1
|
Li H, Li Y, Zhang T, Liu S, Song C, Wang K, Yan W, Wang Z, Yang Q, Yang X, Wang H. Genome-wide CRISPR screen reveals specific role of type I interferon signaling pathway in Newcastle disease virus establishment of persistent infection. Vet Microbiol 2024; 300:110288. [PMID: 39642411 DOI: 10.1016/j.vetmic.2024.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 12/08/2024]
Abstract
Newcastle disease virus (NDV) is a potent oncolytic agent that exhibits sensitivity to a wide range of cancer cells. Unfortunately, some cancer cells are able to resist NDV-mediated oncolysis, by developing a persistent infection. The mechanism of persistency of infection remains poorly understood. In this study, a genome-wide CRISPR screen was conducted on non-small cell lung cancer cells (A549) to identify key host factors for NDV infection. Interestingly, a persistent infection was established in the surviving cells. CRISPR high-throughput screening results showed that members of the type I interferon signaling pathway (JAK1, STAT1, STAT2 and IRF9) were identified as top hits in the surviving cells. Further studies found that the type I IFN signaling pathway is intact in A549 cells, and a violent cytokine storm was induced after NDV infection. Both NDV infection and cytokine storm can induce cell death in A549 cells. We further blocked the type I interferon signaling pathway, and impaired type I interferon signaling pathway promoted NDV replication, but it did attenuate cell death induced by cytokine storm. Furthermore, persistent infection is more easily established in type I interferon signaling pathway-impaired A549 cells than in wild-type A549 cells. These findings suggest that the type I interferon signaling pathway plays a decisive role in persistent infection by regulating the antiviral immunity and cytokine storm inducing cell death.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Yuqing Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Tiejun Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Song Liu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Cailiang Song
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Kailu Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Wenjun Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Zheng Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Qingcheng Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Hongning Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China.
| |
Collapse
|
2
|
Wang S, Cheng P, Guo K, Ren S, Tadele BA, Liang Z, Sun Y, Yin X, Wang X. Lumpy skin disease virus enters into host cells via dynamin-mediated endocytosis and macropinocytosis. Vet Microbiol 2024; 298:110254. [PMID: 39307114 DOI: 10.1016/j.vetmic.2024.110254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 11/19/2024]
Abstract
Lumpy skin disease virus (LSDV), a ruminant poxvirus of the Capripoxvirus genus, is the etiologic agent of an economically important cattle disease categorized as a notifiable disease by the World Organization for Animal Health. However, the endocytic pathway and their regulatory molecules have not been characterized for LSDV. In the present study, specific pharmacological inhibitors were used to analyze the mechanism of LSDV entry into Mardin-Darby Bovine Kidney cell (MDBK) and bovine mammary epithelial cell (BMEC). The results showed that LSDV entered MDBK and BMEC cells depends on low-pH conditions and dynamin. However, the inhibitor of caveolae- and clathrin-mediated endocytosis cann't inhibit LSDV entry into MDBK and BMEC cells. Furthermore, treatment with specific inhibitors demonstrated that LSDV entry into MDBK and BMEC cells via macropinocytosis depended on the Na1/H1 exchanger (NHE) but not phosphatidylinositol 3-kinase (PI3K). In addition, results demonstrated that these inhibitors inhibited LSDV entry but did not have effect on LSDV binding. Taken together, our study demonstrated that LSDV enters MDBK and BMEC cells through macropinocytosis pathway in a low-PH- and dynamin-dependent manner while independent on PI3K. Results presented in this study potentially provides insight into the entry mechanisms of LSDV, and it may facilitate the development of therapeutic interventions.
