1
|
Carneiro PH, Jimenez-Posada EV, Lopes E, Mohana-Borges R, Biering SB, Harris E. The ApoA1-mimetic peptide 4F blocks flavivirus NS1-triggered endothelial dysfunction and protects against lethal dengue virus challenge. Antiviral Res 2024; 231:106002. [PMID: 39260777 DOI: 10.1016/j.antiviral.2024.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/11/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Flavivirus infections result in a variety of outcomes, from clinically inapparent infections to severe, sometimes fatal cases characterized by hemorrhagic manifestations and vascular leakage leading to shock (dengue), meningomyeloencephalitis (West Nile), and congenital abnormalities (Zika). Although there are approved vaccines against several flaviviruses, potentially enhancing cross-reactive immune responses have complicated the development and implementation of vaccines against dengue and Zika viruses, and no specific therapeutics currently exist. The flavivirus nonstructural protein 1 (NS1) is a promising antiviral target because it is a conserved multifunctional virulence factor that directly triggers vascular leak. We previously showed that interactions between NS1 and the ApoA1 lipoprotein modulate DENV infection. Here, we evaluated the potential of the ApoA1-mimetic peptide, 4F, to interfere with endothelial dysfunction mediated by the NS1 protein of dengue, Zika, and West Nile flaviviruses. In an in vitro model consisting of human endothelial cell monolayers, 4F inhibited NS1-induced hyperpermeability, as measured by a transendothelial electrical resistance assay, and prevented NS1-triggered disruption of the endothelial glycocalyx layer. We also demonstrate that treatment with 4F inhibited NS1 interaction with endothelial cells. Finally, we show that 4F protects against lethal DENV challenge in a mouse model, reducing morbidity and mortality in a dose-dependent manner. Our data demonstrate the potential of 4F to inhibit flavivirus NS1-mediated pathology and severe dengue disease in mice and suggest that 4F can also serve as a molecular tool to probe different NS1 functions in vitro and in vivo.
Collapse
Affiliation(s)
- Pedro H Carneiro
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - E Vanessa Jimenez-Posada
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Eduarda Lopes
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
He Y, Ma L, Zeng X, Xie J, Ning X. Systematic identification and analysis of immune-related circRNAs of Pelteobagrus fulvidraco involved in Aeromonas veronii infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 51:101256. [PMID: 38797004 DOI: 10.1016/j.cbd.2024.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Circular RNA (circRNA) represents a type of newly discovered non-coding RNA, distinguished by its closed loop structure formed through covalent bonds. Recent studies have revealed that circRNAs have crucial influences on host anti-pathogen responses. Yellow catfish (Pelteobagrus fulvidraco), an important aquaculture fish with great economic value, is susceptible to Aeromonas veronii, a common aquatic pathogen that can cause acute death. Here, we reported the first systematic investigation of circRNAs in yellow catfish, especially those associated with A. veronii infection at different time points. A total of 1205 circRNAs were identified, which were generated from 875 parental genes. After infection, 47 circRNAs exhibited differential expression patterns (named DEcirs). The parental genes of these DEcirs were functionally engaged in immune-related processes. Accordingly, seven DEcirs (novel_circ_000226, 278, 401, 522, 736, 843, and 975) and six corresponding parental genes (ADAMTS13, HAMP1, ANG3, APOA1, FGB, and RALGPS1) associated with immunity were obtained, and their expression was confirmed by RT-qPCR. Moreover, we found that these DEcir-gene pairs likely acted through pathways, such as platelet activation, antimicrobial humoral response, and regulation of Ral protein signal transduction, to influence host immune defenses. Additionally, integrated analysis showed that, of the 7 immune-related DEcirs, three targeted 16 miRNAs, which intertwined into circRNA-miRNA networks. These findings revealed that circRNAs, by targeting genes or miRNAs are highly involved in anti-bacterial responses in yellow catfish. Our study comprehensively illustrates the roles of circRNAs in yellow catfish immune defenses. The identified DEcirs and the circRNA-miRNA network will contribute to the further investigations on the molecular mechanisms underlying yellow catfish immune responses.
Collapse
Affiliation(s)
- Yongxin He
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Lina Ma
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xueyu Zeng
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Jingjing Xie
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xianhui Ning
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China.
| |
Collapse
|
3
|
Rani A, Stadler JT, Marsche G. HDL-based therapeutics: A promising frontier in combating viral and bacterial infections. Pharmacol Ther 2024; 260:108684. [PMID: 38964560 DOI: 10.1016/j.pharmthera.2024.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Low levels of high-density lipoprotein (HDL) and impaired HDL functionality have been consistently associated with increased susceptibility to infection and its serious consequences. This has been attributed to the critical role of HDL in maintaining cellular lipid homeostasis, which is essential for the proper functioning of immune and structural cells. HDL, a multifunctional particle, exerts pleiotropic effects in host defense against pathogens. It functions as a natural nanoparticle, capable of sequestering and neutralizing potentially harmful substances like bacterial lipopolysaccharides. HDL possesses antiviral activity, preventing viruses from entering or fusing with host cells, thereby halting their replication cycle. Understanding the complex relationship between HDL and the immune system may reveal innovative targets for developing new treatments to combat infectious diseases and improve patient outcomes. This review aims to emphasize the role of HDL in influencing the course of bacterial and viral infections and its and its therapeutic potential.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Styria, Austria.
