1
|
Dorfman B, Marcos-Hadad E, Tadmor-Levi R, David L. Disease resistance and infectivity of virus susceptible and resistant common carp strains. Sci Rep 2024; 14:4677. [PMID: 38409362 PMCID: PMC10897132 DOI: 10.1038/s41598-024-55133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/20/2024] [Indexed: 02/28/2024] Open
Abstract
Infectious diseases challenge health and welfare of humans and animals. Unlike for humans, breeding of genetically resistant animals is a sustainable solution, also providing unique research opportunities. Chances to survive a disease are improved by disease resistance, but depend also on chances to get infected and infect others. Considerable knowledge exists on chances of susceptible and resistant animals to survive a disease, yet, almost none on their infectivity and if and how resistance and infectivity correlate. Common carp (Cyprinus carpio) is widely produced in aquaculture, suffering significantly from a disease caused by cyprinid herpes virus type 3 (CyHV-3). Here, the infectivity of disease-resistant and susceptible fish types was tested by playing roles of shedders (infecting) and cohabitants (infected) in all four type-role combinations. Resistant shedders restricted spleen viral load and survived more than susceptible ones. However, mortality of susceptible cohabitants infected by resistant shedders was lower than that of resistant cohabitants infected by susceptible shedders. Virus levels in water were lower in tanks with resistant shedders leading to lower spleen viral loads in cohabitants. Thus, we empirically demonstrated that disease resistant fish survive better and infect less, with implications to epidemiology in general and to the benefit of aquaculture production.
Collapse
Affiliation(s)
- Batya Dorfman
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Evgeniya Marcos-Hadad
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Roni Tadmor-Levi
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior David
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
2
|
Tolo IE, Bajer PG, Wolf TM, Mor SK, Phelps NBD. Investigation of Cyprinid Herpesvirus 3 (CyHV-3) Disease Periods and Factors Influencing CyHV-3 Transmission in A Low Stocking Density Infection Trial. Animals (Basel) 2021; 12:ani12010002. [PMID: 35011108 PMCID: PMC8749781 DOI: 10.3390/ani12010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Pathogens are the primary limitation to aquaculture production of fish and a major issue in consideration of the interface between cultured and wild populations of fishes worldwide. While rapid spread of fish pathogens between populations (wild or farmed) is generally anthropogenic and the result of trade, the mechanisms of transmission once a pathogen has been introduced to a fish population are not well understood. The most widespread pathogen impacting both aquaculture and wild populations of common carp (Cyprinus carpio, carp) is Cyprinid herpesvirus 3 (CyHV-3). To understand how CyHV-3 is transmitted in a population we conducted a series of infection trials, designed to determine the kinetics CyHV-3 infections, identify the contributions of direct and indirect forms of CyHV-3 transmission, and to determine the contributions of contact rate, viral load, pathogenicity, and contact type. We found that direct contact between fish was the primary mechanism of CyHV-3 transmission rather than transmission through contaminated water. Additionally, CyHV-3 transmission occurred primarily during the incubation period of CyHV-3, prior to the appearance of disease signs and disease-associated reduction in contact rate. Abstract Cyprinid herpesvirus 3 (CyHV-3) is the etiological agent of koi herpesvirus disease (KHVD) and important pathogen of aquaculture and wild populations of common carp worldwide. Understanding the relative contributions of direct and indirect transmission of CyHV-3 as well as the factors that drive CyHV-3 transmission can clarify the importance of environmental disease vectors and is valuable for informing disease modeling efforts. To study the mechanisms and factors driving CyHV-3 transmission we conducted infection trials that determined the kinetics of KHVD and the contributions of direct and indirect forms of CyHV-3 transmission, as well as the contributions of contact rate, viral load, pathogenicity and contact type. The incubation period of KHVD was 5.88 + 1.75 days and the symptomatic period was 5.31 + 0.87 days. Direct transmission was determined to be the primary mechanism of CyHV-3 transmission (OR = 25.08, 95%CI = 10.73–99.99, p = 4.29 × 10−18) and transmission primarily occurred during the incubation period of KHVD. Direct transmission decreased in the symptomatic period of disease. Transmissibility of CyHV-3 and indirect transmission increased during the symptomatic period of disease, correlating with increased viral loads. Additionally, potential virulence-transmission tradeoffs and disease avoidance behaviors relevant to CyHV-3 transmission were identified.
Collapse
Affiliation(s)
- Isaiah E. Tolo
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Przemyslaw G. Bajer
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Tiffany M. Wolf
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Sunil K. Mor
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Nicholas B. D. Phelps
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA
- Correspondence:
| |
Collapse
|
3
|
McDermott C, Palmeiro B. Updates on Selected Emerging Infectious Diseases of Ornamental Fish. Vet Clin North Am Exot Anim Pract 2020; 23:413-428. [PMID: 32327045 DOI: 10.1016/j.cvex.2020.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Emerging infectious diseases of ornamental fish are discussed with special focus on clinical relevance, detection, and treatment, where applicable. Important emerging infectious diseases of fish include goldfish herpesvirus, koi herpesvirus, carp edema virus, Erysipelothrix, Edwardsiella ictaluri, Edwardseilla piscicida, and Francisella. Some diseases are more species or genus specific, but many emerging diseases do not seem to have a species preference and affect a variety of species worldwide. Proper husbandry and biosecurity with a disease detection plan for ornamental fish is essential to monitor and prevent future outbreaks.
Collapse
Affiliation(s)
- Colin McDermott
- Zodiac Pet and Exotic Hospital, Victoria Centre, Shop 101A, 1/F, 15 Watson Road, Fortress Hill, Hong Kong.
| | - Brian Palmeiro
- Lehigh Valley Veterinary Dermatology & Fish Hospital, Pet Fish Doctor, 4580 Crackersport Road, Allentown, PA 18104, USA
| |
Collapse
|
4
|
Different in vivo growth of ostreid herpesvirus 1 at 18 °C and 22 °C alters mortality of Pacific oysters (Crassostrea gigas). Arch Virol 2019; 164:3035-3043. [PMID: 31602543 DOI: 10.1007/s00705-019-04427-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/09/2019] [Indexed: 01/29/2023]
Abstract
Seasonally recurrent outbreaks of mass mortality in Pacific oysters (Crassostrea gigas) caused by microvariant genotypes of ostreid herpesvirus 1 (OsHV-1) occur in Europe, New Zealand and Australia. The incubation period for OsHV-1 under experimental conditions is 48-72 hours and depends on water temperature, as does the mortality. An in vivo growth curve for OsHV-1 was determined by quantifying OsHV-1 DNA at 10 time points between 2 and 72 hours after exposure to OsHV-1. The peak replication rate was the same at 18 °C and 22 °C; however, there was a longer period of amplification leading to a higher peak concentration at 22 °C (2.34 × 107 copies/mg at 18 hours) compared to 18 °C (1.38 × 105 copies/mg at 12 hours). The peak viral concentration preceded mortality by 72 hours and 20 hours at 18 °C and 22 °C, respectively. Cumulative mortality to day 14 was 45.9% at 22 °C compared to 0.3% at 18 °C. The prevalence of OsHV-1 infection after 14 days at 18 °C was 33.3%. No mortality from OsHV-1 occurred when the water temperature in tanks of oysters challenged at 18 °C was increased to 22 °C for 14 days. The influence of water temperature prior to exposure to OsHV-1 and during the initial virus replication is an important determinant of the outcome of infection in C. gigas.
Collapse
|
5
|
Bergmann SM, Wang Q, Zeng W, Li Y, Wang Y, Matras M, Reichert M, Fichtner D, Lenk M, Morin T, Olesen NJ, Skall HF, Lee PY, Zheng S, Monaghan S, Reiche S, Fuchs W, Kotler M, Way K, Bräuer G, Böttcher K, Kappe A, Kielpinska J. Validation of a KHV antibody enzyme-linked immunosorbent assay (ELISA). JOURNAL OF FISH DISEASES 2017; 40:1511-1527. [PMID: 28470973 DOI: 10.1111/jfd.12621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 06/07/2023]
Abstract
Koi herpesvirus (KHV) causes KHV disease (KHVD). The virus is highly contagious in carp or koi and can induce a high mortality. Latency and, in some cases, a lack of signs presents a challenge for virus detection. Appropriate immunological detection methods for anti-KHV antibodies have not yet been fully validated for KHV. Therefore, it was developed and validated an enzyme-linked immunosorbent assay (ELISA) to detect KHV antibodies. The assay was optimized with respect to plates, buffers, antigens and assay conditions. It demonstrated high diagnostic and analytical sensitivity and specificity and was particularly useful at the pond or farm levels. Considering the scale of the carp and koi industry worldwide, this assay represents an important practical tool for the indirect detection of KHV, also in the absence of clinical signs.
