1
|
Lasso G, Grodus M, Valencia E, DeJesus V, Liang E, Delwel I, Bortz RH, Lupyan D, Ehrlich HY, Castellanos AA, Gazzo A, Wells HL, Wacharapluesadee S, Tremeau-Bravard A, Seetahal JFR, Hughes T, Lee J, Lee MH, Sjodin AR, Geldenhuys M, Mortlock M, Navarrete-Macias I, Gilardi K, Willig MR, Nava AFD, Loh EH, Asrat M, Smiley-Evans T, Magesa WS, Zikankuba S, Wolking D, Suzán G, Ojeda-Flores R, Carrington CVF, Islam A, Epstein JH, Markotter W, Johnson CK, Goldstein T, Han BA, Mazet JAK, Jangra RK, Chandran K, Anthony SJ. Decoding the blueprint of receptor binding by filoviruses through large-scale binding assays and machine learning. Cell Host Microbe 2025:S1931-3128(24)00483-9. [PMID: 39818205 DOI: 10.1016/j.chom.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/06/2024] [Accepted: 12/11/2024] [Indexed: 01/18/2025]
Abstract
Evidence suggests that bats are important hosts of filoviruses, yet the specific species involved remain largely unidentified. Niemann-Pick C1 (NPC1) is an essential entry receptor, with amino acid variations influencing viral susceptibility and species-specific tropism. Herein, we conducted combinatorial binding studies with seven filovirus glycoproteins (GPs) and NPC1 orthologs from 81 bat species. We found that GP-NPC1 binding correlated poorly with phylogeny. By integrating binding assays with machine learning, we identified genetic factors influencing virus-receptor-binding and predicted GP-NPC1-binding avidity for additional filoviruses and bats. Moreover, combining receptor-binding avidities with bat geographic distribution and the locations of previous Ebola outbreaks allowed us to rank bats by their potential as Ebola virus hosts. This study represents a comprehensive investigation of filovirus-receptor binding in bats (1,484 GP-NPC1 pairs, 11 filoviruses, and 135 bats) and describes a multidisciplinary approach to predict susceptible species and guide filovirus host surveillance.
Collapse
Affiliation(s)
- Gorka Lasso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| | - Michael Grodus
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Estefania Valencia
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Veronica DeJesus
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Eliza Liang
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Isabel Delwel
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rob H Bortz
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | | | - Hanna Y Ehrlich
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | - Andrea Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heather L Wells
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | | | - Janine F R Seetahal
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA
| | - Tom Hughes
- Conservation Medicine, 47000 Sungai Buloh, Selangor, Malaysia; EcoHealth Alliance, New York, NY 10018, USA
| | - Jimmy Lee
- Conservation Medicine, 47000 Sungai Buloh, Selangor, Malaysia; EcoHealth Alliance, New York, NY 10018, USA
| | - Mei-Ho Lee
- Conservation Medicine, 47000 Sungai Buloh, Selangor, Malaysia; EcoHealth Alliance, New York, NY 10018, USA
| | - Anna R Sjodin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
| | - Isamara Navarrete-Macias
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Kirsten Gilardi
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Michael R Willig
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA; Center for Environmental Sciences and Engineering, Institute of the Environment, University of Connecticut, Storrs, CT 06269, USA
| | - Alessandra F D Nava
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas & Maria Deane, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia - EDTA, Manaus 69.057-070, AM, Brazil
| | - Elisabeth H Loh
- Division of Natural Sciences and Mathematics, Transylvania University, Lexington, KY 40508, USA
| | - Makda Asrat
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Tierra Smiley-Evans
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Walter S Magesa
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania
| | - Sijali Zikankuba
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania
| | - David Wolking
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Gerardo Suzán
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Rafael Ojeda-Flores
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Christine V F Carrington
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Republic of Trinidad and Tobago
| | - Ariful Islam
- Gulbali Research Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | | | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
| | - Christine K Johnson
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Tracey Goldstein
- One Health Institute, Colorado State University, Fort Collins, CO 80523, USA
| | - Barbara A Han
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Jonna A K Mazet
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Bestle D, Bittel L, Werner AD, Kämper L, Dolnik O, Krähling V, Steinmetzer T, Böttcher-Friebertshäuser E. Novel proteolytic activation of Ebolavirus glycoprotein GP by TMPRSS2 and cathepsin L at an uncharted position can compensate for furin cleavage. Virus Res 2024; 347:199430. [PMID: 38964470 PMCID: PMC11294727 DOI: 10.1016/j.virusres.2024.199430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
A multistep priming process involving furin and endosomal cathepsin B and L (CatB/L) has been described for the Orthoebolavirus zairense (EBOV) glycoprotein GP. Inhibition or knockdown of either furin or endosomal cathepsins, however, did not prevent virus multiplication in cell cultures. Moreover, an EBOV mutant lacking the furin cleavage motif (RRTRR→AGTAA) was able to replicate and cause fatal disease in nonhuman primates, indicating that furin cleavage may be dispensable for virus infectivity. Here, by using protease inhibitors and EBOV GP-carrying recombinant vesicular stomatitis virus (VSV) and transcription and replication-competent virus-like particles (trVLPs) we found that processing of EBOV GP is mediated by different proteases in different cell lines depending on the protease repertoire available. Endosomal cathepsins were essential for EBOV GP entry in Huh-7 but not in Vero cells, in which trypsin-like proteases and stably expressed trypsin-like transmembrane serine protease 2 (TMPRSS2) supported wild-type EBOV GP and EBOV GP_AGTAA mutant entry. Furthermore, we show that the EBOV GP_AGTAA mutant is cleaved into fusion-competent GP2 by TMPRSS2 and by CatL at a so far unknown site. Fluorescence microscopy co-localization studies indicate that EBOV GP cleavage by TMPRSS2 may occur in the TGN prior to virus release or in the late endosome at the stage of virus entry into a new cell. Our data show that EBOV GP must be proteolytically activated to support virus entry but has even greater flexibility in terms of proteases and the precise cleavage site than previously assumed.
Collapse
Affiliation(s)
- Dorothea Bestle
- Institute of Virology, Philipps-University, Marburg, Germany
| | - Linda Bittel
- Institute of Virology, Philipps-University, Marburg, Germany
| | | | - Lennart Kämper
- Institute of Virology, Philipps-University, Marburg, Germany
| | - Olga Dolnik
- Institute of Virology, Philipps-University, Marburg, Germany
| | - Verena Krähling
- Institute of Virology, Philipps-University, Marburg, Germany; German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | | | | |
Collapse
|
3
|
Odongo L, Habtegebrael BH, Kiessling V, White JM, Tamm LK. A novel in vitro system of supported planar endosomal membranes (SPEMs) reveals an enhancing role for cathepsin B in the final stage of Ebola virus fusion and entry. Microbiol Spectr 2023; 11:e0190823. [PMID: 37728342 PMCID: PMC10581071 DOI: 10.1128/spectrum.01908-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 09/21/2023] Open
Abstract
Ebola virus (EBOV) causes a hemorrhagic fever with fatality rates up to 90%. The EBOV entry process is complex and incompletely understood. Following attachment to host cells, EBOV is trafficked to late endosomes/lysosomes where its glycoprotein (GP) is processed to a 19-kDa form, which binds to the EBOV intracellular receptor Niemann-Pick type C1. We previously showed that the cathepsin protease inhibitor, E-64d, blocks infection by pseudovirus particles bearing 19-kDa GP, suggesting that further cathepsin action is needed to trigger fusion. This, however, has not been demonstrated directly. Since 19-kDa Ebola GP fusion occurs in late endosomes, we devised a system in which enriched late endosomes are used to prepare supported planar endosomal membranes (SPEMs), and fusion of fluorescent (pseudo)virus particles is monitored by total internal reflection fluorescence microscopy. We validated the system by demonstrating the pH dependencies of influenza virus hemagglutinin (HA)-mediated and Lassa virus (LASV) GP-mediated fusion. Using SPEMs, we showed that fusion mediated by 19-kDa Ebola GP is dependent on low pH, enhanced by Ca2+, and augmented by the addition of cathepsins. Subsequently, we found that E-64d inhibits full fusion, but not lipid mixing, mediated by 19-kDa GP, which we corroborated with the reversible cathepsin inhibitor VBY-825. Hence, we provide both gain- and loss-of-function evidence that further cathepsin action enhances the fusion activity of 19-kDa Ebola GP. In addition to providing new insights into how Ebola GP mediates fusion, the approach we developed employing SPEMs can now be broadly used for studies of virus and toxin entry through endosomes. IMPORTANCE Ebola virus is the causative agent of Ebola virus disease, which is severe and frequently lethal. EBOV gains entry into cells via late endosomes/lysosomes. The events immediately preceding fusion of the viral and endosomal membranes are incompletely understood. In this study, we report a novel in vitro system for studying virus fusion with endosomal membranes. We validated the system by demonstrating the low pH dependencies of influenza and Lassa virus fusion. Moreover, we show that further cathepsin B action enhances the fusion activity of the primed Ebola virus glycoprotein. Finally, this model endosomal membrane system should be useful in studying the mechanisms of bilayer breaching by other enveloped viruses, by non-enveloped viruses, and by acid-activated bacterial toxins.
Collapse
Affiliation(s)
- Laura Odongo
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Betelihem H. Habtegebrael
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Judith M. White
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Lukas K. Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Winter SL, Golani G, Lolicato F, Vallbracht M, Thiyagarajah K, Ahmed SS, Lüchtenborg C, Fackler OT, Brügger B, Hoenen T, Nickel W, Schwarz US, Chlanda P. The Ebola virus VP40 matrix layer undergoes endosomal disassembly essential for membrane fusion. EMBO J 2023:e113578. [PMID: 37082863 DOI: 10.15252/embj.2023113578] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Ebola viruses (EBOVs) assemble into filamentous virions, whose shape and stability are determined by the matrix viral protein 40 (VP40). Virus entry into host cells occurs via membrane fusion in late endosomes; however, the mechanism of how the remarkably long virions undergo uncoating, including virion disassembly and nucleocapsid release into the cytosol, remains unknown. Here, we investigate the structural architecture of EBOVs entering host cells and discover that the VP40 matrix disassembles prior to membrane fusion. We reveal that VP40 disassembly is caused by the weakening of VP40-lipid interactions driven by low endosomal pH that equilibrates passively across the viral envelope without a dedicated ion channel. We further show that viral membrane fusion depends on VP40 matrix integrity, and its disassembly reduces the energy barrier for fusion stalk formation. Thus, pH-driven structural remodeling of the VP40 matrix acts as a molecular switch coupling viral matrix uncoating to membrane fusion during EBOV entry.