| |
Collapse
|
4
|
Muthukumaran R, Sankararamakrishnan R. Differences in the Membrane-Binding Properties of Flaviviral Nonstructural 1 (NS1) Protein: Comparative Simulations of Zika and Dengue Virus NS1 Proteins in Explicit Bilayers. ACS BIO & MED CHEM AU 2024; 4:137-153. [PMID: 38911907 PMCID: PMC11191575 DOI: 10.1021/acsbiomedchemau.3c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 06/25/2024]
Abstract
NS1 in flaviviruses is the only nonstructural protein that is secretory and interacts with different cellular components of the host cell membrane. NS1 is localized in the ER as a dimer to facilitate viral replication. Crystal structures of NS1 homologues from zika (ZIKV) and dengue (DENV) viruses have revealed the organization of different domains in NS1 dimers. The β-roll and the connector and intertwined loop regions of wing domains of NS1 have been shown to interact with the membranes. In this study, we have performed multiple molecular dynamics (MD) simulations of ZIKV and DENV NS1 systems in apo and in POPE bilayers with different cholesterol concentrations (0, 20 and 40%). The NS1 protein was placed just above the membrane surface, and for each NS1-membrane system two to three independent simulations with 600 ns production run were performed. At the end of the production runs, ZIKV NS1 inserts deeper inside the membrane compared to the DENV counterpart. Unlike ZIKV NS1, the orientation of DENV NS1 is asymmetric in which one of the chains in the dimer interacts with the membrane while the other is more exposed to the solvent. The β-roll region in ZIKV NS1 penetrates beyond the headgroup region and interacts with the lipid acyl chains while the C-terminal region barely interacts with the headgroup. Specific residues in the intertwined region deeply penetrate inside the membrane. The role of charged and aromatic residues of ZIKV NS1 in strongly interacting with the membrane components is revealed. The presence of cholesterol affects the extent of insertion in the membrane and interaction of individual residues. Overall, membrane-binding properties of ZIKV NS1 significantly differ from its counterpart in DENV. The differences found in the binding and insertion of NS1 can be used to design drugs and novel antibodies that can be flavivirus specific.
Collapse
Affiliation(s)
- Rajagopalan Muthukumaran
- Department
of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ramasubbu Sankararamakrishnan
- Department
of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Mehta
Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
5
|
Chew BLA, Ngoh ANQ, Phoo WW, Chan KWK, Ser Z, Tulsian NK, Lim SS, Weng MJG, Watanabe S, Choy MM, Low J, Ooi EE, Ruedl C, Sobota RM, Vasudevan SG, Luo D. Secreted dengue virus NS1 from infection is predominantly dimeric and in complex with high-density lipoprotein. eLife 2024; 12:RP90762. [PMID: 38787378 PMCID: PMC11126310 DOI: 10.7554/elife.90762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Severe dengue infections are characterized by endothelial dysfunction shown to be associated with the secreted nonstructural protein 1 (sNS1), making it an attractive vaccine antigen and biotherapeutic target. To uncover the biologically relevant structure of sNS1, we obtained infection-derived sNS1 (isNS1) from dengue virus (DENV)-infected Vero cells through immunoaffinity purification instead of recombinant sNS1 (rsNS1) overexpressed in insect or mammalian cell lines. We found that isNS1 appeared as an approximately 250 kDa complex of NS1 and ApoA1 and further determined the cryoEM structures of isNS1 and its complex with a monoclonal antibody/Fab. Indeed, we found that the major species of isNS1 is a complex of the NS1 dimer partially embedded in a high-density lipoprotein (HDL) particle. Crosslinking mass spectrometry studies confirmed that the isNS1 interacts with the major HDL component ApoA1 through interactions that map to the NS1 wing and hydrophobic domains. Furthermore, our studies demonstrated that the sNS1 in sera from DENV-infected mice and a human patient form a similar complex as isNS1. Our results report the molecular architecture of a biological form of sNS1, which may have implications for the molecular pathogenesis of dengue.
