1
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Cheng HD, Dowell KG, Bailey-Kellogg C, Goods BA, Love JC, Ferrari G, Alter G, Gach J, Forthal DN, Lewis GK, Greene K, Gao H, Montefiori DC, Ackerman ME. Diverse antiviral IgG effector activities are predicted by unique biophysical antibody features. Retrovirology 2021; 18:35. [PMID: 34717659 PMCID: PMC8557579 DOI: 10.1186/s12977-021-00579-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The critical role of antibody Fc-mediated effector functions in immune defense has been widely reported in various viral infections. These effector functions confer cellular responses through engagement with innate immune cells. The precise mechanism(s) by which immunoglobulin G (IgG) Fc domain and cognate receptors may afford protection are poorly understood, however, in the context of HIV/SHIV infections. Many different in vitro assays have been developed and utilized to measure effector functions, but the extent to which these assays capture distinct antibody activities has not been fully elucidated. RESULTS In this study, six Fc-mediated effector function assays and two biophysical antibody profiling assays were performed on a common set of samples from HIV-1 infected and vaccinated subjects. Biophysical antibody profiles supported robust prediction of diverse IgG effector functions across distinct Fc-mediated effector function assays. While a number of assays showed correlated activities, supervised machine learning models indicated unique antibody features as primary contributing factors to the associated effector functions. Additional experiments established the mechanistic relevance of relationships discovered using this unbiased approach. CONCLUSIONS In sum, this study provides better resolution on the diversity and complexity of effector function assays, offering a clearer perspective into this family of antibody mechanisms of action to inform future HIV-1 treatment and vaccination strategies.
Collapse
Affiliation(s)
- Hao D. Cheng
- grid.254880.30000 0001 2179 2404Thayer School of Engineering, Dartmouth College, Hanover, NH USA ,grid.254880.30000 0001 2179 2404Molecular and Cellular Biology Program, Dartmouth College, 14 Engineering Dr., Hanover, NH 03755 USA
| | - Karen G. Dowell
- grid.254880.30000 0001 2179 2404Department of Computer Science, Dartmouth College, Hanover, 03755 USA
| | - Chris Bailey-Kellogg
- grid.254880.30000 0001 2179 2404Department of Computer Science, Dartmouth College, Hanover, 03755 USA
| | - Brittany A. Goods
- grid.116068.80000 0001 2341 2786Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Biological Engineering, Koch Institute at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - J. Christopher Love
- grid.116068.80000 0001 2341 2786Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Biological Engineering, Koch Institute at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Guido Ferrari
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA ,grid.189509.c0000000100241216Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27719 USA
| | - Galit Alter
- grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139 USA
| | - Johannes Gach
- grid.266093.80000 0001 0668 7243Division of Infectious Diseases, Irvine School of Medicine, University California, Irvine, CA 92697 USA
| | - Donald N. Forthal
- grid.266093.80000 0001 0668 7243Division of Infectious Diseases, Irvine School of Medicine, University California, Irvine, CA 92697 USA
| | - George K. Lewis
- grid.411024.20000 0001 2175 4264Division of Vaccine Research, Institute of Human Virology, University Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Kelli Greene
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA
| | - Hongmei Gao
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA
| | - David C. Montefiori
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA ,grid.189509.c0000000100241216Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27719 USA
| | - Margaret E. Ackerman
- grid.254880.30000 0001 2179 2404Thayer School of Engineering, Dartmouth College, Hanover, NH USA ,grid.254880.30000 0001 2179 2404Molecular and Cellular Biology Program, Dartmouth College, 14 Engineering Dr., Hanover, NH 03755 USA
| |
Collapse
|
3
|
Jennewein MF, Mabuka J, Papia CL, Boudreau CM, Dong KL, Ackerman ME, Ndung'u T, Alter G. Tracking the Trajectory of Functional Humoral Immune Responses Following Acute HIV Infection. Front Immunol 2020; 11:1744. [PMID: 32849622 PMCID: PMC7426367 DOI: 10.3389/fimmu.2020.01744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence points to a role for antibody-mediated effector functions in preventing and controlling HIV infection. However, less is known about how these antibody effector functions evolve following infection. Moreover, how the humoral immune response is naturally tuned to recruit the antiviral activity of the innate immune system, and the extent to which these functions aid in the control of infection, are poorly understood. Using plasma samples from 10 hyper-acute HIV-infected South African women, identified in Fiebig stage I (the FRESH cohort), systems serology was performed to evaluate the functional and biophysical properties of gp120-, gp41-, and p24- specific antibody responses during the first year of infection. Significant changes were observed in both the functional and biophysical characteristics of the humoral immune response following acute HIV infection. Antibody Fc-functionality increased over the course of infection, with increases in antibody-mediated phagocytosis, NK activation, and complement deposition occurring in an antigen-specific manner. Changes in both antibody subclass and antibody Fc-glycosylation drove the evolution of antibody effector activity, highlighting natural modifications in the humoral immune response that may enable the directed recruitment of the innate immune system to target and control HIV. Moreover, enhanced antibody functionality, particularly gp120-specific polyfunctionality, was tied to improvements in clinical course of infection, supporting a role for functional antibodies in viral control.
Collapse
Affiliation(s)
- Madeleine F Jennewein
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Jennifer Mabuka
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States.,Africa Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Cassidy L Papia
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Carolyn M Boudreau
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Krista L Dong
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | | | - Thumbi Ndung'u
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States.,Africa Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Max Planck Institute for Infection Biology, Berlin, Germany.,Division of Infection and Immunity, University College London, London, United Kingdom
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| |
Collapse
|
4
|
Talathi S, Bagul R, Ghate M, Kulkarni S, Thakar M. Higher Baseline ADCC Responses in Chronic Nonprogressive HIV Infection Are Associated with Reduced HIV Burden in Later Course of Disease. Viral Immunol 2020; 33:77-85. [PMID: 31976826 DOI: 10.1089/vim.2019.0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The importance of anti-HIV antibodies mediating antibody-dependent cell-mediated cytotoxicity (ADCC) in protective immunity against HIV is recognized recently. The purpose of this study was to measure the functional ADCC response at different stages of HIV infection in a well-defined HIV+ cohort, including 20 recently infected individuals, 30 with long-term slow-progressive, 24 with short-term slow-progressive and 32 with progressive HIV infection using a rapid fluorometric ADCC assay. The antibodies mediating ADCC were found in all disease stages. These antibodies were detectable at as early as 25 days after the estimated date of infection, however, did not influence the viral load set point probably indicating no major influence on the early course of the disease. However, the frequency and magnitude of functional ADCC responses were associated with higher CD4+T cell count and lower viral load and were significantly lower in progressors compared with other groups. The usefulness of the ADCC responses in longer viral control was assessed in a subset of participants with slowly progressing HIV infection. In these individuals, the ADCC responses observed at the visit 1 were found to be increased over time and were associated with lower plasma viral load estimated 4 to 15 years later in the disease course. Overall, the study findings confirm the role of ADCC antibodies in reducing the viral burden and also indicate the probable role of sustained functional ADCC responses in reducing the viral burden during the later period of HIV infection.
Collapse
Affiliation(s)
- Sneha Talathi
- ICMR-National AIDS Research Institute, Pune, Maharashtra, India
| | - Rajani Bagul
- ICMR-National AIDS Research Institute, Pune, Maharashtra, India
| | - Manisha Ghate
- ICMR-National AIDS Research Institute, Pune, Maharashtra, India
| | - Smita Kulkarni
- ICMR-National AIDS Research Institute, Pune, Maharashtra, India
| | - Madhuri Thakar
- ICMR-National AIDS Research Institute, Pune, Maharashtra, India
| |
Collapse
|
5
|
Talathi SP, Shaikh NN, Pandey SS, Saxena VA, Mamulwar MS, Thakar MR. FcγRIIIa receptor polymorphism influences NK cell mediated ADCC activity against HIV. BMC Infect Dis 2019; 19:1053. [PMID: 31842762 PMCID: PMC6916223 DOI: 10.1186/s12879-019-4674-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HIV-specific Antibody Dependent Cell Cytotoxicity (ADCC) has shown to be important in HIV control and resistance. The ADCC is mediated primarily by natural killer cell activated through the binding of FcγRIIIa receptor to the Fc portion of antibody bound to the antigen expressed on the infected cells. However, no data is available on the influence of the polymorphism in FcγRIIIa receptor on HIV-specific ADCC response. METHODS The Sanger's method of sequencing was used to sequence the exon of FcγRIIIa receptor while the ADCC activity was determined using NK cell activation assay. The polymorphism in FcγRIIIa receptor was assessed in HIV-infected Indian individuals with or without HIV-specific ADCC antibodies and its influence on the magnitude of HIV-specific ADCC responses was analyzed. RESULTS Two polymorphisms: V176F (rs396991) and Y158H (rs396716) were observed. The Y158H polymorphism is reported for the first time in Indian population. Both, V176F (V/V genotype) (p = 0.004) and Y158H (Y/H genotype) (p = 0.032) were found to be significantly associated with higher magnitude of HIV-specific ADCC response. CONCLUSION The study underscores the role of polymorphism in the FcγRIIIa receptor on HIV-specific ADCC response and suggests that the screening of the individuals for FcγRIIIa-V176F and Y158H polymorphisms could be useful for prediction of efficient treatment in monoclonal antibody-based therapies aimed at ADCC in HIV infection.
Collapse
Affiliation(s)
- Sneha Pramod Talathi
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India
| | - Nawaj Najir Shaikh
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India
| | - Sudhanshu Shekhar Pandey
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India
| | - Vandana Ashish Saxena
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India
| | - Megha Sunil Mamulwar
- Department of Epidemiology, National AIDS Research Institute, Pune, 411026, India
| | - Madhuri Rajeev Thakar
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India.
| |
Collapse
|
6
|
Lewis GK, Ackerman ME, Scarlatti G, Moog C, Robert-Guroff M, Kent SJ, Overbaugh J, Reeves RK, Ferrari G, Thyagarajan B. Knowns and Unknowns of Assaying Antibody-Dependent Cell-Mediated Cytotoxicity Against HIV-1. Front Immunol 2019; 10:1025. [PMID: 31134085 PMCID: PMC6522882 DOI: 10.3389/fimmu.2019.01025] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/23/2019] [Indexed: 12/15/2022] Open
Abstract
It is now well-accepted that Fc-mediated effector functions, including antibody-dependent cellular cytotoxicity (ADCC), can contribute to vaccine-elicited protection as well as post-infection control of HIV viremia. This picture was derived using a wide array of ADCC assays, no two of which are strictly comparable, and none of which is qualified at the clinical laboratory level. An earlier comparative study of assay protocols showed that while data from different ADCC assay formats were often correlated, they remained distinct in terms of target cells and the epitopes and antigen(s) available for recognition by antibodies, the effector cells, and the readout of cytotoxicity. This initial study warrants expanded analyses of the relationships among all current assay formats to determine where they detect overlapping activities and where they do not. Here we summarize knowns and unknowns of assaying ADCC against HIV-1.