Collapse
Affiliation(s)
- Shasha Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengyuan Cheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ke Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shanhui Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Berihun Afera Tadele
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Mekelle University College of Veterinary Sciences, Mekelle, Tigray, Ethiopia
| | - Zhengji Liang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
3
|
Deng J, Cao Y, Hu Z. Entry of Newcastle disease virus into host cells: an interplay among viral and host factors. Arch Virol 2024; 169:227. [PMID: 39428451 DOI: 10.1007/s00705-024-06157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/10/2024] [Indexed: 10/22/2024]
Abstract
Newcastle disease (ND) is a major burden for the poultry industry worldwide, especially in developing countries. The virus that causes this disease, Newcastle disease virus (NDV), is also an effective vector for the development of novel human and animal vaccines and a promising oncolytic virus for cancer therapy. The mechanism of entry of NDV into host cells is of particular interest because it has a significant impact on the infectivity, host range, and pathogenicity of the virus. Here, we present an overview of the entry of NDV into cells, focusing on the interplay among viral and host factors involved in this process. In particular, recent research revealing novel features of NDV attachment to cells, the identification of viral and cellular components that regulate binding of the virus to cells, and the emerging role of novel cellular routes of NDV entry are discussed. More importantly, some of the remaining gaps in our understanding of NDV entry and some fundamental questions for research efforts in the future are also highlighted.
Collapse
Affiliation(s)
- Jing Deng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
4
|
Yang Y, Wang Y, Campbell DE, Lee HW, Wang L, Baldridge M, López CB. SLC35A2 modulates paramyxovirus fusion events during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609835. [PMID: 39253522 PMCID: PMC11382999 DOI: 10.1101/2024.08.27.609835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Paramyxoviruses are significant human and animal pathogens that include mumps virus (MuV), Newcastle disease virus (NDV) and the murine parainfluenza virus Sendai (SeV). Despite their importance, few host factors implicated in paramyxovirus infection are known. Using a recombinant SeV expressing destabilized GFP (rSeVCdseGFP) in a loss-of-function CRISPR screen, we identified the CMP-sialic acid transporter (CST) gene SLC35A1 and the UDP-galactose transporter (UGT) gene SLC35A2 as essential for paramyxovirus infection. SLC35A1 knockout (KO) cells showed significantly reduced binding and infection of SeV, NDV and MuV due to the lack of cell surface sialic acids, which act as their receptors. However, SLC35A2 KO cells revealed unknown critical roles for this factor in virus-cell and cell-to-cell fusion events during infection with different paramyxoviruses. While the UGT was essential for virus-cell fusion during SeV entry to the cell, it was not required for NDV or MuV entry. Importantly, the UGT promoted the formation of larger syncytia during MuV infection, suggesting a role in cell-to-cell virus spread. Our findings demonstrate that paramyxoviruses can bind to or enter A549 cells in the absence of canonical galactose-bound sialic-acid decorations and show that the UGT facilitates paramyxovirus fusion processes involved in entry and spread.
Collapse
Affiliation(s)
- Yanling Yang
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuchen Wang
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle E. Campbell
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Heng-Wei Lee
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Leran Wang
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Carolina B. López
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Zhang D, Ding J, Yu X, Li J, Chen K, Fu Y, Ding Z, Xu X. Effect of co-infection with Newcastle disease virus on Mycoplasma gallisepticum pathogenesis in vivo and in vitro. Vet Microbiol 2024; 295:110126. [PMID: 38896939 DOI: 10.1016/j.vetmic.2024.110126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024]
Abstract
The co-infection of Newcastle disease virus (NDV) and Mycoplasma gallisepticum (MG) has a detrimental effect on chicken production performance, exerts a deleterious impact on poultry production performance, resulting in substantial economic losses. However, the exact impact and underlying mechanisms remain ambiguous. In this study, co-infection models were established both in vivo and in vitro. Through these models, it was found that the co-infection facilitated the replication of MG and NDV, as well as MG induced pathogenesis. The administration of lentogenic NDV resulted in the suppression of the innate immune response in vivo. At cellular level, co-infection promoted MG induced apoptosis through caspase-dependent mitochondrial endogenous pathway and suppressed the inflammatory secretion. This research contributes novel insights in co-infection.