Collapse
Affiliation(s)
- Bing Liang Alvin Chew
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- NTU Institute of Structural Biology, Nanyang Technological UniversitySingaporeSingapore
| | - AN Qi Ngoh
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Wint Wint Phoo
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Zheng Ser
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Nikhil K Tulsian
- Department of Biological Sciences, National University of SingaporeSingaporeSingapore
- Singapore Centre for Life Sciences, Department of Biochemistry, National University of SingaporeSingaporeSingapore
| | - Shiao See Lim
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Mei Jie Grace Weng
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- NTU Institute of Structural Biology, Nanyang Technological UniversitySingaporeSingapore
| | - Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Milly M Choy
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Jenny Low
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
- Department of Infectious Diseases, Singapore General HospitalSingaporeSingapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
- Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Saw Swee Hock School of Public Health, National University of SingaporeSingaporeSingapore
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
- Department of Microbiology and Immunology, National University of SingaporeSingaporeSingapore
- Institute for Glycomics (G26), Griffith University Gold Coast CampusSouthportAustralia
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- NTU Institute of Structural Biology, Nanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
6
|
Malavige GN, Ogg GS. Molecular mechanisms in the pathogenesis of dengue infections. Trends Mol Med 2024; 30:484-498. [PMID: 38582622 DOI: 10.1016/j.molmed.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Dengue is the most rapidly emerging climate-sensitive infection, and morbidity/mortality and disease incidence are rising markedly, leading to healthcare systems being overwhelmed. There are currently no specific treatments for dengue or prognostic markers to identify those who will progress to severe disease. Owing to an increase in the burden of illness and a change in epidemiology, many patients experience severe disease. Our limited understanding of the complex mechanisms of disease pathogenesis has significantly hampered the development of safe and effective treatments, vaccines, and biomarkers. We discuss the molecular mechanisms of dengue pathogenesis, the gaps in our knowledge, and recent advances, as well as the most crucial questions to be answered to enable the development of therapeutics, biomarkers, and vaccines.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka; Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Graham S Ogg
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka; Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Perera DR, Ranadeva ND, Sirisena K, Wijesinghe KJ. Roles of NS1 Protein in Flavivirus Pathogenesis. ACS Infect Dis 2024; 10:20-56. [PMID: 38110348 DOI: 10.1021/acsinfecdis.3c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Flaviviruses such as dengue, Zika, and West Nile viruses are highly concerning pathogens that pose significant risks to public health. The NS1 protein is conserved among flaviviruses and is synthesized as a part of the flavivirus polyprotein. It plays a critical role in viral replication, disease progression, and immune evasion. Post-translational modifications influence NS1's stability, secretion, antigenicity, and interactions with host factors. NS1 protein forms extensive interactions with host cellular proteins allowing it to affect vital processes such as RNA processing, gene expression regulation, and cellular homeostasis, which in turn influence viral replication, disease pathogenesis, and immune responses. NS1 acts as an immune evasion factor by delaying complement-dependent lysis of infected cells and contributes to disease pathogenesis by inducing endothelial cell damage and vascular leakage and triggering autoimmune responses. Anti-NS1 antibodies have been shown to cross-react with host endothelial cells and platelets, causing autoimmune destruction that is hypothesized to contribute to disease pathogenesis. However, in contrast, immunization of animal models with the NS1 protein confers protection against lethal challenges from flaviviruses such as dengue and Zika viruses. Understanding the multifaceted roles of NS1 in flavivirus pathogenesis is crucial for effective disease management and control. Therefore, further research into NS1 biology, including its host protein interactions and additional roles in disease pathology, is imperative for the development of strategies and therapeutics to combat flavivirus infections successfully. This Review provides an in-depth exploration of the current available knowledge on the multifaceted roles of the NS1 protein in the pathogenesis of flaviviruses.
Collapse
Affiliation(s)
- Dayangi R Perera
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
| | - Nadeeka D Ranadeva
- Department of Biomedical Science, Faculty of Health Sciences, KIU Campus Sri Lanka 10120
| | - Kavish Sirisena
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
- Section of Genetics, Institute for Research and Development in Health and Social Care, Sri Lanka 10120
| | | |
Collapse
|
8
|
Li C, Lin L, Tang Y, Huang S. Molecular mechanism of ChaiShi JieDu granule in treating dengue based on network pharmacology and molecular docking: A review. Medicine (Baltimore) 2023; 102:e36773. [PMID: 38206728 PMCID: PMC10754559 DOI: 10.1097/md.0000000000036773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Dengue fever is a frequently occurring infectious disease caused by the Dengue virus, prevalent in tropical and subtropical regions. Chaishi Jiedu Granules (CSJD) is an empirical prescription of the Eighth Affiliated Hospital of Guangzhou Medical University in the treatment of dengue fever, which has been widely used in the treatment of dengue fever, and has shown good efficacy in improving the clinical symptoms of patients. This study aims to explore the molecular mechanism of CSJD in treating dengue fever using network pharmacology, molecular docking techniques, and virtual screening methods. The results showed that luteolin, quercetin and other compounds in CSJD could target important targets related to dengue virus, including STAT3, AKT1, TNF, IL-6, and other key genes, thus playing an antiviral role. Among them, luteolin and wogonin in CSJD also inhibited dengue virus replication and reduced inflammation, and showed good binding force with IL-6 and TNF. Therefore, this study provides an important reference for the development of CSJD as a potential drug for dengue fever treatment and a new perspective for research and development in this field.