Collapse
Affiliation(s)
- George K. Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Department of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christiane Moog
- INSERM U1109, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Marjorie Robert-Guroff
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institues of Health, Bethesda, MD, United States
| | - Stephen J. Kent
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, United States
| | - Guido Ferrari
- Department of Surgery and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | | |
Collapse
|
7
|
Abstract
: Interactions between the Fc segment of IgG and its receptors (FcγRs) found on cells such as natural killer cells, monocytes, macrophages and neutrophils can potentially mediate antiviral effects in the setting of HIV and related infections. We review the potential role of FcγR interactions in HIV, SIV and SHIV infections, with an emphasis on antibody-dependent cellular cytotoxicity (ADCC). Notably, these viruses employ various strategies, including CD4 down-regulation and BST-2/tetherin antagonism to limit the effect of ADCC. Although correlative data suggest that ADCC participates in both protection and control of established infection, there is little direct evidence in support of either role. Direct evidence does, however, implicate an FcγR-dependent function in augmenting the beneficial in vivo activity of neutralizing antibodies.
Collapse
|
8
|
Chen X, Lin M, Qian S, Zhang Z, Fu Y, Xu J, Han X, Ding H, Dong T, Shang H, Jiang Y. The Early Antibody-Dependent Cell-Mediated Cytotoxicity Response Is Associated With Lower Viral Set Point in Individuals With Primary HIV Infection. Front Immunol 2018; 9:2322. [PMID: 30356637 PMCID: PMC6189277 DOI: 10.3389/fimmu.2018.02322] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/18/2018] [Indexed: 01/17/2023] Open
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) is an immune response largely mediated by natural killer (NK) cells that can lyse target cells and combat tumors and viral infections. However, the role of ADCC in response to primary HIV infection is poorly understood. In the present study, we explored the ADCC response and evaluated its characteristics in 85 HIV-infected individuals, including 42 with primary infections. Our results showed that ADCC occurs during acute infection, and the earliest ADCC response to a single peptide was detected at 52 days. Primary HIV-infected individuals exhibiting ADCC responses had lower viral set points than those with no ADCC response, and functional analyses demonstrated that the ADCC response could significantly inhibit viral infection during primary HIV infection. HIV epitopes that provoked the ADCC response were determined and three relatively conserved epitopes (HNVWATYACVPTDPNPQE, TSVIKQACPKISFDPIPI, and VVSTQLLLNGSLAEEEII) from the surface of the three-dimensional structure of the HIV Env protein were identified. Overall, our data indicate that ADCC responses may be significant for the control of HIV from an early stage during infection. These findings merit further investigation and will facilitate improvements in vaccines or therapeutic interventions against HIV infection.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Meilin Lin
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Affiliated Hospital of Hebei University, Baoding, China
| | - Shi Qian
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zining Zhang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yajing Fu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Junjie Xu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoxu Han
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Haibo Ding
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Tao Dong
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yongjun Jiang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
9
|
A defucosylated bispecific multivalent molecule exhibits broad HIV-1-neutralizing activity and enhanced antibody-dependent cellular cytotoxicity against reactivated HIV-1 latently infected cells. AIDS 2018; 32:1749-1761. [PMID: 29762173 DOI: 10.1097/qad.0000000000001869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Current treatments cannot completely eradicate HIV-1 owing to the presence of latently infected cells, which harbor transcriptionally silent HIV-1. However, defucosylated antibodies can readily kill latently infected cells after their activation to express envelope glycoprotein (Env) through antibody-dependent cellular cytotoxicity (ADCC). We herein aimed to test a defucosylated bispecific multivalent molecule consisting of domain-antibody and single-domain CD4, LSEVh-LS-F, for its HIV-1 neutralizing activity and ADCC against the reactivated latently infected cells, compared with the nondefucosylated molecule LSEVh-LS. METHODS LSEVh-LS-F's neutralizing activity against a panel of newly characterized Chinese HIV-1 clinical isolates was assessed by using TZM-bl-based and PBMC-based assays. LSEVh-LS-F-mediated ADCC in the presence of natural killer cells against cell lines that stably express Env proteins, HIV-1-infected cells and LRA-reactivated HIV-1 latent cells, was measured using a lactate dehydrogenase (LDH) cytotoxicity assay or flow cytometry. RESULTS LSEVh-LS-F and LSEVh-LS were equally effective in neutralized infection of all HIV-1 isolates tested with IC50 and IC90 values 3∼4-fold lower than those of VRC01. LSEVh-LS-F was more effective in natural killer-mediated killing of HIV-1 Env-expressing cell lines, HIV-1-infected cells, latency reactivation agents-reactivated ACH2 cells and reactivated latently infected resting CD4+ T cell line as well as resting CD4+ T lymphocytes isolated from patients receiving HAART. CONCLUSION LSEVh-LS-F exhibits broad HIV-1 neutralizing activity and enhanced ADCC against HIV-1-infected cells, reactivated latently infected cell lines and primary CD4+ T cells, thus being a promising candidate therapeutic for eradicating the HIV-1 reservoir.
Collapse
|
10
|
Viral control in chronic HIV-1 subtype C infection is associated with enrichment of p24 IgG1 with Fc effector activity. AIDS 2018; 32:1207-1217. [PMID: 29620716 DOI: 10.1097/qad.0000000000001812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Postinfection HIV viral control and immune correlates analysis of the RV144 vaccine trial indicate a potentially critical role for Fc receptor-mediated antibody functions. However, the influence of functional antibodies in clade C infection is largely unknown. DESIGN Plasma samples from 361 chronic subtype C-infected, antiretroviral therapy-naive participants were tested for their HIV-specific isotype and subclass distributions, along with their Fc receptor-mediated functional potential. METHOD Total IgG, IgG subclasses and IgA binding to p24 clade B/C and gp120 consensus C proteins were assayed by multiplex. Antibody-dependent uptake of antigen-coated beads and Fc receptor-mediated natural killer cell degranulation were evaluated as surrogates for antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent cellular cytotoxicity (ADCC), respectively. RESULTS p24 IgG1 was the only subclass associated with viral control (P = 0.01), with higher p24-specific ADCP and ADCC responses detected in individuals with high p24 IgG1. Although p24 IgG1 levels were enriched in patients with elevated Gag-specific T-cell responses, these levels remained an independent predictor of low-viral loads (P = 0.04) and high CD4+ cell counts (P = 0.004) after adjusting for Gag-specific T-cell responses and for protective HLA class I alleles. CONCLUSION p24 IgG1 levels independently predict viral control in HIV-1 clade C infection. Whether these responses contribute to direct antiviral control via the recruited killing of infected cells via the innate immune system or simply mark a qualitatively superior immune response to HIV, is uncertain, but highlights the role of p24-specific antibodies in control of clade C HIV-1 infection.
Collapse
|
11
|
The Potential Role of Fc-Receptor Functions in the Development of a Universal Influenza Vaccine. Vaccines (Basel) 2018; 6:vaccines6020027. [PMID: 29772781 PMCID: PMC6027188 DOI: 10.3390/vaccines6020027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023] Open
Abstract
Despite global vaccination efforts, influenza virus continues to cause yearly epidemics and periodic pandemics throughout most of the world. Many of us consider the generation of broader, potent and long-lasting immunity against influenza viruses as critical in curtailing the global health and economic impact that influenza currently plays. To date, classical vaccinology has relied on the generation of neutralizing antibodies as the benchmark to measure vaccine effectiveness. However, recent developments in numerous related fields of biomedical research including, HIV, HSV and DENV have emphasized the importance of Fc-mediate effector functions in pathogenesis and immunity. The concept of Fc effector functions in contributing to protection from illness is not a new concept and has been investigated in the field for over four decades. However, in recent years the application and study of Fc effector functions has become revitalized with new knowledge and technologies to characterize their potential importance in immunity. In this perspective, we describe the current state of the field of Influenza Fc effector functions and discuss its potential utility in universal vaccine design in the future.
Collapse
|
12
|
Richard J, Prévost J, Baxter AE, von Bredow B, Ding S, Medjahed H, Delgado GG, Brassard N, Stürzel CM, Kirchhoff F, Hahn BH, Parsons MS, Kaufmann DE, Evans DT, Finzi A. Uninfected Bystander Cells Impact the Measurement of HIV-Specific Antibody-Dependent Cellular Cytotoxicity Responses. mBio 2018; 9:e00358-18. [PMID: 29559570 PMCID: PMC5874913 DOI: 10.1128/mbio.00358-18] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 11/20/2022] Open
Abstract
The conformation of the HIV-1 envelope glycoprotein (Env) substantially impacts antibody recognition and antibody-dependent cellular cytotoxicity (ADCC) responses. In the absence of the CD4 receptor at the cell surface, primary Envs sample a "closed" conformation that occludes CD4-induced (CD4i) epitopes. The virus controls CD4 expression through the actions of Nef and Vpu accessory proteins, thus protecting infected cells from ADCC responses. However, gp120 shed from infected cells can bind to CD4 present on uninfected bystander cells, sensitizing them to ADCC mediated by CD4i antibodies (Abs). Therefore, we hypothesized that these bystander cells could impact the interpretation of ADCC measurements. To investigate this, we evaluated the ability of antibodies to CD4i epitopes and broadly neutralizing Abs (bNAbs) to mediate ADCC measured by five ADCC assays commonly used in the field. Our results indicate that the uninfected bystander cells coated with gp120 are efficiently recognized by the CD4i ligands but not the bNabs. Consequently, the uninfected bystander cells substantially affect in vitro measurements made with ADCC assays that fail to identify responses against infected versus uninfected cells. Moreover, using an mRNA flow technique that detects productively infected cells, we found that the vast majority of HIV-1-infected cells in in vitro cultures or ex vivo samples from HIV-1-infected individuals are CD4 negative and therefore do not expose significant levels of CD4i epitopes. Altogether, our results indicate that ADCC assays unable to differentiate responses against infected versus uninfected cells overestimate responses mediated by CD4i ligands.IMPORTANCE Emerging evidence supports a role for antibody-dependent cellular cytotoxicity (ADCC) in protection against HIV-1 transmission and disease progression. However, there are conflicting reports regarding the ability of nonneutralizing antibodies targeting CD4-inducible (CD4i) Env epitopes to mediate ADCC. Here, we performed a side-by-side comparison of different methods currently being used in the field to measure ADCC responses to HIV-1. We found that assays which are unable to differentiate virus-infected from uninfected cells greatly overestimate ADCC responses mediated by antibodies to CD4i epitopes and underestimate responses mediated by broadly neutralizing antibodies (bNAbs). Our results strongly argue for the use of assays that measure ADCC against HIV-1-infected cells expressing physiologically relevant conformations of Env to evaluate correlates of protection in vaccine trials.
Collapse
Affiliation(s)
- Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Amy E Baxter
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Benjamin von Bredow
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew S Parsons
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
| | - David T Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Chung AW, Alter G. Systems serology: profiling vaccine induced humoral immunity against HIV. Retrovirology 2017; 14:57. [PMID: 29268769 PMCID: PMC5740944 DOI: 10.1186/s12977-017-0380-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/27/2017] [Indexed: 02/04/2023] Open
Abstract
The results of the RV144 HIV vaccine, in combination with several recent non-human primate vaccine studies continue to highlight the potentially protective role of non-neutralizing Fc functional antibodies in HIV vaccine design. For many currently licensed vaccines, assays that detect antigen-specific antibody titers or neutralization levels have been used as a correlate of protection. However, antibodies can confer protection through multiple other mechanisms beyond neutralization, or mechanisms which are not dependent on total antibody titers. Alternative strategies that allow us to further understand the precise mechanisms by which antibodies confer protection against HIV and other infectious pathogens is vitally important for the development of future vaccines. Systems serology aims to comprehensively survey a diverse array of antibody features and functions, in order to simultaneously examine the mechanisms behind and distinguish the most important antibody features required for protection, thus identifying key targets for future experimental vaccine testing. This review will focus on the technical aspects required for the application of Systems serology and summarizes the recent advances provided by application of this systemic analytical approach.