Collapse
Affiliation(s)
- Sophie L Winter
- Schaller Research Groups, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Gonen Golani
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Melina Vallbracht
- Schaller Research Groups, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Keerthihan Thiyagarajah
- Schaller Research Groups, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Samy Sid Ahmed
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Insitut, Greifswald-Insel Riems, Greifswald, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Ulrich S Schwarz
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Groups, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Yi D, Li Q, Wang H, Lv K, Ma L, Wang Y, Wang J, Zhang Y, Liu M, Li X, Qi J, Shi Y, Gao GF, Cen S. Repurposing of berbamine hydrochloride to inhibit Ebola virus by targeting viral glycoprotein. Acta Pharm Sin B 2022; 12:4378-4389. [PMID: 36561997 PMCID: PMC9764067 DOI: 10.1016/j.apsb.2022.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 12/25/2022] Open
Abstract
Ebola virus (EBOV) infection leads to staggeringly high mortality rate. Effective and low-cost treatments are urgently needed to control frequent EBOV outbreaks in Africa. In this study, we report that a natural compound called berbamine hydrochloride strongly inhibits EBOV replication in vitro and in vivo. Our work further showed that berbamine hydrochloride acts by directly binding to the cleaved EBOV glycoprotein (GPcl), disrupting GPcl interaction with viral receptor Niemann-Pick C1, thus blocking the fusion of viral and cellular membranes. Our data support the probability of developing anti-EBOV small molecule drugs by targeting viral GPcl. More importantly, since berbamine hydrochloride has been used in clinic to treat leukopenia, it holds great promise of being quickly repurposed as an anti-EBOV drug.
Collapse
Affiliation(s)
- Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Han Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Yujia Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding authors.
| | - George F. Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China,CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050, China,Corresponding authors.
| |
Collapse
|
6
|
Lu J, Gullett JM, Kanneganti TD. Filoviruses: Innate Immunity, Inflammatory Cell Death, and Cytokines. Pathogens 2022; 11:1400. [PMID: 36558734 PMCID: PMC9785368 DOI: 10.3390/pathogens11121400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Filoviruses are a group of single-stranded negative sense RNA viruses. The most well-known filoviruses that affect humans are ebolaviruses and marburgviruses. During infection, they can cause life-threatening symptoms such as inflammation, tissue damage, and hemorrhagic fever, with case fatality rates as high as 90%. The innate immune system is the first line of defense against pathogenic insults such as filoviruses. Pattern recognition receptors (PRRs), including toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors, AIM2-like receptors, and NOD-like receptors, detect pathogens and activate downstream signaling to induce the production of proinflammatory cytokines and interferons, alert the surrounding cells to the threat, and clear infected and damaged cells through innate immune cell death. However, filoviruses can modulate the host inflammatory response and innate immune cell death, causing an aberrant immune reaction. Here, we discuss how the innate immune system senses invading filoviruses and how these deadly pathogens interfere with the immune response. Furthermore, we highlight the experimental difficulties of studying filoviruses as well as the current state of filovirus-targeting therapeutics.
Collapse
|
7
|
Yu X, Saphire EO. Development and Structural Analysis of Antibody Therapeutics for Filoviruses. Pathogens 2022; 11:pathogens11030374. [PMID: 35335698 PMCID: PMC8949092 DOI: 10.3390/pathogens11030374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The filoviruses, including ebolaviruses and marburgviruses, are among the world’s deadliest pathogens. As the only surface-exposed protein on mature virions, their glycoprotein GP is the focus of current therapeutic monoclonal antibody discovery efforts. With recent technological developments, potent antibodies have been identified from immunized animals and human survivors of virus infections and have been characterized functionally and structurally. Structural insight into how the most successful antibodies target GP further guides vaccine development. Here we review the recent developments in the identification and characterization of neutralizing antibodies and cocktail immunotherapies.
Collapse
Affiliation(s)
- Xiaoying Yu
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA;
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA;
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Correspondence: ; Tel.: +1-858-752-6791
| |
Collapse
|
8
|
Structural and Functional Aspects of Ebola Virus Proteins. Pathogens 2021; 10:pathogens10101330. [PMID: 34684279 PMCID: PMC8538763 DOI: 10.3390/pathogens10101330] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/14/2023] Open
Abstract
Ebola virus (EBOV), member of genus Ebolavirus, family Filoviridae, have a non-segmented, single-stranded RNA that contains seven genes: (a) nucleoprotein (NP), (b) viral protein 35 (VP35), (c) VP40, (d) glycoprotein (GP), (e) VP30, (f) VP24, and (g) RNA polymerase (L). All genes encode for one protein each except GP, producing three pre-proteins due to the transcriptional editing. These pre-proteins are translated into four products, namely: (a) soluble secreted glycoprotein (sGP), (b) Δ-peptide, (c) full-length transmembrane spike glycoprotein (GP), and (d) soluble small secreted glycoprotein (ssGP). Further, shed GP is released from infected cells due to cleavage of GP by tumor necrosis factor α-converting enzyme (TACE). This review presents a detailed discussion on various functional aspects of all EBOV proteins and their residues. An introduction to ebolaviruses and their life cycle is also provided for clarity of the available analysis. We believe that this review will help understand the roles played by different EBOV proteins in the pathogenesis of the disease. It will help in targeting significant protein residues for therapeutic and multi-protein/peptide vaccine development.
Collapse
|
9
|
Cheng Y, Rauf A, Pan X. Research Progress on the Natural Product Aloperine and Its Derivatives. Mini Rev Med Chem 2021; 22:729-742. [PMID: 34488611 DOI: 10.2174/1389557521666210831155426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/01/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
In this review, an effort towards the presentation of an all-around account of the recent progress on the natural product, aloperine is made, and the antivirus structure-activity relationship of its derivatives is also summarized comprehensively. In addition, the principal pharmacological effects and corresponding molecular mechanisms of aloperine are discussed. Some new modification directions of aloperine are given in the end, which might be brief guidance for further investigations on the natural product aloperine.
Collapse
Affiliation(s)
- Yu Cheng
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050. China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, KPK. Pakistan
| | - Xiandao Pan
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050. China
| |
Collapse
|
10
|
A Naturally Occurring Polymorphism in the Base of Sudan Virus Glycoprotein Decreases Glycoprotein Stability in a Species-Dependent Manner. J Virol 2021; 95:e0107321. [PMID: 34232742 DOI: 10.1128/jvi.01073-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sudan virus (SUDV) is one of five filoviruses that compose the genus Ebolavirus that has been responsible for episodic outbreaks in Central Africa. While the SUDV glycoprotein (GP) structure has been solved, GP residues that affect SUDV entry have not been extensively examined; many of the entry characteristics of SUDV GP are inferred from studies with the Zaire Ebola virus (EBOV) GP. Here, we investigate the effect on virus entry of a naturally occurring polymorphism in SUDV GP. Two of the earliest SUDV isolates contain glutamine at residue 95 (Q95) within the base region of GP1, whereas more recent SUDV isolates and GPs from all other ebolaviruses carry lysine at this position (K95). A K95Q change dramatically decreased titers of pseudovirions bearing SUDV GP, whereas the K95Q substitution in EBOV GP had no effect on titer. We evaluated virus entry to identify SUDV GP Q95-specific entry defects. The presence of Q95 in either EBOV or SUDV GP resulted in enhanced sensitivity of GP to proteolytic processing, yet this could not account for the SUDV-specific decrease in GP Q95 infectivity. We found that SUDV GP Q95 pseudovirions were more sensitive to imipramine, a GP-destabilizing antiviral. In contrast, SUDV GP K95 was more stable, requiring elevated temperatures to inhibit virus infection. Thus, the residue present at GP 95 has a critical role in stabilizing the SUDV glycoprotein, whereas this polymorphism has no effect on EBOV GP stability. These results provide novel insights into filovirus species-specific GP structure that affects virus infectivity. IMPORTANCE Filovirus outbreaks are associated with significant morbidity and mortality. Understanding the structural constraints of filoviral GPs that control virus entry into cells is critical for rational development of novel antivirals to block infection. Here, we identify a naturally occurring glutamine (Q) to lysine (K) polymorphism at residue 95 as a critical determinant of Sudan virus GP stability but not Zaire Ebola virus GP stability. We propose that glutamine at residue 95 in Sudan virus GP mediates decreased virus entry, thereby reducing infectivity. Our findings highlight a unique structural characteristic of Sudan virus GP that affects GP-mediated functionality. Further, it provides a cautionary note for the development of future broad-spectrum filovirus antivirals.
Collapse
|
11
|
He H, Guo J, Xu J, Wang J, Liu S, Xu B. Dynamic Continuum of Nanoscale Peptide Assemblies Facilitates Endocytosis and Endosomal Escape. NANO LETTERS 2021; 21:4078-4085. [PMID: 33939437 PMCID: PMC8180093 DOI: 10.1021/acs.nanolett.1c01029] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Alkaline phosphatase (ALP) enables intracellular targeting by peptide assemblies, but how the ALP substrates enter cells remains elusive. Here we show that nanoscale phosphopeptide assemblies cluster ALP to enable caveolae-mediated endocytosis (CME) and endosomal escape. Specifically, fluorescent phosphopeptides undergo enzyme-catalyzed self-assembly to form nanofibers. Live cell imaging unveils that phosphopeptides nanoparticles, coincubated with HEK293 cells overexpressing red fluorescent protein-tagged tissue-nonspecific ALP (TNAP-RFP), cluster TNAP-RFP in lipid rafts to enable CME. Further dephosphorylation of the phosphopeptides produces peptidic nanofibers for endosomal escape. Inhibiting TNAP, cleaving the membrane anchored TNAP, or disrupting lipid rafts abolishes the endocytosis. Decreasing the transformation to nanofibers prevents the endosomal escape. As the first study establishing a dynamic continuum of nanoscale assemblies for cellular uptake, this work illustrates an effective design for enzyme-responsive supramolecular therapeutics and provides mechanism insights for understanding the dynamics of cellular uptake of proteins or exogenous peptide aggregates.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jiashu Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jiaqing Wang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Shuang Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
12
|
Densumite J, Phanthong S, Seesuay W, Sookrung N, Chaisri U, Chaicumpa W. Engineered Human Monoclonal scFv to Receptor Binding Domain of Ebolavirus. Vaccines (Basel) 2021; 9:vaccines9050457. [PMID: 34064480 PMCID: PMC8147973 DOI: 10.3390/vaccines9050457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/29/2023] Open
Abstract
(1) Background: Ebolavirus (EBOV) poses as a significant threat for human health by frequently causing epidemics of the highly contagious Ebola virus disease (EVD). EBOV glycoprotein (GP), as a sole surface glycoprotein, needs to be cleaved in endosomes to fully expose a receptor-binding domain (RBD) containing a receptor-binding site (RBS) for receptor binding and genome entry into cytoplasm for replication. RBDs are highly conserved among EBOV species, so they are an attractive target for broadly effective anti-EBOV drug development. (2) Methods: Phage display technology was used as a tool to isolate human single-chain antibodies (HuscFv) that bind to recombinant RBDs from a human scFv (HuscFv) phage display library. The RBD-bound HuscFvs were fused with cell-penetrating peptide (CPP), and cell-penetrating antibodies (transbodies) were made, produced from the phage-infected E. coli clones and characterized. (3) Results: Among the HuscFvs obtained from phage-infected E. coli clones, HuscFvs of three clones, HuscFv4, HuscFv11, and HuscFv14, the non-cell-penetrable or cell-penetrable HuscFv4 effectively neutralized cellular entry of EBOV-like particles (VLPs). While all HuscFvs were found to bind cleaved GP (GPcl), their presumptive binding sites were markedly different, as determined by molecular docking. (4) Conclusions: The HuscFv4 could be a promising therapeutic agent against EBOV infection.