Collapse
Affiliation(s)
- Di Zhang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Jiaxin Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Xibing Yu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Jindou Li
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Kainan Chen
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Yongheng Fu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhuang Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| | - Xiaohong Xu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| |
Collapse
|
6
|
Huo Z, Zhu X, Peng Q, Chen C, Yang X, Huang C, Xiang Y, Tian Q, Liu J, Liu C, Zhang P. LINC08148 promotes the caveola-mediated endocytosis of Zika virus through upregulating transcription of Src. J Virol 2024; 98:e0170523. [PMID: 38742902 PMCID: PMC11237476 DOI: 10.1128/jvi.01705-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) represent a new group of host factors involved in viral infection. Current study identified an intergenic lncRNA, LINC08148, as a proviral factor of Zika virus (ZIKV) and Dengue virus 2 (DENV2). Knockout (KO) or silencing of LINC08148 decreases the replication of ZIKV and DENV2. LINC08148 mainly acts at the endocytosis step of ZIKV but at a later stage of DENV2. RNA-seq analysis reveals that LINC08148 knockout downregulates the transcription levels of five endocytosis-related genes including AP2B1, CHMP4C, DNM1, FCHO1, and Src. Among them, loss of Src significantly decreases the uptake of ZIKV. Trans-complementation of Src in the LINC08148KO cells largely restores the caveola-mediated endocytosis of ZIKV, indicating that the proviral effect of LINC08148 is exerted through Src. Finally, LINC08148 upregulates the Src transcription through associating with its transcription factor SP1. This work establishes an essential role of LINC08148 in the ZIKV entry, underscoring a significance of lncRNAs in the viral infection. IMPORTANCE Long non-coding RNAs (lncRNAs), like proteins, participate in viral infection. However, functions of most lncRNAs remain unknown. In this study, we performed a functional screen based on microarray data and identified a new proviral lncRNA, LINC08148. Then, we uncovered that LINC08148 is involved in the caveola-mediated endocytosis of ZIKV, rather than the classical clathrin-mediated endocytosis. Mechanistically, LINC08148 upregulates the transcription of Src, an initiator of caveola-mediated endocytosis, through binding to its transcription factor SP1. This study identifies a new lncRNA involved in the ZIKV infection, suggesting lncRNAs and cellular proteins are closely linked and cooperate to regulate viral infection.
Collapse
Affiliation(s)
- Zhiting Huo
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuanfeng Zhu
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qinyu Peng
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cancan Chen
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Yang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Changbai Huang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yincheng Xiang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qingju Tian
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jingyu Liu
- Food and Cosmetics Institute, Guangzhou Customs Technology Center, Guangzhou, China
| | - Chao Liu
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ping Zhang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Liu Y, Yang D, Jiang W, Chi T, Kang J, Wang Z, Wu F. Cell entry of bovine respiratory syncytial virus through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK pathways. Front Microbiol 2024; 15:1393127. [PMID: 38690369 PMCID: PMC11059085 DOI: 10.3389/fmicb.2024.1393127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is an RNA virus with envelope that causes acute, febrile, and highly infectious respiratory diseases in cattle. However, the manner and mechanism of BRSV entry into cells remain unclear. In this study, we aimed to explore the entry manner of BRSV into MDBK cells and its regulatory mechanism. Our findings, based on virus titer, virus copies, western blot and IFA analysis, indicate that BRSV enters MDBK cells through endocytosis, relying on dynamin, specifically via clathrin-mediated endocytosis rather than caveolin-mediated endocytosis and micropinocytosis. We observed that the entered BRSV initially localizes in early endosomes and subsequently localizes in late endosomes. Additionally, our results of western blot, virus titer and virus copies demonstrate that BRSV entry through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK signaling pathways. Overall, our study suggests that BRSV enters MDBK cells through clathrin-mediated endocytosis, entered BRSV is trafficked to late endosome via early endosome, BRSV entry through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK signaling pathways.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Dongliang Yang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu, China
| | - Wen Jiang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Tianying Chi
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Jingli Kang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Zhiliang Wang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Faxing Wu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| |