Collapse
Affiliation(s)
- S M Bergmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Q Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences Fisheries Research Institute, Guangzhou, China
| | - W Zeng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences Fisheries Research Institute, Guangzhou, China
| | - Y Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences Fisheries Research Institute, Guangzhou, China
| | - Y Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences Fisheries Research Institute, Guangzhou, China
| | - M Matras
- Department of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - M Reichert
- Department of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - D Fichtner
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - M Lenk
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - T Morin
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES) Ploufragan, Ploufragan, France
| | - N J Olesen
- Section for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | - H F Skall
- Section for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | - P-Y Lee
- Department of Research and Development, GeneReach Biotechnology Corporation, Taichung, Taiwan, China
| | - S Zheng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences Fisheries Research Institute, Guangzhou, China
| | - S Monaghan
- Aquatic Vaccine Unit, School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, UK
| | - S Reiche
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - W Fuchs
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - M Kotler
- Department of Pathology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - K Way
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | - G Bräuer
- Fish Health Service Saxony, Dresden, Germany
| | - K Böttcher
- Fish Health Service Saxony, Dresden, Germany
| | - A Kappe
- Fish Health Service Thuringia, Bad Langensalza, Germany
| | - J Kielpinska
- Department of Faculty of Aquaculture, Food Science and Fisheries, West Pomeranian University of Technology, Szczecin, Poland
| |
Collapse
|
6
|
Reichert M, Bergmann SM, Hwang J, Buchholz R, Lindenberger C. Antiviral activity of exopolysaccharides from Arthrospira platensis against koi herpesvirus. JOURNAL OF FISH DISEASES 2017; 40:1441-1450. [PMID: 28422294 DOI: 10.1111/jfd.12618] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 06/07/2023]
Abstract
Although koi herpesvirus (KHV) has a history of causing severe economic losses in common carp and koi farms, there are still no treatments available on the market. Thus, the aim of this study was to test exopolysaccharides (EPS) for its antiviral activity against KHV, by monitoring inhibition and cytotoxic effects in common carp brain cells. These substances can be easily extracted from extracellular algae supernatant and were identified as groups of sulphated polysaccharides. In order to reach this aim, Arthrospira platensis, which is well known for its antiviral activity of intra- and extracellular compounds towards mammalian herpesviruses, was investigated as standard organism and compared to commercial antiviral drug, ganciclovir, which inhibits the viral DNA polymerization. The antiviral activity of polysaccharides of A. platensis against KHV was confirmed in vitro using qualitative assessment of KHV life cycle genes, and it was found by RT-PCR that EPS, applied at a concentration of >18 μg mL-1 and a multiplicity of infection (MOI) of 0.45 of KHV, suppressed the viral replication in common carp brain (CCB) cells even after 22 days post-infection, entirely. Further, this study presents first data indicating an enormous potential using polysaccharides as an additive for aquacultures to lower or hinder the spread of the KHV and koi herpesvirus disease (KHVD) in future.
Collapse
Affiliation(s)
- M Reichert
- Friedrich-Alexander Universität Erlangen-Nürnberg, Busan, Korea
| | - S M Bergmann
- Friedrich-Loeffler-Institut (FLI), Greifswald-Insel Riems, Germany
| | - J Hwang
- National Fisheries Research and Development Institute (NFRDI), Busan, Korea
| | - R Buchholz
- Friedrich-Alexander Universität Erlangen-Nürnberg, Busan, Korea
| | - C Lindenberger
- Friedrich-Alexander Universität Erlangen-Nürnberg, Busan, Korea
| |
Collapse
|
7
|
Morga B, Faury N, Guesdon S, Chollet B, Renault T. Haemocytes from Crassostrea gigas and OsHV-1: A promising in vitro system to study host/virus interactions. J Invertebr Pathol 2017; 150:45-53. [PMID: 28911815 DOI: 10.1016/j.jip.2017.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 12/28/2022]
Abstract
Since 2008, mass mortality outbreaks associated with the detection of particular variants of OsHV-1 have been reported in Crassostrea gigas spat and juveniles in several countries. Recent studies have reported information on viral replication during experimental infection. Viral DNA and RNA were also detected in the haemolymph and haemocytes suggesting that the virus could circulate through the circulatory system. However, it is unknown if the virus is free in the haemolymph, passively associated at the surface of haemocytes, or able to infect and replicate inside these cells inducing (or not) virion production. In the present study, we collected haemocytes from the haemolymphatic sinus of the adductor muscle of healthy C. gigas spat and exposed them in vitro to a viral suspension. Results showed that viral RNAs were detectable one hour after contact and the number of virus transcripts increased over time in association with an increase of viral DNA detection. These results suggested that the virus is able to initiate replication rapidly inside haemocytes maintained in vitro. These in vitro trials were also used to carry out a dual transcriptomic study. We analyzed concomitantly the expression of some host immune genes and 15 viral genes. Results showed an up regulation of oyster genes currently studied during OsHV-1 infection. Additionally, transmission electron microscopy examination was carried out and did not allow the detection of viral particles. Moreover, All the results suggested that the in vitro model using haemocytes can be valuable for providing new perspective on virus-oyster interactions.
Collapse
Affiliation(s)
- Benjamin Morga
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France.
| | - Nicole Faury
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Stéphane Guesdon
- Ifremer, Laboratoire Environnement Ressources des Pertuis Charentais (LER PC), La Tremblade, France
| | - Bruno Chollet
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Tristan Renault
- Ifremer, Département Ressources Biologiques et Environnement, Nantes, France
| |
Collapse
|
8
|
Monaghan SJ, Bergmann SM, Thompson KD, Brown L, Herath T, Del-Pozo J, Adams A. Ultrastructural analysis of sequential cyprinid herpesvirus 3 morphogenesis in vitro. JOURNAL OF FISH DISEASES 2017; 40:1041-1054. [PMID: 28025825 DOI: 10.1111/jfd.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is an alloherpesvirus, and it is the aetiological agent of koi herpesvirus disease. Although the complex morphogenic stages of the replication cycle of CyHV-3 were shown to resemble that of other members of the Herpesvirales, detailed analysis of the sequence and timing of these events was not definitively determined. This study describes these features through a time course using cyprinid cell cultures (KF-1 and CCB) infected with CyHV-3 (KHV isolate, H361) and analysed by transmission electron microscopy. Rapid viral entry was noted, with high levels of intracellular virus within 1-4 h post-infection (hpi). Intranuclear capsid assembly, paracrystalline array formation and primary envelopment of capsids occurred within 4 hpi. Between 1 and 3 days post-infection (dpi), intracytoplasmic secondary envelopment occurred, as well as budding of infectious virions at the plasma membrane. At 5-7 dpi, the cytoplasm contained cytopathic vacuoles, enveloped virions within vesicles, and abundant non-enveloped capsids; also there was frequent nuclear deformation. Several morphological features are suggestive of inefficient viral assembly, with production of non-infectious particles, particularly in KF-1 cells. The timing of this alloherpesvirus morphogenesis is similar to other members of the Herpesvirales, but there may be possible implications of using different cell lines for CyHV-3 propagation.
Collapse
Affiliation(s)
- S J Monaghan
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| | - S M Bergmann
- Friedrich-Loeffler-Institut, Greifswald, Insel-Riems, Germany
| | - K D Thompson
- Moredun Research Institute, Pentlands Science Park, Midlothian, UK
| | - L Brown
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| | - T Herath
- Department of Animal Production, Welfare and Veterinary Sciences, Harper Adams University, Newport, UK
| | - J Del-Pozo
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - A Adams
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
9
|
Cabon J, Louboutin L, Castric J, Bergmann S, Bovo G, Matras M, Haenen O, Olesen NJ, Morin T. Validation of a serum neutralization test for detection of antibodies specific to cyprinid herpesvirus 3 in infected common and koi carp (Cyprinus carpio). JOURNAL OF FISH DISEASES 2017; 40:687-701. [PMID: 27716953 DOI: 10.1111/jfd.12550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 05/18/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a serious infective, notifiable disease affecting common carp and varieties. In survivors, infection is generally characterized by a subclinical latency phase with restricted viral replication. The CyHV-3 genome is difficult to detect in such carrier fish that represent a potential source of dissemination if viral reactivation occurs. In this study, the analytical and diagnostic performance of an alternative serum neutralization (SN) method based on the detection of CyHV-3-specific antibodies was assessed using 151 serum or plasma samples from healthy and naturally or experimentally CyHV-3-infected carp. French CyHV-3 isolate 07/108b was neutralized efficiently by sera from carp infected with European, American and Taiwanese CyHV-3 isolates, but no neutralization was observed using sera specific to other aquatic herpesviruses. Diagnostic sensitivity, diagnostic specificity and repeatability of 95.9%, 99.0% and 99.3%, respectively, were obtained, as well as a compliance rate of 89.9% in reproducibility testing. Neutralizing antibodies were steadily detected in infected carp subjected to restrictive or permissive temperature variations over more than 25 months post-infection. The results suggest that this non-lethal diagnostic test could be used in the future to improve the epidemiological surveillance and control of CyHV-3 disease.