Collapse
Affiliation(s)
- Cong Li
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Luping Lin
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yexiao Tang
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Sanqi Huang
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Zeng Q, Liu J, Li Z, Zhang Y, Zu S, Ding X, Zhang H. Japanese encephalitis virus NS4B inhibits interferon beta production by targeting TLR3 and TRIF. Vet Microbiol 2023; 284:109849. [PMID: 37597377 DOI: 10.1016/j.vetmic.2023.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Japanese encephalitis virus (JEV) is a flavivirus transmitted by mosquitoes, causing epidemics of encephalitis in humans and reproductive disorders in pigs. This virus is predominantly distributed in Asian countries and causes tens of thousands of infections in humans annually. Interferon (IFN) is an essential component of host defense against viral infection. Multiple studies have indicated that multifunctional nonstructural proteins of flaviviruses suppress the host IFN response via various strategies to facilitate viral replication. The flaviviruses encoded nonstructural protein 4B (NS4B) is a multifunctional hydrophobic nonstructural protein widely involved in viral replication, pathogenesis and host immune evasion. In this study, we demonstrated that NS4B of JEV suppressed the induction of IFN-β production, mainly through targeting the TLR3 and TRIF (a TIR domain-containing linker that induces IFN-β) proteins in the TLR3 pathway. In a dual-luciferase reporter assay, JEV NS4B significantly inhibited the activation of IFN-β promoter induced by TLR3 and simultaneously treated with poly (I:C). Moreover, NS4B also inhibited the activation of IFN-β promoter triggered by interferon regulatory factor 3 (IRF3)/5D or its upstream molecules in TLR3 signaling pathway. Furthermore, NS4B inhibited the phosphorylation of IRF3 under the stimulation of TLR3 and TRIF molecules. Mechanistically, JEV NS4B interacts with TLR3 and TRIF and confirmed by co-localization and co-immunoprecipitation assay, thereby inhibiting the activation of downstream sensors in the TLR3-mediated pathway. Overall, our results provide a novel mechanism by which JEV NS4B interferes with the host's antiviral response through targeting TLR3 receptor signaling pathway.
Collapse
Affiliation(s)
- Quan Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Jiaqi Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Zhaoyang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yucan Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Shaopo Zu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou 450002, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Xueyan Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou 450002, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Honglei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou 450002, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China.
| |
Collapse
|
10
|
Alcalá AC, Ludert JE. The dengue virus NS1 protein; new roles in pathogenesis due to similarities with and affinity for the high-density lipoprotein (HDL)? PLoS Pathog 2023; 19:e1011587. [PMID: 37616216 PMCID: PMC10449462 DOI: 10.1371/journal.ppat.1011587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
Affiliation(s)
- Ana C. Alcalá
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, United States of America
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States of America
- Bond Life Science Center, University of Missouri, Columbia, MO, United States of America
| | - Juan E. Ludert
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
11
|
Wu M, Yang Q, Yang C, Han J, Liu H, Qiao L, Duan H, Xing L, Liu Q, Dong L, Wang Q, Zuo L. Characteristics of plasma exosomes in drug-resistant tuberculosis patients. Tuberculosis (Edinb) 2023; 141:102359. [PMID: 37329682 DOI: 10.1016/j.tube.2023.102359] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Increasing prevalence of drug-resistant tuberculosis (DR-TB) poses a major challenge to the early detection and effective control of tuberculosis (TB). Exosomes carrying proteins and nucleic acid mediate intercellular communication between host and pathogen including Mycobacterium tuberculosis. However, molecular events of exosomes indicating the status and development of DR-TB remain unknown. This study determined the proteomics of exosome in DR-TB and explored the potential pathogenesis of DR-TB. METHODS Plasma samples were collected from 17 DR-TB patients and 33 non-drug-resistant tuberculosis (NDR-TB) patients using grouped case-control study design. After exosomes of plasma were isolated and confirmed by compositional and morphological measurement for exosomal characteristics, a label-free quantitative proteomics of exosomes was performed and differential protein components were determined via bioinformatics analysis. RESULTS Compared with the NDR-TB group, we identified 16 up-regulated proteins and 10 down-regulated proteins in the DR-TB group. The down-regulated proteins were mainly apolipoproteins and mainly enriched in cholesterol metabolism-related pathways. Apolipoproteins family including APOA1, APOB, APOC1 were key proteins in protein-protein interaction network. CONCLUSION Differentially expressed proteins in the exosomes may indicate the status of DR-TB from NDR-TB. Apolipoproteins family including APOA1, APOB, APOC1 may be involved in the pathogenesis of DR-TB by regulating cholesterol metabolism via exosomes.
