1
|
Virion structure and in vitro genome release mechanism of dicistrovirus Kashmir bee virus. J Virol 2021; 95:JVI.01950-20. [PMID: 33658338 PMCID: PMC8139710 DOI: 10.1128/jvi.01950-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infections of Kashmir bee virus (KBV) are lethal for honeybees and have been associated with colony collapse disorder. KBV and closely related viruses contribute to the ongoing decline in the number of honeybee colonies in North America, Europe, Australia, and other parts of the world. Despite the economic and ecological impact of KBV, its structure and infection process remain unknown. Here we present the structure of the virion of KBV determined to a resolution of 2.8 Å. We show that the exposure of KBV to acidic pH induces a reduction in inter-pentamer contacts within capsids and the reorganization of its RNA genome from a uniform distribution to regions of high and low density. Capsids of KBV crack into pieces at acidic pH, resulting in the formation of open particles lacking pentamers of capsid proteins. The large openings of capsids enable the rapid release of genomes and thus limit the probability of their degradation by RNases. The opening of capsids may be a shared mechanism for the genome release of viruses from the family Dicistroviridae ImportanceThe western honeybee (Apis mellifera) is indispensable for maintaining agricultural productivity as well as the abundance and diversity of wild flowering plants. However, bees suffer from environmental pollution, parasites, and pathogens, including viruses. Outbreaks of virus infections cause the deaths of individual honeybees as well as collapses of whole colonies. Kashmir bee virus has been associated with colony collapse disorder in the US, and no cure of the disease is currently available. Here we report the structure of an infectious particle of Kashmir bee virus and show how its protein capsid opens to release the genome. Our structural characterization of the infection process determined that therapeutic compounds stabilizing contacts between pentamers of capsid proteins could prevent the genome release of the virus.
Collapse
|
2
|
Škubník K, Sukeník L, Buchta D, Füzik T, Procházková M, Moravcová J, Šmerdová L, Přidal A, Vácha R, Plevka P. Capsid opening enables genome release of iflaviruses. SCIENCE ADVANCES 2021; 7:7/1/eabd7130. [PMID: 33523856 PMCID: PMC7775750 DOI: 10.1126/sciadv.abd7130] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/11/2020] [Indexed: 05/29/2023]
Abstract
The family Iflaviridae includes economically important viruses of the western honeybee such as deformed wing virus, slow bee paralysis virus, and sacbrood virus. Iflaviruses have nonenveloped virions and capsids organized with icosahedral symmetry. The genome release of iflaviruses can be induced in vitro by exposure to acidic pH, implying that they enter cells by endocytosis. Genome release intermediates of iflaviruses have not been structurally characterized. Here, we show that conformational changes and expansion of iflavirus RNA genomes, which are induced by acidic pH, trigger the opening of iflavirus particles. Capsids of slow bee paralysis virus and sacbrood virus crack into pieces. In contrast, capsids of deformed wing virus are more flexible and open like flowers to release their genomes. The large openings in iflavirus particles enable the fast exit of genomes from capsids, which decreases the probability of genome degradation by the RNases present in endosomes.
Collapse
Affiliation(s)
- Karel Škubník
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Lukáš Sukeník
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Department of Condensed Matter Physics and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - David Buchta
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Michaela Procházková
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jana Moravcová
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Lenka Šmerdová
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Antonín Přidal
- Department of Zoology, Fishery, Hydrobiology, and Apidology, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1/1665, 613 00 Brno, Czech Republic
| | - Robert Vácha
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Department of Condensed Matter Physics and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
3
|
Fernandez de la Mora J, Perez-Lorenzo LJ, Wick D. Singularly Narrow Viral Size and Mobility Standards from the 38.3 nm Chronic Bee Paralysis Virus and Its 17.5 nm Satellite. Anal Chem 2020; 92:13896-13903. [PMID: 32969651 DOI: 10.1021/acs.analchem.0c02687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The chronic bee paralysis virus (CBPV), extracted from sick or dead bees, was studied by mobility measurements via electrospray charge reduction with a differential mobility analyzer (DMA) of unusually high resolution. Three different particles are observed. The most abundant one contributes a mobility peak at 38.3 nm, approximately as expected for CBPV. The peak is very sharp in spite of the nonisometric nature of CBPV. We also observe a previously unreported weaker well-resolved shoulder 4.8% more mobile, perhaps due to empty (genome-free) particles. Another sharp peak appearing at approximately 17.51 nm is likely associated with the known icosahedral CBPV satellite (CBPVS). The 17.51 and 38.3 nm peaks offer size and mobility standards much narrower than previously reported at any size above 5 nm, with relative full peak width at half-maximum (FWHM) in mobility approaching 2% (∼1% in diameter). Slight but clear imperfections in the DMA response and the electrospraying process suggest that the real width of the viral mobility distribution is less than 2%.