Collapse
Affiliation(s)
- J Cabon
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, Université Bretagne Loire, Plouzané, France
| | - L Louboutin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, Université Bretagne Loire, Plouzané, France
| | - J Castric
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, Université Bretagne Loire, Plouzané, France
| | - S Bergmann
- Friedrich Loeffler Institut (FLI), Insel Riems, Institute of Infectiology, Greifswald, Germany
| | - G Bovo
- Fish Virology Department, Istituto Zooprofilattico Sperimentale delle Venezie (IZS-Ve), Legnaro, Padova, Italy
| | - M Matras
- Department of Fish Diseases, National Veterinary Research Institute (NVRI) in Pulawy, Pulawy, Poland
| | - O Haenen
- Central Veterinary Institute (CVI) of WUR, NRL for Fish, Shellfish and Crustacean Diseases, Lelystad, The Netherlands
| | - N J Olesen
- Technical University of Denmark (DTU), National Veterinary Institute, Frederiksberg C, Denmark
| | - T Morin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, Université Bretagne Loire, Plouzané, France
| |
Collapse
|
10
|
Tadmor-Levi R, Asoulin E, Hulata G, David L. Studying the Genetics of Resistance to CyHV-3 Disease Using Introgression from Feral to Cultured Common Carp Strains. Front Genet 2017; 8:24. [PMID: 28344591 PMCID: PMC5344895 DOI: 10.3389/fgene.2017.00024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/16/2017] [Indexed: 11/13/2022] Open
Abstract
Sustainability and further development of aquaculture production are constantly challenged by outbreaks of fish diseases, which are difficult to prevent or control. Developing fish strains that are genetically resistant to a disease is a cost-effective and a sustainable solution to address this challenge. To do so, heritable genetic variation in disease resistance should be identified and combined together with other desirable production traits. Aquaculture of common carp has suffered substantial losses from the infectious disease caused by the cyprinid herpes virus type 3 (CyHV-3) virus and the global spread of outbreaks indicates that many cultured strains are susceptible. In this research, CyHV-3 resistance from the feral strain “Amur Sassan” was successfully introgressed into two susceptible cultured strains up to the first backcross (BC1) generation. Variation in resistance of families from F1 and BC1 generations was significantly greater compared to that among families of any of the susceptible parental lines, a good starting point for a family selection program. Considerable additive genetic variation was found for CyHV-3 resistance. This phenotype was transferable between generations with contributions to resistance from both the resistant feral and the susceptible cultured strains. Reduced scale coverage (mirror phenotype) is desirable and common in cultured strains, but so far, cultured mirror carp strains were found to be susceptible. Here, using BC1 families ranging from susceptible to resistant, no differences in resistance levels between fully scaled and mirror full-sib groups were found, indicating that CyHV-3 resistance was successfully combined with the desirable mirror phenotype. In addition, the CyHV-3 viral load in tissues throughout the infection of susceptible and resistant fish was followed. Although resistant fish get infected, viral loads in tissues of these fish are significantly lesser than in those of susceptible fish, allowing them to survive the disease. Taken together, in this study we have laid the foundation for breeding CyHV-3-resistant strains and started to address the mechanisms underlying the phenotypic differences in resistance to this disease.
Collapse
Affiliation(s)
- Roni Tadmor-Levi
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot, Israel
| | - Efrat Asoulin
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot, Israel
| | - Gideon Hulata
- Institute of Animal Science, Agricultural Research Organization, Volcani Center Rishon LeZion, Israel
| | - Lior David
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot, Israel
| |
Collapse
|
11
|
Nanjo A, Shibata T, Saito M, Yoshii K, Tanaka M, Nakanishi T, Fukuda H, Sakamoto T, Kato G, Sano M. Susceptibility of isogeneic ginbuna Carassius auratus langsdorfii Temminck et Schlegel to cyprinid herpesvirus-2 (CyHV-2) as a model species. JOURNAL OF FISH DISEASES 2017; 40:157-168. [PMID: 27150547 DOI: 10.1111/jfd.12500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Herpesviral haematopoietic necrosis (HVHN), caused by cyprinid herpesvirus-2 (CyHV-2), has affected the commercial production of the goldfish Carassius auratus and gibelio carp Carassius auratus gibelio. High water temperature treatments are reported to reduce the mortality rate of infected goldfish and elicit immunity in the survivors. To define the mechanism by which this intervention induces resistance, clonal ginbuna Carassius auratus langsdorfii, which is closely related to both species and has been used in fish immunology, may represent a promising model species. In this study, we investigated the susceptibility of clonal ginbuna strains to CyHV-2 and the effect of high water temperature treatment on infected ginbuna and goldfish. Experimental intraperitoneal infection with CyHV-2 at 25 °C caused 100% mortality in ginbuna strains, which was accompanied by histopathological changes typical of HVHN. Both infected ginbuna S3n strain and goldfish, exposed to high temperature for 6 days [shifting from 25 °C (permissive) to 34 °C (non-permissive)], showed reduced mortalities after the 1st inoculation, and subsequent 2nd virus challenge to 0%, indicating induction of immunity. It was concluded that ginbuna showed a similar susceptibility and disease development in CyHV-2 infection compared to goldfish, suggesting that ginbuna can be a useful fish model for the study of CyHV-2 infection and immunity.
Collapse
Affiliation(s)
- A Nanjo
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - T Shibata
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - M Saito
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - K Yoshii
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - M Tanaka
- Saitama Fisheries Research Institute, Saitama, Japan
| | - T Nakanishi
- College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - H Fukuda
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - T Sakamoto
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - G Kato
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - M Sano
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
12
|
Wang H, Xu L, Lu L. Detection of cyprinid herpesvirus 2 in peripheral blood cells of silver crucian carp, Carassius auratus gibelio (Bloch), suggests its potential in viral diagnosis. JOURNAL OF FISH DISEASES 2016; 39:155-162. [PMID: 25630360 DOI: 10.1111/jfd.12340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/05/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
Epidemics caused by cyprinid herpesvirus 2 (CyHV-2) in domestic cyprinid species have been reported in both European and Asian countries. Although the mechanisms remain unknown, acute CyHV-2 infections generally result in high mortality, and the surviving carps become chronic carriers displaying no external clinical signs. In this study, in situ hybridization analysis showed that CyHV-2 tended to infect peripheral blood cells during either acute or chronic infections in silver crucian carp, Carassius auratus gibelio (Bloch). Laboratory challenge experiments coupled with real-time PCR quantification assays further indicated that steady-state levels of the viral genomic copy number in fish serum exhibited a typical 'one-step' growth curve post-viral challenge. Transcriptional expression of open reading frames (ORF) 121, which was selected due to its highest transcriptional levels in almost all tested tissues, was monitored to represent the replication kinetics of CyHV-2 in peripheral blood cells. Similar kinetic curve of active viral gene transcription in blood cells was obtained as that of serum viral load, indicating that CyHV-2 replicated in peripheral blood cells as well as in other well-characterized tissues. This study should pave the way for designing non-invasive and cost-effective serum diagnostic methods for quick detection of CyHV-2 infection.