Collapse
Affiliation(s)
- Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth St., Melbourne, VIC, 3000, Australia.
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
14
|
Arnold KB, Chung AW. Prospects from systems serology research. Immunology 2017; 153:279-289. [PMID: 29139548 PMCID: PMC5795183 DOI: 10.1111/imm.12861] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 12/28/2022] Open
Abstract
Antibodies are highly functional glycoproteins capable of providing immune protection through multiple mechanisms, including direct pathogen neutralization and the engagement of their Fc portions with surrounding effector immune cells that induce anti-pathogenic responses. Small modifications to multiple antibody biophysical features induced by vaccines can significantly alter functional immune outcomes, though it is difficult to predict which combinations confer protective immunity. In order to give insight into the highly complex and dynamic processes that drive an effective humoral immune response, here we discuss recent applications of 'Systems Serology', a new approach that uses data-driven (also called 'machine learning') computational analysis and high-throughput experimental data to infer networks of important antibody features associated with protective humoral immunity and/or Fc functional activity. This approach offers the ability to understand humoral immunity beyond single correlates of protection, assessing the relative importance of multiple biophysical modifications to antibody features with multivariate computational approaches. Systems Serology has the exciting potential to help identify novel correlates of protection from infection and may generate a more comprehensive understanding of the mechanisms behind protection, including key relationships between specific Fc functions and antibody biophysical features (e.g. antigen recognition, isotype, subclass and/or glycosylation events). Reviewed here are some of the experimental and computational technologies available for Systems Serology research and evidence that the application has broad relevance to multiple different infectious diseases including viruses, bacteria, fungi and parasites.
Collapse
Affiliation(s)
- Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
15
|
Richard J, Prévost J, Alsahafi N, Ding S, Finzi A. Impact of HIV-1 Envelope Conformation on ADCC Responses. Trends Microbiol 2017; 26:253-265. [PMID: 29162391 DOI: 10.1016/j.tim.2017.10.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/17/2017] [Accepted: 10/26/2017] [Indexed: 01/30/2023]
Abstract
HIV-1 envelope glycoproteins (Env) represent the only virus-specific antigen exposed at the surface of infected cells. In its unliganded form, Env from primary viruses samples a 'closed' conformation (State 1), which is preferentially recognized by broadly neutralizing antibodies (bNAbs). CD4 engagement drives Env into an intermediate 'partially open' (State 2) and then into the 'open' CD4-bound conformation (State 3). Emerging evidence suggests a link between Env conformation and Ab-dependent cellular cytotoxicity (ADCC). HIV-1-infected cells exposing Env in the CD4-bound conformation are susceptible to ADCC mediated by CD4-induced Abs and HIV+sera. Cells exposing State 1 Env are susceptible to ADCC mediated by bNAbs. Here, we discuss how Env conformation affects ADCC responses and in vitro measurements.
Collapse
Affiliation(s)
- Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC, H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, H2X 0A9, Canada; These authors contributed equally
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC, H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, H2X 0A9, Canada; These authors contributed equally
| | - Nirmin Alsahafi
- Centre de Recherche du CHUM, Montreal, QC, H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, QC, H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, H2X 0A9, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC, H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
16
|
Mikulak J, Oriolo F, Zaghi E, Di Vito C, Mavilio D. Natural killer cells in HIV-1 infection and therapy. AIDS 2017; 31:2317-2330. [PMID: 28926399 DOI: 10.1097/qad.0000000000001645] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
: Natural killer (NK) cells are important effectors of innate immunity playing a key role in the eradication and clearance of viral infections. Over the recent years, several studies have shown that HIV-1 pathologically changes NK cell homeostasis and hampers their antiviral effector functions. Moreover, high levels of chronic HIV-1 viremia markedly impair those NK cell regulatory features that normally regulate the cross talks between innate and adaptive immune responses. These pathogenic events take place early in the infection and are associated with a pathologic redistribution of NK cell subsets that includes the expansion of anergic CD56/CD16 NK cells with an aberrant repertoire of activating and inhibitory receptors. Nevertheless, the presence of specific haplotypes for NK cell receptors and the engagement of NK cell antibody-dependent cell cytotocity have been reported to control HIV-1 infection. This dichotomy can be extremely useful to both predict the clinical outcome of the infection and to develop alternative antiviral pharmacological approaches. Indeed, the administration of antiretroviral therapy in HIV-1-infected patients restores NK cell phenotype and functions to normal levels. Thus, antiretroviral therapy can help to develop NK cell-directed therapeutic strategies that include the use of broadly neutralizing antibodies and toll-like receptor agonists. The present review discusses how our current knowledge of NK cell pathophysiology in HIV-1 infection is being translated both in experimental and clinical trials aimed at controlling the infection and disease.
Collapse
|
17
|
Potent In Vivo NK Cell-Mediated Elimination of HIV-1-Infected Cells Mobilized by a gp120-Bispecific and Hexavalent Broadly Neutralizing Fusion Protein. J Virol 2017; 91:JVI.00937-17. [PMID: 28794022 DOI: 10.1128/jvi.00937-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/31/2017] [Indexed: 11/20/2022] Open
Abstract
Antibodies bound to human immunodeficiency virus type 1 (HIV-1) envelope protein expressed by infected cells mobilize antibody-dependent cellular cytotoxicity (ADCC) to eliminate the HIV-1-infected cells and thereby suppress HIV-1 infection and delay disease progression. Studies treating HIV-1-infected individuals with latency reactivation agents to reduce their latent HIV-1 reservoirs indicated that their HIV-1-specific immune responses were insufficient to effectively eliminate the reactivated latent HIV-1-infected T cells. Mobilization of ADCC may facilitate elimination of reactivated latent HIV-1-infected cells to deplete the HIV-1 reservoir and contribute to a functional HIV-1 cure. The most effective antibodies for controlling and eradicating HIV-1 infection would likely have the dual capacities of potently neutralizing a broad range of HIV-1 isolates and effectively mobilizing HIV-1-specific ADCC to eliminate HIV-1-infected cells. For this purpose, we constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and simian-human immunodeficiency virus (SHIV) infection in humanized mouse and macaque models, respectively, including in vivo neutralization of HIV-1 strains resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. We developed a novel humanized mouse model to evaluate in vivo human NK cell-mediated elimination of HIV-1-infected cells by ADCC and utilized it to demonstrate that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir.IMPORTANCE Mobilization of antibody-dependent cellular cytotoxicity (ADCC) to eliminate reactivated latent HIV-1-infected cells is a strategy which may contribute to depleting the HIV-1 reservoir and achieving a functional HIV-1 cure. To more effectively mobilize ADCC, we designed and constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and SHIV infection in humanized mouse and macaque models, respectively, including in vivo neutralization of an HIV-1 strain resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. Using a novel humanized mouse model, we demonstrated that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir.
Collapse
|
18
|
Vargas-Inchaustegui DA, Helmold Hait S, Chung HK, Narola J, Hoang T, Robert-Guroff M. Phenotypic and Functional Characterization of Circulatory, Splenic, and Hepatic NK Cells in Simian Immunodeficiency Virus-Controlling Macaques. THE JOURNAL OF IMMUNOLOGY 2017; 199:3202-3211. [PMID: 28947538 DOI: 10.4049/jimmunol.1700586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/28/2017] [Indexed: 12/24/2022]
Abstract
NK cells are key components of the immune system because of their rapid response potential and their ability to mediate cytotoxic and immunomodulatory functions. Additionally, NK cells have recently been shown to persist for long periods in vivo and to have the capacity to establish immunologic memory. In the current study, we assessed the phenotype and function of circulatory and tissue-resident NK cells in a unique cohort of SIV-controlling rhesus macaques that maintained low to undetectable levels of viremia in the chronic phase of infection. By contrasting NK responses of these macaques with those observed in SIV-noncontrolling and uninfected macaques, we aimed to identify markers and activities of NK subpopulations associated with disease control. We show in this article that most differences among NK cells of the three groups of macaques were observed in tissue-resident cells. Although SIV infection resulted in NK cell dysfunction, double-negative NK cells and those expressing CXCR3, NKG2D, and IL-18Rα were associated with viremia control, as was Ab-dependent cytotoxic function. Our results suggest several novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Diego A Vargas-Inchaustegui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Sabrina Helmold Hait
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | | | - Jigna Narola
- Advanced BioScience Laboratories, Inc., Rockville, MD 20850
| | - Tanya Hoang
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Marjorie Robert-Guroff
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
19
|
HIV-1 Env- and Vpu-Specific Antibody-Dependent Cellular Cytotoxicity Responses Associated with Elite Control of HIV. J Virol 2017; 91:JVI.00700-17. [PMID: 28701393 DOI: 10.1128/jvi.00700-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/19/2017] [Indexed: 12/20/2022] Open
Abstract
Studying HIV-infected individuals who control HIV replication (elite controllers [ECs]) enables exploration of effective anti-HIV immunity. HIV Env-specific and non-Env-specific antibody-dependent cellular cytotoxicity (ADCC) may contribute to protection from progressive HIV infection, but the evidence is limited. We recruited 22 ECs and matched them with 44 viremic subjects. HIV Env- and Vpu-specific ADCC responses in sera were studied using a novel enzyme-linked immunosorbent assay (ELISA)-based dimeric recombinant soluble FcγRIIIa (rsFcγRIIIa)-binding assay, surface plasmon resonance, antibody-dependent natural killer (NK) cell activation assays, and ADCC-mediated killing assays. ECs had higher levels of HIV Env-specific antibodies capable of binding FcγRIIIa, activating NK cells, and mediating granzyme B activity (all P < 0.01) than viremic subjects. ECs also had higher levels of antibodies against a C-terminal 13-mer Vpu peptide capable of mediating FcγRIIIa binding and NK cell activation than viremic subjects (both P < 0.05). Our data associate Env-specific and Vpu epitope-specific ADCC in effective immune responses against HIV among ECs. Our findings have implications for understanding the role of ADCC in HIV control.IMPORTANCE Understanding immune responses associated with elite control of HIV may aid the development of immunotherapeutic and vaccine strategies for controlling HIV infection. Env is a major HIV protein target of functional antibody responses that are heightened in ECs. Interestingly, EC antibodies also target Vpu, an accessory protein crucial to HIV, which degrades CD4 and antagonizes tetherin. Antibodies specific to Vpu are a common feature of the immune response of ECs that may prove to be of functional importance to the design of improved ADCC-based immunotherapy and preventative HIV vaccines.
