1
|
Roddy K, Grzesik P, Smith B, Ko N, Vashee S, Desai PJ. The loss of both pUL16 and pUL21 in HSV-1 infected cells abolishes cytoplasmic envelopment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.10.622843. [PMID: 39574695 PMCID: PMC11581036 DOI: 10.1101/2024.11.10.622843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Previously, we had developed synthetic genomics methods to assemble an infectious clone of herpes simplex virus type-1 (HSV-1). To do this, the genome was assembled from 11 separate cloned fragments in yeast using transformation associated recombination. The eleven fragments or "parts" spanned the 152 kb genome and recombination was achieved because of the overlapping homologous sequences between each fragment. To demonstrate the robustness of this genome assembly method for reverse genetics, we engineered different mutations that were located in distant loci on the genome and built a collection of HSV-1 genomes that contained single and different combination of mutations in 5 conserved HSV-1 genes. The five genes: UL7, UL11, UL16, UL21 and UL51 encode virion structural proteins and have varied functions in the infected cell. Each is dispensable for virus replication in cell culture, however, combinatorial analysis of deletions in the five genes revealed "synthetic-lethality" of some of the genetic mutations. Thus, it was discovered that any virus that carried a UL21 mutation in addition to the other gene was unable to replicate in Vero cells. Replication was restored in a complementing cell line that provided pUL21 in trans. One particular combination (UL16-UL21) was of interest because the proteins encoded by these genes are known to physically interact and are constituents of the tegument structure. Furthermore, their roles in HSV-1 infected cells are unclear. Both are dispensable for HSV-1 replication, however, in HSV-2 their mutation results in nuclear retention of assembled capsids. We thus characterized these viruses that carry the single and double mutant. What we discovered is that in cells where both pUL16 and pUL21 are absent, cytoplasmic capsids were evident but did not mature into enveloped particles. The capsid particles isolated from these cells showed significantly lower levels of incorporation of both VP16 and pUL37 when compared to the wild-type capsids. These data now show that of the tegument proteins, like the essential pUL36, pUL37 and VP16; the complex of pUL16 and pUL21 should be considered as important mediators of cytoplasmic maturation of the particle.
Collapse
Affiliation(s)
- Kellen Roddy
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore
| | - Peter Grzesik
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore
| | - Barbara Smith
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore
| | - Nathan Ko
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore
| | - Sanjay Vashee
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, USA
| | - Prashant J. Desai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
2
|
Finnen RL, Muradov JH, Le Sage V, Banfield BW. Disruption of herpes simplex virus type 2 pUL21 phosphorylation impairs secondary envelopment of cytoplasmic nucleocapsids. J Virol 2024; 98:e0065624. [PMID: 39136460 PMCID: PMC11406914 DOI: 10.1128/jvi.00656-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/15/2024] [Indexed: 09/18/2024] Open
Abstract
The multifunctional tegument protein pUL21 of HSV-2 is phosphorylated in infected cells. We have identified two residues in the unstructured linker region of pUL21, serine 251 and serine 253, as phosphorylation sites. Both phosphorylation sites are absent in HSV-1 pUL21, which likely explains why phosphorylated pUL21 was not detected in cells infected with HSV-1. Cells infected with HSV-2 strain 186 viruses deficient in pUL21 phosphorylation exhibited reductions in both cell-cell spread of virus infection and virus replication. Defects in secondary envelopment of cytoplasmic nucleocapsids were also observed in cells infected with viruses deficient in pUL21 phosphorylation as well as in cells infected with multiple strains of HSV-2 and HSV-1 deleted for pUL21. These results confirm a role for HSV pUL21 in the secondary envelopment of cytoplasmic nucleocapsids and indicate that phosphorylation of HSV-2 pUL21 is required for this activity. Phosphorylation of pUL21 was substantially reduced in cells infected with HSV-2 strain 186 mutants lacking the viral serine/threonine kinase pUL13, indicating a requirement for pUL13 in pUL21 phosphorylation. IMPORTANCE It is well known that post-translational modification of proteins by phosphorylation can regulate protein function. Here, we determined that phosphorylation of the multifunctional HSV-2 tegument protein pUL21 requires the viral serine/threonine kinase pUL13. In addition, we identified serine residues within HSV-2 pUL21 that can be phosphorylated. Phenotypic analysis of mutant HSV-2 strains with deficiencies in pUL21 phosphorylation revealed reductions in both cell-cell spread of virus infection and virus replication. Deficiencies in pUL21 phosphorylation also compromised the secondary envelopment of cytoplasmic nucleocapsids, a critical final step in the maturation of all herpes virions. Unlike HSV-2 pUL21, phosphorylation of HSV-1 pUL21 was not detected. This fundamental difference between HSV-2 and HSV-1 may underlie our previous observations that the requirements for pUL21 differ between HSV species.
Collapse
Affiliation(s)
- Renée L. Finnen
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Jamil H. Muradov
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Valerie Le Sage
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Bruce W. Banfield
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Cui Y, Wang M, Cheng A, Zhang W, Yang Q, Tian B, Ou X, Huang J, Wu Y, Zhang S, Sun D, He Y, Zhao X, Wu Z, Zhu D, Jia R, Chen S, Liu M. The precise function of alphaherpesvirus tegument proteins and their interactions during the viral life cycle. Front Microbiol 2024; 15:1431672. [PMID: 39015737 PMCID: PMC11250606 DOI: 10.3389/fmicb.2024.1431672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024] Open
Abstract
Alphaherpesvirus is a widespread pathogen that causes diverse diseases in humans and animals and can severely damage host health. Alphaherpesvirus particles comprise a DNA core, capsid, tegument and envelope; the tegument is located between the nuclear capsid and envelope. According to biochemical and proteomic analyses of alphaherpesvirus particles, the tegument contains at least 24 viral proteins and plays an important role in the alphaherpesvirus life cycle. This article reviews the important role of tegument proteins and their interactions during the viral life cycle to provide a reference and inspiration for understanding alphaherpesvirus infection pathogenesis and identifying new antiviral strategies.
Collapse
Affiliation(s)
- Yuxi Cui
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Sinopharm Yangzhou VAC Biological Engineering Co., Ltd., Yangzhou, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Neira JL. Fluorescence, Circular Dichroism and Mass Spectrometry as Tools to Study Virus Structure. Subcell Biochem 2024; 105:207-245. [PMID: 39738948 DOI: 10.1007/978-3-031-65187-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Fluorescence and circular dichroism, as analytical spectroscopic techniques, and mass spectrometry, as an analytical tool to determine molecular mass, are important biophysical methods in structural virology. Although they do not provide atomic or near-atomic details as cryogenic electron microscopy, X-ray crystallography or nuclear magnetic resonance spectroscopy can, they do deliver important insights into virus particle composition, structure, conformational stability and dynamics, assembly and maturation and interactions with other viral and cellular biomolecules. They can also be used to investigate the molecular determinants of virus particle structure and properties and the changes induced in them by external factors. In this chapter, the physical foundations of these three techniques will be described, alongside examples demonstrating their contribution in understanding the structure and physicochemical properties of virus particles.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, Elche, Alicante, Spain.
- Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain.
| |
Collapse
|
5
|
Thomas ECM, Finnen RL, Mewburn JD, Archer SL, Banfield BW. The Herpes Simplex Virus pUL16 and pUL21 Proteins Prevent Capsids from Docking at Nuclear Pore Complexes. PLoS Pathog 2023; 19:e1011832. [PMID: 38039340 PMCID: PMC10718459 DOI: 10.1371/journal.ppat.1011832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/13/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
After entry into cells, herpes simplex virus (HSV) nucleocapsids dock at nuclear pore complexes (NPCs) through which viral genomes are released into the nucleoplasm where viral gene expression, genome replication, and early steps in virion assembly take place. After their assembly, nucleocapsids are translocated to the cytoplasm for final virion maturation. Nascent cytoplasmic nucleocapsids are prevented from binding to NPCs and delivering their genomes to the nucleus from which they emerged, but how this is accomplished is not understood. Here we report that HSV pUL16 and pUL21 deletion mutants accumulate empty capsids at the cytoplasmic face of NPCs late in infection. Additionally, prior expression of pUL16 and pUL21 prevented incoming nucleocapsids from docking at NPCs, delivering their genomes to the nucleus and initiating viral gene expression. Both pUL16 and pUL21 localized to the nuclear envelope, placing them in an appropriate location to interfere with nucleocapsid/NPC interactions.
Collapse
Affiliation(s)
- Ethan C. M. Thomas
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Renée L. Finnen
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | | | - Stephen L. Archer
- Department of Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Bruce W. Banfield
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
6
|
Sucharita S, Krishnagopal A, van Drunen Littel-van den Hurk S. Comprehensive Analysis of the Tegument Proteins Involved in Capsid Transport and Virion Morphogenesis of Alpha, Beta and Gamma Herpesviruses. Viruses 2023; 15:2058. [PMID: 37896835 PMCID: PMC10611259 DOI: 10.3390/v15102058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Herpesviruses are enveloped and have an amorphous protein layer surrounding the capsid, which is termed the tegument. Tegument proteins perform critical functions throughout the viral life cycle. This review provides a comprehensive and comparative analysis of the roles of specific tegument proteins in capsid transport and virion morphogenesis of selected, well-studied prototypes of each of the three subfamilies of Herpesviridae i.e., human herpesvirus-1/herpes simplex virus-1 (Alphaherpesvirinae), human herpesvirus-5/cytomegalovirus (Betaherpesvirinae) and human herpesvirus -8/Kaposi's sarcomavirus (Gammaherpesvirinae). Most of the current knowledge is based on alpha herpesviruses, in particular HSV-1. While some tegument proteins are released into the cytoplasm after virus entry, several tegument proteins remain associated with the capsid and are responsible for transport to and docking at the nucleus. After replication and capsid formation, the capsid is enveloped at the nuclear membrane, which is referred to as primary envelopment, followed by de-envelopment and release into the cytoplasm. This requires involvement of at least three tegument proteins. Subsequently, multiple interactions between tegument proteins and capsid proteins, other tegument proteins and glycoproteins are required for assembly of the virus particles and envelopment at the Golgi, with certain tegument proteins acting as the central hub for these interactions. Some redundancy in these interactions ensures appropriate morphogenesis.
Collapse
Affiliation(s)
- Soumya Sucharita
- Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.S.); (A.K.)
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Akshaya Krishnagopal
- Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.S.); (A.K.)
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Sylvia van Drunen Littel-van den Hurk
- Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.S.); (A.K.)