Collapse
Affiliation(s)
- H Wang
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of Ministry of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lj Xu
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of Ministry of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lq Lu
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of Ministry of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
13
|
Gotesman M, Menanteau-Ledouble S, El-Matbouli M. Proteomic Analysis of Cytoskeleton Proteins in Fish. Methods Mol Biol 2016; 1365:357-72. [PMID: 26498797 DOI: 10.1007/978-1-4939-3124-8_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter, we describe laboratory protocols for rearing fish and a simple and efficient method of extracting and identifying pathogen and host proteins that may be involved in entry and replication of commercially important fish viruses. We have used the common carp (Cyprinus carpio L.) and goldfish (Cyprinus auratus) as a model system for studies of proteins involved in viral entry and replication. The chapter describes detailed protocols for maintenance of carp, cell culture, antibody purification of proteins, and use of electrospray-ionization mass spectrometry analysis to screen and identify cytoskeleton and other proteins that may be involved in viral infection and propagation in fish.
Collapse
Affiliation(s)
- Michael Gotesman
- Department of Biology, Technion - Israel Institute of Technology, Technion, Haifa, Israel
| | - Simon Menanteau-Ledouble
- Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - Mansour El-Matbouli
- Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria.
| |
Collapse
|
14
|
Imajoh M, Fujioka H, Furusawa K, Tamura K, Yamasaki K, Kurihara S, Yamane J, Kawai K, Oshima S. Establishment of a new cell line susceptible to Cyprinid herpesvirus 3 (CyHV-3) and possible latency of CyHV-3 by temperature shift in the cells. JOURNAL OF FISH DISEASES 2015; 38:507-514. [PMID: 24820532 DOI: 10.1111/jfd.12252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
A new cell line named CCF-K104 predominantly consisting of fibroblastic cells showed optimal growth at temperatures from 25 °C to 30 °C. Serial morphological changes in the cells induced by Cyprinid herpesvirus 3 (CyHV-3) included cytoplasmic vacuolar formation, cell rounding and detachment. Mature virions were purified from CyHV-3-infected CCF-K104 cells by sucrose gradient ultracentrifugation and had a typical herpesvirus structure on electron microscopy. Infectious CyHV-3 was produced stably in CCF-K104 cells over 30 viral passages. Our findings showed that CCF-K104 is a useful cell line for isolation and productive replication of CyHV-3. A temperature shift from 25 °C to 15 °C or 35 °C did not allow serial morphological changes as observed at 25 °C for 14 days. Under the same conditions, real-time PCR showed that CyHV-3 was present with low viral DNA loads, suggesting that CyHV-3 may establish latent infection in CCF-K104 cells. Amplification of the left and right terminal repeat sequences of the CyHV-3 genome arranged in a head-to-tail manner was detected by nested PCR following an upshift in temperature from 25 °C to 35 °C. The PCR results suggested that the circular genome may represent a latent form of CyHV-3.
Collapse
Affiliation(s)
- M Imajoh
- Laboratory of Fish Disease, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Boutier M, Ronsmans M, Rakus K, Jazowiecka-Rakus J, Vancsok C, Morvan L, Peñaranda MMD, Stone DM, Way K, van Beurden SJ, Davison AJ, Vanderplasschen A. Cyprinid Herpesvirus 3: An Archetype of Fish Alloherpesviruses. Adv Virus Res 2015; 93:161-256. [PMID: 26111587 DOI: 10.1016/bs.aivir.2015.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The order Herpesvirales encompasses viruses that share structural, genetic, and biological properties. However, members of this order infect hosts ranging from molluscs to humans. It is currently divided into three phylogenetically related families. The Alloherpesviridae family contains viruses infecting fish and amphibians. There are 12 alloherpesviruses described to date, 10 of which infect fish. Over the last decade, cyprinid herpesvirus 3 (CyHV-3) infecting common and koi carp has emerged as the archetype of fish alloherpesviruses. Since its first description in the late 1990s, this virus has induced important economic losses in common and koi carp worldwide. It has also had negative environmental implications by affecting wild carp populations. These negative impacts and the importance of the host species have stimulated studies aimed at developing diagnostic and prophylactic tools. Unexpectedly, the data generated by these applied studies have stimulated interest in CyHV-3 as a model for fundamental research. This review intends to provide a complete overview of the knowledge currently available on CyHV-3.
Collapse
Affiliation(s)
- Maxime Boutier
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Maygane Ronsmans
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Krzysztof Rakus
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Joanna Jazowiecka-Rakus
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Catherine Vancsok
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Léa Morvan
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Ma Michelle D Peñaranda
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - David M Stone
- The Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset, United Kingdom
| | - Keith Way
- The Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset, United Kingdom
| | - Steven J van Beurden
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Vanderplasschen
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| |
Collapse
|
16
|
Monaghan SJ, Thompson KD, Adams A, Bergmann SM. Sensitivity of seven PCRs for early detection of koi herpesvirus in experimentally infected carp, Cyprinus carpio L., by lethal and non-lethal sampling methods. JOURNAL OF FISH DISEASES 2015; 38:303-319. [PMID: 24547985 DOI: 10.1111/jfd.12235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 06/03/2023]
Abstract
Koi herpesvirus (KHV) causes an economically important, highly infectious disease in common carp and koi, Cyprinus carpio L. Since the occurrence of mass mortalities worldwide, highly specific and sensitive molecular diagnostic methods have been developed for KHV detection. The sensitivity and reliability of these assays have essentially focused at the detection of low viral DNA copy numbers during latent or persistent infections. However, the efficacy of these assays has not been investigated with regard to low-level viraemia during acute infection stages. This study was conducted to compare the sensitivity of seven different polymerase chain reaction (PCR) assays to detect KHV during the first hours and days post-infection (hpi; dpi), using lethal and non-lethal sampling methods. The results highlight the limitations of the assays for detecting virus during the first 4 dpi despite rapid mortality in experimentally infected carp. False-negative results were associated with time post-infection and the tissue sampled. Non-lethal sampling appears effective for KHV screening, with efficient detection in mucus samples obtained from external swabs during this early infection period (<5 dpi), while biopsies from gills and kidney were negative using the same PCR assays. Non-lethal sampling may improve the reliability of KHV detection in subclinical, acutely infected carp.
Collapse
Affiliation(s)
- S J Monaghan
- Aquatic Vaccine Unit, Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland
| | | | | | | |
Collapse
|
17
|
Kawato Y, Yuasa K, Shimahara Y, Oseko N. Detection and application of circular (concatemeric) DNA as an indicator of koi herpesvirus infection. DISEASES OF AQUATIC ORGANISMS 2014; 112:37-44. [PMID: 25392041 DOI: 10.3354/dao02785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Herpesviruses form a long continuous DNA molecule, or head-to-tail concatemer, as a replicating intermediate in the host. In this study, we developed a DNA-specific PCR assay for detecting the infection stage of koi herpesvirus (KHV) based on the presence of this 'endless' DNA. The 295 kbp double-stranded DNA KHV genome consists of a 251 kbp unique long region and two 22 kbp direct repeats (DRL and DRR) at each genome terminus. We designed a new primer set (DR primer set) based on the DR region spanning the presumed circular or concatemeric junction. Using the DR primer set, a PCR product was obtained from KHV-infected common carp brain (CCB) cells, but not from the virus-infected cell culture supernatant, implying that the PCR assay could detect intracellular virus in the host. The synthesis of a presumptive circular or concatemeric genome in virus-infected CCB cells was examined in a time-course experiment together with viral mRNA of the terminase gene, copy numbers of the viral genome, and infectious viral titer. The mRNA was first detected in the cells at 6 h post-inoculation (hpi), and the copy number of viral genome in the cells started to increase at 12 hpi. Subsequently, circular or concatemeric DNA was detected in the cells at 18 hpi, and progeny virus was detected in the cell culture supernatant at 24 hpi. These findings suggest that detection of the circular or concatemeric KHV genome with the developed PCR method can be used to determine the stage of KHV infection.
Collapse
Affiliation(s)
- Yasuhiko Kawato
- National Research Institute of Aquaculture, Fisheries Research Agency, Minamiise, Mie 516-0193, Japan
| | | | | | | |
Collapse
|
18
|
Sunarto A, McColl KA, Crane MSJ, Schat KA, Slobedman B, Barnes AC, Walker PJ. Characteristics of cyprinid herpesvirus 3 in different phases of infection: Implications for disease transmission and control. Virus Res 2014; 188:45-53. [DOI: 10.1016/j.virusres.2014.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
|
19
|
Gotesman M, Soliman H, Besch R, El-Matbouli M. In vitro inhibition of Cyprinid herpesvirus-3 replication by RNAi. J Virol Methods 2014; 206:63-6. [PMID: 24893110 PMCID: PMC4106878 DOI: 10.1016/j.jviromet.2014.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 11/13/2022]
Abstract
Cyprinid herpesvirus-3 causes high mortality rates in common and koi carp. siRNAs were designed to target thymidine kinase and DNA polymerase genes in vitro. siRNA targeting DNA polymerase gene was most effective at reducing viral release. The inhibition of viral replication by the siRNAs was quantitated by qPCR.