Collapse
|
20
|
Kulkarni A, Kurle S, Shete A, Ghate M, Godbole S, Madhavi V, Kent SJ, Paranjape R, Thakar M. Indian Long-term Non-Progressors Show Broad ADCC Responses with Preferential Recognition of V3 Region of Envelope and a Region from Tat Protein. Front Immunol 2017; 8:5. [PMID: 28154562 PMCID: PMC5243827 DOI: 10.3389/fimmu.2017.00005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 01/03/2017] [Indexed: 11/19/2022] Open
Abstract
HIV-specific antibody-dependent cell cytotoxicity (ADCC) is likely to be important in governing protection from human immunodeficiency virus (HIV) and slowing disease progression. Little is known about the ADCC responses to HIV-1 subtype C. We characterized ADCC responses in HIV-1 subtype C-infected Indian subjects with slow disease progression and identified the dominant antigenic regions recognized by these antibodies. ADCC responses were measured in plasma from 34 long-term non-progressors (LTNPs), who were asymptomatic and maintained CD4 count above 500 cells/mm3 for the last 7 years in the absence of antiretroviral therapy (ART), and 58 ART naïve progressors with CD4 count <500 cells/mm3 against overlapping HIV-1 peptides using a flow cytometry-based antibody-dependent natural killer (NK) cell activation assay. The assay measured CD107a expression on NK cells as a marker of antibody-dependent NK cell activation and IFN-γ secretion by NK cells upon activation. The ADCC epitopes were mapped using the matrix of overlapping peptides. Indian LTNPs showed higher and broader ADCC responses compared to the progressors. The Env-C and Tat-specific ADCC responses were associated with lower plasma viral load, whereas the Env-C responses were also associated with higher CD4 counts. Five of 10 LTNP responders targeted epitopes in the V3 region (amino acids 288–330) of Env-C. Additionally, three Tat regions were targeted by ADCC antibodies from LTNPs. ADCC responses were associated with slow HIV progression in Indian subtype C-infected cohort. The frequently recognized peptides from the V3 loop of Env and the novel epitopes from Tat by the LTNPs warrants further study to understand the role of ADCC responses to these regions in control and prevention of HIV-1 infection.
Collapse
Affiliation(s)
- Archana Kulkarni
- Department of Immunology and Serology, National AIDS Research Institute , Pune , India
| | - Swarali Kurle
- Department of Immunology and Serology, National AIDS Research Institute , Pune , India
| | - Ashwini Shete
- Department of Immunology and Serology, National AIDS Research Institute , Pune , India
| | - Manisha Ghate
- Department of Clinical Sciences, National AIDS Research Institute , Pune , India
| | - Sheela Godbole
- Department of Epidemiology and Biostatistics, National AIDS Research Institute , Pune , India
| | - Vijaya Madhavi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne, VIC , Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne, VIC , Australia
| | - Ramesh Paranjape
- Department of Immunology and Serology, National AIDS Research Institute , Pune , India
| | - Madhuri Thakar
- Department of Immunology and Serology, National AIDS Research Institute , Pune , India
| |
Collapse
|
21
|
Shete A, Suryawanshi P, Chavan C, Kulkarni A, Godbole S, Ghate M, Thakar M. Development of IFN-γ secretory ELISPOT based assay for screening of ADCC responses. J Immunol Methods 2016; 441:49-55. [PMID: 27923642 DOI: 10.1016/j.jim.2016.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/21/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
Antibody dependent cell mediated cytotoxicity has been established as one of the important protective immune mechanisms against HIV making it essential to evaluate it while testing immunogenicity of emerging vaccine candidates. IFN-γ secretory ELISPOT assay, widely used for evaluation of CTL response in HIV vaccine trials, was adapted for measuring ADCC responses and the results were compared with the standard ICS based assays. IFN-γ responses elicited by plasma samples of 23 HIV infected individuals against Env and Gag peptides using granulocytes as antigen presenting cells were assessed by both the methods. Supernatants of the activated cells in ELISPOT assay were also assessed for cytokine/chemokine estimation. ELISPOT assays detected significantly more ADCC responders against HIV-Env and Gag peptide pools than ICS assay. The magnitude of IFN-γ response in both the assay correlated significantly (p=0.002). NK cells were found to be the predominant cell type secreting IFN-γ in the assay. Although IFN-γ and IL-6 levels were significantly higher in supernatants of Env peptides stimulated cells, IP-10 and MCP-1α levels were found to be more against Gag peptides. Thus, IFN-γ secretory ELISPOT assay was found to be more sensitive in detecting ADCC responders than ICS assay making it a valuable tool for screening of ADCC responses in future vaccine trials. Differences in cytokine pattern of Env versus Gag stimulated cells warrants a need for investigating their role in protection against HIV infection.
Collapse
Affiliation(s)
- Ashwini Shete
- National AIDS Research Institute, 73, G Block, MIDC, Bhosari, Pune 411026, India.
| | - Poonam Suryawanshi
- National AIDS Research Institute, 73, G Block, MIDC, Bhosari, Pune 411026, India
| | - Chetan Chavan
- National AIDS Research Institute, 73, G Block, MIDC, Bhosari, Pune 411026, India
| | - Archana Kulkarni
- National AIDS Research Institute, 73, G Block, MIDC, Bhosari, Pune 411026, India
| | - Sheela Godbole
- National AIDS Research Institute, 73, G Block, MIDC, Bhosari, Pune 411026, India
| | - Manisha Ghate
- National AIDS Research Institute, 73, G Block, MIDC, Bhosari, Pune 411026, India
| | - Madhuri Thakar
- National AIDS Research Institute, 73, G Block, MIDC, Bhosari, Pune 411026, India
| |
Collapse
|
22
|
Fink E, Fuller K, Agan B, Berger EA, Saphire A, Quinnan GV, Elder JH. Humoral Antibody Responses to HIV Viral Proteins and to CD4 Among HIV Controllers, Rapid and Typical Progressors in an HIV-Positive Patient Cohort. AIDS Res Hum Retroviruses 2016; 32:1187-1197. [PMID: 27771962 PMCID: PMC5175433 DOI: 10.1089/aid.2016.0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The purpose of this study was to assess humoral antibody responses as a function of disease progression (DP) in a well-defined HIV+ cohort. We quantified antibodies to HIV-1 gp120, Gag, and CD4 receptor by enzyme-linked immunosorbent assay in sera from a cohort of 97 HIV+ subjects at defined stages of DP. We also measured antibody-dependent cellular cytotoxicity (ADCC) as a function of the clinical status of the patients. We purified antibodies to CD4 and gp120 and assessed them for specificity, ability to block gp120 binding to target cells, ability to block virus infection, and ability to facilitate ADCC. All of the HIV+ patient samples were positive for antibodies to HIV gp120 and p24 and 80% showed evidence of hypergammaglobulinemia. Approximately 10% of cohort members were positive for antibodies to CD4, but we noted no significant correlation relevant to DP. There were statistically significant differences between the groups concerning the level of humoral response to gp120 and Gag. However, we observed no distinction in ability of anti-gp120 antibodies purified from each group to neutralize infection. In addition, there was a statistically significant difference in ADCC, with elite controllers exhibiting significantly lower levels of ADCC than the other five groups. We detected IgA anti-gp120 antibodies, but did not correlate their presence with either DP or ADCC levels. The results are consistent with the interpretation that the humoral antibody response to the antigens assessed here represents a signature of the level of viremia but does not correlate with clinical status of HIV infection.
Collapse
Affiliation(s)
- Elizabeth Fink
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California
| | - Katherine Fuller
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California
| | - Brian Agan
- Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Edward A. Berger
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland
| | - Andrew Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California
| | - Gerald V. Quinnan
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - John H. Elder
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
23
|
Isitman G, Lisovsky I, Tremblay-McLean A, Kovacs C, Harris M, Routy JP, Bruneau J, Wainberg MA, Tremblay C, Bernard NF. Antibody-Dependent Cellular Cytotoxicity Activity of Effector Cells from HIV-Infected Elite and Viral Controllers. AIDS Res Hum Retroviruses 2016; 32:1079-1088. [PMID: 27499379 DOI: 10.1089/aid.2016.0157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Carriage of alleles encoding certain inhibitory natural killer (NK) cell receptor/HLA ligand KIR3DL1/HLA-B combinations is associated with protection from HIV infection and slow time to AIDS, implicating NK cells in HIV control. NK cells also mediate antibody-dependent cellular cytotoxicity (ADCC). ADCC has been identified as a correlate of protection in secondary analyses of the modestly protective RV144 Thai HIV vaccine trial. In ADCC, HIV envelope (Env)-specific antibodies (Abs) bridge HIV-infected or gp120-coated target cells and NK cells expressing CD16 receptors for Ab Fc domains. CD16 engagement activates NK cells to secrete cytokines/chemokines, degranulate, deliver granzyme B (GrB) to target cells, and cytolysis. A subset of HIV+ subjects, known as slow progressors (SPs), maintains low-level viremia without treatment. HIV+ SPs versus progressors have higher titers and/or a greater breadth of ADCC-competent Abs. Investigations of the functional capacity of NK effector cells following CD16 engagement in HIV+ subjects are lacking. We used the ADCC-GranToxiLux (ADCC-GTL) assay to assess the frequency of GrB+ (%GrB+) cells generated by effector cells from 37 HIV+ SPs and 15 progressors to gp120-coated CEM.NKr.CCR5 target cells in the presence of anti-Env Abs. Subject groups were stratified according to whether or not they carried educating KIR3DL1/HLA-B combinations able to confer NK cells with functional potential. No differences were observed in %GrB+ target cells generated by effector cells from carriers of educating versus noneducating KIR3DL1/HLA-B pairs. The absence of an effect of NK cell education on this readout may be due to loss of the ability of educated NK cells from SPs to respond to Ab-dependent stimulation and/or the lower frequency of KIR3DL1+ than KIR3DL1- NK cells that coexpress CD16. That KIR/HLA genotypes have minimal impact on interindividual differences in ADCC potency has relevance for therapeutic interventions that target ADCC for HIV control.
Collapse
Affiliation(s)
- Gamze Isitman
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Irene Lisovsky
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Alexandra Tremblay-McLean
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Colin Kovacs
- Maple Leaf Medical Clinic, University of Toronto, Toronto, Canada
| | - Marianne Harris
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Division of AIDS, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Jean-Pierre Routy
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
- Chronic Viral Illness Service, MUHC, Montreal, Canada
- Division of Hematology, MUHC, Montreal, Canada
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
- Department of Family Medicine, Université de Montréal, Montreal, Canada
| | - Mark A. Wainberg
- McGill AIDS Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Nicole F. Bernard
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Chronic Viral Illness Service, MUHC, Montreal, Canada
- Division of Clinical Immunology, MUHC, Montreal, Canada
| |
Collapse
|
24
|
Abstract
Background Immunity to human influenza A virus (IAV) infection is only partially understood. Broadly non-neutralizing antibodies may assist in reducing disease but have not been well characterized. Methods We measured internalization of opsonized, influenza protein-coated fluorescent beads and live IAV into a monocytic cell line to study antibody-dependent phagocytosis (ADP) against multiple influenza hemagglutinin (HA) subtypes. We analyzed influenza HA-specific ADP in healthy human donors, in preparations of intravenous immunoglobulin (IVIG), and following IAV infection of humans and macaques. Results We found that both sera from healthy adults and IVIG preparations had broad ADP to multiple seasonal HA proteins and weak cross-reactive ADP to non-circulating HA proteins. The ADP in experimentally influenza-infected macaque plasma and naturally influenza-infected human sera mediated phagocytosis of both homologous and heterologous IAVs. Further, the IAV phagocytosed in an antibody-mediated manner had reduced infectivity in vitro. Conclusion We conclude that IAV infections in humans and macaques leads to the development of influenza-specific ADP that can clear IAV infection in vitro. Repeated exposure of humans to multiple IAV infections likely leads to the development of ADP that is cross-reactive to strains not previously encountered. Further analyses of the protective capacity of broadly reactive influenza-specific ADP is warranted.