Collapse
Affiliation(s)
- Jaslan Densumite
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (J.D.); (S.P.); (W.S.)
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Siratcha Phanthong
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (J.D.); (S.P.); (W.S.)
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Watee Seesuay
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (J.D.); (S.P.); (W.S.)
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nitat Sookrung
- Biomedical Research Incubation Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Urai Chaisri
- Department of Tropical Pathology, Faculty of Topical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: ; Tel.: +662-419-2936; Fax: +662-419-6470
| |
Collapse
|
13
|
Misasi J, Sullivan NJ. Immunotherapeutic strategies to target vulnerabilities in the Ebolavirus glycoprotein. Immunity 2021; 54:412-436. [PMID: 33691133 DOI: 10.1016/j.immuni.2021.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The 2014 Ebola virus disease (EVD) outbreak in West Africa and the subsequent outbreaks of 2018-2020 in Equator and North Kivu provinces of the Democratic Republic of the Congo illustrate the public health challenges of emerging and reemerging viruses. EVD has a high case fatality rate with a rapidly progressing syndrome of fever, rash, vomiting, diarrhea, and bleeding diathesis. Recently, two monoclonal-antibody-based therapies received United States Food and Drug Administration (FDA) approval, and there are several other passive immunotherapies that hold promise as therapeutics against other species of Ebolavirus. Here, we review concepts needed to understand mechanisms of action, present an expanded schema to define additional sites of vulnerability on the viral glycoprotein, and review current antibody-based therapeutics. The concepts described are used to gain insights into the key characteristics that represent functional targets for immunotherapies against Zaire Ebolavirus and other emerging viruses within the Ebolavirus genus.
Collapse
Affiliation(s)
- John Misasi
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Vaccine Research Center, 40 Convent Drive, Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Vaccine Research Center, 40 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
A Glycoprotein Mutation That Emerged during the 2013-2016 Ebola Virus Epidemic Alters Proteolysis and Accelerates Membrane Fusion. mBio 2021; 12:mBio.03616-20. [PMID: 33593971 PMCID: PMC8545129 DOI: 10.1128/mbio.03616-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic surveillance of viral isolates during the 2013–2016 Ebola virus epidemic in Western Africa, the largest and most devastating filovirus outbreak on record, revealed several novel mutations. The responsible strain, named Makona, carries an A-to-V substitution at position 82 (A82V) in the glycoprotein (GP), which is associated with enhanced infectivity in vitro. Here, we investigated the mechanistic basis for this enhancement as well as the interplay between A82V and a T-to-I substitution at residue 544 of GP, which also modulates infectivity in cell culture. We found that both 82V and 544I destabilize GP, with the residue at position 544 impacting overall stability, while 82V specifically destabilizes proteolytically cleaved GP. Both residues also promote faster kinetics of lipid mixing of the viral and host membranes in live cells, individually and in tandem, which correlates with faster times to fusion following colocalization with the viral receptor Niemann-Pick C1 (NPC1). Furthermore, GPs bearing 82V are more sensitive to proteolysis by cathepsin L (CatL), a key host factor for viral entry. Intriguingly, CatL processed 82V variant GPs to a novel product with a molecular weight of approximately 12,000 (12K), which we hypothesize corresponds to a form of GP that is pre-triggered for fusion. We thus propose a model in which 82V promotes more efficient GP processing by CatL, leading to faster viral fusion kinetics and higher levels of infectivity.
Collapse
|
15
|
He H, Lin X, Wu D, Wang J, Guo J, Green DR, Zhang H, Xu B. Enzymatic Noncovalent Synthesis for Mitochondrial Genetic Engineering of Cancer Cells. CELL REPORTS. PHYSICAL SCIENCE 2020; 1:100270. [PMID: 33511360 PMCID: PMC7839975 DOI: 10.1016/j.xcrp.2020.100270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Since mitochondria contribute to tumorigenesis and drug resistance in cancer, mitochondrial genetic engineering promises a new direction for cancer therapy. Here, we report the use of the perimitochondrial enzymatic noncovalent synthesis (ENS) of peptides for delivering genes selectively into the mitochondria of cancer cells for mitochondrial genetic engineering. Specifically, the micelles of peptides bind to the voltage-dependent anion channel (VDAC) on mitochondria for the proteolysis by enterokinase (ENTK), generating perimitochondrial nanofibers in cancer cells. This process, facilitating selective delivery of nucleic acid or gene vectors into mitochondria of cancer cells, enables the mitochondrial transgene expression of CRISPR/Cas9, FUNDC1, p53, and fluorescent proteins. Mechanistic investigation indicates that the interaction of the peptide assemblies with the VDAC and mitochondrial membrane potential are necessary for mitochondria targeting. This local enzymatic control of intermolecular noncovalent interactions enables selective mitochondrial genetic engineering, thus providing a strategy for targeting cancer cells.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Xinyi Lin
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Difei Wu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Jiaqing Wang
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Douglas R. Green
- Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Hongwei Zhang
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Avenue, Boston, MA 02115, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
- Lead contact
- Correspondence:
| |
Collapse
|
16
|
Ilinykh PA, Huang K, Santos RI, Gilchuk P, Gunn BM, Karim MM, Liang J, Fouch ME, Davidson E, Parekh DV, Kimble JB, Pietzsch CA, Meyer M, Kuzmina NA, Zeitlin L, Saphire EO, Alter G, Crowe JE, Bukreyev A. Non-neutralizing Antibodies from a Marburg Infection Survivor Mediate Protection by Fc-Effector Functions and by Enhancing Efficacy of Other Antibodies. Cell Host Microbe 2020; 27:976-991.e11. [PMID: 32320678 DOI: 10.1016/j.chom.2020.03.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/10/2019] [Accepted: 03/26/2020] [Indexed: 11/15/2022]
Abstract
Marburg virus (MARV) and Ebola virus (EBOV) belong to the family Filoviridae. MARV causes severe disease in humans with high fatality. We previously isolated a large panel of monoclonal antibodies (mAbs) from B cells of a human survivor with previous naturally acquired MARV infection. Here, we characterized functional properties of these mAbs and identified non-neutralizing mAbs targeting the glycoprotein (GP) 2 portion of the mucin-like domain (MLD) of MARV GP, termed the wing region. One mAb targeting the GP2 wing, MR228, showed therapeutic protection in mice and guinea pigs infected with MARV. The protection was mediated by the Fc fragment functions of MR228. Binding of another GP2 wing-specific non-neutralizing mAb, MR235, to MARV GP increased accessibility of epitopes in the receptor-binding site (RBS) for neutralizing mAbs, resulting in enhanced virus neutralization by these mAbs. These findings highlight an important role for non-neutralizing mAbs during natural human MARV infection.
Collapse
Affiliation(s)
- Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Rodrigo I Santos
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bronwyn M Gunn
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Marcus M Karim
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Jenny Liang
- Integral Molecular, Philadelphia, PA 19104, USA
| | | | | | - Diptiben V Parekh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - James B Kimble
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Colette A Pietzsch
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Michelle Meyer
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Natalia A Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | | | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics (Infectious Diseases), Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; Galveston National Laboratory, Galveston, TX, USA.
| |
Collapse
|
17
|
Das DK, Bulow U, Diehl WE, Durham ND, Senjobe F, Chandran K, Luban J, Munro JB. Conformational changes in the Ebola virus membrane fusion machine induced by pH, Ca2+, and receptor binding. PLoS Biol 2020; 18:e3000626. [PMID: 32040508 PMCID: PMC7034923 DOI: 10.1371/journal.pbio.3000626] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/21/2020] [Accepted: 01/23/2020] [Indexed: 12/22/2022] Open
Abstract
The Ebola virus (EBOV) envelope glycoprotein (GP) is a membrane fusion machine required for virus entry into cells. Following endocytosis of EBOV, the GP1 domain is cleaved by cellular cathepsins in acidic endosomes, removing the glycan cap and exposing a binding site for the Niemann-Pick C1 (NPC1) receptor. NPC1 binding to cleaved GP1 is required for entry. How this interaction translates to GP2 domain-mediated fusion of viral and endosomal membranes is not known. Here, using a bulk fluorescence dequenching assay and single-molecule Förster resonance energy transfer (smFRET)-imaging, we found that acidic pH, Ca2+, and NPC1 binding synergistically induce conformational changes in GP2 and permit virus-liposome lipid mixing. Acidic pH and Ca2+ shifted the GP2 conformational equilibrium in favor of an intermediate state primed for NPC1 binding. Glycan cap cleavage on GP1 enabled GP2 to transition from a reversible intermediate to an irreversible conformation, suggestive of the postfusion 6-helix bundle; NPC1 binding further promoted transition to the irreversible conformation. Thus, the glycan cap of GP1 may allosterically protect against inactivation of EBOV by premature triggering of GP2. The Ebola virus envelope glycoprotein is a membrane fusion machine required for the virus to enter into host cells. This study presents direct observation of the conformational changes that the envelope glycoprotein undergoes during the membrane fusion process.
Collapse
Affiliation(s)
- Dibyendu Kumar Das
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
- * E-mail: (JBM); (DKD)
| | - Uriel Bulow
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
| | - William E. Diehl
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Natasha D. Durham
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Fernando Senjobe
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - James B. Munro
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (JBM); (DKD)
| |
Collapse
|
18
|
Ebola Virus Uptake into Polarized Cells from the Apical Surface. Viruses 2019; 11:v11121117. [PMID: 31810353 PMCID: PMC6949903 DOI: 10.3390/v11121117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 12/17/2022] Open
Abstract
Ebola virus (EBOV) causes severe hemorrhagic fever with high mortality rates. EBOV can infect many types of cells. During severe EBOV infection, polarized epithelial and endothelial cells are damaged, which promotes vascular instability and dysregulation. However, the mechanism causing these symptoms is largely unknown. Here, we studied virus infection in polarized Vero C1008 cells grown on semipermeable Transwell by using EGFP-labeled Ebola virus-like particles (VLPs). Our results showed that Ebola VLPs preferred to enter polarized Vero cells from the apical cell surface. Furthermore, we showed that the EBOV receptors TIM-1 and Axl were distributed apically, which could be responsible for mediating efficient apical viral entry. Macropinocytosis and intracellular receptor Niemann–Pick type C1 (NPC1) had no polarized distribution, although they played roles in virus entry. This study provides a new view of EBOV uptake and cell polarization, which facilitates a further understanding of EBOV infection and pathogenesis.