Collapse
|
8
|
Ding R, Xu H, Huang H, Cao R, Lv Y. Effects of Goose Astrovirus Type 2 Infection on Peripheral Blood Lymphocyte and Macrophage Activity In Vitro. Viral Immunol 2024; 37:139-148. [PMID: 38574260 DOI: 10.1089/vim.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Goose astrovirus type 2 (GAstV-2) is a novel pathogen causing visceral gout in goslings; it not only causes necrosis of renal epithelial cells but also causes spleen damage, indicating that GAstV-2 induces immunosuppression in goslings. However, to date, the interaction between GAstV-2 and immune cells remains unclear. In this study, peripheral blood lymphocytes and macrophages were isolated from goslings without GAstV-2 infection and then inoculated in vitro with GAstV-2, and the virus localization in the lymphocytes and macrophages, proliferation and apoptosis of lymphocytes, and phagocytic activity, reactive oxygen species (ROS) and nitric oxide (NO) production, and cell polarity in macrophages were determined. The results showed that GAstV-2 was observed in the cytoplasm of CD4 and CD8 T cells and macrophages, indicating that GAstV-2 can infect both lymphocytes and macrophages. GAstV-2 infection reduced the lymphocyte proliferation induced by Concanavalin A and lipopolysaccharide stimulation and increased the lymphocyte apoptosis rate and mRNA expression of Fas, demonstrating that GAstV-2 causes damage to lymphocytes. Moreover, GAstV-2 infection enhanced phagocytic activity and production of ROS and NO and induced a proinflammatory phenotype in macrophages (M1 macrophages), indicating that macrophages play an antiviral role during GAstV-2 infection. In conclusion, these results demonstrate that GAstV-2 infection causes damages to lymphocytes, and host macrophages inhibit GAstV-2 invasion during infection.
Collapse
Affiliation(s)
- Rui Ding
- Department of Animal Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haoran Xu
- Department of Animal Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Han Huang
- Department of Animal Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruibing Cao
- Department of Animal Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yingjun Lv
- Department of Animal Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Shi Q, Zhao R, Chen L, Liu T, Di T, Zhang C, Zhang Z, Wang F, Han Z, Sun J, Liu S. Newcastle disease virus activates diverse signaling pathways via Src to facilitate virus entry into host macrophages. J Virol 2024; 98:e0191523. [PMID: 38334327 PMCID: PMC10949470 DOI: 10.1128/jvi.01915-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 02/10/2024] Open
Abstract
As an intrinsic cellular mechanism responsible for the internalization of extracellular ligands and membrane components, caveolae-mediated endocytosis (CavME) is also exploited by certain pathogens for endocytic entry [e.g., Newcastle disease virus (NDV) of paramyxovirus]. However, the molecular mechanisms of NDV-induced CavME remain poorly understood. Herein, we demonstrate that sialic acid-containing gangliosides, rather than glycoproteins, were utilized by NDV as receptors to initiate the endocytic entry of NDV into HD11 cells. The binding of NDV to gangliosides induced the activation of a non-receptor tyrosine kinase, Src, leading to the phosphorylation of caveolin-1 (Cav1) and dynamin-2 (Dyn2), which contributed to the endocytic entry of NDV. Moreover, an inoculation of cells with NDV-induced actin cytoskeletal rearrangement through Src to facilitate NDV entry via endocytosis and direct fusion with the plasma membrane. Subsequently, unique members of the Rho GTPases family, RhoA and Cdc42, were activated by NDV in a Src-dependent manner. Further analyses revealed that RhoA and Cdc42 regulated the activities of specific effectors, cofilin and myosin regulatory light chain 2, responsible for actin cytoskeleton rearrangement, through diverse intracellular signaling cascades. Taken together, our results suggest that an inoculation of NDV-induced Src-mediated cellular activation by binding to ganglioside receptors. This process orchestrated NDV endocytic entry by modulating the activities of caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPases and downstream effectors. IMPORTANCE In general, it is known that the paramyxovirus gains access to host cells through direct penetration at the plasma membrane; however, emerging evidence suggests more complex entry mechanisms for paramyxoviruses. The endocytic entry of Newcastle disease virus (NDV), a representative member of the paramyxovirus family, into multiple types of cells has been recently reported. Herein, we demonstrate the binding of NDV to induce ganglioside-activated Src signaling, which is responsible for the endocytic entry of NDV through caveolae-mediated endocytosis. This process involved Src-dependent activation of the caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPase and downstream effectors, thereby orchestrating the endocytic entry process of NDV. Our findings uncover a novel molecular mechanism of endocytic entry of NDV into host cells and provide novel insight into paramyxovirus mechanisms of entry.