Collapse
Affiliation(s)
- Juan Fernandez de la Mora
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, United States
| | - Luis Javier Perez-Lorenzo
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, United States
| | - David Wick
- BVS, Inc., Stevensville, Montana 59870, United States
| |
Collapse
|
4
|
Virion structures and genome delivery of honeybee viruses. Curr Opin Virol 2020; 45:17-24. [PMID: 32679289 DOI: 10.1016/j.coviro.2020.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 10/23/2022]
Abstract
The western honeybee is the primary pollinator of numerous food crops. Furthermore, honeybees are essential for ecosystem stability by sustaining the diversity and abundance of wild flowering plants. However, the worldwide population of honeybees is under pressure from environmental stress and pathogens. Viruses from the families Iflaviridae and Dicistroviridae, together with their vector, the parasitic mite Varroa destructor, are the major threat to the world's honeybees. Dicistroviruses and iflaviruses have capsids with icosahedral symmetries. Acidic pH triggers the genome release of both dicistroviruses and iflaviruses. The capsids of iflaviruses expand, whereas those of dicistroviruses remain compact until the genome release. Furthermore, dicistroviruses use inner capsid proteins, whereas iflaviruses employ protruding domains or minor capsid proteins from the virion surface to penetrate membranes and deliver their genomes into the cell cytoplasm. The structural characterization of the infection process opens up possibilities for the development of antiviral compounds.
Collapse
|
5
|
Subramanian S, Maurer AC, Bator CM, Makhov AM, Conway JF, Turner KB, Marden JH, Vandenberghe LH, Hafenstein SL. Filling Adeno-Associated Virus Capsids: Estimating Success by Cryo-Electron Microscopy. Hum Gene Ther 2019; 30:1449-1460. [PMID: 31530236 DOI: 10.1089/hum.2019.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adeno-associated viruses (AAVs) have been employed successfully as gene therapy vectors in treating various genetic diseases for almost two decades. However, transgene packaging is usually imperfect, and developing a rapid and accurate method for measuring the proportion of DNA encapsidation is an important step for improving the downstream process of large scale vector production. In this study, we used two-dimensional class averages and three-dimensional classes, intermediate outputs in the single particle cryo-electron microscopy (cryo-EM) image reconstruction pipeline, to determine the proportion of DNA-packaged and empty capsid populations. Two different preparations of AAV3 were analyzed to estimate the minimum number of particles required to be sampled by cryo-EM in order for robust calculation of the proportion of the full versus empty capsids in any given sample. Cost analysis applied to the minimum amount of data required for a valid ratio suggests that cryo-EM is an effective approach to analyze vector preparations.
Collapse
Affiliation(s)
- Suriyasri Subramanian
- Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Anna C Maurer
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Ophthalmology, Harvard Medical School, Ocular Genomics Institute, Boston, Massachusetts.,The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Carol M Bator
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania
| | - Alexander M Makhov
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kevin B Turner
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James H Marden
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania.,Department of Biology, Pennsylvania State University, University Park, Pennsylvania
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Ophthalmology, Harvard Medical School, Ocular Genomics Institute, Boston, Massachusetts.,The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Susan L Hafenstein
- Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
6
|
Acosta-Reyes F, Neupane R, Frank J, Fernández IS. The Israeli acute paralysis virus IRES captures host ribosomes by mimicking a ribosomal state with hybrid tRNAs. EMBO J 2019; 38:e102226. [PMID: 31609474 PMCID: PMC6826211 DOI: 10.15252/embj.2019102226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/02/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022] Open
Abstract
Colony collapse disorder (CCD) is a multi-faceted syndrome decimating bee populations worldwide, and a group of viruses of the widely distributed Dicistroviridae family have been identified as a causing agent of CCD. This family of viruses employs non-coding RNA sequences, called internal ribosomal entry sites (IRESs), to precisely exploit the host machinery for viral protein production. Using single-particle cryo-electron microscopy (cryo-EM), we have characterized how the IRES of Israeli acute paralysis virus (IAPV) intergenic region captures and redirects translating ribosomes toward viral RNA messages. We reconstituted two in vitro reactions targeting a pre-translocation and a post-translocation state of the IAPV-IRES in the ribosome, allowing us to identify six structures using image processing classification methods. From these, we reconstructed the trajectory of IAPV-IRES from the early small subunit recruitment to the final post-translocated state in the ribosome. An early commitment of IRES/ribosome complexes for global pre-translocation mimicry explains the high efficiency observed for this IRES. Efforts directed toward fighting CCD by targeting the IAPV-IRES using RNA-interference technology are underway, and the structural framework presented here may assist in further refining these approaches.