Collapse
Affiliation(s)
- Mingrui Wu
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, School of Basic Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Qianwei Yang
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Caiting Yang
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Jie Han
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Hai Liu
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Lingran Qiao
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, School of Basic Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Huiping Duan
- The Fourth People's Hospital of Taiyuan, Taiyuan, 030024, China
| | - Li Xing
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Qunqun Liu
- The Fourth People's Hospital of Taiyuan, Taiyuan, 030024, China
| | - Li Dong
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Quanhong Wang
- The Fourth People's Hospital of Taiyuan, Taiyuan, 030024, China.
| | - Lin Zuo
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, School of Basic Sciences, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
12
|
Al‐kuraishy HM, Hussien NR, Al‐Niemi MS, Fahad EH, Al‐Buhadily AK, Al‐Gareeb AI, Al‐Hamash SM, Tsagkaris C, Papadakis M, Alexiou A, Batiha GE. SARS-CoV-2 induced HDL dysfunction may affect the host's response to and recovery from COVID-19. Immun Inflamm Dis 2023; 11:e861. [PMID: 37249296 PMCID: PMC10187021 DOI: 10.1002/iid3.861] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
INTRODUCTION Covid-19 is linked with the development of cardio-metabolic disorders, including dyslipidemia, dysregulation of high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Furthermore, SARS-Co-2 infection is associated with noteworthy changes in lipid profile, which is suggested as a possible biomarker to support the diagnosis and management of Covid-19. METHODS This paper adopts the literature review method to obtain information about how Covid-19 affects high-risk group patients and may cause severe and critical effects due to the development of acute lung injury and acute respiratory distress syndrome. A narrative and comprehensive review is presented. RESULTS Reducing HDL in Covid-19 is connected to the disease severity and poor clinical outcomes, suggesting that high HDL serum levels could benefit Covid-19. SARS-CoV-2 binds HDL, and this complex is attached to the co-localized receptors, facilitating viral entry. Therefore, SARS-CoV-2 infection may induce the development of dysfunctional HDL through different mechanisms, including induction of inflammatory and oxidative stress with activation of inflammatory signaling pathways. In turn, the induction of dysfunctional HDL induces the activation of inflammatory signaling pathways and oxidative stress, increasing Covid-19 severity. CONCLUSIONS Covid-19 is linked with the development of cardio-metabolic disorders, including dyslipidemia in general and dysregulation of high-density lipoprotein and low-density lipoprotein. Therefore, the present study aimed to overview the causal relationship between dysfunctional high-density lipoprotein and Covid-19.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Pharmacology, ToxicologyMedicine College of Medicine Al‐Mustansiriyah UniversityBaghdadIraq
| | - Nawar R. Hussien
- Department of Clinical Pharmacy, College of PharmacyAl‐Farahidi UniversityBagdadIraq
| | - Marwa S. Al‐Niemi
- Department of Clinical Pharmacy, College of PharmacyAl‐Farahidi UniversityBagdadIraq
| | | | - Ali K. Al‐Buhadily
- Department of Clinical Pharmacology, Medicine and Therapeutic, Medical Faculty, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Pharmacology, ToxicologyMedicine College of Medicine Al‐Mustansiriyah UniversityBaghdadIraq
| | | | - Christos Tsagkaris
- Department of Health SciencesNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP Med AustriaWienAustria
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
13
|
van den Elsen K, Chew BLA, Ho JS, Luo D. Flavivirus nonstructural proteins and replication complexes as antiviral drug targets. Curr Opin Virol 2023; 59:101305. [PMID: 36870091 PMCID: PMC10023477 DOI: 10.1016/j.coviro.2023.101305] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 03/06/2023]
Abstract
Many flaviviruses are well-known pathogens, such as dengue, Zika, Japanese encephalitis, and yellow fever viruses. Among them, dengue viruses cause global epidemics and threaten billions of people. Effective vaccines and antivirals are in desperate need. In this review, we focus on the recent advances in understanding viral nonstructural (NS) proteins as antiviral drug targets. We briefly summarize the experimental structures and predicted models of flaviviral NS proteins and their functions. We highlight a few well-characterized inhibitors targeting these NS proteins and provide an update about the latest development. NS4B emerges as one of the most promising drug targets as novel inhibitors targeting NS4B and its interaction network are entering clinical studies. Studies aiming to elucidate the architecture and molecular basis of viral replication will offer new opportunities for novel antiviral discovery. Direct-acting agents against dengue and other pathogenic flaviviruses may be available very soon.