Collapse
Affiliation(s)
- Qiankai Shi
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ran Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Linna Chen
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tianyi Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tao Di
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunwei Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhiying Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fangfang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
10
|
Wu Z, Shih B, Macdonald J, Meunier D, Hogan K, Chintoan-Uta C, Gilhooley H, Hu T, Beltran M, Henderson NC, Sang HM, Stevens MP, McGrew MJ, Balic A. Development and function of chicken XCR1 + conventional dendritic cells. Front Immunol 2023; 14:1273661. [PMID: 37954617 PMCID: PMC10634274 DOI: 10.3389/fimmu.2023.1273661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Conventional dendritic cells (cDCs) are antigen-presenting cells (APCs) that play a central role in linking innate and adaptive immunity. cDCs have been well described in a number of different mammalian species, but remain poorly characterised in the chicken. In this study, we use previously described chicken cDC specific reagents, a novel gene-edited chicken line and single-cell RNA sequencing (scRNAseq) to characterise chicken splenic cDCs. In contrast to mammals, scRNAseq analysis indicates that the chicken spleen contains a single, chemokine receptor XCR1 expressing, cDC subset. By sexual maturity the XCR1+ cDC population is the most abundant mononuclear phagocyte cell subset in the chicken spleen. scRNAseq analysis revealed substantial heterogeneity within the chicken splenic XCR1+ cDC population. Immature MHC class II (MHCII)LOW XCR1+ cDCs expressed a range of viral resistance genes. Maturation to MHCIIHIGH XCR1+ cDCs was associated with reduced expression of anti-viral gene expression and increased expression of genes related to antigen presentation via the MHCII and cross-presentation pathways. To visualise and transiently ablate chicken XCR1+ cDCs in situ, we generated XCR1-iCaspase9-RFP chickens using a CRISPR-Cas9 knockin transgenesis approach to precisely edit the XCR1 locus, replacing the XCR1 coding region with genes for a fluorescent protein (TagRFP), and inducible Caspase 9. After inducible ablation, the chicken spleen is initially repopulated by immature CD1.1+ XCR1+ cDCs. XCR1+ cDCs are abundant in the splenic red pulp, in close association with CD8+ T-cells. Knockout of XCR1 prevented this clustering of cDCs with CD8+ T-cells. Taken together these data indicate a conserved role for chicken and mammalian XCR1+ cDCs in driving CD8+ T-cells responses.