Collapse
|
19
|
Luczkowiak J, Lasala F, Mora-Rillo M, Arribas JR, Delgado R. Broad Neutralizing Activity Against Ebolaviruses Lacking the Mucin-Like Domain in Convalescent Plasma Specimens From Patients With Ebola Virus Disease. J Infect Dis 2019; 218:S574-S581. [PMID: 29939289 PMCID: PMC6249609 DOI: 10.1093/infdis/jiy302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background In Ebola virus (EBOV) infection, the specific neutralizing activity of convalescent plasma against other members of the Ebolavirus genus has not been extensively analyzed. Methods We measured the neutralizing activity in plasma from 3 survivors of the recent outbreak due to the Makona variant of EBOV and tested its neutralizing potency against other variants of EBOV (ie, Mayinga and Kikwit) and against Sudan virus (SUDV), Bundibugyo virus (BDBV), and Reston virus (RESTV), using a glycoprotein (GP)-pseudotyped lentiviral system both with full-length GP and in vitro-cleaved GP (GPCL). Results Convalescent plasma specimens from survivors of EBOV infection showed low neutralizing activity against full-length GPs of SUDV, BDBV, RESTV, and EBOV variants Mayinga and Kikwit. However, broad and potent neutralizing activity was observed against the GPCL forms of SUDV, BDBV, and RESTV. Discussion Removal of the mucin-like domain and glycan cap from the GP of members of the Ebolavirus genus presumably exposes conserved epitopes in or in the vicinity of the receptor binding site and internal fusion loop that are readily amenable to neutralization. These types of broad neutralizing antibodies could be induced by using immunogens mimicking GPCL.
Collapse
Affiliation(s)
- Joanna Luczkowiak
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fatima Lasala
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marta Mora-Rillo
- Infectious Diseases Unit, Department of Internal Medicine, Instituto de Investigación Hospital La Paz, Madrid, Spain
| | - Jose R Arribas
- Infectious Diseases Unit, Department of Internal Medicine, Instituto de Investigación Hospital La Paz, Madrid, Spain
| | - Rafael Delgado
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
- Correspondence: R. Delgado, Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Avenida de Córdoba sn, Madrid 28041, Spain ()
| |
Collapse
|
20
|
Cytokine Effects on the Entry of Filovirus Envelope Pseudotyped Virus-Like Particles into Primary Human Macrophages. Viruses 2019; 11:v11100889. [PMID: 31547585 PMCID: PMC6832363 DOI: 10.3390/v11100889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022] Open
Abstract
Macrophages are one of the first and also a major site of filovirus replication and, in addition, are a source of multiple cytokines, presumed to play a critical role in the pathogenesis of the viral infection. Some of these cytokines are known to induce macrophage phenotypic changes in vitro, but how macrophage polarization may affect the cell susceptibility to filovirus entry remains largely unstudied. We generated different macrophage subsets using cytokine pre-treatment and subsequently tested their ability to fuse with beta-lactamase containing virus-like particles (VLP), pseudotyped with the surface glycoprotein of Ebola virus (EBOV) or the glycoproteins of other clinically relevant filovirus species. We found that pre-incubation of primary human monocyte-derived macrophages (MDM) with interleukin-10 (IL-10) significantly enhanced filovirus entry into cells obtained from multiple healthy donors, and the IL-10 effect was preserved in the presence of pro-inflammatory cytokines found to be elevated during EBOV disease. In contrast, fusion of IL-10-treated macrophages with influenza hemagglutinin/neuraminidase pseudotyped VLPs was unchanged or slightly reduced. Importantly, our in vitro data showing enhanced virus entry are consistent with the correlation established between elevated serum IL-10 and increased mortality in filovirus infected patients and also reveal a novel mechanism that may account for the IL-10-mediated increase in filovirus pathogenicity.
Collapse
|
21
|
Singleton CD, Humby MS, Yi HA, Rizzo RC, Jacobs A. Identification of Ebola Virus Inhibitors Targeting GP2 Using Principles of Molecular Mimicry. J Virol 2019; 93:e00676-19. [PMID: 31092576 PMCID: PMC6639268 DOI: 10.1128/jvi.00676-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/31/2022] Open
Abstract
A key step in the Ebola virus (EBOV) replication cycle involves conformational changes in viral glycoprotein 2 (GP2) which facilitate host-viral membrane fusion and subsequent release of the viral genome. Ebola GP2 plays a critical role in virus entry and has similarities in mechanism and structure to the HIV gp41 protein for which inhibitors have been successfully developed. In this work, a putative binding pocket for the C-terminal heptad repeat in the N-terminal heptad repeat trimer was targeted for identification of small molecules that arrest EBOV-host membrane fusion. Two computational structure-based virtual screens of ∼1.7 M compounds were performed (DOCK program) against a GP2 five-helix bundle, resulting in 165 commercially available compounds purchased for experimental testing. Based on assessment of inhibitory activity, cytotoxicity, and target specificity, four promising candidates emerged with 50% inhibitory concentration values in the 3 to 26 μM range. Molecular dynamics simulations of the two most potent candidates in their DOCK-predicted binding poses indicate that the majority of favorable interactions involve seven highly conserved residues that can be used to guide further inhibitor development and refinement targeting EBOV.IMPORTANCE The most recent Ebola virus disease outbreak, from 2014 to 2016, resulted in approximately 28,000 individuals becoming infected, which led to over 12,000 causalities worldwide. The particularly high pathogenicity of the virus makes paramount the identification and development of promising lead compounds to serve as inhibitors of Ebola infection. To limit viral load, the virus-host membrane fusion event can be targeted through the inhibition of the class I fusion glycoprotein of Ebolavirus In the current work, several promising small-molecule inhibitors that target the glycoprotein GP2 were identified through systematic application of structure-based computational and experimental drug design procedures.
Collapse
Affiliation(s)
- Courtney D Singleton
- Department of Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, New York, USA
| | - Monica S Humby
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York, USA
| | - Hyun Ah Yi
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York, USA
| | - Robert C Rizzo
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York, USA
- Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Amy Jacobs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York, USA
| |
Collapse
|
22
|
A Hyperstabilizing Mutation in the Base of the Ebola Virus Glycoprotein Acts at Multiple Steps To Abrogate Viral Entry. mBio 2019; 10:mBio.01408-19. [PMID: 31289183 PMCID: PMC6747718 DOI: 10.1128/mbio.01408-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ebola virus (EBOV) causes highly lethal disease outbreaks against which no FDA-approved countermeasures are available. Although many host factors exploited by EBOV for cell entry have been identified, including host cell surface phosphatidylserine receptors, endosomal cysteine proteases, and the lysosomal cholesterol trafficking protein NPC1, key questions remain. Specifically, late entry steps culminating in viral membrane fusion remain enigmatic. Here, we investigated a set of glycoprotein (GP) mutants previously hypothesized to be entry defective and identified one mutation, R64A, that abolished infection with no apparent impact on GP expression, folding, or viral incorporation. R64A profoundly thermostabilized EBOV GP and rendered it highly resistant to proteolysis in vitro Forward-genetics and cell entry studies strongly suggested that R64A's effects on GP thermostability and proteolysis arrest viral entry at least at two distinct steps: the first upstream of NPC1 binding and the second at a late entry step downstream of fusion activation. Concordantly, toremifene, a small-molecule entry inhibitor previously shown to bind and destabilize GP, may selectively enhance the infectivity of viral particles bearing GP(R64A) at subinhibitory concentrations. R64A provides a valuable tool to further define the interplay between GP stability, proteolysis, and viral membrane fusion; to explore the rational design of stability-modulating antivirals; and to spur the development of next-generation Ebola virus vaccines with improved stability.IMPORTANCE Ebola virus is a medically relevant virus responsible for outbreaks of severe disease in western and central Africa, with mortality rates reaching as high as 90%. Despite considerable effort, there are currently no FDA-approved therapeutics or targeted interventions available, highlighting the need of development in this area. Host-cell invasion represents an attractive target for antivirals, and several drug candidates have been identified; however, our limited understanding of the complex viral entry process challenges the development of such entry-targeting drugs. Here, we report on a glycoprotein mutation that abrogates viral entry and provides insights into the final steps of this process. In addition, the hyperstabilized phenotype of this mutant makes it useful as a tool in the discovery and design of stability-modulating antivirals and next-generation vaccines against Ebola virus.
Collapse
|
23
|
Fénéant L, Szymańska-de Wijs KM, Nelson EA, White JM. An exploration of conditions proposed to trigger the Ebola virus glycoprotein for fusion. PLoS One 2019; 14:e0219312. [PMID: 31276481 PMCID: PMC6611598 DOI: 10.1371/journal.pone.0219312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/20/2019] [Indexed: 01/06/2023] Open
Abstract
Ebolaviruses continue to inflict horrific disease and instill fear. The 2013-2016 outbreak in Western Africa caused unfathomable morbidity and mortality (over 11,000 deaths), and the second largest outbreak is on-going in the Democratic Republic of the Congo. The first stage of an Ebolavirus infection is entry, culminating in delivery of the viral genome into the cytoplasm to initiate replication. Among enveloped viruses, Ebolaviruses use a complex entry pathway: they bind to attachment factors on cell surfaces, are engulfed by macropinocytosis, and traffic through the endosomal system. En route, the receptor binding subunit of the glycoprotein (GP) is reduced from ~130 to ~19 kDa by cathepsins. This event allows cleaved GP (GPcl) to bind to Niemann-Pick C1 (NPC1), its endosomal receptor. The virus then fuses with a late endosomal membrane, but how this occurs remains a subject of debate. An early, but standing, observation is that entry of particles bearing GPcl is inhibited by agents that raise endosomal pH or inhibit cysteine proteases, suggesting the need for an additional factor(s). Yet, some have concluded that NPC1 is sufficient to trigger the fusion activity of GPcl. Here, we re-examined this question using sensitive cell-cell and pseudovirus-cell fusion assays. We did not observe detectable GPcl-mediated fusion with NPC1 or its GPcl binding domain at any pH tested, while robust fusion was consistently observed with GP from lymphocytic choriomeningitis virus at low pH. Addition of proposed fusion-enhancing factors-cations (Ca++ and K+), a reducing agent, the anionic lipid Bis(Monoacylglycero)Phosphate, and a mixture of cathepsins B and L-did not induce detectable fusion. Our findings are in line with the earlier proposal that an additional factor is required to trigger the full fusion activity of GPcl after binding to NPC1. We discuss caveats to our study and what the missing factor(s) might be.
Collapse
Affiliation(s)
- Lucie Fénéant
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | | | - Elizabeth A. Nelson
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Judith M. White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
24
|
Edwards MR, Basler CF. Current status of small molecule drug development for Ebola virus and other filoviruses. Curr Opin Virol 2019; 35:42-56. [PMID: 31003196 PMCID: PMC6556423 DOI: 10.1016/j.coviro.2019.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022]
Abstract
The filovirus family includes some of the deadliest viruses known, including Ebola virus and Marburg virus. These viruses cause periodic outbreaks of severe disease that can be spread from person to person, making the filoviruses important public health threats. There remains a need for approved drugs that target all or most members of this virus family. Small molecule inhibitors that target conserved functions hold promise as pan-filovirus therapeutics. To date, compounds that effectively target virus entry, genome replication, gene expression, and virus egress have been described. The most advanced inhibitors are nucleoside analogs that target viral RNA synthesis reactions.