Collapse
Affiliation(s)
- Francisco Acosta-Reyes
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Ritam Neupane
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Israel S Fernández
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
7
|
Conformational Changes and Nuclear Entry of Porcine Circovirus without Disassembly. J Virol 2019; 93:JVI.00824-19. [PMID: 31341057 DOI: 10.1128/jvi.00824-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/10/2019] [Indexed: 12/29/2022] Open
Abstract
A relatively stable and flexible capsid is critical to the viral life cycle. However, the capsid dynamics and cytosol trafficking of porcine circovirus type 2 (PCV2) during its infectious cycle are poorly understood. Here, we report the structural stability and conformation flexibility of PCV2 virions by genome labeling and the use of three monoclonal antibodies (MAbs) against the native capsid of PCV2. Genome labeling showed that the infectivity of the PCV2 virion was not affected by conjugation with deoxy-5-ethynylcytidine (EdC). Heat stability experiments indicated that PCV2 capsids started to disassemble at 65°C, causing binding incompetence for all antibodies, and the viral genome was released without capsid disassembly upon heating at 60°C. Antibody binding experiments with PCV2 showed that residues 186 to 192 were concealed in the early endosomes of epithelial PK-15 and monocytic 3D4/31 cells with or without chloroquine treatment and then exposed in PK-15 cytosol and the 3D4/31 nucleus. Viral propagation and localization experiments showed that PCV2 replication and cytosol trafficking were not significantly affected by microtubule depolymerization in monocytic 3D4/31 cells treated with nocodazole. These findings demonstrated that nuclear targeting of viral capsids involved conformational changes, the PCV2 genome was released from the assembled capsid, and the transit of PCV2 particles was independent of microtubules in 3D4/31 cells.IMPORTANCE Circovirus is the smallest virus known to replicate autonomously. Knowledge of viral genome release may provide understanding of viral replication and a method to artificially inactivate viral particles. Currently, little is known about the release model of porcine circovirus type 2 (PCV2). Here, we report the release of the PCV2 genome from assembled capsid and the intracellular trafficking of infectious PCV2 by alterations in the capsid conformation. Knowledge of PCV2 capsid stability and dynamics is essential to understanding its infectious cycle and lays the foundation for discovering powerful targets for therapeutic and prophylactic intervention.