Collapse
Affiliation(s)
- Zhiguang Wu
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Barbara Shih
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Joni Macdonald
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Dominique Meunier
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Kris Hogan
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | | | - Hazel Gilhooley
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Tuanjun Hu
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Mariana Beltran
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil C. Henderson
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Medical Research Council (MRC) Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen M. Sang
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Mark P. Stevens
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Michael J. McGrew
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Adam Balic
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Han C, Xie Z, Lv Y, Liu D, Chen R. Direct interaction of the molecular chaperone GRP78/BiP with the Newcastle disease virus hemagglutinin-neuraminidase protein plays a vital role in viral attachment to and infection of culture cells. Front Immunol 2023; 14:1259237. [PMID: 37920471 PMCID: PMC10619984 DOI: 10.3389/fimmu.2023.1259237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
Introduction Glucose Regulated Proteins/Binding protein (GRP78/Bip), a representative molecular chaperone, effectively influences and actively participates in the replication processes of many viruses. Little is known, however, about the functional involvement of GRP78 in the replication of Newcastle disease virus (NDV) and the underlying mechanisms. Methods The method of this study are to establish protein interactomes between host cell proteins and the NDV Hemagglutinin-neuraminidase (HN) protein, and to systematically investigate the regulatory role of the GRP78-HN protein interaction during the NDV replication cycle. Results Our study revealed that GRP78 is upregulated during NDV infection, and its direct interaction with HN is mediated by the N-terminal 326 amino acid region. Knockdown of GRP78 by small interfering RNAs (siRNAs) significantly suppressed NDV infection and replication. Conversely, overexpression of GRP78 resulted in a significant increase in NDV replication, demonstrating its role as a positive regulator in the NDV replication cycle. We further showed that the direct interaction between GRP78 and HN protein enhanced the attachment of NDV to cells, and masking of GRP78 expressed on the cell surface with specific polyclonal antibodies (pAbs) inhibited NDV attachment and replication. Discussion These findings highlight the essential role of GRP78 in the adsorption stage during the NDV infection cycle, and, importantly, identify the critical domain required for GRP78-HN interaction, providing novel insights into the molecular mechanisms involved in NDV replication and infection.
Collapse
Affiliation(s)
- Chenxin Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Ziwei Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Yadi Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Dingxiang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| |
Collapse
|
12
|
Tang X, Xie Y, Li G, Niyazbekova Z, Li S, Chang J, Chen D, Ma W. ORFV entry into host cells via clathrin-mediated endocytosis and macropinocytosis. Vet Microbiol 2023; 284:109831. [PMID: 37480660 DOI: 10.1016/j.vetmic.2023.109831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Orf virus (ORFV), also known as infectious pustular virus, leads to an acute contagious zoonotic infectious disease. ORFV can directly contact and infect epithelial cells of skin and mucosa, causing damage to tissue cells. So far, the pathway of ORFV entry into cells is unclear. Therefore, finding the internalization pathway of ORFV will help to elucidate the cellular and molecular mechanisms of ORFV infection and invasion, which in turn will provide a certain reference for the prevention and treatment of ORFV. In the present study, chemical inhibitors were used to analyze the mechanism of ORFV entry into target cells. The results showed that the inhibitor of clathrin-mediated endocytosis could inhibit ORFV entry into cells. However, the inhibitor of caveolae-mediated endocytosis cannot inhibit ORFV entry into cells. In addition, inhibition of macropinocytosis pathway also significantly reduced ORFV internalization. Furthermore, the inhibitors of acidification and dynamin also prevented ORFV entry. However, results demonstrated that inhibitors inhibited ORFV entry but did not inhibit ORFV binding. Notably, extracellular trypsin promoted ORFV entry into cells directly, even when the endocytic pathway was inhibited. In conclusion, ORFV enters into its target cells by clathrin-mediated endocytosis and macropinocytosis, while caveolae-dependent endocytosis has little effects on this process. In addition, the entry into target cells by ORFV required an acid environment and the effect of dynamin. Meanwhile, we emphasize that broad-spectrum antiviral inhibitors and extracellular enzyme inhibitors are likely to be effective strategies for the prevention and treatment of ORFV infection.
Collapse
Affiliation(s)
- Xidian Tang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Yanfei Xie
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Guanhua Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Zhannur Niyazbekova
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Shaofei Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Jianjun Chang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai Province, China; College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, Qinghai Province, China
| | - Dekun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China.
| | - Wentao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China.