Collapse
Affiliation(s)
- Kaïn van den Elsen
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Bing Liang Alvin Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Jun Sheng Ho
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 636921, Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
14
|
Halajian EA, LeBlanc EV, Gee K, Colpitts CC. Activation of TLR4 by viral glycoproteins: A double-edged sword? Front Microbiol 2022; 13:1007081. [PMID: 36246240 PMCID: PMC9557975 DOI: 10.3389/fmicb.2022.1007081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
Recognition of viral infection by pattern recognition receptors is paramount for a successful immune response to viral infection. However, an unbalanced proinflammatory response can be detrimental to the host. Recently, multiple studies have identified that the SARS-CoV-2 spike protein activates Toll-like receptor 4 (TLR4), resulting in the induction of proinflammatory cytokine expression. Activation of TLR4 by viral glycoproteins has also been observed in the context of other viral infection models, including respiratory syncytial virus (RSV), dengue virus (DENV) and Ebola virus (EBOV). However, the mechanisms involved in virus-TLR4 interactions have remained unclear. Here, we review viral glycoproteins that act as pathogen-associated molecular patterns to induce an immune response via TLR4. We explore the current understanding of the mechanisms underlying how viral glycoproteins are recognized by TLR4 and discuss the contribution of TLR4 activation to viral pathogenesis. We identify contentious findings and research gaps that highlight the importance of understanding viral glycoprotein-mediated TLR4 activation for potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
15
|
Faguer S, Del Bello A, Danet C, Renaudineau Y, Izopet J, Kamar N. Apolipoprotein-A-I for severe COVID-19-induced hyperinflammatory states: A prospective case study. Front Pharmacol 2022; 13:936659. [PMID: 36225555 PMCID: PMC9550000 DOI: 10.3389/fphar.2022.936659] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Viral infections can promote cytokine storm and multiorgan failure in individuals with an underlying immunosuppression or specific genetic background. Hyperinflammatory states, including critical forms of COVID-19, are characterized by a remodeling of the lipid profile including a dramatic decrease of the serum levels of apolipoprotein-A-I (ApoA-I), a protein known for its capacity to reduce systemic and lung inflammation, modulate innate and adaptive immunity, and prevent endothelial dysfunction and blood coagulation. In this study, four immunocompromised patients with severe COVID-19 cytokine storm that progressed despite standard-of-care therapy [Omicron (n = 3) and Delta (n = 1) variants] received 2– 4 infusions (10 mg/kg) of CER-001, an ApoA-I-containing HDL mimetic. Injections were well-tolerated with no serious adverse events. Three patients treated while not on mechanical ventilation had early clinical and biological improvement (oxygen withdrawal and correction of hematological and inflammatory parameters, including serum levels of interleukin-8) and were discharged from the hospital 3–4 days after CER-001 infusions. In the fourth patient who received CER-001 after orotracheal intubation for acute respiratory distress syndrome, infusions were followed by transient respiratory improvement before secondary worsening related to ventilation-associated pneumonia. This pilot uncontrolled exploratory compassionate study provides initial safety and proof-of-concept data from patients with a COVID-19 cytokine storm receiving ApoA-I. Further randomized controlled trial evaluation is now required to ascertain whether ApoA-I has any beneficial effects on patients with a COVID-19 cytokine storm.
Collapse
Affiliation(s)
- Stanislas Faguer
- Referral Center for Rare Kidney Diseases, Department of Nephrology and Organ Transplantation, University Hospital of Toulouse, Toulouse, France
- Faculty of Medicine, University Paul Sabatier—Toulouse 3, Toulouse, France
- French National Institute of Health and Medical Research, U1297 (Institute of Metabolic and Cardiovascular Diseases), Toulouse, France
- *Correspondence: Stanislas Faguer,
| | - Arnaud Del Bello
- Referral Center for Rare Kidney Diseases, Department of Nephrology and Organ Transplantation, University Hospital of Toulouse, Toulouse, France
| | - Chloé Danet
- Department of Clinical Pharmacy, University Hospital of Toulouse, Toulouse, France
| | - Yves Renaudineau
- Faculty of Medicine, University Paul Sabatier—Toulouse 3, Toulouse, France
- French National Institute of Health and Medical Research, U1291 (INFINITY), Toulouse, France
- Laboratory of Immunology, University Hospital of Toulouse, Toulouse, France
| | - Jacques Izopet
- Faculty of Medicine, University Paul Sabatier—Toulouse 3, Toulouse, France
- French National Institute of Health and Medical Research, U1291 (INFINITY), Toulouse, France
- Laboratory of Virology, University Hospital of Toulouse, Toulouse, France
| | - Nassim Kamar
- Referral Center for Rare Kidney Diseases, Department of Nephrology and Organ Transplantation, University Hospital of Toulouse, Toulouse, France
- Faculty of Medicine, University Paul Sabatier—Toulouse 3, Toulouse, France