Collapse
|
8
|
Viso JF, Belelli P, Machado M, González H, Pantano S, Amundarain MJ, Zamarreño F, Branda MM, Guérin DMA, Costabel MD. Multiscale modelization in a small virus: Mechanism of proton channeling and its role in triggering capsid disassembly. PLoS Comput Biol 2018; 14:e1006082. [PMID: 29659564 PMCID: PMC5919690 DOI: 10.1371/journal.pcbi.1006082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 04/26/2018] [Accepted: 03/09/2018] [Indexed: 12/04/2022] Open
Abstract
In this work, we assess a previously advanced hypothesis that predicts the existence of ion channels in the capsid of small and non-enveloped icosahedral viruses. With this purpose we examine Triatoma Virus (TrV) as a case study. This virus has a stable capsid under highly acidic conditions but disassembles and releases the genome in alkaline environments. Our calculations range from a subtle sub-atomic proton interchange to the dismantling of a large-scale system representing several million of atoms. Our results provide structure-based explanations for the three roles played by the capsid to enable genome release. First, we observe, for the first time, the formation of a hydrophobic gate in the cavity along the five-fold axis of the wild-type virus capsid, which can be disrupted by an ion located in the pore. Second, the channel enables protons to permeate the capsid through a unidirectional Grotthuss-like mechanism, which is the most likely process through which the capsid senses pH. Finally, assuming that the proton leak promotes a charge imbalance in the interior of the capsid, we model an internal pressure that forces shell cracking using coarse-grained simulations. Although qualitatively, this last step could represent the mechanism of capsid opening that allows RNA release. All of our calculations are in agreement with current experimental data obtained using TrV and describe a cascade of events that could explain the destabilization and disassembly of similar icosahedral viruses. Plant and animal small non-enveloped viruses are composed of a capsid shell that encloses the genome. One of the multiple functions played by the capsid is to protect the genome against host defenses and to withstand environmental aggressions, such as dehydration. This highly specialized capsule selectively recognizes and binds to the target tissue infected by the virus. In the viral cycle, the ultimate function of the capsid is to release the genome. Observations of many viruses demonstrate that the pH of the medium can trigger genome release. Nevertheless, the mechanism underlying this process at the atomic level is poorly understood. In this work, we computationally modeled the mechanism by which the capsid senses environmental pH and the destabilization process that permits genome release. Our calculations predict that a cavity that traverses the capsid functions as a hydrophobic gate, a feature already observed in membrane ion channels. Moreover, our results predict that this cavity behaves as a proton diode because the proton transit can only occur from the capsid interior to the exterior. In turn, our calculations describe a cascade of events that could explain the destabilization and dismantling of an insect virus, but this description could also apply to many vertebrate viruses.
Collapse
Affiliation(s)
- Juan Francisco Viso
- Departamento de Física (DF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- DF-UNS, Grupo de Biofísica, Instituto de Física del Sur (IFISUR, UNS/CONICET), Bahía Blanca, Argentina
| | - Patricia Belelli
- DF-UNS, Grupo de Materiales y Sistemas Catalíticos (GRUMASICA), IFISUR, Bahía Blanca, Argentina
| | - Matías Machado
- Grupo de Simulaciones Biomoleculares, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Humberto González
- Grupo de Simulaciones Biomoleculares, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sergio Pantano
- Grupo de Simulaciones Biomoleculares, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María Julia Amundarain
- Departamento de Física (DF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- DF-UNS, Grupo de Biofísica, Instituto de Física del Sur (IFISUR, UNS/CONICET), Bahía Blanca, Argentina
| | - Fernando Zamarreño
- Departamento de Física (DF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- DF-UNS, Grupo de Biofísica, Instituto de Física del Sur (IFISUR, UNS/CONICET), Bahía Blanca, Argentina
| | - Maria Marta Branda
- Departamento de Física (DF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- DF-UNS, Grupo de Materiales y Sistemas Catalíticos (GRUMASICA), IFISUR, Bahía Blanca, Argentina
| | - Diego M. A. Guérin
- Instituto Biofisika (UPV/EHU, CSIC), Department of Biochemistry and Molecular Biology, University of the Basque Country (EHU), Barrio Sarriena S/N, Leioa, Vizcaya, Spain
- * E-mail: (MDC); (DMAG)
| | - Marcelo D. Costabel
- Departamento de Física (DF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- DF-UNS, Grupo de Biofísica, Instituto de Física del Sur (IFISUR, UNS/CONICET), Bahía Blanca, Argentina
- * E-mail: (MDC); (DMAG)
| |
Collapse
|
9
|
Breach: Host Membrane Penetration and Entry by Nonenveloped Viruses. Trends Microbiol 2017; 26:525-537. [PMID: 29079499 DOI: 10.1016/j.tim.2017.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/06/2017] [Accepted: 09/26/2017] [Indexed: 11/22/2022]
Abstract
Disruption of host membranes by nonenveloped viruses, which allows the nucleocapsid or genome to enter the cytosol, is a mechanistically diverse process. Although the membrane-penetrating agents are usually small, hydrophobic or amphipathic peptides deployed from the capsid interior during entry, their manner of membrane interaction varies substantially. In this review, we discuss recent data about the molecular pathways for externalization of viral peptides amidst conformational alterations in the capsid, as well as mechanisms of membrane penetration, which is influenced by structural features of the peptides themselves as well as physicochemical properties of membranes, and other host factors. The membrane-penetrating components of nonenveloped viruses constitute an interesting class of cell-penetrating peptides, and may have potential therapeutic value for gene transfer.
Collapse
|