Cyprinid herpesvirus-3 (CyHV-3) is an etiological agent of a notifiable disease that causes high mortality rates affecting both the common and koi carp Cyprinus carpio L. There is no current treatment strategy to save CyHV-3 infected fish. RNA mediated interference (RNAi) is an emerging strategy used for understanding gene function and is a promising method in developing novel therapeutics and antiviral medications. For this study, the possibility of activating the RNAi pathway by the use of small interfering (si)RNAs was tested to inhibit in vitro viral replication of CyHV-3 in common carp brain (CCB) cells. The siRNAs were designed to target either thymidine kinase (TK) or DNA polymerase (DP) genes, which both code for transcripts involved in DNA replication. The inhibition of viral replication caused by the siRNAs was measured by a reporter gene, termed ORF81. Treatment with siRNA targeting either TK or DP genes reduced the release of viral particles from infected CCB cells. However, siRNA targeting DP was most effective at reducing viral release as measured by qPCR.
Collapse
Affiliation(s)
- Michael Gotesman
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Hatem Soliman
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria; Fish Medicine and Management, Faculty of Veterinary Medicine, University of Assiut, 71515 Assiut, Egypt
| | - Robert Besch
- Clinic and Policlinic for Dermatology and Allergology, Department of Dermatology, Ludwig-Maximilian University, Munich, Germany
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
20
|
Uchii K, Minamoto T, Honjo MN, Kawabata Z. Seasonal reactivation enablesCyprinid herpesvirus 3to persist in a wild host population. FEMS Microbiol Ecol 2013; 87:536-42. [DOI: 10.1111/1574-6941.12242] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/29/2013] [Accepted: 10/22/2013] [Indexed: 12/01/2022] Open
Affiliation(s)
- Kimiko Uchii
- Department of General Systems Studies; The University of Tokyo; Meguro Tokyo Japan
- Research Institute for Humanity and Nature; Kita Kyoto Japan
| | - Toshifumi Minamoto
- Research Institute for Humanity and Nature; Kita Kyoto Japan
- Graduate School of Human Development and Environment; Kobe University; Nada Kobe Japan
| | - Mie N. Honjo
- Research Institute for Humanity and Nature; Kita Kyoto Japan
| | | |
Collapse
|
21
|
Rakus K, Ouyang P, Boutier M, Ronsmans M, Reschner A, Vancsok C, Jazowiecka-Rakus J, Vanderplasschen A. Cyprinid herpesvirus 3: an interesting virus for applied and fundamental research. Vet Res 2013; 44:85. [PMID: 24073814 PMCID: PMC3850573 DOI: 10.1186/1297-9716-44-85] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/03/2013] [Indexed: 12/28/2022] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3), a member of the family Alloherpesviridae is the causative agent of a lethal, highly contagious and notifiable disease in common and koi carp. The economic importance of common and koi carp industries together with the rapid spread of CyHV-3 worldwide, explain why this virus became soon after its isolation in the 1990s a subject of applied research. In addition to its economic importance, an increasing number of fundamental studies demonstrated that CyHV-3 is an original and interesting subject for fundamental research. In this review, we summarized recent advances in CyHV-3 research with a special interest for studies related to host-virus interactions.
Collapse
Affiliation(s)
- Krzysztof Rakus
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, B-4000, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Gotesman M, Soliman H, El-Matbouli M. Antibody screening identifies 78 putative host proteins involved in Cyprinid herpesvirus 3 infection or propagation in common carp, Cyprinus carpio L. JOURNAL OF FISH DISEASES 2013; 36:721-33. [PMID: 23347276 PMCID: PMC3961710 DOI: 10.1111/jfd.12073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/16/2012] [Accepted: 11/17/2012] [Indexed: 05/15/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a serious and notifiable disease afflicting common and koi carp, Cyprinus carpio L., termed koi herpesvirus disease (KHVD). Significant progress has been achieved in the last 15 years, since the initial reports surfaced from Germany, USA and Israel of the CyHV-3 virus, in terms of pathology and detection. However, relatively few studies have been carried out in understanding viral replication and propagation. Antibody-based affinity has been used for detection of CyHV-3 in enzyme-linked immunosorbent assay and PCR-based techniques, and immunohistological assays have been used to describe a CyHV-3 membrane protein, termed ORF81. In this study, monoclonal antibodies linked to N-hydroxysuccinimide (NHS)-activated spin columns were used to purify CyHV-3 and host proteins from tissue samples originating in either CyHV-3 symptomatic or asymptomatic fish. The samples were next analysed either by polyacrylamide gel electrophoresis (PAGE) and subsequently by electrospray ionization coupled to mass spectrometry (ESI-MS) or by ESI-MS analysis directly after purification. A total of 78 host proteins and five CyHV-3 proteins were identified in the two analyses. These data can be used to develop novel control methods for CyHV-3, based on pathways or proteins identified in this study.
Collapse
Affiliation(s)
- M Gotesman
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | | | | |
Collapse
|
23
|
Gotesman M, Kattlun J, Bergmann SM, El-Matbouli M. CyHV-3: the third cyprinid herpesvirus. DISEASES OF AQUATIC ORGANISMS 2013; 105:163-74. [PMID: 23872859 PMCID: PMC3961040 DOI: 10.3354/dao02614] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Common carp (including ornamental koi carp) Cyprinus carpio L. are ecologically and economically important freshwater fish in Europe and Asia. C. carpio have recently been endangered by a third cyprinid herpesvirus, known as cyprinid herpesvirus-3 (CyHV-3), the etiological agent of koi herpesvirus disease (KHVD), which causes significant morbidity and mortality in koi and common carp. Clinical and pathological signs include epidermal abrasions, excess mucus production, necrosis of gill and internal organs, and lethargy. KHVD has decimated major carp populations in Israel, Indonesia, Taiwan, Japan, Germany, Canada, and the USA, and has been listed as a notifiable disease in Germany since 2005, and by the World Organisation for Animal Health since 2007. KHVD is exacerbated in aquaculture because of the relatively high host stocking density, and CyHV-3 may be concentrated by filter-feeding aquatic organisms. CyHV-3 is taxonomically grouped within the family Alloherpesviridae, can be propagated in a number of cell lines, and is active at a temperature range of 15 to 28°C. Three isolates originating from Japan (KHV-J), USA (KHV-U), and Israel (KHV-I) have been sequenced. CyHV-3 has a 295 kb genome with 156 unique open reading frames and replicates in the cell nucleus, and mature viral particles are 170 to 200 nm in diameter. CyHV-3 can be detected by multiple PCR-based methods and by enzyme-linked immunosorbent assay. Several modes of immunization have been developed for KHVD; however, fish immunized with either vaccine or wild-type virus may become carriers for CyHV-3. There is no current treatment for KHVD.
Collapse
Affiliation(s)
- Michael Gotesman
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Julia Kattlun
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Sven M. Bergmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Greifswald-Insel Riems, Germany
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
- Corresponding author.
| |
Collapse
|
24
|
McDermott C, Palmeiro B. Selected emerging infectious diseases of ornamental fish. Vet Clin North Am Exot Anim Pract 2013; 16:261-82. [PMID: 23642862 DOI: 10.1016/j.cvex.2013.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Several emerging infectious diseases have serious implications for the trade and husbandry of ornamental fish. Although many of these diseases have been well studied and described in certain species, there are still many diseases that are not well understood. The following discussion focuses on select important emerging infectious diseases that affect ornamental fish in the aquarium and aquaculture industries: goldfish herpesvirus, koi herpesvirus, Ranavirus, Megalocytivirus, Betanodavirus, Francisella, Cryptobia iubilans, and Exophiala. When possible, the known species affected, clinical signs, diagnosis, treatment, disinfection, and prevention modalities for each disease are discussed.