| |
Collapse
|
13
|
Ni J, Deng J, Chen Q, Liao T, Hu J, Chen Y, Hu S, Hu Z, Liu X. Role of Macrophages in the Pathogenesis of Genotype VII Newcastle Disease Virus in Chickens. Animals (Basel) 2023; 13:2239. [PMID: 37444037 DOI: 10.3390/ani13132239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Long-term evolution of Newcastle disease virus (NDV) results in substantial alteration in viral pathogenesis. NDVs of genotype VII, a late genotype, show marked tropism to lymphoid tissues, especially to macrophages in chickens. However, the role of macrophages in the pathogenesis of genotype VII NDV is still unclear. Herein, NDV infectivity in macrophages and the role of macrophages in the pathogenesis of genotype VII NDV in chickens were investigated. We reported that NDV strains of genotype VII (JS5/05) and IV (Herts/33) can replicate in the adherent (predominantly macrophages) and non-adherent cells (predominantly lymphocytes) derived from chicken peripheral blood mononuclear cells (PBMCs), and significantly higher virus gene copy was detected in the adherent cells. In addition, JS5/05 had significantly higher infectivity in PBMC-derived adherent cells than Herts/33, correlating with its enhanced tropism to macrophages in the spleen of chickens. Interestingly, the depletion of 68% of macrophages exerted no significant impact on clinical signs, mortality and the systematic replication of JS5/05 in chickens, which may be associated with the contribution of non-depleted macrophages and other virus-supportive cells to virus replication. Macrophage depletion resulted in a marked exacerbation of tissue damage and apoptosis in the spleen caused by JS5/05. These findings indicated that macrophages play a critical role in alleviating tissue damage caused by genotype VII NDV in chickens. Our results unveiled new roles of macrophages in NDV pathogenesis in chickens.
Collapse
Affiliation(s)
- Jie Ni
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Jing Deng
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qing Chen
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Tianxing Liao
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Jiao Hu
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Yu Chen
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Shunlin Hu
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Zenglei Hu
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiufan Liu
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Malarmathi M, Murali N, Selvaraju M, Sivakumar K, Gowthaman V, Raghavendran VB, Raja A, Peters SO, Thiruvenkadan AK. In Vitro Characterization of chIFITMs of Aseel and Kadaknath Chicken Breeds against Newcastle Disease Virus Infection. BIOLOGY 2023; 12:919. [PMID: 37508350 PMCID: PMC10376314 DOI: 10.3390/biology12070919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023]
Abstract
Newcastle disease (ND) is highly contagious and usually causes severe illness that affects Aves all over the world, including domestic poultry. Depending on the virus's virulence, it can impact the nervous, respiratory, and digestive systems and cause up to 100% mortality. The chIFITM genes are activated in response to viral infection. The current study was conducted to quantify the mRNA of chIFITM genes in vitro in response to ND viral infection. It also examined its ability to inhibit ND virus replication in chicken embryo fibroblast (CEF) cells of the Aseel and Kadaknath breeds. Results from the study showed that the expression of all chIFITM genes was significantly upregulated throughout the period in the infected CEF cells of both breeds compared to uninfected CEF cells. In CEF cells of the Kadaknath breed, elevated levels of expression of the chIFITM3 gene dramatically reduced ND viral growth, and the viral load was 60% lower than in CEF cells of the Aseel breed. The expression level of the chIFITMs in Kadaknath ranged from 2.39 to 11.68 log2 folds higher than that of control CEFs and was consistently (p < 0.01) higher than Aseel CEFs. Similar to this, theIFN-γ gene expresses strongly quickly and peaks at 13.9 log2 fold at 48 hpi. Based on these cellular experiments, the Kadaknath breed exhibits the potential for greater disease tolerance than Aseel. However, to gain a comprehensive understanding of disease resistance mechanisms in chickens, further research involving in vivo investigations is crucial.