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
7
|
Murata T. Tegument proteins of Epstein-Barr virus: Diverse functions, complex networks, and oncogenesis. Tumour Virus Res 2023; 15:200260. [PMID: 37169175 DOI: 10.1016/j.tvr.2023.200260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
The tegument is the structure between the envelope and nucleocapsid of herpesvirus particles. Viral (and cellular) proteins accumulate to create the layers of the tegument. Some Epstein-Barr virus (EBV) tegument proteins are conserved widely in Herpesviridae, but others are shared only by members of the gamma-herpesvirus subfamily. As the interface to envelope and nucleocapsid, the tegument functions in virion morphogenesis and budding of the nucleocapsid during progeny production. When a virus particle enters a cell, enzymes such as kinase and deubiquitinase, and transcriptional activators are released from the virion to promote virus infection. Moreover, some EBV tegument proteins are involved in oncogenesis. Here, we summarize the roles of EBV tegument proteins, in comparison to those of other herpesviruses.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
8
|
The herpes simplex virus tegument protein pUL21 is required for viral genome retention within capsids. PLoS Pathog 2022; 18:e1010969. [DOI: 10.1371/journal.ppat.1010969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/28/2022] [Accepted: 11/02/2022] [Indexed: 11/15/2022] Open
Abstract
During virion morphogenesis herpes simplex virus nucleocapsids transit from the nucleoplasm to the cytoplasm, through a process called nuclear egress, where the final stages of virion assembly occur. Coupled to nuclear egress is a poorly understood quality-control mechanism that preferentially selects genome-containing C-capsids, rather than A- and B-capsids that lack genomes, for transit to the cytoplasm. We and others have reported that cells infected with HSV strains deleted for the tegument protein pUL21 accumulate both empty A-capsids and C-capsids in the cytoplasm of infected cells. Quantitative microscopy experiments indicated that C-capsids were preferentially selected for envelopment at the inner nuclear membrane and that nuclear integrity remained intact in cells infected with pUL21 mutants, prompting alternative explanations for the accumulation of A-capsids in the cytoplasm. More A-capsids were also found in the nuclei of cells infected with pUL21 mutants compared to their wild type (WT) counterparts, suggesting pUL21 might be required for optimal genome packaging or genome retention within capsids. In support of this, more viral genomes were prematurely released into the cytoplasm during pUL21 mutant infection compared to WT infection and led to enhanced activation of cellular cytoplasmic DNA sensors. Mass spectrometry and western blot analysis of WT and pUL21 mutant capsids revealed an increased association of the known pUL21 binding protein, pUL16, with pUL21 mutant capsids, suggesting that premature and/or enhanced association of pUL16 with capsids might result in capsid destabilization. Further supporting this idea, deletion of pUL16 from a pUL21 mutant strain rescued genome retention within capsids. Taken together, these findings suggest that pUL21 regulates pUL16 addition to nuclear capsids and that premature, and/or, over-addition of pUL16 impairs HSV genome retention within capsids.
Collapse
|
9
|
Benedyk TH, Connor V, Caroe ER, Shamin M, Svergun DI, Deane JE, Jeffries CM, Crump CM, Graham SC. Herpes simplex virus 1 protein pUL21 alters ceramide metabolism by activating the interorganelle transport protein CERT. J Biol Chem 2022; 298:102589. [PMID: 36243114 PMCID: PMC9668737 DOI: 10.1016/j.jbc.2022.102589] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Herpes simplex virus (HSV)-1 dramatically alters the architecture and protein composition of cellular membranes during infection, but its effects upon membrane lipid composition remain unclear. HSV-1 pUL21 is a virus-encoded protein phosphatase adaptor that promotes dephosphorylation of multiple cellular and virus proteins, including the cellular ceramide (Cer) transport protein CERT. CERT mediates nonvesicular Cer transport from the endoplasmic reticulum to the trans-Golgi network, whereupon Cer is converted to sphingomyelin (SM) and other sphingolipids that play important roles in cellular proliferation, signaling, and membrane trafficking. Here, we use click chemistry to profile the kinetics of sphingolipid metabolism, showing that pUL21-mediated dephosphorylation activates CERT and accelerates Cer-to-SM conversion. Purified pUL21 and full-length CERT interact with submicromolar affinity, and we solve the solution structure of the pUL21 C-terminal domain in complex with the CERT Pleckstrin homology and steroidogenic acute regulatory-related lipid transfer domains using small-angle X-ray scattering. We identify a single amino acid mutation on the surface of pUL21 that disrupts CERT binding in vitro and in cultured cells. This residue is highly conserved across the genus Simplexvirus. In addition, we identify a pUL21 residue essential for binding to HSV-1 pUL16. Sphingolipid profiling demonstrates that Cer-to-SM conversion is severely diminished in the context of HSV-1 infection, a defect that is compounded when infecting with a virus encoding the mutated form of pUL21 that lacks the ability to activate CERT. However, virus replication and spread in cultured keratinocytes or epithelial cells is not significantly altered when pUL21-mediated CERT dephosphorylation is abolished. Collectively, we demonstrate that HSV-1 modifies sphingolipid metabolism via specific protein-protein interactions.
Collapse
Affiliation(s)
| | - Viv Connor
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Eve R Caroe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Maria Shamin
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Site, Hamburg, Germany
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg Site, Hamburg, Germany
| | - Colin M Crump
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Stephen C Graham
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Yang L, Wang M, Cheng A, Yang Q, Wu Y, Huang J, Tian B, Jia R, Liu M, Zhu D, Chen S, Zhao X, Zhang S, Ou X, Mao S, Gao Q, Sun D. Features and Functions of the Conserved Herpesvirus Tegument Protein UL11 and Its Binding Partners. Front Microbiol 2022; 13:829754. [PMID: 35722336 PMCID: PMC9205190 DOI: 10.3389/fmicb.2022.829754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The herpesvirus UL11 protein is encoded by the UL11 gene and is a membrane-anchored protein with multiple functions. In the last stage of viral replication, UL11 participates in the secondary envelopment process. It also plays a key role in primary envelopment, the transportation of newly assembled viral particles through cytoplasmic vesicles, and virion egress from the cell. UL11 is an important accessory protein and sometimes cooperates with other proteins that participate in virus-induced cell fusion. Cell fusion is necessary for cell-to-cell transmissions. This review summarizes the latest literature and discusses the roles of UL11 in viral assembly, primary and secondary envelopment, and cell-to-cell transmission to obtain a better understanding of the UL11 protein in the life cycle of herpesviruses and to serve as a reference for studying other viruses. Additionally, some recently discovered characteristics of UL11 are summarized.
Collapse
Affiliation(s)
- Linjiang Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- *Correspondence: Anchun Cheng,
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
11
|
Benedyk TH, Muenzner J, Connor V, Han Y, Brown K, Wijesinghe KJ, Zhuang Y, Colaco S, Stoll GA, Tutt OS, Svobodova S, Svergun DI, Bryant NA, Deane JE, Firth AE, Jeffries CM, Crump CM, Graham SC. pUL21 is a viral phosphatase adaptor that promotes herpes simplex virus replication and spread. PLoS Pathog 2021; 17:e1009824. [PMID: 34398933 PMCID: PMC8389370 DOI: 10.1371/journal.ppat.1009824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/26/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
The herpes simplex virus (HSV)-1 protein pUL21 is essential for efficient virus replication and dissemination. While pUL21 has been shown to promote multiple steps of virus assembly and spread, the molecular basis of its function remained unclear. Here we identify that pUL21 is a virus-encoded adaptor of protein phosphatase 1 (PP1). pUL21 directs the dephosphorylation of cellular and virus proteins, including components of the viral nuclear egress complex, and we define a conserved non-canonical linear motif in pUL21 that is essential for PP1 recruitment. In vitro evolution experiments reveal that pUL21 antagonises the activity of the virus-encoded kinase pUS3, with growth and spread of pUL21 PP1-binding mutant viruses being restored in adapted strains where pUS3 activity is disrupted. This study shows that virus-directed phosphatase activity is essential for efficient herpesvirus assembly and spread, highlighting the fine balance between kinase and phosphatase activity required for optimal virus replication. Herpes simplex virus (HSV)-1 is a highly prevalent human virus that causes life-long infections. While the most common symptom of HSV-1 infection is orofacial lesions (‘cold sores’), HSV-1 infection can also cause fatal encephalitis and it is a leading cause of infectious blindness. The HSV-1 genome encodes many proteins that dramatically remodel the environment of infected cells to promote virus replication and spread, including enzymes that add phosphate groups (kinases) to cellular and viral proteins in order to fine-tune their function. Here we identify that pUL21 is an HSV-1 protein that binds directly to protein phosphatase 1 (PP1), a highly abundant cellular enzyme that removes phosphate groups from proteins. We demonstrate that pUL21 stimulates the specific dephosphorylation of both cellular and viral proteins, including a component of the viral nuclear egress complex that is essential for efficient assembly of new HSV-1 particles. Furthermore, our in vitro evolution experiments demonstrate that pUL21 antagonises the activity of the HSV-1 kinase pUS3. Our work highlights the precise control that herpesviruses exert upon the protein environment within infected cells, and specifically the careful balance of kinase and phosphatase activity that HSV-1 requires for optimal replication and spread.
Collapse
Affiliation(s)
- Tomasz H. Benedyk
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Julia Muenzner
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Viv Connor
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Yue Han
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Brown
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Yunhui Zhuang
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Susanna Colaco
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Guido A. Stoll
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Owen S. Tutt
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Dmitri I. Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Site, Hamburg, Germany
| | - Neil A. Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Janet E. Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Cy M. Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg Site, Hamburg, Germany
| | - Colin M. Crump
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (CMC); (SCG)
| | - Stephen C. Graham
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (CMC); (SCG)
| |
Collapse
|
12
|
Xu JJ, Cheng XF, Wu JQ, Zheng H, Tong W, Chen X, Ye C, Liu Y, Zhu H, Fu X, Jiang Y, Kong N, Tong G, Gao F, Li G. Pseudorabies virus pUL16 assists the nuclear import of VP26 through protein-protein interaction. Vet Microbiol 2021; 257:109080. [PMID: 33915344 DOI: 10.1016/j.vetmic.2021.109080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/18/2021] [Indexed: 11/22/2022]
Abstract
Pseudorabies virus (PRV) is related to alphaherpesvirus and varicellovirus. pUL16 is a conserved protein in all herpesviruses, and studies have shown that UL16 can interact with the viral proteins pUL11, pUL49, pUL21, gD, and gE. In this study, we found that pUL16 interacted with the viral capsid protein VP26, which could not translocate into the nucleus itself but did appear in the nucleus. We further determined whether pUL16 assists the translocation of VP26 into the nucleus. We found that pUL16 interacted with VP26 with or without viral proteins, and since VP26 itself did not contain a nuclear location signal, we concluded that pUL16 assisted the translocation of VP26 into the nucleus. Deletion of UL16 and UL35 significantly reduced the 50 % tissue culture infective dose, virulence, attachment, and internalization of PRV in cells. These results show that the interaction between pUL16 and VP26 influences the growth and virulence of pseudorabies virus. Our research is the first study to show that pUL16 interacts with VP26, which may explain the targeting site of UL16 and viral capsids. It is also the first to show that UL16 assists the transport of other viral proteins to organelles. Previous researches on pUL16 usually emphasized its interaction with pUL11, pUL21, and gE, and sometimes commented on pUL49 and gD. Our research focuses on the novel interaction between pUL16 and VP26, thereby enriching the studies on herpesviruses and possibly providing different directions for researchers.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xue-Fei Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Ji-Qiang Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiaoyong Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chao Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yuting Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Haojie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xinling Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
13
|
DuRaine G, Johnson DC. Anterograde transport of α-herpesviruses in neuronal axons. Virology 2021; 559:65-73. [PMID: 33836340 DOI: 10.1016/j.virol.2021.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 02/04/2023]
Abstract
α-herpesviruses have been very successful, principally because they establish lifelong latency in sensory ganglia. An essential piece of the lifecycle of α-herpesviruses involves the capacity to travel from sensory neurons to epithelial tissues following virus reactivation from latency, a process known as anterograde transport. Virus particles formed in neuron cell bodies hitchhike on kinesin motors that run along microtubules, the length of axons. Herpes simplex virus (HSV) and pseudorabies virus (PRV) have been intensely studied to elucidate anterograde axonal transport. Both viruses use similar strategies for anterograde transport, although there are significant differences in the form of virus particles transported in axons, the identity of the kinesins that transport viruses, and how certain viral membrane proteins, gE/gI and US9, participate in this process. This review compares the older models for HSV and PRV anterograde transport with recent results, which are casting a new light on several aspects of this process.