Collapse
Affiliation(s)
- Megan R Edwards
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, United States
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, United States.
| |
Collapse
|
25
|
Salata C, Calistri A, Alvisi G, Celestino M, Parolin C, Palù G. Ebola Virus Entry: From Molecular Characterization to Drug Discovery. Viruses 2019; 11:v11030274. [PMID: 30893774 PMCID: PMC6466262 DOI: 10.3390/v11030274] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
Ebola Virus Disease (EVD) is one of the most lethal transmissible infections, characterized by a high fatality rate, and caused by a member of the Filoviridae family. The recent large outbreak of EVD in Western Africa (2013–2016) highlighted the worldwide threat represented by the disease and its impact on global public health and the economy. The development of highly needed anti-Ebola virus antivirals has been so far hampered by the shortage of tools to study their life cycle in vitro, allowing to screen for potential active compounds outside a biosafety level-4 (BSL-4) containment. Importantly, the development of surrogate models to study Ebola virus entry in a BSL-2 setting, such as viral pseudotypes and Ebola virus-like particles, tremendously boosted both our knowledge of the viral life cycle and the identification of promising antiviral compounds interfering with viral entry. In this context, the combination of such surrogate systems with large-scale small molecule compounds and haploid genetic screenings, as well as rational drug design and drug repurposing approaches will prove priceless in our quest for the development of a treatment for EVD.
Collapse
Affiliation(s)
- Cristiano Salata
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| | - Michele Celestino
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| |
Collapse
|
26
|
Shaikh F, Zhao Y, Alvarez L, Iliopoulou M, Lohans C, Schofield CJ, Padilla-Parra S, Siu SWI, Fry EE, Ren J, Stuart DI. Structure-Based in Silico Screening Identifies a Potent Ebolavirus Inhibitor from a Traditional Chinese Medicine Library. J Med Chem 2019; 62:2928-2937. [PMID: 30785281 PMCID: PMC6441942 DOI: 10.1021/acs.jmedchem.8b01328] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
Potent Ebolavirus (EBOV) inhibitors
will help to curtail outbreaks
such as that which occurred in 2014–16 in West Africa. EBOV
has on its surface a single glycoprotein (GP) critical for viral entry
and membrane fusion. Recent high-resolution complexes of EBOV GP with
a variety of approved drugs revealed that binding to a common cavity
prevented fusion of the virus and endosomal membranes, inhibiting
virus infection. We performed docking experiments, screening a database
of natural compounds to identify those likely to bind at this site.
Using both inhibition assays of HIV-1-derived pseudovirus cell entry
and structural analyses of the complexes of the compounds with GP,
we show here that two of these compounds attach in the common binding
cavity, out of eight tested. In both cases, two molecules bind in
the cavity. The two compounds are chemically similar, but the tighter
binder has an additional chlorine atom that forms good halogen bonds
to the protein and achieves an IC50 of 50 nM, making it
the most potent GP-binding EBOV inhibitor yet identified, validating
our screening approach for the discovery of novel antiviral compounds.
Collapse
Affiliation(s)
- Faraz Shaikh
- Department of Computer and Information Science, Faculty of Science and Technology , University of Macau , E11, Macau 999078 , China.,Division of Structural Biology , University of Oxford , The Henry Wellcome Building for Genomic Medicine , Headington, Oxford OX3 7BN , U.K
| | - Yuguang Zhao
- Division of Structural Biology , University of Oxford , The Henry Wellcome Building for Genomic Medicine , Headington, Oxford OX3 7BN , U.K
| | - Luis Alvarez
- Division of Structural Biology , University of Oxford , The Henry Wellcome Building for Genomic Medicine , Headington, Oxford OX3 7BN , U.K
| | - Maria Iliopoulou
- Division of Structural Biology , University of Oxford , The Henry Wellcome Building for Genomic Medicine , Headington, Oxford OX3 7BN , U.K
| | - Christopher Lohans
- Department of Chemistry , University of Oxford , Mansfield Road , Oxford OX1 3TA , U.K
| | | | - Sergi Padilla-Parra
- Division of Structural Biology , University of Oxford , The Henry Wellcome Building for Genomic Medicine , Headington, Oxford OX3 7BN , U.K.,Biocruces-Bizkaia Health Research Institute , Ikerbasque, Basque Foundation for Science , Bilbao 48011 , Spain
| | - Shirley W I Siu
- Department of Computer and Information Science, Faculty of Science and Technology , University of Macau , E11, Macau 999078 , China
| | - Elizabeth E Fry
- Division of Structural Biology , University of Oxford , The Henry Wellcome Building for Genomic Medicine , Headington, Oxford OX3 7BN , U.K
| | - Jingshan Ren
- Division of Structural Biology , University of Oxford , The Henry Wellcome Building for Genomic Medicine , Headington, Oxford OX3 7BN , U.K
| | - David I Stuart
- Division of Structural Biology , University of Oxford , The Henry Wellcome Building for Genomic Medicine , Headington, Oxford OX3 7BN , U.K.,Diamond Light Source Limited , Harwell Science & Innovation Campus , Didcot OX11 0DE , U.K
| |
Collapse
|
27
|
Vaughan K, Xu X, Peters B, Sette A. Investigation of Outbreak-Specific Nonsynonymous Mutations on Ebolavirus GP in the Context of Known Immune Reactivity. J Immunol Res 2018; 2018:1846207. [PMID: 30581874 PMCID: PMC6276448 DOI: 10.1155/2018/1846207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/01/2018] [Accepted: 10/22/2018] [Indexed: 11/17/2022] Open
Abstract
The global response to the most recent EBOV outbreak has led to increased generation and availability of data, which can be globally analyzed to increase our understanding of immune responses to EBOV. We analyzed the published antibody epitope data to identify regions immunogenic for humans on the main GP antigenic target and determine sequence variance/nonsynonymous mutations between historical isolates and variants from the 2013-2016 outbreak. Approximately half of the GP sequence has been reported as targeted by antibody responses. Our results show an enrichment of nonsynonymous mutations (NSMs) within epitopic regions on GP (70%, p = 0.0133). Mapping NSMs to human epitope reactivity may be useful for future therapeutic and prophylaxis development as well as for our general understanding of immunity against EBOV.
Collapse
Affiliation(s)
- Kerrie Vaughan
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Xiaojun Xu
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- University of California San Diego, Department of Medicine, La Jolla, CA 92093, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- University of California San Diego, Department of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
28
|
Structural basis for broad neutralization of ebolaviruses by an antibody targeting the glycoprotein fusion loop. Nat Commun 2018; 9:3934. [PMID: 30258051 PMCID: PMC6158212 DOI: 10.1038/s41467-018-06113-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/17/2018] [Indexed: 11/09/2022] Open
Abstract
The severity of the 2014-2016 ebolavirus outbreak in West Africa expedited clinical development of therapeutics and vaccines though the countermeasures on hand were largely monospecific and lacked efficacy against other ebolavirus species that previously emerged. Recent studies indicate that ebolavirus glycoprotein (GP) fusion loops are targets for cross-protective antibodies. Here we report the 3.72 Å resolution crystal structure of one such cross-protective antibody, CA45, bound to the ectodomain of Ebola virus (EBOV) GP. The CA45 epitope spans multiple faces of the fusion loop stem, across both GP1 and GP2 subunits, with ~68% of residues identical across > 99.5% of known ebolavirus isolates. Extensive antibody interactions within a pan-ebolavirus small-molecule inhibitor binding cavity on GP define this cavity as a novel site of immune vulnerability. The structure elucidates broad ebolavirus neutralization through a highly conserved epitope on GP and further enables rational design and development of broadly protective vaccines and therapeutics.
Collapse
|
29
|
West BR, Moyer CL, King LB, Fusco ML, Milligan JC, Hui S, Saphire EO. Structural Basis of Pan-Ebolavirus Neutralization by a Human Antibody against a Conserved, yet Cryptic Epitope. mBio 2018; 9:e01674-18. [PMID: 30206174 PMCID: PMC6134094 DOI: 10.1128/mbio.01674-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 01/02/2023] Open
Abstract
Only one naturally occurring human antibody has been described thus far that is capable of potently neutralizing all five ebolaviruses. Here we present two crystal structures of this rare, pan-ebolavirus neutralizing human antibody in complex with Ebola virus and Bundibugyo virus glycoproteins (GPs), respectively. The structures delineate the key protein and glycan contacts for binding that are conserved across the ebolaviruses, explain the antibody's unique broad specificity and neutralization activity, and reveal the likely mechanism behind a known escape mutation in the fusion loop region of GP2. We found that the epitope of this antibody, ADI-15878, extends along the hydrophobic paddle of the fusion loop and then dips down into a highly conserved pocket beneath the N-terminal tail of GP2, a mode of recognition unlike any other antibody elicited against Ebola virus, and likely critical for its broad activity. The fold of Bundibugyo virus glycoprotein, not previously visualized, is similar to the fold of Ebola virus GP, and ADI-15878 binds to each virus's GP with a similar strategy and angle of attack. These findings will be useful in deployment of this antibody as a broad-spectrum therapeutic and in the design of immunogens that elicit the desired broadly neutralizing immune response against all members of the ebolavirus genus and filovirus family.IMPORTANCE There are five different members of the Ebolavirus genus. Provision of vaccines and treatments able to protect against any of the five ebolaviruses is an important goal of public health. Antibodies are a desired result of vaccines and can be delivered directly as therapeutics. Most antibodies, however, are effective against only one or two, not all, of these pathogens. Only one human antibody has been thus far described to neutralize all five ebolaviruses, antibody ADI-15878. Here we describe the molecular structure of ADI-15878 bound to the relevant target proteins of Ebola virus and Bundibugyo virus. We explain how it achieves its rare breadth of activity and propose strategies to design improved vaccines capable of eliciting more antibodies like ADI-15878.
Collapse
Affiliation(s)
- Brandyn R West
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Crystal L Moyer
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Liam B King
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Marnie L Fusco
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Jacob C Milligan
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Sean Hui
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
- Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California, USA
| |
Collapse
|
30
|
Saphire EO, Schendel SL, Fusco ML, Gangavarapu K, Gunn BM, Wec AZ, Halfmann PJ, Brannan JM, Herbert AS, Qiu X, Wagh K, He S, Giorgi EE, Theiler J, Pommert KBJ, Krause TB, Turner HL, Murin CD, Pallesen J, Davidson E, Ahmed R, Aman MJ, Bukreyev A, Burton DR, Crowe JE, Davis CW, Georgiou G, Krammer F, Kyratsous CA, Lai JR, Nykiforuk C, Pauly MH, Rijal P, Takada A, Townsend AR, Volchkov V, Walker LM, Wang CI, Zeitlin L, Doranz BJ, Ward AB, Korber B, Kobinger GP, Andersen KG, Kawaoka Y, Alter G, Chandran K, Dye JM. Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell 2018; 174:938-952.e13. [PMID: 30096313 PMCID: PMC6102396 DOI: 10.1016/j.cell.2018.07.033] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/22/2018] [Accepted: 07/24/2018] [Indexed: 12/24/2022]
Abstract
Antibodies are promising post-exposure therapies against emerging viruses, but which antibody features and in vitro assays best forecast protection are unclear. Our international consortium systematically evaluated antibodies against Ebola virus (EBOV) using multidisciplinary assays. For each antibody, we evaluated epitopes recognized on the viral surface glycoprotein (GP) and secreted glycoprotein (sGP), readouts of multiple neutralization assays, fraction of virions left un-neutralized, glycan structures, phagocytic and natural killer cell functions elicited, and in vivo protection in a mouse challenge model. Neutralization and induction of multiple immune effector functions (IEFs) correlated most strongly with protection. Neutralization predominantly occurred via epitopes maintained on endosomally cleaved GP, whereas maximal IEF mapped to epitopes farthest from the viral membrane. Unexpectedly, sGP cross-reactivity did not significantly influence in vivo protection. This comprehensive dataset provides a rubric to evaluate novel antibodies and vaccine responses and a roadmap for therapeutic development for EBOV and related viruses.