Collapse
|
25
|
Env-Specific IgA from Viremic HIV-Infected Subjects Compromises Antibody-Dependent Cellular Cytotoxicity. J Virol 2016; 90:670-81. [PMID: 26491172 PMCID: PMC4702681 DOI: 10.1128/jvi.02363-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/14/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Elucidating the factors that modulate HIV-specific antibody-dependent cellular cytotoxicity (ADCC) will help in understanding its role in HIV immunity. The aim of this study was to determine whether IgA could modify the magnitude of ADCC in HIV infection, abrogating its protective role. Plasma samples from 20 HIV-positive (HIV(+)) subjects enrolled during primary HIV infection (PHI), 10 chronically infected subjects (chronic), and 7 elite controllers (EC) were used. ADCC was determined by using a fluorometric ADCC assay, before and after removal of plasma IgA. Data were analyzed by using nonparametric statistics. ADCC was documented in 80% of PHI enrollment samples and in 100% of PHI 12-month, chronic, and EC samples; it peaked after acute infection, reached a plateau in chronic infection, and decreased after initiation of antiretroviral treatment (ART). Significant associations between ADCC and disease progression were found only after removal of plasma IgA from 12-month PHI samples: the magnitude of ADCC not only increased after IgA removal but also correlated with CD4(+) T-cell preservation. This work provides evidence that gp120-specific IgA was capable of modifying ADCC responses during natural HIV infection for the first time and adds to similar evidence provided in other settings. Furthermore, it underscores the complexity of the ADCC phenomenon and will help in an understanding of its underlying mechanisms. IMPORTANCE Although the induction of ADCC-mediating antibodies in HIV-infected subjects has been extensively documented, the association of these antibodies with protection from disease progression is poorly understood. Here, we demonstrate that plasma IgA is a factor capable of modifying the magnitude of IgG-mediated ADCC in HIV infection, mitigating its beneficial effect. These results help in understanding why previous studies failed to demonstrate correlations between ADCC and disease progression, and they also contribute to the notion that an HIV vaccine should stimulate the production of ADCC-mediating IgG antibodies but not IgA.
Collapse
|
26
|
Antibody-Dependent Cellular Cytotoxicity against Reactivated HIV-1-Infected Cells. J Virol 2015; 90:2021-30. [PMID: 26656700 DOI: 10.1128/jvi.02717-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/30/2015] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Lifelong antiretroviral therapy (ART) for HIV-1 does not diminish the established latent reservoir. A possible cure approach is to reactivate the quiescent genome from latency and utilize immune responses to eliminate cells harboring reactivated HIV-1. It is not known whether antibodies within HIV-1-infected individuals can recognize and eliminate cells reactivated from latency through antibody-dependent cellular cytotoxicity (ADCC). We found that reactivation of HIV-1 expression in the latently infected ACH-2 cell line elicited antibody-mediated NK cell activation but did not result in antibody-mediated killing. The lack of CD4 expression on these HIV-1 envelope (Env)-expressing cells likely resulted in poor recognition of CD4-induced antibody epitopes on Env. To examine this further, cultured primary CD4(+) T cells from HIV-1(+) subjects were used as targets for ADCC. These ex vivo-expanded primary cells were modestly susceptible to ADCC mediated by autologous or heterologous HIV-1(+) serum antibodies. Importantly, ADCC mediated against these primary cells could be enhanced following incubation with a CD4-mimetic compound (JP-III-48) that exposes CD4-induced antibody epitopes on Env. Our studies suggest that with sufficient reactivation and expression of appropriate Env epitopes, primary HIV-1-infected cells can be targets for ADCC mediated by autologous serum antibodies and innate effector cells. The results of this study suggest that further investigation into the potential of ADCC to eliminate reactivated latently infected cells is warranted. IMPORTANCE An HIV-1 cure remains elusive due to the persistence of long-lived latently infected cells. An HIV-1 cure strategy, termed "shock and kill," aims to reactivate HIV-1 expression in latently infected cells and subsequently eliminate the reactivated cells through immune-mediated killing. While recent research efforts have focused on reversing HIV-1 latency, it remains unclear whether preexisting immune responses within HIV-1(+) individuals can efficiently eliminate the reactivated cells. HIV-1-specific antibodies can potentially eliminate cells reactivated from latency via Fc effector functions by recruiting innate immune cells. Our study highlights the potential role that antibody-dependent cellular cytotoxicity might play in antilatency cure approaches.
Collapse
|
27
|
HIV Vaccine: Recent Advances, Current Roadblocks, and Future Directions. J Immunol Res 2015; 2015:560347. [PMID: 26579546 PMCID: PMC4633685 DOI: 10.1155/2015/560347] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 11/19/2022] Open
Abstract
HIV/AIDS is a leading cause of mortality and morbidity worldwide. In spite of successful interventions and treatment protocols, an HIV vaccine would be the ultimate prevention and control strategy. Ever since identification of HIV/AIDS, there have been meticulous efforts for vaccine development. The specific aim of this paper is to review recent vaccine efficacy trials and associated advancements and discuss the current challenges and future directions. Recombinant DNA technologies greatly facilitated development of many viral products which were later incorporated into vectors for effective vaccines. Over the years, a number of scientific approaches have gained popularity and include the induction of neutralizing antibodies in late 1980s, induction of CD8 T cell in early 1990s, and combination approaches currently. Scientists have hypothesized that stimulation of right sequences of somatic hypermutations could induce broadly reactive neutralizing antibodies (bnAbs) capable of effective neutralization and viral elimination. Studies have shown that a number of host and viral factors affect these processes. Similarly, eliciting specific CD8 T cells immune responses through DNA vaccines hold future promises. In summary, future studies should focus on the continuous fight between host immune responses and ever-evasive viral factors for effective vaccines.
Collapse
|
28
|
Natural killer cell education does not affect the magnitude of granzyme B delivery to target cells by antibody-dependent cellular cytotoxicity. AIDS 2015; 29:1433-43. [PMID: 26244383 DOI: 10.1097/qad.0000000000000729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Interest in the role of antibody-dependent cellular cytotoxicity (ADCC) in protection from HIV infection has grown since analyses of the RV144 HIV vaccine trial results found ADCC correlated with protection. Natural killer (NK) cells are among the effector cells that mediate ADCC. The level of antibody-induced NK cell activation depends on NK cell education through inhibitory NK cell receptor human leukocyte antigen (HLA) ligand interactions. Here, we investigated the impact of NK cell education on the delivery of Granzyme B (GzB) to target cells. DESIGN Lymphocytes from 50 HIV-uninfected [30 Bw4 (Bw4) and 20 Bw4 (Bw6)] KIR3DL1 homozygote persons were used as effectors and cocultured with gp120-coated target cells in the presence of a single source of anti-HIV gp120 antibody to ascertain whether NK cell education status influenced the level of GzB delivered to target cells. METHODS The GTL assay assessed the frequency of GzB-positive (%GzB) CEM.NKr.CCR5 target cells generated by effectors from each individual. The frequency of CD107a, interferon (IFN)-γ and CCL4 NK cells was assessed as a measure of antibody-induced NK cell activation. RESULTS KIR3DL1 NK cells from the Bw4 group were more functional than KIR3DL1 NK cells. Despite this, the %GzB target cells generated in the GTL assay did not differ according to the KIR3DL1-HLA-B genotype of the effector cells. The %GzB cells positively correlated with the frequency of CD16KIR3DL1 NK cells in the effector population. CONCLUSION ADCC potency does not depend on NK cell education.
Collapse
|
29
|
Zhou J, Amran FS, Kramski M, Angelovich TA, Elliott J, Hearps AC, Price P, Jaworowski A. An NK Cell Population Lacking FcRγ Is Expanded in Chronically Infected HIV Patients. THE JOURNAL OF IMMUNOLOGY 2015; 194:4688-97. [PMID: 25855354 DOI: 10.4049/jimmunol.1402448] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/06/2015] [Indexed: 01/17/2023]
Abstract
We previously demonstrated that NK cells from HIV-infected individuals have elevated expression of activation markers, spontaneously degranulate ex vivo, and decrease expression of a signal-transducing protein for NK-activating receptors, FcRγ. Importantly, these changes were maintained in virologically suppressed (VS) individuals receiving combination antiretroviral therapy (cART). In this study, we show that loss of FcRγ is caused by the expansion of a novel subset of FcRγ(-)CD56(dim) NK cells with an altered activation receptor repertoire and biological properties. In a cross-sectional study, FcRγ(-) NK cells as a proportion of total CD56(dim) NK cells increased in cART-naive viremic HIV-infected individuals (median [interquartile range] = 25.9 [12.6-56.1] compared with 3.80 [1.15-11.5] for HIV(-) controls, p < 0.0001) and in VS HIV-infected individuals (22.7 [13.1-56.2] compared with 3.80 [1.15-11.5], p = 0.0004), with no difference between cART-naive and VS patients (p = 0.93). FcRγ(-) NK cells expressed no NKp30 or NKp46. They showed greater Ab-dependent cellular cytotoxicity activity against rituximab-opsonized Raji cells and in a whole-blood assay measuring NK responses to overlapping HIV peptides, despite having reduced CD16 expression compared with conventional NK cells. Their prevalence correlated with CMV Ab titers in HIV(-) subjects but not in HIV(+) individuals, and with the inflammatory marker CXCL10 in both groups. The expansion of a subset of NK cells that lacks NKp30 and NKp46 to ∼90% of CD56(dim) NK cells in some VS HIV(+) individuals may influence NK-mediated immunosurveillance in patients receiving cART.
Collapse
Affiliation(s)
- Jingling Zhou
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Fathiah S Amran
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Marit Kramski
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Tom A Angelovich
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia; School of Applied Sciences, Royal Melbourne Institute of Technology University, Melbourne, Victoria 3000, Australia
| | - Julian Elliott
- Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia; and
| | - Anna C Hearps
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia; and
| | - Patricia Price
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Anthony Jaworowski
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia; and Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
30
|
Forbes CA, Coudert JD. Mechanisms regulating NK cell activation during viral infection. Future Virol 2015. [DOI: 10.2217/fvl.14.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT NK cells constitute a population of lymphocytes involved in innate immune functions. They play a critical role in antiviral immune surveillance. Viruses have evolved with their host species for millions of years, each exerting a selective pressure upon the other. As a corollary, the pathways used by the immune system that are critical to control viral infection can be revealed by defining the role of viral gene products that are nonessential for virus replication. We relate here the battery of resources available to NK cells to recognize and eliminate viruses and reciprocally the immune evasion mechanisms developed by viruses to prevent NK cell activation.