Collapse
Affiliation(s)
- Grayson DuRaine
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - David C Johnson
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
14
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
15
|
Characterization of the Herpes Simplex Virus (HSV) Tegument Proteins That Bind to gE/gI and US9, Which Promote Assembly of HSV and Transport into Neuronal Axons. J Virol 2020; 94:JVI.01113-20. [PMID: 32938770 DOI: 10.1128/jvi.01113-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/11/2020] [Indexed: 01/14/2023] Open
Abstract
The herpes simplex virus (HSV) heterodimer gE/gI and another membrane protein, US9, which has neuron-specific effects, promote the anterograde transport of virus particles in neuronal axons. Deletion of both HSV gE and US9 blocks the assembly of enveloped particles in the neuronal cytoplasm, which explains why HSV virions do not enter axons. Cytoplasmic envelopment depends upon interactions between viral membrane proteins and tegument proteins that encrust capsids. We report that tegument protein UL16 is unstable, i.e., rapidly degraded, in neurons infected with a gE-/US9- double mutant. Immunoprecipitation experiments with lysates of HSV-infected neurons showed that UL16 and three other tegument proteins, namely, VP22, UL11, and UL21, bound either to gE or gI. All four of these tegument proteins were also pulled down with US9. In neurons transfected with tegument proteins and gE/gI or US9, there was good evidence that VP22 and UL16 bound directly to US9 and gE/gI. However, there were lower quantities of these tegument proteins that coprecipitated with gE/gI and US9 from transfected cells than those of infected cells. This apparently relates to a matrix of several different tegument proteins formed in infected cells that bind to gE/gI and US9. In cells transfected with individual tegument proteins, this matrix is less prevalent. Similarly, coprecipitation of gE/gI and US9 was observed in HSV-infected cells but not in transfected cells, which argued against direct US9-gE/gI interactions. These studies suggest that gE/gI and US9 binding to these tegument proteins has neuron-specific effects on virus HSV assembly, a process required for axonal transport of enveloped particles.IMPORTANCE Herpes simplex viruses 1 and 2 and varicella-zoster virus cause significant morbidity and mortality. One basic property of these viruses is the capacity to establish latency in the sensory neurons and to reactivate from latency and then cause disease in peripheral tissues, such as skin and mucosal epithelia. The transport of nascent HSV particles from neuron cell bodies into axons and along axons to axon tips in the periphery is an important component of this reactivation and reinfection. Two HSV membrane proteins, gE/gI and US9, play an essential role in these processes. Our studies help elucidate how HSV gE/gI and US9 promote the assembly of virus particles and sorting of these virions into neuronal axons.
Collapse
|
16
|
He HP, Luo M, Cao YL, Lin YX, Zhang H, Zhang X, Ou JY, Yu B, Chen X, Xu M, Feng L, Zeng MS, Zeng YX, Gao S. Structure of Epstein-Barr virus tegument protein complex BBRF2-BSRF1 reveals its potential role in viral envelopment. Nat Commun 2020; 11:5405. [PMID: 33106493 PMCID: PMC7588443 DOI: 10.1038/s41467-020-19259-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Epstein-Barr virus (EBV) is a γ-herpesvirus associated with the occurrence of several human malignancies. BBRF2 and BSRF1 are two EBV tegument proteins that have been suggested to form a hetero-complex and mediate viral envelopment, but the molecular basis of their interaction and the functional mechanism of this complex remains unknown. Here, we present crystal structures of BBRF2 alone and in complex with BSRF1. BBRF2 has a compact globular architecture featuring a central β-sheet that is surrounded by 10 helices, it represents a novel fold distinct from other known protein structures. The central portion of BSRF1 folds into two tightly associated antiparallel α-helices, forming a composite four-helix bundle with two α-helices from BBRF2 via a massive hydrophobic network. In vitro, a BSRF1-derived peptide binds to BBRF2 and reduces the number of viral genome copies in EBV-positive cells. Exogenous BBRF2 and BSRF1 co-localize at the Golgi apparatus. Furthermore, BBRF2 binds capsid and capsid-associated proteins, whereas BSRF1 associates with glycoproteins. These findings indicate that the BBRF2-BSRF1 complex tethers EBV nucleocapsids to the glycoprotein-enriched Golgi membrane, facilitating secondary envelopment.
Collapse
Affiliation(s)
- Hui-Ping He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Meng Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yu-Lu Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yu-Xin Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Hua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Xiao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Jun-Ying Ou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Bing Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Xiaoxue Chen
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, 519000, Zhuhai, China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Lin Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510530, Guangzhou, China.
| |
Collapse
|
17
|
Ahmad I, Wilson DW. HSV-1 Cytoplasmic Envelopment and Egress. Int J Mol Sci 2020; 21:ijms21175969. [PMID: 32825127 PMCID: PMC7503644 DOI: 10.3390/ijms21175969] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a structurally complex enveloped dsDNA virus that has evolved to replicate in human neurons and epithelia. Viral gene expression, DNA replication, capsid assembly, and genome packaging take place in the infected cell nucleus, which mature nucleocapsids exit by envelopment at the inner nuclear membrane then de-envelopment into the cytoplasm. Once in the cytoplasm, capsids travel along microtubules to reach, dock, and envelope at cytoplasmic organelles. This generates mature infectious HSV-1 particles that must then be sorted to the termini of sensory neurons, or to epithelial cell junctions, for spread to uninfected cells. The focus of this review is upon our current understanding of the viral and cellular molecular machinery that enables HSV-1 to travel within infected cells during egress and to manipulate cellular organelles to construct its envelope.
Collapse
Affiliation(s)
- Imran Ahmad
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Correspondence:
| |
Collapse
|
18
|
Abstract
During viral replication, herpesviruses utilize a unique strategy, termed nuclear egress, to translocate capsids from the nucleus into the cytoplasm. This initial budding step transfers a newly formed capsid from within the nucleus, too large to fit through nuclear pores, through the inner nuclear membrane to the perinuclear space. The perinuclear enveloped virion must then fuse with the outer nuclear membrane to be released into the cytoplasm for further maturation, undergoing budding once again at the trans-Golgi network or early endosomes, and ultimately exit the cell non-lytically to spread infection. This first budding process is mediated by two conserved viral proteins, UL31 and UL34, that form a heterodimer called the nuclear egress complex (NEC). This review focuses on what we know about how the NEC mediates capsid transport to the perinuclear space, including steps prior to and after this budding event. Additionally, we discuss the involvement of other viral proteins in this process and how NEC-mediated budding may be regulated during infection.
Collapse
Affiliation(s)
- Elizabeth B Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Michael K Thorsen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
19
|
Kumar R, Cruz L, Sandhu PK, Buchkovich NJ. UL88 Mediates the Incorporation of a Subset of Proteins into the Virion Tegument. J Virol 2020; 94:e00474-20. [PMID: 32376624 PMCID: PMC7343191 DOI: 10.1128/jvi.00474-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
Little is known about the human cytomegalovirus (HCMV) tegument protein UL88. Large-scale genomic studies have reported disparate results for UL88-null viruses, reporting both no phenotype and a >1-log decrease in virus titers. UL88 has also been reported to interact with UL69 and UL48, but the functional relevance of this interaction is unknown. Here, we report that UL88, which is conserved among different viral strains, is dispensable for production of infectious HCMV virions in multiple HCMV strains and cell types. However, the specific infectivity of HCMV virions suffers in the absence of UL88, as more genomes are required per PFU. This may be a result of altered virion tegument protein composition, as Western blot analysis shows a significant reduction in the tegument levels of pp71, UL47, and UL48 in viruses lacking UL88. While an interaction between UL88 and UL48 has previously been reported, we show that UL88 can interact with UL47; however, UL88 does not appear to be part of a stable complex consisting of UL47 and UL48. These findings identify an important role for UL88 in incorporating the viral proteins UL47 and UL48 into the virion tegument layer.IMPORTANCE A better understanding of the role and functions of tegument proteins in HCMV, many of which remain uncharacterized, will contribute to our understanding of the biology of HCMV. The virus has a large genome, greater than 230 kb, and functional annotation of these genes is important for identifying novel targets for improving therapeutic intervention. This study identifies a role for a viral tegument protein with unknown function, UL88, in maintaining the proper tegument composition of HCMV virions. Virions produced in the absence of UL88 exhibit decreased fitness and require more genomes per infectious unit.