Collapse
Affiliation(s)
- Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Sharon L Schendel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marnie L Fusco
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karthik Gangavarapu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Anna Z Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter J Halfmann
- Division of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Jennifer M Brannan
- Division of Virology, United States Army Research Institute for Infectious Diseases, Ft. Detrick, MD 21702, USA
| | - Andrew S Herbert
- Division of Virology, United States Army Research Institute for Infectious Diseases, Ft. Detrick, MD 21702, USA
| | - Xiangguo Qiu
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Canada
| | - Kshitij Wagh
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Shihua He
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Canada
| | - Elena E Giorgi
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - James Theiler
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Kathleen B J Pommert
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tyler B Krause
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hannah L Turner
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charles D Murin
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jesper Pallesen
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - M Javad Aman
- Integrated BioTherapeutics, Rockville, MD 20850, USA
| | - Alexander Bukreyev
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carl W Davis
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Jonathan R Lai
- Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cory Nykiforuk
- Emergent BioSolutions, Winnipeg, Manitoba, R3T 5Y3, Canada
| | | | - Pramila Rijal
- Human Immunology Unit, University of Oxford, Oxford OX3 9DS, UK
| | - Ayato Takada
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | | | | | | | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Biopolis 138648, Singapore
| | | | | | - Andrew B Ward
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Gary P Kobinger
- Département de Microbiologie-Infectiologie et d'Immunologie, Médecine, Université Laval Quebec, G1V 046 Canada.
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Yoshihiro Kawaoka
- Division of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | | | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - John M Dye
- Division of Virology, United States Army Research Institute for Infectious Diseases, Ft. Detrick, MD 21702, USA.
| |
Collapse
|
31
|
Ilinykh PA, Santos RI, Gunn BM, Kuzmina NA, Shen X, Huang K, Gilchuk P, Flyak AI, Younan P, Alter G, Crowe JE, Bukreyev A. Asymmetric antiviral effects of ebolavirus antibodies targeting glycoprotein stem and glycan cap. PLoS Pathog 2018; 14:e1007204. [PMID: 30138408 PMCID: PMC6107261 DOI: 10.1371/journal.ppat.1007204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/08/2018] [Indexed: 01/24/2023] Open
Abstract
Recent studies suggest that some monoclonal antibodies (mAbs) specific for ebolavirus glycoprotein (GP) can protect experimental animals against infections. Most mAbs isolated from ebolavirus survivors appeared to target the glycan cap or the stalk region of the viral GP, which is the envelope protein and the only antigen inducing virus-neutralizing antibody response. Some of the mAbs were demonstrated to be protective in vivo. Here, a panel of mAbs from four individual survivors of ebolavirus infection that target the glycan cap or stem region were selected for investigation of the mechanisms of their antiviral effect. Comparative characterization of the inhibiting effects on multiple steps of viral replication was performed, including attachment, post-attachment, entry, binding at low pH, post-cleavage neutralization of virions, viral trafficking to endosomes, cell-to-cell transmission, viral egress, and inhibition when added early at various time points post-infection. In addition, Fc-domain related properties were characterized, including activation and degranulation of NK cells, antibody-dependent cellular phagocytosis and glycan content. The two groups of mAbs (glycan cap versus stem) demonstrated very different profiles of activities suggesting usage of mAbs with different epitope specificity could coordinate inhibition of multiple steps of filovirus infection through Fab- and Fc-mediated mechanisms, and provide a reliable therapeutic approach.
Collapse
Affiliation(s)
- Philipp A. Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Rodrigo I. Santos
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Bronwyn M. Gunn
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Natalia A. Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Xiaoli Shen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Andrew I. Flyak
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Patrick Younan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States of America
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Pediatrics (Infectious Diseases), Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
| |
Collapse
|
32
|
Zhao Y, Ren J, Fry EE, Xiao J, Townsend AR, Stuart DI. Structures of Ebola Virus Glycoprotein Complexes with Tricyclic Antidepressant and Antipsychotic Drugs. J Med Chem 2018; 61:4938-4945. [DOI: 10.1021/acs.jmedchem.8b00350] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yuguang Zhao
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, U.K
| | - Jingshan Ren
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, U.K
| | - Elizabeth E. Fry
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, U.K
| | - Julia Xiao
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, U.K
| | - Alain R. Townsend
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, U.K
| | - David I. Stuart
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, U.K
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot OX11 0DE, U.K
| |
Collapse
|
33
|
Li Q, Ma L, Yi D, Wang H, Wang J, Zhang Y, Guo Y, Li X, Zhou J, Shi Y, Gao GF, Cen S. Novel cyclo-peptides inhibit Ebola pseudotyped virus entry by targeting primed GP protein. Antiviral Res 2018; 155:1-11. [PMID: 29709562 DOI: 10.1016/j.antiviral.2018.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Abstract
Ebola virus (EBOV) causes fatal hemorrhagic fever with high death rates in human. Currently, there are no available clinically-approved prophylactic or therapeutic treatments. The recently solved crystal structure of cleavage-primed EBOV glycoprotein (GPcl) in complex with the C domain of endosomal protein Niemann-Pick C1 (NPC1) provides a new target for the development of EBOV entry inhibitors. In this work, a computational approach using docking and molecular dynamic simulations is carried out for the rational design of peptide inhibitors. A novel cyclo-peptide (Pep-3.3) was identified to target at the late stage of EBOV entry and exhibit specific inhibitory activity against EBOV-GP pseudotyped viruses, with 50% inhibitory concentration (IC50) of 5.1 μM. In vitro binding assay and molecular simulations revealed that Pep-3.3 binds to GPcl with a KD value of 69.7 μM, through interacting with predicted residues in the hydrophobic binding pocket of GPcl. Mutation of predicted residues T83 caused resistance to Pep-3.3 inhibition in viral infectivity, providing preliminary support for the model of the peptide binding to GPcl. This study demonstrates the feasibility of inhibiting EBOV entry by targeting GPcl with peptides.
Collapse
Affiliation(s)
- Quanjie Li
- Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Ling Ma
- Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Dongrong Yi
- Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Han Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Wang
- Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yongxin Zhang
- Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Ying Guo
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xiaoyu Li
- Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jinming Zhou
- Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Cen
- Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China.
| |
Collapse
|
34
|
Discovery and evolution of aloperine derivatives as novel anti-filovirus agents through targeting entry stage. Eur J Med Chem 2018; 149:45-55. [DOI: 10.1016/j.ejmech.2018.02.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 11/19/2022]
|
35
|
Proteolytic Processing of Filovirus Glycoproteins. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122482 DOI: 10.1007/978-3-319-75474-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Filoviruses (Marburg virus and Ebola virus) have a single envelope glycoprotein (GP) that initiates infection. GP is a class I fusion protein that forms trimeric spikes composed of heterodimers of the subunits GP1 and GP2. GP1 and GP2 are derived from the precursor pre-GP by furin cleavage during exocytosis. GP1 contains a receptor-binding core topped by a glycan cap and a heavily glycosylated mucin-like domain, while GP2 contains a fusion loop and a membrane anchor. After entering cells by macropinocytosis, the glycan cap and the mucin-like domain are removed from GP1 by endosomal cathepsins B and L exposing the binding site for the Niemann-Pick C1 receptor. It appears that there is no strict requirement for specific proteases involved in GP processing. Thus, furin is not indispensible for GP1-2 cleavage, and GP1 may be trimmed not only by cathepsins B and L but also by other endosomal proteases. Two soluble glycoproteins of Ebola virus are also processed by host proteases. A significant amount of GP1,2 is cleaved by the metalloprotease TACE and shed from the surface of infected cells (GP1,2 delta). The secreted protein sGP is derived from the precursor pre-sGP by furin cleavage.
Collapse
|
36
|
Abstract
Filoviruses are highly filamentous enveloped animal viruses that can cause severe haemorrhagic fevers. The filovirus ribonucleoprotein forms a highly organized double-layered helical nucleocapsid (NC) containing five different virally encoded proteins. The inner layer consists of NP, the RNA binding protein, complexed with the monopartite linear genome. A distinctive outer layer links individual NP subunits with bridges composed of VP24-VP35 heterodimers, which achieves condensation of the NP-RNA into tight helical coils. There are no vertical connections between the outer helical layers, explaining the flexibility of the NC and its ability to bend into tight curves without breaking the genomic RNA. These properties allow the formation of enveloped virions with varying polymorphisms, including single, linear, continuous, linked, comma-shaped and torroidal forms. Virion length is modular so that just one, or two or more genome copies may be present in each virion, producing polyploid particles. The matrix protein VP40, which drives budding and envelopment, is found in a layer adjacent to the inner cytoplasmic side of viral envelope and is arranged in a 5 nm lattice structure, but its exact symmetry is unclear. There is a constant low density gap between VP40 and the nucleocapsid, so that the latter is held rigidly centred on the long axis of the viral filament. This gap likely contains a region of flexible contacts between VP40 and the NC. The unique morphology of filoviruses may be related to high titre replication, their ease of transmission, and abilities to invade a wide range of host cells and tissues.
Collapse
|
37
|
Rajakumar T, Munkacsi AB, Sturley SL. Exacerbating and reversing lysosomal storage diseases: from yeast to humans. MICROBIAL CELL 2017; 4:278-293. [PMID: 28913343 PMCID: PMC5597791 DOI: 10.15698/mic2017.09.588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lysosomal storage diseases (LSDs) arise from monogenic deficiencies in lysosomal proteins and pathways and are characterized by a tissue-wide accumulation of a vast variety of macromolecules, normally specific to each genetic lesion. Strategies for treatment of LSDs commonly depend on reduction of the offending metabolite(s) by substrate depletion or enzyme replacement. However, at least 44 of the ~50 LSDs are currently recalcitrant to intervention. Murine models have provided significant insights into our understanding of many LSD mechanisms; however, these systems do not readily permit phenotypic screening of compound libraries, or the establishment of genetic or gene-environment interaction networks. Many of the genes causing LSDs are evolutionarily conserved, thus facilitating the application of models system to provide additional insight into LSDs. Here, we review the utility of yeast models of 3 LSDs: Batten disease, cystinosis, and Niemann-Pick type C disease. We will focus on the translation of research from yeast models into human patients suffering from these LSDs. We will also discuss the use of yeast models to investigate the penetrance of LSDs, such as Niemann-Pick type C disease, into more prevalent syndromes including viral infection and obesity.