Collapse
Affiliation(s)
- Colin McDermott
- National Aquarium in Baltimore, Pier 3, Baltimore, MD 21202, USA.
| | | |
Collapse
|
25
|
Genome-wide gene expression analysis of anguillid herpesvirus 1. BMC Genomics 2013; 14:83. [PMID: 23387531 PMCID: PMC3626852 DOI: 10.1186/1471-2164-14-83] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 01/24/2013] [Indexed: 12/29/2022] Open
Abstract
Background Whereas temporal gene expression in mammalian herpesviruses has been studied extensively, little is known about gene expression in fish herpesviruses. Here we report a genome-wide transcription analysis of a fish herpesvirus, anguillid herpesvirus 1, in cell culture, studied during the first 6 hours of infection using reverse transcription quantitative PCR. Results Four immediate-early genes – open reading frames 1, 6A, 127 and 131 – were identified on the basis of expression in the presence of a protein synthesis inhibitor and unique expression profiles during infection in the absence of inhibitor. All of these genes are located within or near the terminal direct repeats. The remaining 122 open reading frames were clustered into groups on the basis of transcription profiles during infection. Expression of these genes was also studied in the presence of a viral DNA polymerase inhibitor, enabling classification into early, early-late and late genes. In general, clustering by expression profile and classification by inhibitor studies corresponded well. Most early genes encode enzymes and proteins involved in DNA replication, most late genes encode structural proteins, and early-late genes encode non-structural as well as structural proteins. Conclusions Overall, anguillid herpesvirus 1 gene expression was shown to be regulated in a temporal fashion, comparable to that of mammalian herpesviruses.
Collapse
|
26
|
Abstract
Three alloherpesviruses are known to cause disease in cyprinid fish: cyprinid herpesviruses 1 and 3 (CyHV1 and CyHV3) in common carp and koi and cyprinid herpesvirus 2 (CyHV2) in goldfish. We have determined the genome sequences of CyHV1 and CyHV2 and compared them with the published CyHV3 sequence. The CyHV1 and CyHV2 genomes are 291,144 and 290,304 bp, respectively, in size, and thus the CyHV3 genome, at 295,146 bp, remains the largest recorded among the herpesviruses. Each of the three genomes consists of a unique region flanked at each terminus by a sizeable direct repeat. The CyHV1, CyHV2, and CyHV3 genomes are predicted to contain 137, 150, and 155 unique, functional protein-coding genes, respectively, of which six, four, and eight, respectively, are duplicated in the terminal repeat. The three viruses share 120 orthologous genes in a largely colinear arrangement, of which up to 55 are also conserved in the other member of the genus Cyprinivirus, anguillid herpesvirus 1. Twelve genes are conserved convincingly in all sequenced alloherpesviruses, and two others are conserved marginally. The reference CyHV3 strain has been reported to contain five fragmented genes that are presumably nonfunctional. The CyHV2 strain has two fragmented genes, and the CyHV1 strain has none. CyHV1, CyHV2, and CyHV3 have five, six, and five families of paralogous genes, respectively. One family unique to CyHV1 is related to cellular JUNB, which encodes a transcription factor involved in oncogenesis. To our knowledge, this is the first time that JUNB-related sequences have been reported in a herpesvirus.
Collapse
|
27
|
Ilouze M, Dishon A, Kotler M. Down-regulation of the cyprinid herpesvirus-3 annotated genes in cultured cells maintained at restrictive high temperature. Virus Res 2012; 169:289-95. [DOI: 10.1016/j.virusres.2012.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 07/13/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
|
28
|
Coordinated and sequential transcription of the cyprinid herpesvirus-3 annotated genes. Virus Res 2012; 169:98-106. [DOI: 10.1016/j.virusres.2012.07.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 07/13/2012] [Accepted: 07/13/2012] [Indexed: 11/21/2022]
|
29
|
Rathore G, Kumar G, Raja Swaminathan T, Swain P. Koi herpes virus: a review and risk assessment of Indian aquaculture. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2012; 23:124-33. [PMID: 23997436 DOI: 10.1007/s13337-012-0101-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
Abstract
Common carp (Cyprinus carpio) is a widely cultivated freshwater fish for human consumption, while koi carp, is a farmed colored sub species of common carp used for ornamental purposes. Since 1998, both common carp and koi carp are severely affected by a viral disease called as Koi herpes virus disease (KHVD). This disease is caused by Koi herpes virus (KHV), also known as cyprinid herpes virus-3. The virus causes interstitial nephritis and gill necrosis in carps, so it is also termed as carp interstitial nephritis and gill necrosis virus. KHV is a double stranded icosahedral DNA virus belonging to family Alloherpesviridae, with a genome size of 295 kbp, larger than any member of Herpesviridae. The viral genome encodes 156 potential protein coding open reading frames. Each virion consists of forty structural proteins, which are classified as capsid (3), envelope (13), tegument (2) and unclassified (22) structural proteins. Diagnosis of KHVD is mainly based on detection of viral DNA by polymerase chain reaction amplification using specific primers or loop mediated isothermal amplification. Temperature dependent latent infection is unique to KHV; and carrier fish are often not detected, thereby possibly resulting in spread of this pathogen to newer areas. The disease is now known to occur in, or has been recorded from at least 26 different countries of the world. Fortunately, KHVD has not been reported from India or from Indian major carps. To monitor the disease status of the country, a total of 254 fish samples collected from different parts of India were screened by PCR for the presence of KHV. None of the tested samples were found to be positive for KHV. These results demonstrate that tested samples from different parts of India were apparently free from KHV. Preliminary risk assessment of KHV suggest that in the event of unrestricted importation of koi carps into our country, there is a higher probability of risk to aquaculture as compared to natural waters. So there is strong need to develop diagnostic capabilities and launch surveillance programmes for KHV in India.
Collapse
Affiliation(s)
- Gaurav Rathore
- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002 UP India
| | | | | | | |
Collapse
|
30
|
Adamek M, Rakus KŁ, Chyb J, Brogden G, Huebner A, Irnazarow I, Steinhagen D. Interferon type I responses to virus infections in carp cells: In vitro studies on Cyprinid herpesvirus 3 and Rhabdovirus carpio infections. FISH & SHELLFISH IMMUNOLOGY 2012; 33:482-493. [PMID: 22683518 DOI: 10.1016/j.fsi.2012.05.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/06/2012] [Accepted: 05/29/2012] [Indexed: 06/01/2023]
Abstract
Interferons (IFNs) are secreted mediators that play a fundamental role in the innate immune response against viruses among all vertebrate classes. Common carp is a host for two highly contagious viruses: spring viraemia of carp virus (Rhabdovirus carpio, SVCV) and the Cyprinid herpesvirus 3 (CyHV-3), which belong to Rhabdoviridae and Alloherpesviridae families, respectively. Both viruses are responsible for significant losses in carp aquaculture. In this paper we studied the mRNA expression profiles of genes encoding for proteins promoting various functions during the interferon pathway, from pattern recognition receptors to antiviral genes, during in vitro viral infection. Furthermore, we investigated the impact of the interferon pathway (stimulated with poly I:C) on CyHV-3 replication and the speed of virus spreading in cell culture. The results showed that two carp viruses, CyHV-3 and SVCV induced fundamentally different type I IFN responses in CCB cells. SVCV induced a high response in all studied genes, whereas CyHV-3 seems to induce no response in CCB cells, but it induces a response in head kidney leukocytes. The lack of an IFN type I response to CyHV-3 could be an indicator of anti-IFN actions of the virus, however the nature of this mechanism has to be evaluated in future studies. Our results also suggest that an activation of type I IFN in CyHV-3 infected cells can limit the spread of the virus in cell culture. This would open the opportunity to treat the disease associated with CyHV-3 by an application of poly I:C in certain cases.
Collapse
Affiliation(s)
- Mikołaj Adamek
- Fish Disease Research Unit, Centre of Infectious Diseases, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Koi herpesvirus (KHV) (species Cyprinid herpesvirus 3) ORF134 was shown to transcribe a spliced transcript encoding a 179-amino-acid (aa) interleukin-10 (IL-10) homolog (khvIL-10) in koi fin (KF-1) cells. Pairwise sequence alignment indicated that the expressed product shares 25% identity with carp IL-10, 22 to 24% identity with mammalian (including primate) IL-10s, and 19.1% identity with European eel herpesvirus IL-10 (ahvIL-10). In phylogenetic analyses, khvIL-10 fell in a divergent position from all host IL-10 sequences, indicating extensive structural divergence following capture from the host. In KHV-infected fish, khvIL-10 transcripts were observed to be highly expressed during the acute and reactivation phases but to be expressed at very low levels during low-temperature-induced persistence. Similarly, KHV early (helicase [Hel] and DNA polymerase [DNAP]) and late (intercapsomeric triplex protein [ITP] and major capsid protein [MCP]) genes were also expressed at high levels during the acute and reactivation phases, but only low-level expression of the ITP gene was detected during the persistent phase. Injection of khvIL-10 mRNA into zebrafish (Danio rerio) embryos increased the number of lysozyme-positive cells to a similar degree as zebrafish IL-10. Downregulation of the IL-10 receptor long chain (IL-10R1) using a specific morpholino abrogated the response to both khvIL-10 and zebrafish IL-10 transcripts, indicating that, despite the structural divergence, khvIL-10 functions via this receptor. This is the first report describing the characteristics of a functional viral IL-10 gene in the Alloherpesviridae.