Collapse
Affiliation(s)
- Rinki Kumar
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Linda Cruz
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Praneet K Sandhu
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Nicholas J Buchkovich
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
20
|
Differentiating the Roles of UL16, UL21, and Us3 in the Nuclear Egress of Herpes Simplex Virus Capsids. J Virol 2020; 94:JVI.00738-20. [PMID: 32321804 DOI: 10.1128/jvi.00738-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 01/28/2023] Open
Abstract
Viral proteins pUL16 and pUL21 are required for efficient nuclear egress of herpes simplex virus 2 capsids. To better understand the role of these proteins in nuclear egress, we established whether nuclear egress complex (NEC) distribution and/or function was altered in the absence of either pUL16 or pUL21. NEC distribution in cells infected with pUL16-deficient viruses was indistinguishable from that observed in cells infected with wild-type viruses. In contrast, NEC distribution was aberrant in cells infected with pUL21-deficient virus and, instead, showed some similarity to the aberrant NEC distribution pattern observed in cells infected with pUs3-deficient virus. These results indicated that pUL16 plays a role in nuclear egress that is distinct from that of pUL21 and pUs3. Higher-resolution examination of nuclear envelope ultrastructure in cells infected with pUL21-deficient viruses by transmission electron microscopy showed different types of nuclear envelope perturbations, including some that were not observed in cells infected with pUs3 deficient virus. The formation of the nuclear envelope perturbations observed in pUL21-deficient virus infections was dependent on a functional NEC, revealing a novel role for pUL21 in regulating NEC activity. The results of comparisons of nuclear envelope ultrastructure in cells infected with viruses lacking pUs3, pUL16, or both pUs3 and pUL16 were consistent with a role for pUL16 in advance of primary capsid envelopment and shed new light on how pUs3 functions in nuclear egress.IMPORTANCE The membrane deformation activity of the herpesvirus nuclear egress complex (NEC) allows capsids to transit through both nuclear membranes into the cytoplasm. NEC activity must be precisely controlled during viral infection, and yet our knowledge of how NEC activity is controlled is incomplete. To determine how pUL16 and pUL21, two viral proteins required for nuclear egress of herpes simplex virus 2, function in nuclear egress, we examined how the lack of each protein impacted NEC distribution. These analyses revealed a function of pUL16 in nuclear egress distinct from that of pUL21, uncovered a novel role for pUL21 in regulating NEC activity, and shed new light on how a viral kinase, pUs3, regulates nuclear egress. Nuclear egress of capsids is required for all herpesviruses. A complete understanding of all aspects of nuclear egress, including how viral NEC activity is controlled, may yield strategies to disrupt this process and aid the development of herpes-specific antiviral therapies.
Collapse
|
21
|
Hung CH, Chiu YF, Wang WH, Chen LW, Chang PJ, Huang TY, Lin YJ, Tsai WJ, Yang CC. Interaction Between BGLF2 and BBLF1 Is Required for the Efficient Production of Infectious Epstein-Barr Virus Particles. Front Microbiol 2020; 10:3021. [PMID: 32038519 PMCID: PMC6993569 DOI: 10.3389/fmicb.2019.03021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 11/13/2022] Open
Abstract
BGLF2 is a tegument protein of the Epstein-Barr virus (EBV). This study finds that BGLF2 is expressed in the late stage of the EBV lytic cycle. Microscopic investigations reveal that BGLF2 is present in both the nucleus and the cytoplasm and colocalized with BBLF1 and gp350 at juxtanuclear regions in the cytoplasm. This study also finds that the basic KKK69 motif of BGLF2 and acidic DYEE31 motif of BBLF1 are crucial for the interaction between BGLF2 and BBLF1, which is required for the recruitment of BGLF2 to the BBLF1 that is anchored on the trans-Golgi-network (TGN). In addition, BGLF2 in a density gradient is co-sedimented with un-enveloped capsids, revealing that BGLF2 associates with the EBV capsid before the final envelopment. The knockout of BGLF2 expression is demonstrated to reduce the numbers of infectious virions that are released into the culture medium, but they do not affect the expression of lytic proteins and viral DNA replication. The production of infectious viral particles by a BGLF2-knockout mutant can be rescued by exogenously expressed BGLF2 but only partially rescued by BGLF2-3KA, which is a mutant with reduced ability to interact with BBLF1 but does not affect its ability to activate the MAPK pathway and the expression of the EBV lytic proteins, suggesting that the interaction of BGLF2 with BBLF1 is important to the efficient production of infectious viral particles during the maturation. The results of this study improve our understanding of how BGLF2 promotes EBV viral production.
Collapse
Affiliation(s)
- Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Ya-Fang Chiu
- Department of Microbiology and Immunology, Chang-Gung University, Taoyuan, Taiwan.,Research Center for Emerging Viral Infections, Chang-Gung University, Taoyuan, Taiwan.,Department of Medical Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lee-Wen Chen
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Tsung-Yu Huang
- Division of Infectious Diseases, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Ying-Ju Lin
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Wan-Ju Tsai
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Chia-Ching Yang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
22
|
Yang L, Wang M, Zeng C, Shi Y, Cheng A, Liu M, Zhu D, Chen S, Jia R, Yang Q, Wu Y, Zhang S, Zhao X, Huang J, Liu Y, Ou X, Mao S, Yu Y, Zhang L, Tian B, Pan L, Rehman MU, Chen X. Duck enteritis virus UL21 is a late gene encoding a protein that interacts with pUL16. BMC Vet Res 2020; 16:8. [PMID: 31915010 PMCID: PMC6950997 DOI: 10.1186/s12917-019-2228-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND pUL21 is a conserved protein of Alphaherpesvirinae that performs multiple important functions. The C-terminus of pUL21 in other members of this subfamily has RNA-binding ability; this domain contributes to pseudorabies virus (PRV) retrograde axonal transport in vitro and in vivo and participates in newly replicated viral DNA packaging and intracellular virus transport. However, knowledge regarding duck enteritis virus (DEV) pUL21 is limited. RESULTS We verified that DEV UL21 is a γ2 gene that encodes a structural protein. Moreover, we observed that pUL21 localized to the nucleus and cytoplasm. DEV pUL21 interacted with pUL16 and formed a complex in transfected human embryonic kidney (HEK) 293 T cells and DEV-infected duck embryo fibroblasts (DEFs). These results were further confirmed by CO-IP assays. CONCLUSIONS The DEV UL21 gene is a late gene, and pUL21 localizes to the nucleus and cytoplasm. DEV UL21 is a virion component. In addition, pUL21 can interact with pUL16. These findings provide insight into the characteristics of UL21 and the interaction between pUL21 and its binding partner pUL16. Our study enhances the understanding of DEV pUL21.
Collapse
Affiliation(s)
- Linjiang Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Chunhui Zeng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Yong Shi
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| |
Collapse
|
23
|
Differential Requirements for gE, gI, and UL16 among Herpes Simplex Virus 1 Syncytial Variants Suggest Unique Modes of Dysregulating the Mechanism of Cell-to-Cell Spread. J Virol 2019; 93:JVI.00494-19. [PMID: 31092572 DOI: 10.1128/jvi.00494-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/06/2019] [Indexed: 02/08/2023] Open
Abstract
Like all the herpesviruses, herpes simplex virus encodes machinery that enables it to move through cell junctions to avoid neutralizing antibodies. This cell-to-cell spread mechanism requires the viral fusion machinery (gD, gH/gL, and gB) and numerous accessory proteins. Of all of these, minor alterations to only four proteins (gB, gK, UL20, or UL24) will dysregulate the fusion machinery, allowing the formation of syncytia. In contrast, removal of individual accessory proteins will block cell-to-cell spread, forcing the virus to transmit in a cell-free manner. In the context of a Syn variant, removal of a required accessory protein will block cell fusion, again forcing cell-free spread. This has been investigated most thoroughly for gBsyn variants, which lose their syncytial phenotype in the absence of several accessory proteins, including gE, gI, UL16, and UL21, which are known to physically interact. Recently it was found that UL21 is not needed for gKsyn-, UL20syn-, or UL24syn-induced cell fusion, and hence it was of interest to ascertain whether gE, gI, and UL16 are required for Syn variants other than gBsyn. Null mutants of these were each combined with seven syncytial variants distributed among gK, UL20, and UL24. Surprisingly, very different patterns of accessory protein requirements were revealed. Indeed, for the three gKsyn variants tested, two different patterns were found. Also, three mutants were able to replicate without causing cytopathic effects. These findings show that mutations that produce Syn variants dysregulate the cell-to-cell-spread machinery in unique ways and provide clues for elucidating how this virus moves between cells.IMPORTANCE Approximately 2/3 of adults worldwide are latently infected with herpes simplex virus 1. Upon reactivation, the virus has the ability to evade neutralizing antibodies by moving through cell junctions, but the mechanism of direct cell-to-cell spread is poorly understood. The machinery that assembles between cells includes the viral fusion proteins and various accessory proteins that prevent cells from fusing. Alterations in four proteins will dysregulate the machinery, allowing neighboring cells to fuse to make syncytia, but this can be prevented by removing various individual accessory proteins to further disable the machinery. Previously, the accessory protein UL21 was found to be important for the activity of some syncytial variants but not others. In this study, we discovered that UL16, gE, and gI all act differently in how they control the fusion machinery. A better understanding of the mechanism of cell-to-cell spread may enable the development of drugs that block it.
Collapse
|
24
|
Hernández Durán A, Greco TM, Vollmer B, Cristea IM, Grünewald K, Topf M. Protein interactions and consensus clustering analysis uncover insights into herpesvirus virion structure and function relationships. PLoS Biol 2019; 17:e3000316. [PMID: 31199794 PMCID: PMC6594648 DOI: 10.1371/journal.pbio.3000316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/26/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023] Open
Abstract
Infections with human herpesviruses are ubiquitous and a public health concern worldwide. Current treatments reduce the severity of some symptoms associated to herpetic infections but neither remove the viral reservoir from the infected host nor protect from the recurrent symptom outbreaks that characterise herpetic infections. The difficulty in therapeutically tackling these viral systems stems in part from their remarkably large proteomes and the complex networks of physical and functional associations that they tailor. This study presents our efforts to unravel the complexity of the interactome of herpes simplex virus type 1 (HSV1), the prototypical herpesvirus species. Inspired by our previous work, we present an improved and more integrative computational pipeline for the protein–protein interaction (PPI) network reconstruction in HSV1, together with a newly developed consensus clustering framework, which allowed us to extend the analysis beyond binary physical interactions and revealed a system-level layout of higher-order functional associations in the virion proteome. Additionally, the analysis provided new functional annotation for the currently undercharacterised protein pUS10. In-depth bioinformatics sequence analysis unravelled structural features in pUS10 reminiscent of those observed in some capsid-associated proteins in tailed bacteriophages, with which herpesviruses are believed to share a common ancestry. Using immunoaffinity purification (IP)–mass spectrometry (MS), we obtained additional support for our bioinformatically predicted interaction between pUS10 and the inner tegument protein pUL37, which binds cytosolic capsids, contributing to initial tegumentation and eventually virion maturation. In summary, this study unveils new, to our knowledge, insights at both the system and molecular levels that can help us better understand the complexity behind herpesvirus infections. Consensus clustering of protein-protein interaction networks provides insights into the assembly mechanism of herpes simplex virus type 1 (HSV1) virions and structure-function relationships underlying herpesvirus infection.