Collapse
Affiliation(s)
- Tamayanthi Rajakumar
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand 6012
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand 6012.,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand 6012
| | - Stephen L Sturley
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
38
|
Mitchell DAJ, Dupuy LC, Sanchez-Lockhart M, Palacios G, Back JW, Shimanovskaya K, Chaudhury S, Ripoll DR, Wallqvist A, Schmaljohn CS. Epitope mapping of Ebola virus dominant and subdominant glycoprotein epitopes facilitates construction of an epitope-based DNA vaccine able to focus the antibody response in mice. Hum Vaccin Immunother 2017; 13:2883-2893. [PMID: 28699812 PMCID: PMC5718802 DOI: 10.1080/21645515.2017.1347740] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We performed epitope mapping studies on the major surface glycoprotein (GP) of Ebola virus (EBOV) using Chemically Linked Peptides on Scaffolds (CLIPS), which form linear and potential conformational epitopes. This method identified monoclonal antibody epitopes and predicted additional epitopes recognized by antibodies in polyclonal sera from animals experimentally vaccinated against or infected with EBOV. Using the information obtained along with structural modeling to predict epitope accessibility, we then constructed 2 DNA vaccines encoding immunodominant and subdominant epitopes predicted to be accessible on EBOV GP. Although a construct designed to produce a membrane-bound oligopeptide was poorly immunogenic, a construct generating a secreted oligopeptide elicited strong antibody responses in mice. When this construct was administered as a boost to a DNA vaccine expressing the complete EBOV GP gene, the resultant antibody response was focused largely toward the less immunodominant epitopes in the oligopeptide. Taken together, the results of this work suggest a utility for this method for immune focusing of antibody responses elicited by vaccination.
Collapse
Affiliation(s)
- Daniel A J Mitchell
- a United States Army Medical Research Institute of Infectious Diseases (USAMRIID) , Fort Detrick , MD , USA
| | - Lesley C Dupuy
- a United States Army Medical Research Institute of Infectious Diseases (USAMRIID) , Fort Detrick , MD , USA
| | - Mariano Sanchez-Lockhart
- a United States Army Medical Research Institute of Infectious Diseases (USAMRIID) , Fort Detrick , MD , USA
| | - Gustavo Palacios
- a United States Army Medical Research Institute of Infectious Diseases (USAMRIID) , Fort Detrick , MD , USA
| | - Jaap W Back
- b Pepscan Presto BV , Lelystad , the Netherlands
| | | | - Sidhartha Chaudhury
- c Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command , Fort Detrick , MD , USA
| | - Daniel R Ripoll
- c Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command , Fort Detrick , MD , USA
| | - Anders Wallqvist
- c Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command , Fort Detrick , MD , USA
| | - Connie S Schmaljohn
- a United States Army Medical Research Institute of Infectious Diseases (USAMRIID) , Fort Detrick , MD , USA
| |
Collapse
|
39
|
Antibodies from a Human Survivor Define Sites of Vulnerability for Broad Protection against Ebolaviruses. Cell 2017; 169:878-890.e15. [PMID: 28525755 DOI: 10.1016/j.cell.2017.04.037] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/16/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022]
Abstract
Experimental monoclonal antibody (mAb) therapies have shown promise for treatment of lethal Ebola virus (EBOV) infections, but their species-specific recognition of the viral glycoprotein (GP) has limited their use against other divergent ebolaviruses associated with human disease. Here, we mined the human immune response to natural EBOV infection and identified mAbs with exceptionally potent pan-ebolavirus neutralizing activity and protective efficacy against three virulent ebolaviruses. These mAbs recognize an inter-protomer epitope in the GP fusion loop, a critical and conserved element of the viral membrane fusion machinery, and neutralize viral entry by targeting a proteolytically primed, fusion-competent GP intermediate (GPCL) generated in host cell endosomes. Only a few somatic hypermutations are required for broad antiviral activity, and germline-approximating variants display enhanced GPCL recognition, suggesting that such antibodies could be elicited more efficiently with suitably optimized GP immunogens. Our findings inform the development of both broadly effective immunotherapeutics and vaccines against filoviruses.
Collapse
|
40
|
Structure of the Ebola virus glycoprotein spike within the virion envelope at 11 Å resolution. Sci Rep 2017; 7:46374. [PMID: 28397863 PMCID: PMC5387728 DOI: 10.1038/srep46374] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/15/2017] [Indexed: 12/29/2022] Open
Abstract
We present the structure of the surface Ebola virus (EBOV) trimeric glycoprotein (GP) spike at 11 Å resolution, in situ within the viral plasma membrane of purified virus particles. GP functions in cellular attachment, endosomal entry, and membrane fusion to initiate infection, and is a key therapeutic target. Nevertheless, only about half of the GP molecule has yet been solved to atomic resolution, excluding the mucin-like and transmembrane domains, and some of the glycans. Fitting of the atomic resolution X-ray data from expressed, truncated deletion constructs within our 11 Å structure of the entire molecule demonstrates the relationship between the GP1-GP2 domains, the mucin-like and transmembrane domains, and the bilaminar lipid envelope. We show that the mucin-like domain covers the glycan cap and partially occludes the receptor binding sites prior to proteolytic cleavage. Our structure is also consistent with key antibody neutralisation sites on GP being accessible prior to proteolysis. Based on the findings of us and others, GP-mediated binding may create an angle of 18 degrees between the planes of viral and endosomal membranes.
Collapse
|
41
|
Liang J, Jangra RK, Bollinger L, Wada J, Radoshitzky SR, Chandran K, Jahrling PB, Kuhn JH, Jensen KS. Candidate medical countermeasures targeting Ebola virus cell entry. Future Virol 2017. [DOI: 10.2217/fvl-2016-0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Medical countermeasures (MCMs) against virus infections ideally prevent the adsorption or entry of virions into target cells, thereby circumventing infection. Recent significant advances in elucidating the mechanism of Ebola virus (EBOV) host-cell penetration include the involvement of two-pore channels at the early stage of entry, and identification of cellular proteases for EBOV spike glycoprotein maturation and the intracellular EBOV receptor, Niemann–Pick type C1. This improved understanding of the initial steps of EBOV infection is now increasingly applied to rapid development of candidate MCMs, some of which have already entered the clinic. Candidate MCMs discussed include antibodies, small molecules and peptides that target various stages of the described EBOV cell-entry pathway. In this review, we summarize the currently known spectrum of EBOV cell-entry inhibitors, describe their mechanism of action and evaluate their potential for future development.
Collapse
Affiliation(s)
- Janie Liang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Rohit K Jangra
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Laura Bollinger
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Kartik Chandran
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Peter B Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Kenneth S Jensen
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| |
Collapse
|
42
|
Davey RA, Shtanko O, Anantpadma M, Sakurai Y, Chandran K, Maury W. Mechanisms of Filovirus Entry. Curr Top Microbiol Immunol 2017; 411:323-352. [PMID: 28601947 DOI: 10.1007/82_2017_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Filovirus entry into cells is complex, perhaps as complex as any viral entry mechanism identified to date. However, over the past 10 years, the important events required for filoviruses to enter into the endosomal compartment and fuse with vesicular membranes have been elucidated (Fig. 1). Here, we highlight the important steps that are required for productive entry of filoviruses into mammalian cells.
Collapse
Affiliation(s)
- R A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - O Shtanko
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - M Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Y Sakurai
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - K Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - W Maury
- Department of Microbiology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
43
|
Functional Interplay Between Murine Leukemia Virus Glycogag, Serinc5, and Surface Glycoprotein Governs Virus Entry, with Opposite Effects on Gammaretroviral and Ebolavirus Glycoproteins. mBio 2016; 7:mBio.01985-16. [PMID: 27879338 PMCID: PMC5120145 DOI: 10.1128/mbio.01985-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gammaretroviruses, such as murine leukemia viruses (MLVs), encode, in addition to the canonical Gag, Pol, and Env proteins that will form progeny virus particles, a protein called “glycogag” (glycosylated Gag). MLV glycogag contains the entire Gag sequence plus an 88-residue N-terminal extension. It has recently been reported that glycogag, like the Nef protein of HIV-1, counteracts the antiviral effects of the cellular protein Serinc5. We have found, in agreement with prior work, that glycogag strongly enhances the infectivity of MLVs with some Env proteins but not those with others. In contrast, however, glycogag was detrimental to MLVs carrying Ebolavirus glycoprotein. Glycogag could be replaced, with respect to viral infectivity, by the unrelated S2 protein of equine infectious anemia virus. We devised an assay for viral entry in which virus particles deliver the Cre recombinase into cells, leading to the expression of a reporter. Data from this assay showed that both the positive and the negative effects of glycogag and S2 upon MLV infectivity are exerted at the level of virus entry. Moreover, transfection of the virus-producing cells with a Serinc5 expression plasmid reduced the infectivity and entry capability of MLV carrying xenotropic MLV Env, particularly in the absence of glycogag. Conversely, Serinc5 expression abrogated the negative effects of glycogag upon the infectivity and entry capability of MLV carrying Ebolavirus glycoprotein. As Serinc5 may influence cellular phospholipid metabolism, it seems possible that all of these effects on virus entry derive from changes in the lipid composition of viral membranes. Many murine leukemia viruses (MLVs) encode a protein called “glycogag.” The function of glycogag is not fully understood, but it can assist HIV-1 replication in the absence of the HIV-1 protein Nef under some circumstances. In turn, Nef counteracts the cellular protein Serinc5. Glycogag enhances the infectivity of MLVs with some but not all MLV Env proteins (which mediate viral entry into the host cell upon binding to cell surface receptors). We now report that glycogag acts by enhancing viral entry and that, like Nef, glycogag antagonizes Serinc5. Surprisingly, the effects of glycogag and Serinc5 upon the entry and infectivity of MLV particles carrying an Ebolavirus glycoprotein are the opposite of those observed with the MLV Env proteins. The unrelated S2 protein of equine infectious anemia virus (EIAV) is functionally analogous to glycogag in our experiments. Thus, three retroviruses (HIV-1, MLV, and EIAV) have independently evolved accessory proteins that counteract Serinc5.