Collapse
Affiliation(s)
- Catherine A Forbes
- Centre for Experimental Immunology, Lions Eye Institute, 2 Verdun St, Nedlands, WA 6009, Australia
| | - Jerome D Coudert
- Centre for Experimental Immunology, Lions Eye Institute, 2 Verdun St, Nedlands, WA 6009, Australia
- Centre for Ophthalmology & Vision Science, M517, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| |
Collapse
|
31
|
The role of HIV-specific antibody-dependent cellular cytotoxicity in HIV prevention and the influence of the HIV-1 Vpu protein. AIDS 2015; 29:137-44. [PMID: 25396265 DOI: 10.1097/qad.0000000000000523] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is growing interest in the role of anti-HIV antibody-dependent cellular cytotoxicity (ADCC) antibodies in the prevention and control of HIV infection. Passive transfer studies in macaques support a role for the Fc region of antibodies in assisting in the prevention of simian-human immunodeficiency virus (SHIV) infection. The Thai RV144 HIV-1 vaccine trial induced anti-HIV ADCC antibodies that may have played a role in the partial protection observed. Several observational studies support a role for ADCC antibodies in slowing HIV disease progression. However, HIV evolves to escape ADCC antibodies and chronic HIV infections causes dysfunction of effector cells such as natural killer (NK) cells that mediate the ADCC functions. Further, four recent studies show that the HIV-1 Vpu protein, by promoting release of virions, reduces the capacity of ADCC antibodies to recognize HIV-infected cells. The review dissects some of the recent research on HIV-specific ADCC antibodies and discusses mechanisms to further harness ADCC antibodies in the prevention and control of HIV infection.
Collapse
|
32
|
Pattacini L, Murnane PM, Baeten JM, Fluharty TR, Thomas KK, Bukusi E, Katabira E, Mugo N, Donnell D, Lingappa JR, Celum C, Marzinke M, McElrath MJ, Lund JM. Antiretroviral Pre-Exposure Prophylaxis Does Not Enhance Immune Responses to HIV in Exposed but Uninfected Persons. J Infect Dis 2014; 211:1943-52. [PMID: 25520426 DOI: 10.1093/infdis/jiu815] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/10/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Antiretroviral preexposure prophylaxis (PrEP), using daily oral combination tenofovir disoproxil fumarate plus emtricitabine, is an effective human immunodeficiency virus (HIV) prevention strategy for populations at high risk of HIV acquisition. Although the primary mode of action for the protective effect of PrEP is probably direct antiviral activity, nonhuman primate studies suggest that PrEP may also allow for development of HIV-specific immune responses, hypothesized to result from aborted HIV infections providing a source of immunologic priming. We sought to evaluate whether PrEP affects the development of HIV-specific immune response in humans. METHODS AND RESULTS Within a PrEP clinical trial among high-risk heterosexual African men and women, we detected HIV-specific CD4(+) and CD8(+) peripheral blood T-cell responses in 10%-20% of 247 subjects evaluated. The response rate and magnitude of T-cell responses did not vary significantly between those assigned PrEP versus placebo, and no significant difference between those assigned PrEP and placebo was observed in measures of innate immune function. CONCLUSIONS We found no evidence to support the hypothesis that PrEP alters either the frequency or magnitude of HIV-specific immune responses in HIV-1-exposed seronegative individuals. These results suggest that PrEP is unlikely to serve as an immunologic prime to aid protection by a putative HIV vaccine.
Collapse
Affiliation(s)
| | | | - Jared M Baeten
- Department of Global Health Department of Epidemiology Department of Medicine
| | | | | | - Elizabeth Bukusi
- Department of Global Health Department of Obstetrics and Gynecology Centre for Microbiology Research
| | - Elly Katabira
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Nelly Mugo
- Department of Global Health Centre for Clinical Research, Kenya Medical Research Institute, Nairobi
| | - Deborah Donnell
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center Department of Global Health
| | - Jairam R Lingappa
- Department of Global Health Department of Medicine Department of Pediatrics, University of Washington, Seattle
| | - Connie Celum
- Department of Global Health Department of Epidemiology Department of Medicine
| | - Mark Marzinke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division Department of Global Health Department of Medicine
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division Department of Global Health
| | | |
Collapse
|
33
|
Slaying the Trojan horse: natural killer cells exhibit robust anti-HIV-1 antibody-dependent activation and cytolysis against allogeneic T cells. J Virol 2014; 89:97-109. [PMID: 25320293 DOI: 10.1128/jvi.02461-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Many attempts to design prophylactic human immunodeficiency virus type 1 (HIV-1) vaccines have focused on the induction of neutralizing antibodies (Abs) that block infection by free virions. Despite the focus on viral particles, virus-infected cells, which can be found within mucosal secretions, are more infectious than free virus both in vitro and in vivo. Furthermore, assessment of human transmission couples suggests infected seminal lymphocytes might be responsible for a proportion of HIV-1 transmissions. Although vaccines that induce neutralizing Abs are sought, only some broadly neutralizing Abs efficiently block cell-to-cell transmission of HIV-1. As HIV-1 vaccines need to elicit immune responses capable of controlling both free and cell-associated virus, we evaluated the potential of natural killer (NK) cells to respond in an Ab-dependent manner to allogeneic T cells bearing HIV-1 antigens. This study presents data measuring Ab-dependent anti-HIV-1 NK cell responses to primary and transformed allogeneic T-cell targets. We found that NK cells are robustly activated in an anti-HIV-1 Ab-dependent manner against allogeneic targets and that tested target cells are subject to Ab-dependent cytolysis. Furthermore, the educated KIR3DL1(+) NK cell subset from HLA-Bw4(+) individuals exhibits an activation advantage over the KIR3DL1(-) subset that contains both NK cells educated through other receptor/ligand combinations and uneducated NK cells. These results are intriguing and important for understanding the regulation of Ab-dependent NK cell responses and are potentially valuable for designing Ab-dependent therapies and/or vaccines. IMPORTANCE NK cell-mediated anti-HIV-1 antibody-dependent functions have been associated with protection from infection and disease progression; however, their role in protecting from infection with allogeneic cells infected with HIV-1 is unknown. We found that HIV-1-specific ADCC antibodies bound to allogeneic cells infected with HIV-1 or coated with HIV-1 gp120 were capable of activating NK cells and/or trigging cytolysis of the allogeneic target cells. This suggests ADCC may be able to assist in preventing infection with cell-associated HIV-1. In order to fully utilize NK cell-mediated Ab-dependent effector functions, it might also be important that educated NK cells, which hold the highest activation potential, can become activated against targets bearing HIV-1 antigens and expressing the ligands for self-inhibitory receptors. Here, we show that with Ab-dependent stimulation, NK cells expressing inhibitory receptors can mediate robust activation against targets expressing the ligands for those receptors.
Collapse
|
34
|
Jegaskanda S, Reading PC, Kent SJ. Influenza-specific antibody-dependent cellular cytotoxicity: toward a universal influenza vaccine. THE JOURNAL OF IMMUNOLOGY 2014; 193:469-75. [PMID: 24994909 DOI: 10.4049/jimmunol.1400432] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
There is an urgent need for universal influenza vaccines that can control emerging pandemic influenza virus threats without the need to generate new vaccines for each strain. Neutralizing Abs to the influenza virus hemagglutinin glycoprotein are effective at controlling influenza infection but generally target highly variable regions. Abs that can mediate other functions, such as killing influenza-infected cells and activating innate immune responses (termed "Ab-dependent cellular cytotoxicity [ADCC]-mediating Abs"), may assist in protective immunity to influenza. ADCC-mediating Abs can target more conserved regions of influenza virus proteins and recognize a broader array of influenza strains. We review recent research on influenza-specific ADCC Abs and their potential role in improved influenza-vaccination strategies.
Collapse
Affiliation(s)
- Sinthujan Jegaskanda
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Patrick C Reading
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia; and World Health Organization Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria 3051, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia; and
| |
Collapse
|
35
|
Madhavi V, Ana-Sosa-Batiz FE, Jegaskanda S, Center RJ, Winnall WR, Parsons MS, Ananworanich J, Cooper DA, Kelleher AD, Hsu D, Pett S, Stratov I, Kramski M, Kent SJ. Antibody-dependent effector functions against HIV decline in subjects receiving antiretroviral therapy. J Infect Dis 2014; 211:529-38. [PMID: 25170105 DOI: 10.1093/infdis/jiu486] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Combination antiretroviral therapy (cART) effectively controls human immunodeficiency virus (HIV) infection but does not eliminate HIV, and lifelong treatment is therefore required. HIV-specific cytotoxic T lymphocyte (CTL) responses decline following cART initiation. Alterations in other HIV-specific immune responses that may assist in eliminating latent HIV infection, specifically antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP), are unclear. METHODS A cohort of 49 cART-naive HIV-infected subjects from Thailand (mean baseline CD4 count, 188 cells/µL; mean viral load, 5.4 log10 copies/mL) was followed for 96 weeks after initiating cART. ADCC and ADP assays were performed using serum samples obtained at baseline and after 96 weeks of cART. RESULTS A 35% reduction in HIV type 1 envelope (Env)-specific ADCC-mediated killing of target cells (P<.001) was observed after 96 weeks of cART. This was corroborated by a significant reduction in the ability of Env-specific ADCC antibodies to activate natural killer cells (P<.001). Significantly reduced ADP was also observed after 96 weeks of cART (P=.018). CONCLUSIONS This longitudinal study showed that cART resulted in significant reductions of HIV-specific effector antibody responses, including ADCC and ADP. Therapeutic vaccines or other immunomodulatory approaches may be required to improve antibody-mediated control of HIV during cART.
Collapse
Affiliation(s)
- Vijaya Madhavi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Fernanda E Ana-Sosa-Batiz
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Sinthujan Jegaskanda
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Rob J Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Wendy R Winnall
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Matthew S Parsons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Jintanat Ananworanich
- Thai Red Cross AIDS Research Centre, HIV Netherlands Australia Thailand Research Collaboration, Bangkok, Thailand
| | - David A Cooper
- Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Anthony D Kelleher
- Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Denise Hsu
- Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Sarah Pett
- Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia Medical Research Council Clinical Trials Unit, Department of Infection and Population Health, University College London, United Kingdom
| | - Ivan Stratov
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Marit Kramski
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| |
Collapse
|
36
|
Breadth of HIV-1 Env-specific antibody-dependent cellular cytotoxicity: relevance to global HIV vaccine design. AIDS 2014; 28:1859-70. [PMID: 24937308 DOI: 10.1097/qad.0000000000000310] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objective of this study is to determine the breadth of HIV-1 Env-specific antibody-dependent cellular cytotoxicity (ADCC) in HIV controllers and HIV progressors with a view to design globally relevant HIV vaccines. DESIGN The breadth of ADCC towards four major HIV-1 Env subtypes was measured in vitro for 11 HIV controllers and 11 HIV progressors. METHODS Plasma from 11 HIV controllers (including long-term slow progressors, viremic controllers, elite controller and posttreatment controller) and 11 HIV progressors, mostly infected with HIV-1 subtype B, was analysed for ADCC responses. ADCC assays were performed against 10 HIV-1 gp120 and 8 gp140 proteins from four major HIV-1 subtypes (A, B, C and E) and 3 glycosylation-mutant gp140 proteins. RESULTS ADCC-mediated natural killer cell activation was significantly broader (P = 0.02) and of higher magnitude (P < 0.001) in HIV controllers than in HIV progressors. HIV controllers also showed significantly higher magnitude of ADCC-mediated killing of Env-coated target cells than HIV progressors to both HIV-1 subtype B and the heterologous subtype E gp140 (P = 0.001). We found good ADCC reactivity to subtype B and E Envs, less cross-reactivity to subtype A and minimal cross-reactivity to subtype C Envs. Glycosylation-dependent ADCC epitopes comprise a significant proportion of the total Env-specific ADCC response, as evident from the reduction in ADCC to nonglycosylated form of HIV-1 gp140 (P = 0.004). CONCLUSION HIV controllers have robust ADCC responses that recognize a broad range of HIV-1 Env. Glycosylation of Env was found to be important for recognition of ADCC epitopes. Identifying conserved ADCC epitopes will assist in designing globally relevant ADCC-based HIV vaccines.