Collapse
Affiliation(s)
- Anna Hernández Durán
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Todd M. Greco
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, New Jersey, United States of America
| | - Benjamin Vollmer
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Heinrich Pette Institute, Leibnitz Institute of Experimental Virology, University of Hamburg, Hamburg, Germany
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, New Jersey, United States of America
| | - Kay Grünewald
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Heinrich Pette Institute, Leibnitz Institute of Experimental Virology, University of Hamburg, Hamburg, Germany
- * E-mail: (MT); (KG)
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
- * E-mail: (MT); (KG)
| |
Collapse
|
25
|
The Carboxyl Terminus of Tegument Protein pUL21 Contributes to Pseudorabies Virus Neuroinvasion. J Virol 2019; 93:JVI.02052-18. [PMID: 30651360 DOI: 10.1128/jvi.02052-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022] Open
Abstract
Following its entry into cells, pseudorabies virus (PRV) utilizes microtubules to deliver its nucleocapsid to the nucleus. Previous studies have shown that PRV VP1/2 is an effector of dynein-mediated capsid transport. However, the mechanism of PRV for recruiting microtubule motor proteins for successful neuroinvasion and neurovirulence is not well understood. Here, we provide evidence that PRV pUL21 is an inner tegument protein. We tested its interaction with the cytoplasmic light chains using a bimolecular fluorescence complementation (BiFC) assay and observed that PRV pUL21 interacts with Roadblock-1. This interaction was confirmed by coimmunoprecipitation (co-IP) assays. We also determined the efficiency of retrograde and anterograde axonal transport of PRV strains in explanted neurons using a microfluidic chamber system and investigated pUL21's contribution to PRV neuroinvasion in vivo Further data showed that the carboxyl terminus of pUL21 is essential for its interaction with Roadblock-1, and this domain contributes to PRV retrograde axonal transport in vitro and in vivo Our findings suggest that the carboxyl terminus of pUL21 contributes to PRV neuroinvasion.IMPORTANCE Herpesviruses are a group of DNA viruses that infect both humans and animals. Alphaherpesviruses are distinguished by their ability to establish latent infection in peripheral neurons. After entering neurons, the herpesvirus capsid interacts with cellular motor proteins and undergoes retrograde transport on axon microtubules. This elaborate process is vital to the herpesvirus lifecycle, but the underlying mechanism remains poorly understood. Here, we determined that pUL21 is an inner tegument protein of pseudorabies virus (PRV) and that it interacts with the cytoplasmic dynein light chain Roadblock-1. We also observed that pUL21 promotes retrograde transport of PRV in neuronal cells. Furthermore, our findings confirm that pUL21 contributes to PRV neuroinvasion in vivo Importantly, the carboxyl terminus of pUL21 is responsible for interaction with Roadblock-1, and this domain contributes to PRV neuroinvasion. This study offers fresh insights into alphaherpesvirus neuroinvasion and the interaction between virus and host during PRV infection.
Collapse
|
26
|
Mapping the Nonstructural Protein Interaction Network of Porcine Reproductive and Respiratory Syndrome Virus. J Virol 2018; 92:JVI.01112-18. [PMID: 30282705 DOI: 10.1128/jvi.01112-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive-stranded RNA virus belonging to the family Arteriviridae Synthesis of the viral RNA is directed by replication/transcription complexes (RTC) that are mainly composed of a network of PRRSV nonstructural proteins (nsps) and likely cellular proteins. Here, we mapped the interaction network among PRRSV nsps by using yeast two-hybrid screening in conjunction with coimmunoprecipitation (co-IP) and cotransfection assays. We identified a total of 24 novel interactions and found that the interactions were centered on open reading frame 1b (ORF1b)-encoded nsps that were mainly connected by the transmembrane proteins nsp2, nsp3, and nsp5. Interestingly, the interactions of the core enzymes nsp9 and nsp10 with transmembrane proteins did not occur in a straightforward manner, as they worked in the co-IP assay but were poorly capable of finding each other within intact mammalian cells. Further proof that they can interact within cells required the engineering of N-terminal truncations of both nsp9 and nsp10. However, despite the poor colocalization relationship in cotransfected cells, both nsp9 and nsp10 came together with membrane proteins (e.g., nsp2) at the viral replication and transcription complexes (RTC) in PRRSV-infected cells. Thus, our results indicate the existence of a complex interaction network among PRRSV nsps and raise the possibility that the recruitment of key replicase proteins to membrane-associated nsps may involve some regulatory mechanisms during infection.IMPORTANCE Synthesis of PRRSV RNAs within host cells depends on the efficient and correct assembly of RTC that takes places on modified intracellular membranes. As an important step toward dissecting this poorly understood event, we investigated the interaction network among PRRSV nsps. Our studies established a comprehensive interaction map for PRRSV nsps and revealed important players within the network. The results also highlight the likely existence of a regulated recruitment of the PRRSV core enzymes nsp9 and nsp10 to viral membrane nsps during PRRSV RTC assembly.
Collapse
|
27
|
Ibáñez FJ, Farías MA, Gonzalez-Troncoso MP, Corrales N, Duarte LF, Retamal-Díaz A, González PA. Experimental Dissection of the Lytic Replication Cycles of Herpes Simplex Viruses in vitro. Front Microbiol 2018; 9:2406. [PMID: 30386309 PMCID: PMC6198116 DOI: 10.3389/fmicb.2018.02406] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022] Open
Abstract
Herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2) produce lifelong infections and are highly prevalent in the human population. Both viruses elicit numerous clinical manifestations and produce mild-to-severe diseases that affect the skin, eyes, and brain, among others. Despite the existence of numerous antivirals against HSV, such as acyclovir and acyclovir-related analogs, virus variants that are resistant to these compounds can be isolated from immunosuppressed individuals. For such isolates, second-line drugs can be used, yet they frequently produce adverse side effects. Furthermore, topical antivirals for treating cutaneous HSV infections usually display poor to moderate efficacy. Hence, better or novel anti-HSV antivirals are needed and details on their mechanisms of action would be insightful for improving their efficacy and identifying specific molecular targets. Here, we review and dissect the lytic replication cycles of herpes simplex viruses, discussing key steps involved in cell infection and the processes that yield new virions. Additionally, we review and discuss rapid, easy-to-perform and simple experimental approaches for studying key steps involved in HSV replication to facilitate the identification of the mechanisms of action of anti-HSV compounds.
Collapse
Affiliation(s)
- Francisco J Ibáñez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maria P Gonzalez-Troncoso
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angello Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
28
|
CRISPR/Cas9 Mutagenesis of UL21 in Multiple Strains of Herpes Simplex Virus Reveals Differential Requirements for pUL21 in Viral Replication. Viruses 2018; 10:v10050258. [PMID: 29762484 PMCID: PMC5977251 DOI: 10.3390/v10050258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/10/2018] [Accepted: 05/13/2018] [Indexed: 02/07/2023] Open
Abstract
Studies from multiple laboratories using different strains or species of herpes simplex virus (HSV) with deletions in UL21 have yielded conflicting results regarding the necessity of pUL21 in HSV infection. To resolve this discrepancy, we utilized CRISPR/Cas9 mutagenesis to isolate pUL21 deficient viruses in multiple HSV backgrounds, and performed a side-by-side comparison of the cell-to-cell spread and replication phenotypes of these viruses. These analyses confirmed previous studies implicating the involvement of pUL21 in cell-to-cell spread of HSV. Cell-to-cell spread of HSV-2 was more greatly affected by the lack of pUL21 than HSV-1, and strain-specific differences in the requirement for pUL21 in cell-to-cell spread were also noted. HSV-2 strain 186 lacking pUL21 was particularly crippled in both cell-to-cell spread and viral replication in non-complementing cells, in comparison to other HSV strains lacking pUL21, suggesting that the strict requirement for pUL21 by strain 186 may not be representative of the HSV-2 species as a whole. This work highlights CRISPR/Cas9 technology as a useful tool for rapidly constructing deletion mutants of alphaherpesviruses, regardless of background strain, and should find great utility whenever strain-specific differences need to be investigated.
Collapse
|
29
|
The UL21 Tegument Protein of Herpes Simplex Virus 1 Is Differentially Required for the Syncytial Phenotype. J Virol 2017; 91:JVI.01161-17. [PMID: 28794039 DOI: 10.1128/jvi.01161-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/04/2017] [Indexed: 12/28/2022] Open
Abstract
The initial goal of this study was to reexamine the requirement of UL21 for herpes simplex virus 1 (HSV-1) replication. Previous studies suggested that UL21 is dispensable for replication in cell cultures, but a recent report on HSV-2 challenges those findings. As was done for the HSV-2 study, a UL21-null virus was made and propagated on complementing cells to discourage selection of compensating mutations. This HSV-1 mutant was able to replicate in noncomplementing cells, even at a low multiplicity of infection (MOI), though a reduction in titer was observed. Also, increased proportions of empty capsids were observed in the cytoplasm, suggesting a role for UL21 in preventing their exit from the nucleus. Surprisingly, passage of the null mutant resulted in rapid outgrowth of syncytial (Syn) variants. This was unexpected because UL21 has been shown to be required for the Syn phenotype. However, earlier experiments made use of only the A855V syncytial mutant of glycoprotein B (gB), and the Syn phenotype can also be produced by substitutions in glycoprotein K (gK), UL20, and UL24. Sequencing of the syncytial variants revealed mutations in the gK locus, but UL21 was shown to be dispensable for UL20Syn and UL24Syn To test whether UL21 is needed only for the A855V mutant, additional gBSyn derivatives were examined in the context of the null virus, and all produced lytic rather than syncytial sites of infection. Thus, UL21 is required only for the gBSyn phenotype. This is the first example of a differential requirement for a viral protein across the four syn loci.IMPORTANCE UL21 is conserved among alphaherpesviruses, but its role is poorly understood. This study shows that HSV-1 can replicate without UL21, although the virus titers are greatly reduced. The null virus had greater proportions of empty (DNA-less) capsids in the cytoplasm of infected cells, suggesting that UL21 may play a role in retaining them in the nucleus. This is consistent with reports showing UL21 to be capsid associated and localized to the nuclei of infected cells. UL21 also appears to be needed for viral membrane activities. It was found to be required for virus-mediated cell fusion, but only for mutants that harbor syncytial mutations in gB (not variants of gK, UL20, or UL24). The machinery needed for syncytial formation is similar to that needed for direct spread of the virus through cell junctions, and these studies show that UL21 is required for cell-to-cell spread even in the absence of syncytial mutations.