- French National Institute of Health and Medical Research, U1291 (INFINITY), Toulouse, France
| |
Collapse
|
16
|
Benfrid S, Park K, Dellarole M, Voss JE, Tamietti C, Pehau‐Arnaudet G, Raynal B, Brûlé S, England P, Zhang X, Mikhailova A, Hasan M, Ungeheuer M, Petres S, Biering SB, Harris E, Sakuntabhai A, Buchy P, Duong V, Dussart P, Coulibaly F, Bontems F, Rey FA, Flamand M. Dengue virus NS1 protein conveys pro-inflammatory signals by docking onto high-density lipoproteins. EMBO Rep 2022; 23:e53600. [PMID: 35607830 PMCID: PMC10549233 DOI: 10.15252/embr.202153600] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 10/05/2023] Open
Abstract
The dengue virus nonstructural protein 1 (NS1) is a secreted virulence factor that modulates complement, activates immune cells and alters endothelial barriers. The molecular basis of these events remains incompletely understood. Here we describe a functional high affinity complex formed between NS1 and human high-density lipoproteins (HDL). Collapse of the soluble NS1 hexamer upon binding to the lipoprotein particle leads to the anchoring of amphipathic NS1 dimeric subunits into the HDL outer layer. The stable complex can be visualized by electron microscopy as a spherical HDL with rod-shaped NS1 dimers protruding from the surface. We further show that the assembly of NS1-HDL complexes triggers the production of pro-inflammatory cytokines in human primary macrophages while NS1 or HDL alone do not. Finally, we detect NS1 in complex with HDL and low-density lipoprotein (LDL) particles in the plasma of hospitalized dengue patients and observe NS1-apolipoprotein E-positive complexes accumulating overtime. The functional reprogramming of endogenous lipoprotein particles by NS1 as a means to exacerbate systemic inflammation during viral infection provides a new paradigm in dengue pathogenesis.
Collapse
Affiliation(s)
- Souheyla Benfrid
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Université Paris Descartes SorbonneParis CitéFrance
- Present address:
Laboratoire de Santé AnimaleANSES, INRA, ENVA, UMR 1161Université Paris‐EstMaisons‐AlfortFrance
| | - Kyu‐Ho Park
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Present address:
Applied Molecular VirologyInstitut Pasteur KoreaSeongnam‐siKorea
| | - Mariano Dellarole
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Present address:
Virus Biophysics LaboratoryBionanosciences Research Center (CIBION)National Scientific and Technical Research Council (CONICET)Ciudad Autónoma de Buenos AiresArgentina
| | - James E Voss
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Present address:
Department of Immunology and MicrobiologyThe Scripps Research InstituteLa JollaCAUSA
| | - Carole Tamietti
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
| | | | - Bertrand Raynal
- Molecular Biophysics FacilityCNRS UMR 3528Institut PasteurParisFrance
| | - Sébastien Brûlé
- Molecular Biophysics FacilityCNRS UMR 3528Institut PasteurParisFrance
| | - Patrick England
- Molecular Biophysics FacilityCNRS UMR 3528Institut PasteurParisFrance
| | - Xiaokang Zhang
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Present address:
Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulationthe Brain Cognition and Brain Disease Institute (BCBDI)Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Anastassia Mikhailova
- HIV Inflammation et PersistanceInstitut PasteurParisFrance
- Present address:
Division of Molecular NeurobiologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Milena Hasan
- Cytometry and Biomarkers Unit of Technology and ServiceCB UTechSParisFrance
| | | | - Stéphane Petres
- Production and Purification of Recombinant Proteins FacilityInstitut PasteurParisFrance
| | - Scott B Biering
- Division of Infectious Diseases and VaccinologySchool of Public HealthUniversity of CaliforniaBerkeleyCAUSA
| | - Eva Harris
- Division of Infectious Diseases and VaccinologySchool of Public HealthUniversity of CaliforniaBerkeleyCAUSA
| | | | - Philippe Buchy
- Virology UnitInstitut Pasteur du CambodgeInstitut Pasteur International NetworkPhnom PenhCambodia
- Present address:
GlaxoSmithKline Vaccines R&DSingaporeSingapore
| | - Veasna Duong
- Virology UnitInstitut Pasteur du CambodgeInstitut Pasteur International NetworkPhnom PenhCambodia
| | - Philippe Dussart
- Virology UnitInstitut Pasteur du CambodgeInstitut Pasteur International NetworkPhnom PenhCambodia
| | - Fasséli Coulibaly
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVic.Australia
| | - François Bontems
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Département de Biologie et Chimie StructuralesInstitut de Chimie des Substances Naturelles, CNRS UPR2301Gif‐sur‐YvetteFrance
| | - Félix A Rey
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
| | - Marie Flamand
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
| |
Collapse
|
17
|
Abstract