Collapse
|
37
|
Richard J, Veillette M, Batraville LA, Coutu M, Chapleau JP, Bonsignori M, Bernard N, Tremblay C, Roger M, Kaufmann DE, Finzi A. Flow cytometry-based assay to study HIV-1 gp120 specific antibody-dependent cellular cytotoxicity responses. J Virol Methods 2014; 208:107-14. [PMID: 25125129 DOI: 10.1016/j.jviromet.2014.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/28/2014] [Accepted: 08/01/2014] [Indexed: 11/24/2022]
Abstract
Increased attention on the role of Fc-mediated effector functions against HIV-1 has led to renewed interest into the role that antibody-dependent cellular cytotoxicity (ADCC) could play in controlling viral transmission and/or the rate of disease progression. While (51)Chromium release assays have traditionally been used to study ADCC responses against HIV-1, a number of alternative flow-cytometry-based assays were recently developed. In this study, an alternative flow-cytometry-based assay was established to allow non-radioactive measurement of ADCC-mediated elimination of HIV-1 gp120 envelope glycoprotein (Env)-coated target cells. This assay relies on staining target and effector cells with different dyes, which allows precise gating and permits the calculation of the number of surviving target cells by normalization to flow-cytometry particles. By using small concentrations of recombinant gp120 Env, suitable targets cells that recapitulate the ADCC response mediated against HIV-1-infected cells were generated. Finally, this method was applied successfully to screen human sera for ADCC activity directed against HIV-1 gp120 Env.
Collapse
Affiliation(s)
- Jonathan Richard
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Maxime Veillette
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Laurie-Anne Batraville
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Mathieu Coutu
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Philippe Chapleau
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | | | - Nicole Bernard
- Research Institute of the McGill University Health Centre, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Cécile Tremblay
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada; Institut National de santé publique du Québec, Canada
| | - Michel Roger
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
38
|
HIV-1 Vpu antagonism of tetherin inhibits antibody-dependent cellular cytotoxic responses by natural killer cells. J Virol 2014; 88:6031-46. [PMID: 24623433 DOI: 10.1128/jvi.00449-14] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED The type I interferon-inducible factor tetherin retains virus particles on the surfaces of cells infected with vpu-deficient human immunodeficiency virus type 1 (HIV-1). While this mechanism inhibits cell-free viral spread, the immunological implications of tethered virus have not been investigated. We found that surface tetherin expression increased the antibody opsonization of vpu-deficient HIV-infected cells. The absence of Vpu also stimulated NK cell-activating FcγRIIIa signaling and enhanced NK cell degranulation and NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). The deletion of vpu in HIV-1-infected primary CD4(+) T cells enhanced the levels of antibody binding and Fc receptor signaling mediated by HIV-positive-patient-derived antibodies. The magnitudes of antibody binding and Fc signaling were both highly correlated to the levels of tetherin on the surfaces of infected primary CD4 T cells. The affinity of antibody binding to FcγRIIIa was also found to be critical in mediating efficient Fc activation. These studies implicate Vpu antagonism of tetherin as an ADCC evasion mechanism that prevents antibody-mediated clearance of virally infected cells. IMPORTANCE The ability of the HIV-1 accessory factor to antagonize tetherin has been considered to primarily function by limiting the spread of virus by preventing the release of cell-free virus. This study supports the hypothesis that a major function of Vpu is to decrease the recognition of infected cells by anti-HIV antibodies at the cell surface, thereby reducing recognition by antibody-dependent clearance by natural killer cells.
Collapse
|
39
|
Madhavi V, Kent SJ, Stratov I. HIV-specific antibody-dependent cellular cytotoxicity: a novel vaccine modality. Expert Rev Clin Immunol 2014; 8:767-74. [DOI: 10.1586/eci.12.74] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Pattacini L, Murnane PM, Fluharty TR, Katabira E, De Rosa SC, Baeten JM, Lund JM. Enhanced and efficient detection of virus-driven cytokine expression by human NK and T cells. J Virol Methods 2014; 199:17-24. [PMID: 24418500 DOI: 10.1016/j.jviromet.2014.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/18/2013] [Accepted: 01/03/2014] [Indexed: 01/24/2023]
Abstract
Cutting edge immune monitoring techniques increasingly measure multiple functional outputs for various cell types, such as intracellular cytokine staining (ICS) assays that measure cytokines expressed by T cells. To date, however, there is no precise method to measure virus-specific cytokine production by both T cells as well as NK cells in the same well, which is important to a greater extent given recent identification of NK cells expressing a memory phenotype. This study describes an adaptable and efficient ICS assay platform that can be used to detect antigen-driven cytokine production by human T cells and NK cells, termed "viral ICS". Importantly, this assay uses limited amount of cryopreserved PBMCs along with autologous heat-inactivated serum, thereby allowing for this assay to be performed when sample is scarce as well as geographically distant from the laboratory. Compared to a standard ICS assay that detects antigen-specific T cell cytokine expression alone, the viral ICS assay is comparable in terms of both HIV-specific CD4 and CD8T cell cytokine response rates and magnitude of response, with the added advantage of ability to detect virus-specific NK cell responses.
Collapse
Affiliation(s)
- Laura Pattacini
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Pamela M Murnane
- Department of Global Health, University of Washington, Seattle, WA 98195, USA; Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Tayler R Fluharty
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Elly Katabira
- Infectious Disease Institute, Makerere University, Kampala, Uganda
| | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Jared M Baeten
- Department of Global Health, University of Washington, Seattle, WA 98195, USA; Department of Epidemiology, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
41
|
Stratov I. HIV-specific ADCC: preventive and therapeutic vaccine potential. MICROBIOLOGY AUSTRALIA 2014. [DOI: 10.1071/ma14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
42
|
Parsons MS, Tang CC, Jegaskanda S, Center RJ, Brooks AG, Stratov I, Kent SJ. Anti-HIV antibody-dependent activation of NK cells impairs NKp46 expression. THE JOURNAL OF IMMUNOLOGY 2013; 192:308-15. [PMID: 24319263 DOI: 10.4049/jimmunol.1301247] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is much interest in the potential of Ab-dependent cellular cytotoxicity (ADCC) to slow disease progression following HIV infection. Despite several studies demonstrating a positive association between ADCC and slower disease progression, it is possible that continued stimulation of NK cells by ADCC during chronic HIV infection could render these cells dysfunctional. Indeed, activation of NK cells by ADCC results in matrix metalloproteinase-induced reductions in CD16 expression and activation refractory periods. In addition, ex vivo analyses of NK cells from HIV-infected individuals revealed other alterations in phenotype, such as decreased expression of the activating NKp46 receptor that is essential for NK-mediated antitumor responses and immunity from infection. Because NKp46 shares a signaling pathway with CD16, we hypothesized that activation-induced downregulation of both receptors could be controlled by a common mechanism. We found that activation of NK cells by anti-HIV or anti-CD16 Abs resulted in NKp46 downregulation. The addition of a matrix metalloproteinase inhibitor attenuated NKp46 downregulation following NK cell activation by anti-HIV Abs. Consequently, these results suggest that continued stimulation through CD16 has the potential to impair natural cytotoxicity via attenuation of NKp46-dependent signals.
Collapse
Affiliation(s)
- Matthew S Parsons
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
French MA, Abudulai LN, Fernandez S. Isotype Diversification of IgG Antibodies to HIV Gag Proteins as a Therapeutic Vaccination Strategy for HIV Infection. Vaccines (Basel) 2013; 1:328-42. [PMID: 26344116 PMCID: PMC4494226 DOI: 10.3390/vaccines1030328] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/11/2013] [Accepted: 07/23/2013] [Indexed: 01/05/2023] Open
Abstract
The development of vaccines to treat and prevent human immunodeficiency virus (HIV) infection has been hampered by an incomplete understanding of "protective" immune responses against HIV. Natural control of HIV-1 infection is associated with T-cell responses against HIV-1 Gag proteins, particularly CD8⁺ T-cell responses restricted by "protective" HLA-B alleles, but other immune responses also contribute to immune control. These immune responses appear to include IgG antibodies to HIV-1 Gag proteins, interferon-a-dependant natural killer (NK) cell responses and plasmacytoid dendritic cell (pDC) responses. Here, it is proposed that isotype diversification of IgG antibodies against HIV-1 Gag proteins, to include IgG2, as well as IgG3 and IgG1 antibodies, will broaden the function of the antibody response and facilitate accessory cell responses against HIV-1 by NK cells and pDCs. We suggest that this should be investigated as a vaccination strategy for HIV-1 infection.
Collapse
Affiliation(s)
- Martyn A French
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth 6009, Australia.
- Department of Clinical Immunology, Royal Perth Hospital and PathWest Laboratory Medicine, Perth 6000, Australia.
| | - Laila N Abudulai
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth 6009, Australia
| | - Sonia Fernandez
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth 6009, Australia
| |
Collapse
|
44
|
Vargas-Inchaustegui DA, Robert-Guroff M. Fc receptor-mediated immune responses: new tools but increased complexity in HIV prevention. Curr HIV Res 2013; 11:407-20. [PMID: 24191937 PMCID: PMC6288814 DOI: 10.2174/1570162x113116660063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/21/2022]
Abstract
The modest success of the RV144 HIV vaccine trial in Thailand and the ensuing suggestion that a Fc-receptormediated antibody activity might have played a role in the protection observed have intensified investigations on Fcrelated immune responses. HIV neutralizing antibodies have been and continue to be the focal point of research into humoral immune protection. However, recent knowledge that their protective efficacy can be augmented by Fc-FcR interactions has increased the complexity of identifying immune correlates of protection. If anything, continued studies of both humoral and cellular immune mechanisms point to the lack of a single protective anti-HIV immune response. Here we focus on humoral immunity, analyzing the role played by Fc receptor-related responses and discussing how new knowledge of their interactions requires further investigation, but may also spur novel vaccination approaches. We initially address classical Fc-receptor mediated anti-viral mechanisms including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell mediated viral inhibition (ADCVI), and antibody-dependent cellular phagocytosis (ADCP), as well as the effector cells that mediate these functions. Next, we summarize key aspects of FcR-Fc interactions that are important for potential control of HIV/SIV such as FcR polymorphisms and post-transcriptional modifications. Finally we discuss less commonly studied non-mechanistic anti-HIV immune functions: antibody avidity and envelopespecific B cell memory. Overall, a spectrum of immune responses, reflecting the immune system's redundancy, will likely be needed to prevent HIV infection and/or disease progression. Aside from elicitation of critical immune mechanisms, a successful vaccine will need to induce mature B cell responses and long-lasting immune memory.