Collapse
|
30
|
Bovine herpesvirus 1 tegument protein UL21 plays critical roles in viral secondary envelopment and cell-to-cell spreading. Oncotarget 2017; 8:94462-94480. [PMID: 29212242 PMCID: PMC5706888 DOI: 10.18632/oncotarget.21776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) UL21 is a tegument protein thought to be indispensable for efficient viral growth but its precise function in BoHV-1 is currently unknown. To determine the function of UL21 in BoHV-1 replication, we constructed a mutant virus bearing a UL21 deletion (vBoHV-1-∆UL21) and its revertant virus, vBoHV-1-∆UL21R, in which the UL21 gene was restored using a bacterial artificial chromosome system. The replication of vBoHV-1-∆UL21 was 1,000-fold lower and its plaque size was 85% smaller than those of the wild-type virus (BoHV-1). An ultrastructural analysis showed that deletion of UL21 led to an un-enveloped capsid accumulation in the cytoplasm, whereas nucleocapsid egress was not impaired, suggesting that UL21 is critical for secondary envelopment in BoHV-1. Co-immunoprecipitation assays revealed that HA-tagged UL21 pulled down UL16, suggesting that these two proteins form a complex, and this was further confirmed by a co-immunofluorescence assay. Taken together, these data provide evidence that UL21 plays critical roles in BoHV-1 secondary envelopment, and UL16 is likely to be involved in these activities.
Collapse
|
31
|
The Product of the Herpes Simplex Virus 2 UL16 Gene Is Critical for the Egress of Capsids from the Nuclei of Infected Cells. J Virol 2017; 91:JVI.00350-17. [PMID: 28275195 DOI: 10.1128/jvi.00350-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/18/2022] Open
Abstract
The herpes simplex virus (HSV) UL16 gene is conserved throughout the Herpesviridae and encodes a poorly understood tegument protein. The HSV-1 UL16 protein forms complexes with several viral proteins, including UL11, gE, VP22, and UL21. We previously demonstrated that HSV-2 UL21 was essential for virus propagation due to the failure of DNA-containing capsids (C capsids) to exit the nucleus. We hypothesized that if a UL16/UL21 complex was required for nuclear egress, HSV-2 lacking UL16 would have a phenotype similar to that of HSV-2 lacking UL21. Deletion of HSV-2 UL16 (Δ16) resulted in a 950-fold reduction in virus propagation in mouse L cell fibroblasts and a 200-fold reduction in virus propagation in Vero cells that was fully reversed upon the repair of Δ16 (Δ16R) and partially reversed by infecting UL16-expressing cells with Δ16. The kinetics of viral gene expression in cells infected with Δ16 were indistinguishable from those of cells infected with Δ16R or the parental virus. Additionally, similar numbers of capsids were isolated from the nuclei of cells infected with Δ16 and the parental virus. However, transmission electron microscopy, fluorescence in situ hybridization experiments, and fluorescent capsid localization assays all indicated a reduction in the ability of Δ16 C capsids to exit the nucleus of infected cells. Taken together, these data indicate that, like UL21, UL16 is critical for HSV-2 propagation and suggest that the UL16 and UL21 proteins may function together to facilitate the nuclear egress of capsids.IMPORTANCE HSV-2 is a highly prevalent sexually transmitted human pathogen that is the main cause of genital herpes infections and is fueling the epidemic transmission of HIV in sub-Saharan Africa. Despite important differences in the pathological features of HSV-1 and HSV-2 infections, HSV-2 is understudied compared to HSV-1. Here we demonstrate that a deletion of the HSV-2 UL16 gene results in a substantial inhibition of virus replication due to a reduction in the ability of DNA-containing capsids to exit the nucleus of infected cells. The phenotype of this UL16 mutant resembles that of an HSV-2 UL21 mutant described previously by our laboratory. Because UL16 and UL21 interact, these findings suggest that a complex containing both proteins may function together in nuclear egress.
Collapse
|
32
|
Domain Interaction Studies of Herpes Simplex Virus 1 Tegument Protein UL16 Reveal Its Interaction with Mitochondria. J Virol 2017; 91:JVI.01995-16. [PMID: 27847362 DOI: 10.1128/jvi.01995-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022] Open
Abstract
The UL16 tegument protein of herpes simplex virus 1 (HSV-1) is conserved among all herpesviruses and plays many roles during replication. This protein has an N-terminal domain (NTD) that has been shown to bind to several viral proteins, including UL11, VP22, and glycoprotein E, and these interactions are negatively regulated by a C-terminal domain (CTD). Thus, in pairwise transfections, UL16 binding is enabled only when the CTD is absent or altered. Based on these results, we hypothesized that direct interactions occur between the NTD and the CTD. Here we report that the separated and coexpressed functional domains of UL16 are mutually responsive to each other in transfected cells and form complexes that are stable enough to be captured in coimmunoprecipitation assays. Moreover, we found that the CTD can associate with itself. To our surprise, the CTD was also found to contain a novel and intrinsic ability to localize to specific spots on mitochondria in transfected cells. Subsequent analyses of HSV-infected cells by immunogold electron microscopy and live-cell confocal imaging revealed a population of UL16 that does not merely accumulate on mitochondria but in fact makes dynamic contacts with these organelles in a time-dependent manner. These findings suggest that the domain interactions of UL16 serve to regulate not just the interaction of this tegument protein with its viral binding partners but also its interactions with mitochondria. The purpose of this novel interaction remains to be determined. IMPORTANCE The HSV-1-encoded tegument protein UL16 is involved in multiple events of the virus replication cycle, ranging from virus assembly to cell-cell spread of the virus, and hence it can serve as an important drug target. Unfortunately, a lack of both structural and functional information limits our understanding of this protein. The discovery of domain interactions within UL16 and the novel ability of UL16 to interact with mitochondria in HSV-infected cells lays a foundational framework for future investigations aimed at deciphering the structure and function of not just UL16 of HSV-1 but also its homologs in other herpesviruses.
Collapse
|
33
|
Assembly and Egress of an Alphaherpesvirus Clockwork. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:171-193. [PMID: 28528444 PMCID: PMC5768427 DOI: 10.1007/978-3-319-53168-7_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
All viruses produce infectious particles that possess some degree of stability in the extracellular environment yet disassemble upon cell contact and entry. For the alphaherpesviruses, which include many neuroinvasive viruses of mammals, these metastable virions consist of an icosahedral capsid surrounded by a protein matrix (referred to as the tegument) and a lipid envelope studded with glycoproteins. Whereas the capsid of these viruses is a rigid structure encasing the DNA genome, the tegument and envelope are dynamic assemblies that orchestrate a sequential series of events that ends with the delivery of the genome into the nucleus. These particles are adapted to infect two different polarized cell types in their hosts: epithelial cells and neurons of the peripheral nervous system. This review considers how the virion is assembled into a primed state and is targeted to infect these cell types such that the incoming particles can subsequently negotiate the diverse environments they encounter on their way from plasma membrane to nucleus and thereby achieve their remarkably robust neuroinvasive infectious cycle.
Collapse
|
34
|
Herpes Simplex Virus Capsid Localization to ESCRT-VPS4 Complexes in the Presence and Absence of the Large Tegument Protein UL36p. J Virol 2016; 90:7257-7267. [PMID: 27252536 PMCID: PMC4984650 DOI: 10.1128/jvi.00857-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/24/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED UL36p (VP1/2) is the largest protein encoded by herpes simplex virus 1 (HSV-1) and resides in the innermost layer of tegument, the complex protein layer between the capsid and envelope. UL36p performs multiple functions in the HSV life cycle, including a critical but unknown role in capsid cytoplasmic envelopment. We tested whether UL36p is essential for envelopment because it is required to engage capsids with the cellular ESCRT/Vps4 apparatus. A green fluorescent protein (GFP)-fused form of the dominant negative ATPase Vps4-EQ was used to irreversibly tag ESCRT envelopment sites during infection by UL36p-expressing and UL36-null HSV strains. Using fluorescence microscopy and scanning electron microscopy, we quantitated capsid/Vps4-EQ colocalization and examined the ultrastructure of the corresponding viral assembly intermediates. We found that loss of UL36p resulted in a two-thirds reduction in the efficiency of capsid/Vps4-EQ association but that the remaining UL36p-null capsids were still able to engage the ESCRT envelopment apparatus. It appears that although UL36p helps to couple HSV capsids to the ESCRT pathway, this is likely not the sole reason for its absolute requirement for envelopment. IMPORTANCE Envelopment of the HSV capsid is essential for the assembly of an infectious virion and requires the complex interplay of a large number of viral and cellular proteins. Critical to envelope assembly is the virally encoded protein UL36p, whose function is unknown. Here we test the hypothesis that UL36p is essential for the recruitment of cellular ESCRT complexes, which are also known to be required for envelopment.
Collapse
|
35
|
Metrick CM, Heldwein EE. Novel Structure and Unexpected RNA-Binding Ability of the C-Terminal Domain of Herpes Simplex Virus 1 Tegument Protein UL21. J Virol 2016; 90:5759-69. [PMID: 27053559 PMCID: PMC4886797 DOI: 10.1128/jvi.00475-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/01/2016] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Proteins forming the tegument layers of herpesviral virions mediate many essential processes in the viral replication cycle, yet few have been characterized in detail. UL21 is one such multifunctional tegument protein and is conserved among alphaherpesviruses. While UL21 has been implicated in many processes in viral replication, ranging from nuclear egress to virion morphogenesis to cell-cell spread, its precise roles remain unclear. Here we report the 2.7-Å crystal structure of the C-terminal domain of herpes simplex virus 1 (HSV-1) UL21 (UL21C), which has a unique α-helical fold resembling a dragonfly. Analysis of evolutionary conservation patterns and surface electrostatics pinpointed four regions of potential functional importance on the surface of UL21C to be pursued by mutagenesis. In combination with the previously determined structure of the N-terminal domain of UL21, the structure of UL21C provides a 3-dimensional framework for targeted exploration of the multiple roles of UL21 in the replication and pathogenesis of alphaherpesviruses. Additionally, we describe an unanticipated ability of UL21 to bind RNA, which may hint at a yet unexplored function. IMPORTANCE Due to the limited genomic coding capacity of viruses, viral proteins are often multifunctional, which makes them attractive antiviral targets. Such multifunctionality, however, complicates their study, which often involves constructing and characterizing null mutant viruses. Systematic exploration of these multifunctional proteins requires detailed road maps in the form of 3-dimensional structures. In this work, we determined the crystal structure of the C-terminal domain of UL21, a multifunctional tegument protein that is conserved among alphaherpesviruses. Structural analysis pinpointed surface areas of potential functional importance that provide a starting point for mutagenesis. In addition, the unexpected RNA-binding ability of UL21 may expand its functional repertoire. The structure of UL21C and the observation of its RNA-binding ability are the latest additions to the navigational chart that can guide the exploration of the multiple functions of UL21.
