- Center for Virology, Medical University of ViennaVienna, Austria
| | - Barbara Adler
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University MunichMunich, Germany
| | - Michael Mach
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-NürnbergErlangen, Germany
| | - Barbara Kropff
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-NürnbergErlangen, Germany
| | | | - Irene Görzer
- Center for Virology, Medical University of ViennaVienna, Austria
| |
Collapse
|
13
|
Coleman S, Choi KY, McGregor A. Cytomegalovirus UL128 homolog mutants that form a pentameric complex produce virus with impaired epithelial and trophoblast cell tropism and altered pathogenicity in the guinea pig. Virology 2017. [PMID: 28651121 DOI: 10.1016/j.virol.2017.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Guinea pig cytomegalovirus (GPCMV) encodes a homolog pentameric complex (PC) for specific cell tropism and congenital infection. In human cytomegalovirus, the PC is an important antibody neutralizing target and GPCMV studies will aid in the development of intervention strategies. Deletion mutants of the C-terminal domains of unique PC proteins (UL128, UL130 and UL131 homologs) were unable to form a PC in separate transient expression assays. Minor modifications to the UL128 homolog (GP129) C-terminal domain enabled PC formation but viruses encoding these mutants had altered tropism to renal and placental trophoblast cells. Mutation of the presumptive CC chemokine motif encoded by GP129 was investigated by alanine substitution of the CC motif (codons 26-27) and cysteines (codons 47 and 62). GP129 chemokine mutants formed PC but GP129 chemokine mutant viruses had reduced epitropism. A GP129 chemokine mutant virus pathogenicity study demonstrated reduced viral load to target organs but highly extended viremia.
Collapse
Affiliation(s)
- Stewart Coleman
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States
| | - K Yeon Choi
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States
| | - Alistair McGregor
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States.
| |
Collapse
|
14
|
Impact of Antibodies and Strain Polymorphisms on Cytomegalovirus Entry and Spread in Fibroblasts and Epithelial Cells. J Virol 2017; 91:JVI.01650-16. [PMID: 28381568 DOI: 10.1128/jvi.01650-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 03/27/2017] [Indexed: 12/30/2022] Open
Abstract
Cytomegalovirus (CMV) entry into fibroblasts differs from entry into epithelial cells. CMV also spreads cell to cell and can induce syncytia. To gain insights into these processes, 27 antibodies targeting epitopes in CMV virion glycoprotein complexes, including glycoprotein B (gB), gH/gL, and the pentamer, were evaluated for their effects on viral entry and spread. No antibodies inhibited CMV spread in fibroblasts, including those with potent neutralizing activity against fibroblast entry, while all antibodies that neutralized epithelial cell entry also inhibited spread in epithelial cells and a correlation existed between the potencies of these two activities. This suggests that exposure of virions to the cell culture medium is obligatory during spread in epithelial cells but not in fibroblasts. In fibroblasts, the formation of syncytiumlike structures was impaired not only by antibodies to gB or gH/gL but also by antibodies to the pentamer, suggesting a potential role for the pentamer in promoting fibroblast fusion. Four antibodies reacted with linear epitopes near the N terminus of gH, exhibited strain specificity, and neutralized both epithelial cell and fibroblast entry. Five other antibodies recognized conformational epitopes in gH/gL and neutralized both fibroblast and epithelial cell entry. That these antibodies were strain specific for neutralizing fibroblast but not epithelial cell entry suggests that polymorphisms external to certain gH/gL epitopes may influence antibody neutralization during fibroblast but not epithelial cell entry. These findings may have implications for elucidating the mechanisms of CMV entry, spread, and antibody evasion and may assist in determining which antibodies may be most efficacious following active immunization or passive administration.IMPORTANCE Cytomegalovirus (CMV) is a significant cause of birth defects among newborns infected in utero and morbidity and mortality in transplant and AIDS patients. Monoclonal antibodies and vaccines targeting humoral responses are under development for prophylactic or therapeutic use. The findings reported here (i) confirm that cell-to-cell spread of CMV is sensitive to antibody inhibition in epithelial cells but not fibroblasts, (ii) demonstrate that antibodies can restrict the formation in vitro of syncytiumlike structures that resemble syncytial cytomegalic cells that are associated with CMV disease in vivo, and (iii) reveal that neutralization of CMV by antibodies to certain epitopes in gH or gH/gL is both strain and cell type dependent and can be governed by polymorphisms in sequences external to the epitopes. These findings serve to elucidate the mechanisms of CMV entry, spread, and antibody evasion and may have important implications for the development of CMV vaccines and immunotherapeutics.
Collapse
|
15
|
Clementi N, Cappelletti F, Criscuolo E, Castelli M, Mancini N, Burioni R, Clementi M. Role and potential therapeutic use of antibodies against herpetic infections. Clin Microbiol Infect 2017; 23:381-386. [DOI: 10.1016/j.cmi.2016.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/14/2016] [Accepted: 12/24/2016] [Indexed: 11/30/2022]
|
16
|
Gardner TJ, Stein KR, Duty JA, Schwarz TM, Noriega VM, Kraus T, Moran TM, Tortorella D. Functional screening for anti-CMV biologics identifies a broadly neutralizing epitope of an essential envelope protein. Nat Commun 2016; 7:13627. [PMID: 27966523 PMCID: PMC5171902 DOI: 10.1038/ncomms13627] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/20/2016] [Indexed: 12/30/2022] Open
Abstract
The prototypic β-herpesvirus human cytomegalovirus (CMV) establishes life-long persistence within its human host. The CMV envelope consists of various protein complexes that enable wide viral tropism. More specifically, the glycoprotein complex gH/gL/gO (gH-trimer) is required for infection of all cell types, while the gH/gL/UL128/130/131a (gH-pentamer) complex imparts specificity in infecting epithelial, endothelial and myeloid cells. Here we utilize state-of-the-art robotics and a high-throughput neutralization assay to screen and identify monoclonal antibodies (mAbs) targeting the gH glycoproteins that display broad-spectrum properties to inhibit virus infection and dissemination. Subsequent biochemical characterization reveals that the mAbs bind to gH-trimer and gH-pentamer complexes and identify the antibodies' epitope as an 'antigenic hot spot' critical for virus entry. The mAbs inhibit CMV infection at a post-attachment step by interacting with a highly conserved central alpha helix-rich domain. The platform described here provides the framework for development of effective CMV biologics and vaccine design strategies.