Collapse
Affiliation(s)
- Diego A Vargas-Inchaustegui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Building 41, Room D804, Bethesda, MD 20192-5065, USA.
| | | |
Collapse
|
45
|
Brenu EW, Hardcastle SL, Atkinson GM, van Driel ML, Kreijkamp-Kaspers S, Ashton KJ, Staines DR, Marshall-Gradisnik SM. Natural killer cells in patients with severe chronic fatigue syndrome. AUTOIMMUNITY HIGHLIGHTS 2013; 4:69-80. [PMID: 26000145 PMCID: PMC4389023 DOI: 10.1007/s13317-013-0051-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/06/2013] [Indexed: 02/06/2023]
Abstract
Maintenance of health and physiological homeostasis is a synergistic process involving tight regulation of proteins, transcription factors and other molecular processes. The immune system consists of innate and adaptive immune cells that are required to sustain immunity. The presence of pathogens and tumour cells activates innate immune cells, in particular Natural Killer (NK) cells. Stochastic expression of NK receptors activates either inhibitory or activating signals and results in cytokine production and activation of pathways that result in apoptosis of target cells. Thus, NK cells are a necessary component of the immunological process and aberrations in their functional processes, including equivocal levels of NK cells and cytotoxic activity pre-empts recurrent viral infections, autoimmune diseases and altered inflammatory responses. NK cells are implicated in a number of diseases including chronic fatigue syndrome (CFS). The purpose of this review is to highlight the different profiles of NK cells reported in CFS patients and to determine the extent of NK immune dysfunction in subtypes of CFS patients based on severity in symptoms.
Collapse
Affiliation(s)
- E. W. Brenu
- Griffith Health Institute, School of Medical Science, Griffith University, Gold Coast, QLD Australia
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD Australia
- Immunology Research Group, Centre for Medicine and Oral Health, Griffith University, GH1, Room 7.59, Southport, QLD 4215 Australia
| | - S. L. Hardcastle
- Griffith Health Institute, School of Medical Science, Griffith University, Gold Coast, QLD Australia
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD Australia
| | - G. M. Atkinson
- Griffith Health Institute, School of Medical Science, Griffith University, Gold Coast, QLD Australia
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD Australia
| | - M. L. van Driel
- Queensland Health, Gold Coast Public Health Unit, Robina, Gold Coast, QLD Australia
| | | | - K. J. Ashton
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD Australia
| | - D. R. Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD Australia
- Queensland Health, Gold Coast Public Health Unit, Robina, Gold Coast, QLD Australia
| | - S. M. Marshall-Gradisnik
- Griffith Health Institute, School of Medical Science, Griffith University, Gold Coast, QLD Australia
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD Australia
| |
Collapse
|
46
|
Wren LH, Chung AW, Isitman G, Kelleher AD, Parsons MS, Amin J, Cooper DA, Stratov I, Navis M, Kent SJ. Specific antibody-dependent cellular cytotoxicity responses associated with slow progression of HIV infection. Immunology 2013; 138:116-23. [PMID: 23173935 DOI: 10.1111/imm.12016] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/11/2012] [Accepted: 09/16/2012] [Indexed: 01/14/2023] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is potentially an effective adaptive immune response to HIV infection. However, little is understood about the role of ADCC in controlling chronic infection in the small number of long-term slow-progressors (LTSP) who maintain a relatively normal immunological state for prolonged periods of time. We analysed HIV-specific ADCC responses in sera from 139 HIV(+) subjects not on antiretroviral therapy. Sixty-five subjects were LTSP, who maintained a CD4 T-cell count > 500/μl for over 8 years after infection without antiretroviral therapy and 74 were non-LTSP individuals. The ADCC responses were measured using an natural killer cell activation assay to overlapping HIV peptides that allowed us to map ADCC epitopes. We found that although the magnitude of ADCC responses in the LTSP cohort were not higher and did not correlate with CD4 T-cell depletion rates, the LTSP cohort had significantly broader ADCC responses compared with the non-LTSP cohort. Specifically, regulatory/accessory HIV-1 proteins were targeted more frequently by LTSP. Indeed, three particular ADCC epitopes within the Vpu protein of HIV were recognized only by LTSP individuals. Our study provides evidence that broader ADCC responses may play a role in long-term control of HIV progression and suggests novel vaccine targets.
Collapse
Affiliation(s)
- Leia H Wren
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jia M, Li D, He X, Zhao Y, Peng H, Ma P, Hong K, Liang H, Shao Y. Impaired natural killer cell-induced antibody-dependent cell-mediated cytotoxicity is associated with human immunodeficiency virus-1 disease progression. Clin Exp Immunol 2013. [PMID: 23199330 DOI: 10.1111/j.1365-2249.2012.04672.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This study evaluates the correlation between natural killer (NK) cell function and human immunodeficiency virus (HIV)-1 disease progression in 133 untreated HIV-1 positive Chinese subjects, including 41 former plasma donors (FPDs) and 92 men who have sex with men, and 35 HIV-negative controls. Flow cytometry was used to determine the abundance of NK cell subsets, the expression levels of receptor species, human leucocyte antigen (HLA) genotyping and the antibody-dependent cell-mediated cytotoxicity (ADCC) responses of NK cells. We observed a decreased expression of CD56(dim) CD16(+) NK cell subsets and an increased expression of CD56(-) CD16(+) with HIV-1 infection. As well, the expression of activating and inhibitory receptors increased significantly in NK cells, but CD16 receptor levels and the NKG2A/NKG2C ratio were down-regulated with HIV-1 infection. ADCC responses were higher in elite controllers than in all other groups, and were correlated inversely with HIV-1 viral load but correlated positively with CD4 count only in FPDs. Furthermore, individuals infected for < 1 year have lower ADCC responses than those infected for > 1 year. We also observed a negative association between ADCC responses and viral load in those who carry the HLA-A*30/B*13/Cw*06 haplotype. The positive correlation between CD16 expression and ADCC responses and a negative correlation trend between CD158a and ADCC responses were also observed (P = 0·058). Our results showed that the ADCC response is associated with patients' disease status, receptor expression levels, infection time and specific HLA alleles, which indicates that ADCC may offer protective effects against HIV-1 infection.
Collapse
Affiliation(s)
- M Jia
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Madhavi V, Navis M, Chung AW, Isitman G, Wren LH, De Rose R, Kent SJ, Stratov I. Activation of NK cells by HIV-specific ADCC antibodies: role for granulocytes in expressing HIV-1 peptide epitopes. Hum Vaccin Immunother 2013; 9:1011-8. [PMID: 23324623 DOI: 10.4161/hv.23446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
HIV-specific ADCC antibodies could play a role in providing protective immunity. We have developed a whole blood ADCC assay that measures NK cell activation in response to HIV peptide epitopes. These HIV peptide-specific ADCC responses are associated with escape from immune recognition and slower progression of HIV infection and represent interesting HIV vaccine antigens. However, the mechanism by which these epitopes are expressed and whether or not they induce NK-mediated killing of cells expressing such peptide-antigens is not understood. Herein, we show that fluorescent-tagged ADCC peptide epitopes associate with blood granulocytes. The peptide-associated granulocytes become a specific target for antibody-mediated killing, as shown by enhanced expression of apoptosis marker Annexin and reduction in cell numbers. When HIV Envelope gp140 protein is utilized in the ADCC assay, we detected binding to its ligand, CD4. During the incubation, cells co-expressing gp140 and CD4 reduce in number. We also detected increasing Annexin expression in these cells. These data indicate that blood cells expressing HIV-specific ADCC epitopes are targeted for killing by NK cells in the presence of ADCC antibodies in HIV+ plasma and provide a clearer framework to evaluate these antigens as vaccine candidates.
Collapse
Affiliation(s)
- Vijaya Madhavi
- Department of Microbiology and Immunology; University of Melbourne; Melbourne, VIC Australia
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Burwitz BJ, Giraldo-Vela JP, Reed J, Newman LP, Bean AT, Nimityongskul FA, Castrovinci PA, Maness NJ, Leon EJ, Rudersdorf R, Sacha JB. CD8+ and CD4+ cytotoxic T cell escape mutations precede breakthrough SIVmac239 viremia in an elite controller. Retrovirology 2012; 9:91. [PMID: 23131037 PMCID: PMC3496649 DOI: 10.1186/1742-4690-9-91] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/14/2012] [Indexed: 02/05/2023] Open
Abstract
Background Virus-specific T cells are critical components in the containment of immunodeficiency virus infections. While the protective role of CD8+ T cells is well established by studies of CD8+ T cell-mediated viral escape, it remains unknown if CD4+ T cells can also impose sufficient selective pressure on replicating virus to drive the emergence of high-frequency escape variants. Identifying a high frequency CD4+ T cell driven escape mutation would provide compelling evidence of direct immunological pressure mediated by these cells. Results Here, we studied a SIVmac239-infected elite controller rhesus macaque with a 1,000-fold spontaneous increase in plasma viral load that preceded disease progression and death from AIDS-related complications. We sequenced the viral genome pre- and post-breakthrough and demonstrate that CD8+ T cells drove the majority of the amino acid substitutions outside of Env. However, within a region of Gag p27CA targeted only by CD4+ T cells, we identified a unique post-breakthrough mutation, Gag D205E, which abrogated CD4+ T cell recognition. Further, we demonstrate that the Gag p27CA-specific CD4+ T cells exhibited cytolytic activity and that SIV bearing the Gag D205E mutation escapes this CD4+ T cell effector function ex vivo. Conclusions Cumulatively, these results confirm the importance of virus specific CD8+ T cells and demonstrate that CD4+ T cells can also exert significant selective pressure on immunodeficiency viruses in vivo during low-level viral replication. These results also suggest that further studies of CD4+ T cell escape should focus on cases of elite control with spontaneous viral breakthrough.
Collapse
Affiliation(s)
- Benjamin J Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, 505 NW 185th, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ampol S, Pattanapanyasat K, Sutthent R, Permpikul P, Kantakamalakul W. Comprehensive investigation of common antibody-dependent cell-mediated cytotoxicity antibody epitopes of HIV-1 CRF01_AE gp120. AIDS Res Hum Retroviruses 2012; 28:1250-8. [PMID: 22288892 DOI: 10.1089/aid.2011.0346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The antibody-dependent cell-mediated cytotoxicity (ADCC) mechanism involves both innate and adaptive immune systems. While a number of epitope mapping studies of neutralizing (Nt) antibodies and cytotoxic T lymphocyte (CTL) against a variety of HIV-1 clades have been reported, there has been a paucity of similar studies aimed at identifying epitopes of ADCC-inducing antibodies. Herein we screened 35 sera from HIV-1 CRF01_AE-infected blood donors for ADCC antibody activity against gp120 utilizing an EGFP-CEM-NK(r) flow cytometric assay. Eighteen sera with high ADCC antibody activity were then comprehensively examined for ADCC antibody epitopes using the HIV-1 subtype CRF01_AE TH023 gp120 peptide set consisting of 126 peptides of 15 amino acids in length, overlapping by 11 amino acids. This peptide set was divided into five pools (E1-E5). Each positive peptide pool was further investigated for fine epitope mapping of ADCC antibody activity using a 5 by 5 peptide matrix format. Interestingly, six and three peptides from peptide pools E1 and E2, respectively, responded to at least 33.33% of the tested sera. These nine common ADCC epitopes were localized to the C1 and V2 region of gp120. Furthermore, 5/9 epitopes were also shown to serve as full or partial Nt antibody targets for HIV-1 subtypes B and CRF01_AE. We submit these data on epitope mapping of ADCC or dual ADCC-Nt antibodies against HIV-1 gp120 that should be considered in the formulation of vaccines against HIV-1.
Collapse
Affiliation(s)
- Silawun Ampol
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kovit Pattanapanyasat
- Office for Research and Development, Center of Excellence for Flow Cytometry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ruengpung Sutthent
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Parichart Permpikul
- Department of Transfusion Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wannee Kantakamalakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|