Collapse
|
44
|
Mapping of Ebolavirus Neutralization by Monoclonal Antibodies in the ZMapp Cocktail Using Cryo-Electron Tomography and Studies of Cellular Entry. J Virol 2016; 90:7618-27. [PMID: 27279622 DOI: 10.1128/jvi.00406-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/30/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED ZMapp, a cocktail of three monoclonal antibodies (MAbs; c2G4, c4G7, and c13C6) against the ebolavirus (EBOV) glycoprotein (GP), shows promise for combatting outbreaks of EBOV, as occurred in West Africa in 2014. Prior studies showed that Fabs from these MAbs bind a soluble EBOV GP ectodomain and that MAbs c2G4 and c4G7, but not c13C6, neutralize infections in cell cultures. Using cryo-electron tomography, we extended these findings by characterizing the structures of c2G4, c4G7, and c13C6 IgGs bound to native, full-length GP from the West African 2014 isolate embedded in filamentous viruslike particles (VLPs). As with the isolated ectodomain, c13C6 bound to the glycan cap, whereas c2G4 and c4G7 bound to the base region of membrane-bound GP. The tomographic data suggest that all three MAbs bind with high occupancy and that the base-binding antibodies can potentially bridge neighboring GP spikes. Functional studies indicated that c2G4 and c4G7, but not c13C6, competitively inhibit entry of VLPs bearing EBOV GP into the host cell cytoplasm, without blocking trafficking of VLPs to NPC1(+) endolysosomes, where EBOV fuses. Moreover, c2G4 and c4G7 bind to and can block entry mediated by the primed (19-kDa) form of GP without impeding binding of the C-loop of NPC1, the endolysosomal receptor for EBOV. The most likely mode of action of c2G4 and c4G7 is therefore by inhibiting conformational changes in primed, NPC1-bound GP that initiate fusion between the viral and target membranes, similar to the action of certain broadly neutralizing antibodies against influenza hemagglutinin and HIV Env. IMPORTANCE The recent West African outbreak of ebolavirus caused the deaths of more than 11,000 individuals. Hence, there is an urgent need to be prepared with vaccines and therapeutics for similar future disasters. ZMapp, a cocktail of three MAbs directed against the ebolavirus glycoprotein, is a promising anti-ebolavirus therapeutic. Using cryo-electron tomography, we provide structural information on how each of the MAbs in this cocktail binds to the ebolavirus glycoprotein as it is displayed-embedded in the membrane and present at high density-on filamentous viruslike particles that recapitulate the surface structure and entry functions of ebolavirus. Moreover, after confirming that two of the MAbs bind to the same region in the base of the glycoprotein, we show that they competitively block the entry function of the glycoprotein and that they can do so after the glycoprotein is proteolytically primed and bound to its intracellular receptor, Niemann-Pick C1. These findings should inform future developments of ebolavirus therapeutics.
Collapse
|
45
|
Large-Scale Screening and Identification of Novel Ebola Virus and Marburg Virus Entry Inhibitors. Antimicrob Agents Chemother 2016; 60:4471-81. [PMID: 27161622 DOI: 10.1128/aac.00543-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/29/2016] [Indexed: 12/19/2022] Open
Abstract
Filoviruses are highly infectious, and no FDA-approved drug therapy for filovirus infection is available. Most work to find a treatment has involved only a few strains of Ebola virus and testing of relatively small drug libraries or compounds that have shown efficacy against other virus types. Here we report the findings of a high-throughput screening of 319,855 small molecules from the Molecular Libraries Small Molecule Repository library for their activities against Marburg virus and Ebola virus. Nine of the most potent, novel compounds that blocked infection by both viruses were analyzed in detail for their mechanisms of action. The compounds inhibited known key steps in the Ebola virus infection mechanism by blocking either cell surface attachment, macropinocytosis-mediated uptake, or endosomal trafficking. To date, very few specific inhibitors of macropinocytosis have been reported. The 2 novel macropinocytosis inhibitors are more potent inhibitors of Ebola virus infection and less toxic than ethylisopropylamiloride, one commonly accepted macropinocytosis inhibitor. Each compound blocked infection of primary human macrophages, indicating their potential to be developed as new antifiloviral therapies.
Collapse
|
46
|
Toremifene interacts with and destabilizes the Ebola virus glycoprotein. Nature 2016; 535:169-172. [PMID: 27362232 PMCID: PMC4947387 DOI: 10.1038/nature18615] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/26/2016] [Indexed: 12/17/2022]
Abstract
Ebola viruses (EBOVs) are responsible for repeated outbreaks of fatal infections, including the recent deadly epidemic in West Africa. There are currently no approved therapeutic drugs or vaccines for the disease. EBOV has a membrane envelope decorated by trimers of a glycoprotein (GP, cleaved by furin to form GP1 and GP2 subunits) which is solely responsible for host cell attachment, endosomal entry and membrane fusion1–7. GP is thus a primary target for the development of antiviral drugs. Here we report the first unliganded structure of EBOV GP, and complexes with an anticancer drug toremifene and the painkiller ibuprofen. The high-resolution apo structure gives a more complete and accurate picture of the molecule, and allows conformational changes introduced by antibody and receptor binding to be deciphered8–10. Unexpectedly both toremifene and ibuprofen bind in a cavity between the attachment (GP1) and fusion (GP2) subunits at the entrance to a large tunnel that links with equivalent tunnels from the other monomers of the trimer at the 3-fold axis. Protein-drug interactions, with both GP1 and GP2, are predominately hydrophobic. Residues lining the binding site are highly conserved amongst filoviruses except Marburg virus (MARV), suggesting that MARV may not bind these drugs. Thermal shift assays show up to a 14 °C decrease in protein melting temperature upon toremifene binding, while ibuprofen has only a marginal effect and is a less potent inhibitor. The results suggest that inhibitor binding destabilizes GP and triggers premature release of GP2, therefore preventing fusion between the viral and endosome membranes. Thus these complex structures reveal the mechanism of inhibition and may guide the development of more powerful anti-EBOV drugs.
Collapse
|
47
|
Wang H, Shi Y, Song J, Qi J, Lu G, Yan J, Gao GF. Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1. Cell 2016; 164:258-268. [PMID: 26771495 PMCID: PMC7111281 DOI: 10.1016/j.cell.2015.12.044] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/30/2015] [Accepted: 12/23/2015] [Indexed: 02/05/2023]
Abstract
Filoviruses, including Ebola and Marburg, cause fatal hemorrhagic fever in humans and primates. Understanding how these viruses enter host cells could help to develop effective therapeutics. An endosomal protein, Niemann-Pick C1 (NPC1), has been identified as a necessary entry receptor for this process, and priming of the viral glycoprotein (GP) to a fusion-competent state is a prerequisite for NPC1 binding. Here, we have determined the crystal structure of the primed GP (GPcl) of Ebola virus bound to domain C of NPC1 (NPC1-C) at a resolution of 2.3 Å. NPC1-C utilizes two protruding loops to engage a hydrophobic cavity on head of GPcl. Upon enzymatic cleavage and NPC1-C binding, conformational change in the GPcl further affects the state of the internal fusion loop, triggering membrane fusion. Our data therefore provide structural insights into filovirus entry in the late endosome and the molecular basis for design of therapeutic inhibitors of viral entry. Structural basis of Ebola virus endosomal-receptor binding NPC1 domain C (NPC1-C) displays a helical core structure with two protruding loops NPC1-C binds to the primed Ebola virus GP (GPcl) protein with a low affinity NPC1-C utilizes two protruding loops to engage a hydrophobic cavity on head of GPcl
Collapse
Affiliation(s)
- Han Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences, Beijing 100101, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Jian Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwen Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; CAS Key Laboratory of Microbial Physiology and Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences, Beijing 100101, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China.
| |
Collapse
|
48
|
Both Epistasis and Diversifying Selection Drive the Structural Evolution of the Ebola Virus Glycoprotein Mucin-Like Domain. J Virol 2016; 90:5475-5484. [PMID: 27009964 DOI: 10.1128/jvi.00322-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/18/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Throughout the last 3 decades, Ebola virus (EBOV) outbreaks have been confined to isolated areas within Central Africa; however, the 2014 variant reached unprecedented transmission and mortality rates. While the outbreak was still under way, it was reported that the variant leading up to this outbreak evolved faster than previous EBOV variants, but evidence for diversifying selection was undetermined. Here, we test this selection hypothesis and show that while previous EBOV outbreaks were preceded by bursts of diversification, evidence for site-specific diversifying selection during the emergence of the 2014 EBOV clade is weak. However, we show strong evidence supporting an interplay between selection and correlated evolution (epistasis), particularly in the mucin-like domain (MLD) of the EBOV glycoprotein. By reconstructing ancestral structures of the MLD, we further propose a structural mechanism explaining how the substitutions that accumulated between 1918 and 1969 distorted the MLD, while more recent epistatic substitutions restored part of the structure, with the most recent substitution being adaptive. We suggest that it is this complex interplay between weak selection, epistasis, and structural constraints that has shaped the evolution of the 2014 EBOV variant. IMPORTANCE The role that selection plays in the emergence of viral epidemics remains debated, particularly in the context of the 2014 EBOV outbreak. Most critically, should such evidence exist, it is generally unclear how this relates to function and increased virulence. Here, we show that the viral lineage leading up to the 2014 outbreak underwent a complex interplay between selection and correlated evolution (epistasis) in a protein region that is critical for immune evasion. We then reconstructed the three-dimensional structure of this domain and showed that the initial mutations in this lineage deformed the structure, while subsequent mutations restored part of the structure. Along this mutational path, the first and last mutations were adaptive, while the intervening ones were epistatic. Altogether, we provide a mechanistic model that explains how selection and epistasis acted on the structural constraints that materialized during the 2014 EBOV outbreak.
Collapse
|
49
|
White JM, Whittaker GR. Fusion of Enveloped Viruses in Endosomes. Traffic 2016; 17:593-614. [PMID: 26935856 PMCID: PMC4866878 DOI: 10.1111/tra.12389] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022]
Abstract
Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years, a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion‐triggering mechanisms. A key take‐home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Gary R Whittaker
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
50
|
Misasi J, Gilman MSA, Kanekiyo M, Gui M, Cagigi A, Mulangu S, Corti D, Ledgerwood JE, Lanzavecchia A, Cunningham J, Muyembe-Tamfun JJ, Baxa U, Graham BS, Xiang Y, Sullivan NJ, McLellan JS. Structural and molecular basis for Ebola virus neutralization by protective human antibodies. Science 2016; 351:1343-6. [PMID: 26917592 PMCID: PMC5241105 DOI: 10.1126/science.aad6117] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
Ebola virus causes hemorrhagic fever with a high case fatality rate for which there is no approved therapy. Two human monoclonal antibodies, mAb100 and mAb114, in combination, protect nonhuman primates against all signs of Ebola virus disease, including viremia. Here, we demonstrate that mAb100 recognizes the base of the Ebola virus glycoprotein (GP) trimer, occludes access to the cathepsin-cleavage loop, and prevents the proteolytic cleavage of GP that is required for virus entry. We show that mAb114 interacts with the glycan cap and inner chalice of GP, remains associated after proteolytic removal of the glycan cap, and inhibits binding of cleaved GP to its receptor. These results define the basis of neutralization for two protective antibodies and may facilitate development of therapies and vaccines.
Collapse
Affiliation(s)
- John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02215, USA
| | - Morgan S A Gilman
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miao Gui
- Centre for Infectious Diseases Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 China
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabue Mulangu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Davide Corti
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland. Institute of Microbiology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - James Cunningham
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jean Jacques Muyembe-Tamfun
- National Institute for Biomedical Research, National Laboratory of Public Health, Kinshasa B.P. 1197, Democratic Republic of the Congo
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ye Xiang
- Centre for Infectious Diseases Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 China.
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jason S McLellan
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|