The dengue virus NS1 is a multifunctional protein that forms part of replication complexes. NS1 is also secreted, as a hexamer, to the extracellular milieu. Circulating NS1 has been associated with dengue pathogenesis by several mechanisms. Cell binding and internalization of soluble NS1 result in endothelial hyperpermeability and in the downregulation of the innate immune response. In this work, we report that the HDL scavenger receptor B1 (SRB1) in human hepatic cells and a scavenger receptor B1-like in mosquito C6/36 cells act as cell surface binding receptors for dengue virus NS1. The presence of the SRB1 on the plasma membrane of C6/36 cells, as well as in Huh7 cells, was demonstrated by confocal microscopy. The internalization of NS1 can be efficiently blocked by anti-SRB1 antibodies, and previous incubation of the cells with HDL significantly reduces NS1 internalization. Significant reduction in NS1 internalization was observed in C6/36 cells transfected with siRNAs specific for SRB1. In addition, the transient expression of SRB1 in Vero cells, which lacks the receptor, allows NS1 internalization in these cells. Direct interaction between soluble NS1 and the SRB1 in Huh7 and C6/36 cells was demonstrated in situ by proximity ligation assays and in vitro by surface plasmon resonance. Finally, results are presented indicating that the SRB1 also acts as a cell receptor for Zika virus NS1. These results demonstrate that dengue virus NS1, a bona fide lipoprotein, usurps the HDL receptor for cell entry and offers explanations for the altered serum lipoprotein homeostasis observed in dengue patients. IMPORTANCE Dengue is the most common viral disease transmitted to humans by mosquitoes. The dengue virus NS1 is a multifunctional glycoprotein necessary for viral replication. NS1 is also secreted as a hexameric lipoprotein and circulates in high concentrations in the sera of patients. Circulating NS1 has been associated with dengue pathogenesis by several mechanisms, including favoring of virus replication in hepatocytes and dendritic cells and disruption of the endothelial glycocalyx leading to hyperpermeability. Those last actions require NS1 internalization. Here, we identify the scavenger cell receptor B1, as the cell-binding receptor for dengue and Zika virus NS1, in cultured liver and in mosquito cells. The results indicate that flavivirus NS1, a bona fide lipoprotein, usurps the human HDL receptor and may offer explanations for the alterations in serum lipoprotein homeostasis observed in dengue patients.
Collapse
|
18
|
Pan Y, Cai W, Cheng A, Wang M, Yin Z, Jia R. Flaviviruses: Innate Immunity, Inflammasome Activation, Inflammatory Cell Death, and Cytokines. Front Immunol 2022; 13:829433. [PMID: 35154151 PMCID: PMC8835115 DOI: 10.3389/fimmu.2022.829433] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
The innate immune system is the host’s first line of defense against the invasion of pathogens including flavivirus. The programmed cell death controlled by genes plays an irreplaceable role in resisting pathogen invasion and preventing pathogen infection. However, the inflammatory cell death, which can trigger the overflow of a large number of pro-inflammatory cytokines and cell contents, will initiate a severe inflammatory response. In this review, we summarized the current understanding of the innate immune response, inflammatory cell death pathway and cytokine secretion regulation during Dengue virus, West Nile virus, Zika virus, Japanese encephalitis virus and other flavivirus infections. We also discussed the impact of these flavivirus and viral proteins on these biological processes. This not only provides a scientific basis for elucidating the pathogenesis of flavivirus, but also lays the foundation for the development of effective antiviral therapies.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Renyong Jia, ; Anchun Cheng,
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Renyong Jia, ; Anchun Cheng,
| |
Collapse
|
19
|
Blahove MR, Carter JR. Flavivirus Persistence in Wildlife Populations. Viruses 2021; 13:v13102099. [PMID: 34696529 PMCID: PMC8541186 DOI: 10.3390/v13102099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
A substantial number of humans are at risk for infection by vector-borne flaviviruses, resulting in considerable morbidity and mortality worldwide. These viruses also infect wildlife at a considerable rate, persistently cycling between ticks/mosquitoes and small mammals and reptiles and non-human primates and humans. Substantially increasing evidence of viral persistence in wildlife continues to be reported. In addition to in humans, viral persistence has been shown to establish in mammalian, reptile, arachnid, and mosquito systems, as well as insect cell lines. Although a considerable amount of research has centered on the potential roles of defective virus particles, autophagy and/or apoptosis-induced evasion of the immune response, and the precise mechanism of these features in flavivirus persistence have yet to be elucidated. In this review, we present findings that aid in understanding how vector-borne flavivirus persistence is established in wildlife. Research studies to be discussed include determining the critical roles universal flavivirus non-structural proteins played in flaviviral persistence, the advancement of animal models of viral persistence, and studying host factors that allow vector-borne flavivirus replication without destructive effects on infected cells. These findings underscore the viral–host relationships in wildlife animals and could be used to elucidate the underlying mechanisms responsible for the establishment of viral persistence in these animals.
Collapse
|