Collapse
|
32
|
Yuasa K, Kurita J, Kawana M, Kiryu I, Oseko N, Sano M. Development of mRNA-specific RT-PCR for the detection of koi herpesvirus (KHV) replication stage. DISEASES OF AQUATIC ORGANISMS 2012; 100:11-18. [PMID: 22885509 DOI: 10.3354/dao02499] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
An mRNA-specific reverse transcription (RT)-PCR primer set spanning the exon junction of a spliced putative terminase gene in the koi herpesvirus (KHV) was developed to detect the replicating stage of the virus. The proposed RT-PCR amplified a target gene from the RNA template, but not from a DNA template extracted from common carp brain (CCB) cells infected with KHV. In addition, the RT-PCR did not amplify the target gene of templates extracted from specific cell lines infected with either CyHV-1 or CyHV-2. RT-PCR detected mRNA from the scales of koi experimentally infected with KHV at 24 h post exposure (hpe). However, unlike conventional PCR, RT-PCR could not detect KHV DNA in fish at 0 hpe. The results indicate that the RT-PCR developed in this study is mRNA-specific and that the assay can detect the replicating stage of KHV from both fish and cultured cells infected with the virus.
Collapse
Affiliation(s)
- Kei Yuasa
- National Research Institute of Aquaculture, Fisheries Research Agency, Minamiise, Mie 516-0193, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
We used deep sequencing of poly(A) RNA to characterize the transcriptome of an economically important eel virus, anguillid herpesvirus 1 (AngHV1), at a stage during the lytic life cycle when infectious virus was being produced. In contrast to the transcription of mammalian herpesviruses, the overall level of antisense transcription from the 248,526-bp genome was low, amounting to only 1.5% of transcription in predicted protein-coding regions, and no abundant, nonoverlapping, noncoding RNAs were identified. RNA splicing was found to be more common than had been anticipated previously. Counting the 10,634-bp terminal direct repeat once, 100 splice junctions were identified, of which 58 were considered likely to be involved in the expression of functional proteins because they represent splicing between protein-coding exons or between 5' untranslated regions and protein-coding exons. Each of the 30 most highly represented of these 58 splice junctions was confirmed by RT-PCR. We also used deep sequencing to identify numerous putative 5' and 3' ends of AngHV1 transcripts, confirming some and adding others by rapid amplification of cDNA ends (RACE). The findings prompted a revision of the AngHV1 genome map to include a total of 129 protein-coding genes, 5 of which are duplicated in the terminal direct repeat. Not counting duplicates, 11 genes contain integral, spliced protein-coding exons, and 9 contain 5' untranslated exons or, because of alternative splicing, 5' untranslated and 5' translated exons. The results of this study sharpen our understanding of AngHV1 genomics and provide the first detailed view of a fish herpesvirus transcriptome.
Collapse
|
34
|
Reservoirs of Cyprinid herpesvirus 3 (CyHV-3) DNA in sediments of natural lakes and ponds. Vet Microbiol 2012; 155:183-90. [DOI: 10.1016/j.vetmic.2011.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/29/2011] [Accepted: 09/05/2011] [Indexed: 11/19/2022]
|
35
|
Hanson L, Dishon A, Kotler M. Herpesviruses that infect fish. Viruses 2011; 3:2160-91. [PMID: 22163339 PMCID: PMC3230846 DOI: 10.3390/v3112160] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/15/2011] [Accepted: 10/22/2011] [Indexed: 11/25/2022] Open
Abstract
Herpesviruses are host specific pathogens that are widespread among vertebrates. Genome sequence data demonstrate that most herpesviruses of fish and amphibians are grouped together (family Alloherpesviridae) and are distantly related to herpesviruses of reptiles, birds and mammals (family Herpesviridae). Yet, many of the biological processes of members of the order Herpesvirales are similar. Among the conserved characteristics are the virion structure, replication process, the ability to establish long term latency and the manipulation of the host immune response. Many of the similar processes may be due to convergent evolution. This overview of identified herpesviruses of fish discusses the diseases that alloherpesviruses cause, the biology of these viruses and the host-pathogen interactions. Much of our knowledge on the biology of Alloherpesvirdae is derived from research with two species: Ictalurid herpesvirus 1 (channel catfish virus) and Cyprinid herpesvirus 3 (koi herpesvirus).
Collapse
Affiliation(s)
- Larry Hanson
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Starkville, MS 39759, USA
| | - Arnon Dishon
- KoVax Ltd., P.O. Box 45212, Bynet Build., Har Hotzvim Inds. Pk., Jerusalem 97444, Israel; E-Mail:
| | - Moshe Kotler
- Department of Pathology, Hadassah Medical School, the Hebrew University, Jerusalem 91120, Israel; E-Mail:
- The Lautenberg Center for General and Tumor Immunology, Hadassah Medical School, the Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
36
|
Cheng L, Chen CY, Tsai MA, Wang PC, Hsu JP, Chern RS, Chen SC. Koi herpesvirus epizootic in cultured carp and koi, Cyprinus carpio L., in Taiwan. JOURNAL OF FISH DISEASES 2011; 34:547-554. [PMID: 21675996 DOI: 10.1111/j.1365-2761.2011.01266.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Koi herpesvirus (KHV) poses a significant threat to cultured koi and common carp, both Cyprinus carpio L. Since the first reported case in Israel in 1998, KHV has rapidly spread worldwide. This study investigates the spread of KHV to Taiwan by collecting 49 cases of suspected common carp and koi infections from 2003 to 2005 for analysis. Clinical signs included lethargy, anorexia, increased respiratory movements and uncoordinated swimming. Hyperaemia, haemorrhage on body surface and necrotic gill filaments were recorded. Gill epithelial hyperplasia, necrosis and eosinophilic intranuclear inclusion bodies were observed by histological examination, while virions were detected using transmission electron microscopy. By detecting the presence of the KHV thymidine kinase (TK) gene and the KHV 9/5 gene using polymerase chain reaction (PCR), 37 cases were identified as KHV-positive, and the cumulative mortality of infected fish was 70-100%. Positive cases showed identical sequences for the genes analysed, implying that they were of the same origin. For the KHV 9/5 gene sequence, these cases exhibited 100% identity with the Japanese strain (TUMST1, accession number AP008984) and 99% identity with the Israeli (KHV-I, DQ177346) and US (KHV-U, DQ657948) strains. Additionally, a loop-mediated isothermal amplification (LAMP) assay was performed and found to be more sensitive than PCR tests, suggesting its potential use as a rapid diagnostic method for KHV. This is the first epidemiological study of KHV infection in cultured common carp and koi in Taiwan.
Collapse
Affiliation(s)
- L Cheng
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
TOC summary: This virus is useful for fundamental and applied research. The recently designated cyprinid herpesvirus 3 (CyHV-3) is an emerging agent that causes fatal disease in common and koi carp. Since its emergence in the late 1990s, this highly contagious pathogen has caused severe financial losses in common and koi carp culture industries worldwide. In addition to its economic role, recent studies suggest that CyHV-3 may have a role in fundamental research. CyHV-3 has the largest genome among viruses in the order Herpesvirales and serves as a model for mutagenesis of large DNA viruses. Other studies suggest that the skin of teleost fish represents an efficient portal of entry for certain viruses. The effect of temperature on viral replication suggests that the body temperature of its poikilotherm host could regulate the outcome of the infection (replicative vs. nonreplicative). Recent advances with regard to CyHV-3 provide a role for this virus in fundamental and applied research.