Collapse
Affiliation(s)
- Claire M Metrick
- Department of Molecular Biology and Microbiology and Graduate Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USAUniversity of California, Irvine
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology and Graduate Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USAUniversity of California, Irvine
| |
Collapse
|
36
|
Wu JJ, Avey D, Li W, Gillen J, Fu B, Miley W, Whitby D, Zhu F. ORF33 and ORF38 of Kaposi's Sarcoma-Associated Herpesvirus Interact and Are Required for Optimal Production of Infectious Progeny Viruses. J Virol 2016; 90:1741-56. [PMID: 26637455 PMCID: PMC4734004 DOI: 10.1128/jvi.02738-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/23/2015] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED We recently showed that the interaction between Kaposi's sarcoma-associated herpesvirus (KSHV) tegument proteins ORF33 and ORF45 is crucial for progeny virion production, but the exact functions of KSHV ORF33 during lytic replication were unknown (J. Gillen, W. Li, Q. Liang, D. Avey, J. Wu, F. Wu, J. Myoung, and F. Zhu, J Virol 89:4918-4931, 2015, http://dx.doi.org/10.1128/JVI.02925-14). Therefore, here we investigated the relationship between ORF33 and ORF38, whose counterparts in both alpha- and betaherpesviruses interact with each other. Using specific monoclonal antibodies, we found that both proteins are expressed during the late lytic cycle with similar kinetics and that both are present in mature virions as components of the tegument. Furthermore, we confirmed that ORF33 interacts with ORF38. Interestingly, we observed that ORF33 tightly associates with the capsid, whereas ORF38 associates with the envelope. We generated ORF33-null, ORF38-null, and double-null mutants and found that these mutants apparently have identical phenotypes: the mutations caused no apparent effect on viral gene expression but reduced the yield of progeny virion by about 10-fold. The progeny virions also lack certain virion component proteins, including ORF45. During viral lytic replication, the virions associate with cytoplasmic vesicles. We also observed that ORF38 associates with the membranes of vesicles and colocalizes with the Golgi membrane or early endosome membrane. Further analyses of ORF33/ORF38 mutants revealed the reduced production of virion-containing vesicles, suggesting that ORF33 and ORF38 are involved in the transport of newly assembled viral particles into cytoplasmic vesicles, a process important for viral maturation and egress. IMPORTANCE Herpesvirus assembly is an essential step in virus propagation that leads to the generation of progeny virions. It is a complicated process that depends on the delicate regulation of interactions among virion proteins. We previously revealed an essential role of ORF45-ORF33 binding for virus assembly. Here, we report that ORF33 and its binding partner, ORF38, are required for infectious virus production due to their important role in the tegumentation process. Moreover, we found that both ORF33 and ORF38 are involved in the transportation of virions through vesicles during maturation and egress. Our results provide new insights into the important roles of ORF33 and ORF38 during viral assembly, a process critical for virus propagation that is intimately linked to KSHV pathobiology.
Collapse
Affiliation(s)
- Jian-Jun Wu
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Denis Avey
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Wenwei Li
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Joseph Gillen
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Bishi Fu
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Wendell Miley
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
37
|
Hogue IB, Bosse JB, Engel EA, Scherer J, Hu JR, Del Rio T, Enquist LW. Fluorescent Protein Approaches in Alpha Herpesvirus Research. Viruses 2015; 7:5933-61. [PMID: 26610544 PMCID: PMC4664988 DOI: 10.3390/v7112915] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 12/28/2022] Open
Abstract
In the nearly two decades since the popularization of green fluorescent protein (GFP), fluorescent protein-based methodologies have revolutionized molecular and cell biology, allowing us to literally see biological processes as never before. Naturally, this revolution has extended to virology in general, and to the study of alpha herpesviruses in particular. In this review, we provide a compendium of reported fluorescent protein fusions to herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV) structural proteins, discuss the underappreciated challenges of fluorescent protein-based approaches in the context of a replicating virus, and describe general strategies and best practices for creating new fluorescent fusions. We compare fluorescent protein methods to alternative approaches, and review two instructive examples of the caveats associated with fluorescent protein fusions, including describing several improved fluorescent capsid fusions in PRV. Finally, we present our future perspectives on the types of powerful experiments these tools now offer.
Collapse
Affiliation(s)
- Ian B Hogue
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Jens B Bosse
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Esteban A Engel
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Julian Scherer
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Jiun-Ruey Hu
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Tony Del Rio
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Lynn W Enquist
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
38
|
Owen DJ, Crump CM, Graham SC. Tegument Assembly and Secondary Envelopment of Alphaherpesviruses. Viruses 2015; 7:5084-114. [PMID: 26393641 PMCID: PMC4584305 DOI: 10.3390/v7092861] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/22/2015] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Alphaherpesviruses like herpes simplex virus are large DNA viruses characterized by their ability to establish lifelong latent infection in neurons. As for all herpesviruses, alphaherpesvirus virions contain a protein-rich layer called "tegument" that links the DNA-containing capsid to the glycoprotein-studded membrane envelope. Tegument proteins mediate a diverse range of functions during the virus lifecycle, including modulation of the host-cell environment immediately after entry, transport of virus capsids to the nucleus during infection, and wrapping of cytoplasmic capsids with membranes (secondary envelopment) during virion assembly. Eleven tegument proteins that are conserved across alphaherpesviruses have been implicated in the formation of the tegument layer or in secondary envelopment. Tegument is assembled via a dense network of interactions between tegument proteins, with the redundancy of these interactions making it challenging to determine the precise function of any specific tegument protein. However, recent studies have made great headway in defining the interactions between tegument proteins, conserved across alphaherpesviruses, which facilitate tegument assembly and secondary envelopment. We summarize these recent advances and review what remains to be learned about the molecular interactions required to assemble mature alphaherpesvirus virions following the release of capsids from infected cell nuclei.
Collapse
Affiliation(s)
- Danielle J Owen
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Colin M Crump
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Stephen C Graham
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
39
|
Diefenbach RJ. Conserved tegument protein complexes: Essential components in the assembly of herpesviruses. Virus Res 2015; 210:308-17. [PMID: 26365681 DOI: 10.1016/j.virusres.2015.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022]
Abstract
One of the structural components of herpesviruses is a protein layer called the tegument. Several of the tegument proteins are highly conserved across the herpesvirus family and serve as a logical focus for defining critical interactions required for viral assembly. A number of studies have helped to elucidate a role for conserved tegument proteins in the process of secondary envelopment during the course of herpesviral assembly. This review highlights how these tegument proteins directly contribute to bridging the nucleocapsid and envelope of virions during secondary envelopment.
Collapse
Affiliation(s)
- Russell J Diefenbach
- Centre for Virus Research, Westmead Millennium Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
40
|
Herpes Simplex Virus Capsid-Organelle Association in the Absence of the Large Tegument Protein UL36p. J Virol 2015; 89:11372-82. [PMID: 26339048 DOI: 10.1128/jvi.01893-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/25/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED UL36p (VP1/2) is the largest protein encoded by herpes simplex virus 1 (HSV-1) and resides in the innermost layer of the viral tegument, lying between the capsid and the envelope. UL36p performs multiple functions in the HSV life cycle, including an essential role in cytoplasmic envelopment. We earlier described the isolation of a virion-associated cytoplasmic membrane fraction from HSV-infected cells. Biochemical and ultrastructural analyses showed that the organelles in this buoyant fraction contain enveloped infectious HSV particles in their lumens and naked capsids docked to their cytoplasmic surfaces. These organelles can also recruit molecular motors and transport their cargo virions along microtubules in vitro. Here we examine the properties of these HSV-associated organelles in the absence of UL36p. We find that while capsid envelopment is clearly defective, a subpopulation of capsids nevertheless still associate with the cytoplasmic faces of these organelles. The existence of these capsid-membrane structures was confirmed by subcellular fractionation, immunocytochemistry, lipophilic dye fluorescence microscopy, thin-section electron microscopy, and correlative light and electron microscopy. We conclude that capsid-membrane binding can occur in the absence of UL36p and propose that this association may precede the events of UL36p-driven envelopment. IMPORTANCE Membrane association and envelopment of the HSV capsid are essential for the assembly of an infectious virion. Envelopment involves the complex interplay of a large number of viral and cellular proteins; however, the function of most of them is unknown. One example of this is the viral protein UL36p, which is clearly essential for envelopment but plays a poorly understood role. Here we demonstrate that organelles utilized for HSV capsid envelopment still accumulate surface-bound capsids in the absence of UL36p. We propose that UL36p-independent binding of capsids to organelles occurs prior to the function of UL36p in capsid envelopment.
Collapse
|
41
|
Gammaherpesvirus Tegument Protein ORF33 Is Associated With Intranuclear Capsids at an Early Stage of the Tegumentation Process. J Virol 2015; 89:5288-97. [PMID: 25717105 DOI: 10.1128/jvi.00079-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/13/2015] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Herpesvirus nascent capsids, after assembly in the nucleus, must acquire a variety of tegument proteins during maturation. However, little is known about the identity of the tegument proteins that are associated with capsids in the nucleus or the molecular mechanisms involved in the nuclear egress of capsids into the cytoplasm, especially for the two human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), due to a lack of efficient lytic replication systems. Murine gammaherpesvirus 68 (MHV-68) is genetically related to human gammaherpesviruses and serves as an excellent model to study the de novo lytic replication of gammaherpesviruses. We have previously shown that open reading frame 33 (ORF33) of MHV-68 is a tegument protein of mature virions and is essential for virion assembly and egress. However, it remains unclear how ORF33 is incorporated into virions. In this study, we first show that the endogenous ORF33 protein colocalizes with capsid proteins at discrete areas in the nucleus during viral infection. Cosedimentation analysis as well as an immunoprecipitation assay demonstrated that ORF33 is associated with both nuclear and cytoplasmic capsids. An immunogold labeling experiment using an anti-ORF33 monoclonal antibody revealed that ORF33-rich areas in the nucleus are surrounded by immature capsids. Moreover, ORF33 is associated with nucleocapsids prior to primary envelopment as well as with mature virions in the cytoplasm. Finally, we show that ORF33 interacts with two capsid proteins, suggesting that nucleocapsids may interact with ORF33 in a direct manner. In summary, we identified ORF33 to be a tegument protein that is associated with intranuclear capsids prior to primary envelopment, likely through interacting with capsid proteins in a direct manner. IMPORTANCE Morphogenesis is an essential step in virus propagation that leads to the generation of progeny virions. For herpesviruses, this is a complicated process that starts in the nucleus. Although the process of capsid assembly and genome packaging is relatively well understood, how capsids acquire tegument (the layer between the capsid and the envelope in a herpesvirus virion) and whether the initial tegumentation process takes place in the nucleus remain unclear. We previously showed that ORF33 of MHV-68 is a tegument protein and functions in both the nuclear egress of capsids and final virion maturation in the cytoplasm. In the present study, we show that ORF33 is associated with intranuclear capsids prior to primary envelopment and identify novel interactions between ORF33 and two capsid proteins. Our work provides new insights into the association between tegument proteins and nucleocapsids at an early stage of the virion maturation process for herpesviruses.