Collapse
Affiliation(s)
- Thomas J. Gardner
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Kathryn R. Stein
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - J. Andrew Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Center for Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Toni M. Schwarz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Vanessa M. Noriega
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Thomas Kraus
- Center for Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Thomas M. Moran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Center for Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
17
|
A Homolog Pentameric Complex Dictates Viral Epithelial Tropism, Pathogenicity and Congenital Infection Rate in Guinea Pig Cytomegalovirus. PLoS Pathog 2016; 12:e1005755. [PMID: 27387220 PMCID: PMC4936736 DOI: 10.1371/journal.ppat.1005755] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/17/2016] [Indexed: 11/19/2022] Open
Abstract
In human cytomegalovirus (HCMV), tropism to epithelial and endothelial cells is dependent upon a pentameric complex (PC). Given the structure of the placenta, the PC is potentially an important neutralizing antibody target antigen against congenital infection. The guinea pig is the only small animal model for congenital CMV. Guinea pig cytomegalovirus (GPCMV) potentially encodes a UL128-131 HCMV PC homolog locus (GP128-GP133). In transient expression studies, GPCMV gH and gL glycoproteins interacted with UL128, UL130 and UL131 homolog proteins (designated GP129 and GP131 and GP133 respectively) to form PC or subcomplexes which were determined by immunoprecipitation reactions directed to gH or gL. A natural GP129 C-terminal deletion mutant (aa 107-179) and a chimeric HCMV UL128 C-terminal domain swap GP129 mutant failed to form PC with other components. GPCMV infection of a newly established guinea pig epithelial cell line required a complete PC and a GP129 mutant virus lacked epithelial tropism and was attenuated in the guinea pig for pathogenicity and had a low congenital transmission rate. Individual knockout of GP131 or 133 genes resulted in loss of viral epithelial tropism. A GP128 mutant virus retained epithelial tropism and GP128 was determined not to be a PC component. A series of GPCMV mutants demonstrated that gO was not strictly essential for epithelial infection whereas gB and the PC were essential. Ectopic expression of a GP129 cDNA in a GP129 mutant virus restored epithelial tropism, pathogenicity and congenital infection. Overall, GPCMV forms a PC similar to HCMV which enables evaluation of PC based vaccine strategies in the guinea pig model.
Collapse
|
18
|
Kabanova A, Marcandalli J, Zhou T, Bianchi S, Baxa U, Tsybovsky Y, Lilleri D, Silacci-Fregni C, Foglierini M, Fernandez-Rodriguez BM, Druz A, Zhang B, Geiger R, Pagani M, Sallusto F, Kwong PD, Corti D, Lanzavecchia A, Perez L. Platelet-derived growth factor-α receptor is the cellular receptor for human cytomegalovirus gHgLgO trimer. Nat Microbiol 2016; 1:16082. [PMID: 27573107 PMCID: PMC4918640 DOI: 10.1038/nmicrobiol.2016.82] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/26/2016] [Indexed: 12/25/2022]
Abstract
Human cytomegalovirus encodes at least 25 membrane glycoproteins that are found in the viral envelope(1). While gB represents the fusion protein, two glycoprotein complexes control the tropism of the virus: the gHgLgO trimer is involved in the infection of fibroblasts, and the gHgLpUL128L pentamer is required for infection of endothelial, epithelial and myeloid cells(2-5). Two reports suggested that gB binds to ErbB1 and PDGFRα (refs 6,7); however, these results do not explain the tropism of the virus and were recently challenged(8,9). Here, we provide a 19 Å reconstruction for the gHgLgO trimer and show that it binds with high affinity through the gO subunit to PDGFRα, which is expressed on fibroblasts but not on epithelial cells. We also provide evidence that the trimer is essential for viral entry in both fibroblasts and epithelial cells. Furthermore, we identify the pentamer, which is essential for infection of epithelial cells, as a trigger for the ErbB pathway. These findings help explain the broad tropism of human cytomegalovirus and indicate that PDGFRα and the viral gO subunit could be targeted by novel anti-viral therapies.
Collapse
Affiliation(s)
- Anna Kabanova
- Institute for Research in Biomedicine, University of Italian Switzerland, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Jessica Marcandalli
- Institute for Research in Biomedicine, University of Italian Switzerland, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Siro Bianchi
- Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Daniele Lilleri
- Laboratori Sperimentali di Ricerca-Area Trapiantologica, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chiara Silacci-Fregni
- Institute for Research in Biomedicine, University of Italian Switzerland, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, University of Italian Switzerland, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | | | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Roger Geiger
- Institute for Research in Biomedicine, University of Italian Switzerland, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
- Institute for Microbiology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Massimiliano Pagani
- Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milano, Italy
| | - Federica Sallusto
- Institute for Research in Biomedicine, University of Italian Switzerland, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Davide Corti
- Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, University of Italian Switzerland, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
- Institute for Microbiology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Laurent Perez
- Institute for Research in Biomedicine, University of Italian Switzerland, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| |
Collapse
|