Collapse
|
38
|
Abstract
Koi herpesvirus (KHV) has recently been classified as a member of the family of Alloherpesviridae within the order of Herpesvirales. One of the unique features of Herpesviridae is latent infection following a primary infection. However, KHV latency has not been recognized. To determine if latency occurs in clinically normal fish from facilities with a history of KHV infection or exposure, the presence of the KHV genome was investigated in healthy koi by PCR and Southern blotting. KHV DNA, but not infectious virus or mRNAs from lytic infection, was detected in white blood cells from investigated koi. Virus shedding was examined via tissue culture and reverse transcription-PCR (RT-PCR) testing of gill mucus and feces from six koi every other day for 1 month. No infectious virus or KHV DNA was detected in fecal secretion or gill swabs, suggesting that neither acute nor persistent infection was present. To determine if KHV latent infections can be reactivated, six koi were subjected to a temperature stress regime. KHV DNA and infectious virus were detected in both gill and fecal swabs by day 8 following temperature stress. KHV DNA was also detectable in brain, spleen, gills, heart, eye, intestine, kidney, liver, and pancreas in euthanized koi 1 month post-temperature stress. Our study suggests that KHV may become latent in leukocytes and other tissues, that it can be reactivated from latency by temperature stress, and that it may be more widespread in the koi population than previously suspected.
Collapse
|
39
|
De Clercq E. Yet another ten stories on antiviral drug discovery (part D): paradigms, paradoxes, and paraductions. Med Res Rev 2010; 30:667-707. [PMID: 19626594 DOI: 10.1002/med.20173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review article presents the fourth part (part D) in the series of stories on antiviral drug discovery. The stories told in part D focus on: (i) the cyclotriazadisulfonamide compounds; (ii) the {5-[(4-bromophenylmethyl]-2-phenyl-5H-imidazo[4,5-c]pyridine} compounds; (iii) (1H,3H-thiazolo[3,4-a]benzimidazole) derivatives; (iv) T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) and (v) its structurally closely related analogue pyrazine 2-carboxamide (pyrazinamide); (vi) new strategies for the treatment of hemorrhagic fever virus infections, including, as the most imminent, (vii) dengue fever, (viii) the veterinary use of acyclic nucleoside phosphonates; (ix) the potential (off-label) use of cidofovir in the treatment of papillomatosis, particularly RRP (recurrent respiratory papillomatosis); and (x) finally, the prophylactic use of tenofovir to prevent HIV infections.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
40
|
Uchii K, Telschow A, Minamoto T, Yamanaka H, Honjo MN, Matsui K, Kawabata Z. Transmission dynamics of an emerging infectious disease in wildlife through host reproductive cycles. ISME JOURNAL 2010; 5:244-51. [PMID: 20740025 DOI: 10.1038/ismej.2010.123] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Emerging infectious diseases are major threats to wildlife populations. To enhance our understanding of the dynamics of these diseases, we investigated how host reproductive behavior and seasonal temperature variation drive transmission of infections among wild hosts, using the model system of cyprinid herpesvirus 3 (CyHV-3) disease in common carp. Our main findings were as follows: (1) a seroprevalence survey showed that CyHV-3 infection occurred mostly in adult hosts, (2) a quantitative assay for CyHV-3 in a host population demonstrated that CyHV-3 was most abundant in the spring when host reproduction occurred and water temperature increased simultaneously and (3) an analysis of the dynamics of CyHV-3 in water revealed that CyHV-3 concentration increased markedly in breeding habitats during host group mating. These results indicate that breeding habitats can become hot spots for transmission of infectious diseases if hosts aggregate for mating and the activation of pathogens occurs during the host breeding season.
Collapse
Affiliation(s)
- Kimiko Uchii
- Research Institute for Humanity and Nature, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
The outbreak of carp disease caused by CyHV-3 as a model for new emerging viral diseases in aquaculture: a review. Ecol Res 2010. [DOI: 10.1007/s11284-010-0694-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Uchii K, Matsui K, Iida T, Kawabata Z. Distribution of the introduced cyprinid herpesvirus 3 in a wild population of common carp, Cyprinus carpio L. JOURNAL OF FISH DISEASES 2009; 32:857-864. [PMID: 19500210 DOI: 10.1111/j.1365-2761.2009.01064.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3), which causes a lethal disease in common carp, Cyprinus carpio L., and koi, C. carpio koi, first occurred in Lake Biwa, Japan in 2004. To elucidate distribution of CyHV-3 in a wild common carp population, we conducted a PCR survey of CyHV-3 among such fish in Lake Biwa in 2006. Only 6% (1/18) of the common carp smaller than 300 mm were positive with PCR, whereas 31% (18/58) of fish larger than 300 mm were positive. To evaluate their past exposure to CyHV-3 infection based on the presence of antibodies, we also measured the levels of serum anti-CyHV-3 antibodies in the carp, using an enzyme-linked immunosorbent assay. None (0/26) of the fish smaller than 300 mm was positive for the antibodies, whereas 54% (33/61) of fish larger than 300 mm were positive. Of the antibody-positive individuals, 44% (14/32) were also positive by PCR strongly suggesting that wild common carp that survived infection become CyHV-3 carriers. Five individuals were positive by PCR but negative for antibodies indicating that their infection with CyHV-3 had occurred recently. These results suggest that transmission of CyHV-3 from carriers to naïve common carp is still occurring in Lake Biwa.
Collapse
Affiliation(s)
- K Uchii
- Research Institute for Humanity and Nature, Kitaku, Kyoto, Japan.
| | | | | | | |
Collapse
|
43
|
Seasonal distribution of cyprinid herpesvirus 3 in Lake Biwa, Japan. Appl Environ Microbiol 2009; 75:6900-4. [PMID: 19734343 DOI: 10.1128/aem.01411-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The seasonal distribution of the cyprinid herpesvirus 3 (CyHV-3) in Lake Biwa, Japan, was investigated. CyHV-3 was distributed all over the lake 5 years after the first outbreak. The mean concentration of CyHV-3 in water showed annual oscillation, with a peak in the summer and a trough in winter. Our results suggested that CyHV-3 is present at high density in reductive environments, such as reed zones and turbid or eutrophic water.
Collapse
|
44
|
Minamoto T, Honjo MN, Uchii K, Yamanaka H, Suzuki AA, Kohmatsu Y, Iida T, Kawabata Z. Detection of cyprinid herpesvirus 3 DNA in river water during and after an outbreak. Vet Microbiol 2008; 135:261-6. [PMID: 19013729 DOI: 10.1016/j.vetmic.2008.09.081] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/26/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
Abstract
The disease caused by cyprinid herpesvirus 3 (CyHV-3) brings catastrophic damages to cultivated carp and koi and to natural carp populations; however, the dynamics of the virus in environmental waters are unclear. In July 2007, CyHV-3 DNA was detected in a dead common carp collected from the Yura River in Kyoto Prefecture, Japan, and this was followed by mass mortality. We collected water samples at eight sites along the Yura River for 3 months immediately after confirmation of the disease outbreak and attempted to detect and quantify CyHV-3 DNA in the water samples using molecular biological methods. The virus concentration was carried out by the cation-coated filter method, while the purification of DNA from the samples was achieved using phenol-chloroform extraction and a commercial DNA extraction kit. CyHV-3 was detected by PCR using six sets of conditions, three sets of primers (SphI-5, AP, and B22Rh exon 1), and two volumes of template DNA, and was quantified using real-time PCR. Our results indicate broader distribution of CyHV-3, even though dead fish were found only in a limited area; moreover, the virus was present at high levels in the river not only during the mass mortality caused by the disease but also for at least 3 months after the end of mass mortality. Our results suggest the possibility of infection by CyHV-3 via environmental water. The sequences of CyHV-3 collected from the Yura River matched perfectly with that of the CyHV-3 Japanese strain, suggesting that they share the same origin.
Collapse
Affiliation(s)
- Toshifumi Minamoto
- Research Institute for Humanity and Nature (RIHN), 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto 603-8047, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Davidovich M, Dishon A, Ilouze M, Kotler M. Susceptibility of cyprinid cultured cells to cyprinid herpesvirus 3. Arch Virol 2007; 152:1541-6. [PMID: 17497237 DOI: 10.1007/s00705-007-0975-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 03/19/2007] [Indexed: 11/27/2022]
Abstract
Cyprinid herpesvirus 3 is a highly contagious and lethal virus that affects ornamental koi and common carp worldwide. However, it is not yet known whether other cyprinids are infected and/or harbor the virus. Here, we report that cultured cells derived from common carp, koi, silver carp and goldfish allow CyHV-3 propagation, while cyprinid cells derived from fathead minnow and non-cyprinid cells derived from the channel catfish ovary are resistant to CyHV-3 infection. Interestingly, the epithelioma papulosum Cyprini cells derived from Cyprinus carpio are restrictive to the virus. These results indicate that CyHV-3 is not restricted to common carp and koi, but other cyprinids are also vulnerable to the virus.
Collapse
Affiliation(s)
- M Davidovich
- Department of Pathology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|