Collapse
|
42
|
The unusual fold of herpes simplex virus 1 UL21, a multifunctional tegument protein. J Virol 2014; 89:2979-84. [PMID: 25540382 DOI: 10.1128/jvi.03516-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UL21 is a conserved protein in the tegument of alphaherpesviruses and has multiple important albeit poorly understood functions in viral replication and pathogenesis. To provide a roadmap for exploration of the multiple roles of UL21, we determined the crystal structure of its conserved N-terminal domain from herpes simplex virus 1 to 2.0-Å resolution, which revealed a novel sail-like protein fold. Evolutionarily conserved surface patches highlight residues of potential importance for future targeting by mutagenesis.
Collapse
|
43
|
Meckes DG. Affinity purification combined with mass spectrometry to identify herpes simplex virus protein-protein interactions. Methods Mol Biol 2014; 1144:209-22. [PMID: 24671686 DOI: 10.1007/978-1-4939-0428-0_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The identification and characterization of herpes simplex virus protein interaction complexes are fundamental to understanding the molecular mechanisms governing the replication and pathogenesis of the virus. Recent advances in affinity-based methods, mass spectrometry configurations, and bioinformatics tools have greatly increased the quantity and quality of protein-protein interaction datasets. In this chapter, detailed and reliable methods that can easily be implemented are presented for the identification of protein-protein interactions using cryogenic cell lysis, affinity purification, trypsin digestion, and mass spectrometry.
Collapse
Affiliation(s)
- David G Meckes
- Department of Biomedical Sciences, College of Medicine, Florida State University, 115 W. Call Street, Tallahassee, FL, 32306-4300, USA,
| |
Collapse
|
44
|
Long D, Skoberne M, Gierahn TM, Larson S, Price JA, Clemens V, Baccari AE, Cohane KP, Garvie D, Siber GR, Flechtner JB. Identification of novel virus-specific antigens by CD4⁺ and CD8⁺ T cells from asymptomatic HSV-2 seropositive and seronegative donors. Virology 2014; 464-465:296-311. [PMID: 25108380 DOI: 10.1016/j.virol.2014.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/12/2014] [Accepted: 07/11/2014] [Indexed: 10/24/2022]
Abstract
Reactivation of latent herpes simplex virus 2 (HSV-2) infections can be characterized by episodic recurrent genital lesions and/or viral shedding. We hypothesize that infected (HSV-2(pos)) asymptomatic individuals have acquired T cell responses to specific HSV-2 antigen(s) that may be an important factor in controlling their recurrent disease symptoms. Our proteomic screening technology, ATLAS, was used to characterize the antigenic repertoire of T cell responses in infected (HSV-2(pos)) and virus-exposed seronegative (HSV-2(neg)) subjects. T cell responses, determined by IFN-γ secretion, were generated to gL, UL2, UL11, UL21, ICP4, ICP0, ICP47 and UL40 with greater magnitude and/or frequency among cohorts of exposed HSV-2(neg) or asymptomatic HSV-2(pos) individuals, compared to symptomatic recurrent HSV-2(pos) subjects. T cell antigens recognized preferentially among individuals who are resistant to infection or who are infected and have mild or no clinical disease may provide new targets for the design of vaccines aimed at treating and/or preventing HSV-2 infection.
Collapse
|
45
|
Varicella-zoster virus ORF49 functions in the efficient production of progeny virus through its interaction with essential tegument protein ORF44. J Virol 2013; 88:188-201. [PMID: 24155375 DOI: 10.1128/jvi.02245-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The ORF49 tegument protein of varicella-zoster virus (VZV) is one of the core gene products that is conserved among herpesvirus family members. Although ORF49 is known to be a cell-tropic factor, its detailed functions remain elusive. ORF44 is another core gene product reported to be essential, although its characterization and detailed functional analysis have not been reported. These two core gene products form a complex in other herpesviruses beyond the host species and herpesvirus subfamilies. Here, we show that complex formation between ORF44 and ORF49 is conserved in VZV. We serendipitously found that binding is eliminated by an amino acid substitution at position 129 (phenylalanine 129), and four amino acids in the carboxyl-terminal half of the acidic cluster in ORF49 (i.e., aspartate-phenylalanine-aspartate-glutamate from positions 41 to 44 [41DFDE44]) were identified as its binding motif. Alanine substitutions in each domain rendered the ORF44F129A mutation lethal for VZV, similar to deletion of the entire ORF44. The phenotype of the ORF49-41AAAA44 mutation was comparable to that of the ORF49-defective virus, including small-plaque formation, impaired growth, and low infectious virus production. These results suggest that the interaction between ORF44 and ORF49 is essential for their role in VZV infection and that ORF49 is required for the efficient production of infectious progeny virus mediated by the conserved interaction between the two proteins.
Collapse
|
46
|
Elucidation of the block to herpes simplex virus egress in the absence of tegument protein UL16 reveals a novel interaction with VP22. J Virol 2013; 88:110-9. [PMID: 24131716 DOI: 10.1128/jvi.02555-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UL16 is a tegument protein of herpes simplex virus (HSV) that is conserved among all members of the Herpesviridae, but its function is poorly understood. Previous studies revealed that UL16 is associated with capsids in the cytoplasm and interacts with the membrane protein UL11, which suggested a "bridging" function during cytoplasmic envelopment, but this conjecture has not been tested. To gain further insight, cells infected with UL16-null mutants were examined by electron microscopy. No defects in the transport of capsids to cytoplasmic membranes were observed, but the wrapping of capsids with membranes was delayed. Moreover, clusters of cytoplasmic capsids were often observed, but only near membranes, where they were wrapped to produce multiple capsids within a single envelope. Normal virion production was restored when UL16 was expressed either by complementing cells or from a novel position in the HSV genome. When the composition of the UL16-null viruses was analyzed, a reduction in the packaging of glycoprotein E (gE) was observed, which was not surprising, since it has been reported that UL16 interacts with this glycoprotein. However, levels of the tegument protein VP22 were also dramatically reduced in virions, even though this gE-binding protein has been shown not to depend on its membrane partner for packaging. Cotransfection experiments revealed that UL16 and VP22 can interact in the absence of other viral proteins. These results extend the UL16 interaction network beyond its previously identified binding partners to include VP22 and provide evidence that UL16 plays an important function at the membrane during virion production.
Collapse
|
47
|
Abstract
Herpes simplex virus 2 (HSV-2) is an important human pathogen that is the major cause of genital herpes infections and a significant contributor to the epidemic spread of human immunodeficiency virus infections. The UL21 gene is conserved throughout the Alphaherpesvirinae subfamily and encodes a tegument protein that is dispensable for HSV-1 and pseudorabies virus replication in cultured cells; however, its precise functions have not been determined. To investigate the role of UL21 in the HSV-2 replicative cycle, we constructed a UL21 deletion virus (HSV-2 ΔUL21) using an HSV-2 bacterial artificial chromosome, pYEbac373. HSV-2 ΔUL21 was unable to direct the production of infectious virus in noncomplementing cells, whereas the repaired HSV-2 ΔUL21 strain grew to wild-type (WT) titers, indicating that UL21 is essential for virus propagation. Cells infected with HSV-2 ΔUL21 demonstrated a 2-h delay in the kinetics of immediate early viral gene expression. However, this delay in gene expression was not responsible for the inability of cells infected with HSV-2 ΔUL21 to produce virus insofar as late viral gene products accumulated to WT levels by 24 h postinfection (hpi). Electron and fluorescence microscopy studies indicated that DNA-containing capsids formed in the nuclei of ΔUL21-infected cells, while significantly reduced numbers of capsids were located in the cytoplasm late in infection. Taken together, these data indicate that HSV-2 UL21 has an early function that facilitates viral gene expression as well as a late essential function that promotes the egress of capsids from the nucleus.
Collapse
|
48
|
Neira JL. Fluorescence, circular dichroism and mass spectrometry as tools to study virus structure. Subcell Biochem 2013; 68:177-202. [PMID: 23737052 DOI: 10.1007/978-94-007-6552-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Fluorescence and circular dichroism, as analytical spectroscopic techniques, and mass spectrometry as an analytical tool to determine the molecular mass, provide important biophysical approaches in structural virology. Although they do not provide atomic, or near-atomic, details as electron microscopy, X-ray crystallography or nuclear magnetic resonance spectroscopy can do, they do provide important insights into virus particle composition, structure, conformational stability and dynamics, assembly and maturation, and interactions with other viral and cellular biomolecules. They can be used also to investigate the molecular determinants of virus particle structure and properties, and the changes induced in them by external factors. In this chapter, I describe the physical bases of these three techniques, and some examples on how they have helped us to understand virus particle structure and physicochemical properties.
Collapse
Affiliation(s)
- José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain,
| |
Collapse
|
49
|
Muto Y, Goshima F, Ushijima Y, Kimura H, Nishiyama Y. Generation and Characterization of UL21-Null Herpes Simplex Virus Type 1. Front Microbiol 2012; 3:394. [PMID: 23162546 PMCID: PMC3499793 DOI: 10.3389/fmicb.2012.00394] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 10/26/2012] [Indexed: 01/18/2023] Open
Abstract
UL21 of herpes simplex virus type 1 (HSV-1) is an accessory gene that encodes a component of the tegument. Homologs of this protein have been identified in the alpha, beta, and gamma herpesvirus subfamilies, although their functions are unclear. To clarify the functions of UL21, we generated a UL21-null HSV-1 mutant. Growth analysis showed that the synthesis of infectious UL21-null HSV-1 in glial cells was delayed and that the overall yield was low. The plaque sizes of the UL21-null mutant were smaller than those of wild-type HSV-1. We identified several candidate UL21-interacting proteins, including intermediate filaments, by yeast two-hybrid screening. The distribution of glial fibrillary acidic protein (GFAP), which is the main component of intermediate filaments, was altered in UL21-null mutant-infected glial cells compared to wild-type virus-infected cells. These results will help clarify the function of UL21 and broaden our understanding of the life cycle of HSV.
Collapse
Affiliation(s)
- Yoshifumi Muto
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | | | | | | | | |
Collapse
|
50
|
Function of glycoprotein E of herpes simplex virus requires coordinated assembly of three tegument proteins on its cytoplasmic tail. Proc Natl Acad Sci U S A 2012; 109:19798-803. [PMID: 23150560 DOI: 10.1073/pnas.1212900109] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glycoprotein E (gE) of HSV plays a key role in cell-to-cell spread and virus-induced cell fusion. Here, we report that this function of gE requires the cooperation of tegument proteins UL11, UL16, and UL21. We found that the four proteins come together with very high efficiency to form a complex in transfected cells and in a manner that is regulated and coordinated. In particular, the inefficient interaction of UL16 with each membrane protein (UL11 and gE) observed in pairwise transfections became efficient when other binding partners were present. The significance of these interactions was revealed in studies of viral mutants, which showed that each of these tegument proteins is critical for processing, transport, and biological activity of gE. These findings provide insights into the mechanisms of how gE executes its function and also have implications in understanding HSV assembly and budding.
Collapse
|