Collapse
Affiliation(s)
- Muthusamy Malarmathi
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal 637 002, India
| | - Nagarajan Murali
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal 637 002, India
| | - Mani Selvaraju
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal 637 002, India
| | - Karuppusamy Sivakumar
- Faculty of Food and Agriculture, The University of the West Indies, St Augustine 999183, Trinidad and Tobago
| | - Vasudevan Gowthaman
- Poultry Disease Diagnosis and Surveillance Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Namakkal 637 002, India
| | | | - Angamuthu Raja
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal 637 002, India
| | - Sunday O Peters
- Department of Animal Science, Berry College, Mount Berry, GA 30149, USA
| | | |
Collapse
|
15
|
Chen XN, Liang YF, Weng ZJ, Quan WP, Hu C, Peng YZ, Sun YS, Gao Q, Huang Z, Zhang GH, Gong L. Porcine Enteric Alphacoronavirus Entry through Multiple Pathways (Caveolae, Clathrin, and Macropinocytosis) Requires Rab GTPases for Endosomal Transport. J Virol 2023; 97:e0021023. [PMID: 36975780 PMCID: PMC10134835 DOI: 10.1128/jvi.00210-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Porcine enteric alphacoronavirus (PEAV) is a new bat HKU2-like porcine coronavirus, and its endemic outbreak has caused severe economic losses to the pig industry. Its broad cellular tropism suggests a potential risk of cross-species transmission. A limited understanding of PEAV entry mechanisms may hinder a rapid response to potential outbreaks. This study analyzed PEAV entry events using chemical inhibitors, RNA interference, and dominant-negative mutants. PEAV entry into Vero cells depended on three endocytic pathways: caveolae, clathrin, and macropinocytosis. Endocytosis requires dynamin, cholesterol, and a low pH. Rab5, Rab7, and Rab9 GTPases (but not Rab11) regulate PEAV endocytosis. PEAV particles colocalize with EEA1, Rab5, Rab7, Rab9, and Lamp-1, suggesting that PEAV translocates into early endosomes after internalization, and Rab5, Rab7, and Rab9 regulate trafficking to lysosomes before viral genome release. PEAV enters porcine intestinal cells (IPI-2I) through the same endocytic pathway, suggesting that PEAV may enter various cells through multiple endocytic pathways. This study provides new insights into the PEAV life cycle. IMPORTANCE Emerging and reemerging coronaviruses cause severe human and animal epidemics worldwide. PEAV is the first bat-like coronavirus to cause infection in domestic animals. However, the PEAV entry mechanism into host cells remains unknown. This study demonstrates that PEAV enters into Vero or IPI-2I cells through caveola/clathrin-mediated endocytosis and macropinocytosis, which does not require a specific receptor. Subsequently, Rab5, Rab7, and Rab9 regulate PEAV trafficking from early endosomes to lysosomes, which is pH dependent. The results advance our understanding of the disease and help to develop potential new drug targets against PEAV.
Collapse
Affiliation(s)
- Xiong-nan Chen
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
| | - Yi-fan Liang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
| | - Zhi-jun Weng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
| | - Wei-peng Quan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, People’s Republic of China
| | - Chen Hu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Yun-zhao Peng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, People’s Republic of China
| | - Ying-shuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
| | - Qi Gao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
| | - Zhao Huang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
| | - Gui-hong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, People’s Republic of China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People’s Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, People’s Republic of China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
16
|
Hu J, Li C, Zhou Y, Ding J, Li X, Li Y. Allicin Inhibits Porcine Reproductive and Respiratory Syndrome Virus Infection In Vitro and Alleviates Inflammatory Responses. Viruses 2023; 15:v15051050. [PMID: 37243135 DOI: 10.3390/v15051050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important pathogens to the swine industry worldwide over the past three decades. No approved effective antiviral drug is available to control this virus. The antiviral effects of allicin (diallyl thiosulfinate) on many human and animal viruses have been documented. However, the antiviral effect of allicin on PRRSV infection remains unknown. In this study, we found that allicin exhibited an inhibitory effect on HP-PRRSV and NADC30-like PRRSV in a dose-dependent manner by interfering with viral entry, replication, and assembly. Furthermore, allicin alleviated the expression of pro-inflammatory cytokines (IFN-β, IL-6, and TNFα) induced by PRRSV infection. The pro-inflammatory signaling pathways, TNF signaling pathway and MAPK signaling pathway, up-regulated by PRRSV infection were restored by allicin treatment. Taken together, these results demonstrate that allicin has antiviral activity against PRRSV and ameliorates inflammatory responses induced by PRRSV infection, suggesting that allicin is a promising drug candidate for anti-PRRSV therapy in vivo.
Collapse
Affiliation(s)
- Jingbo Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chenxi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yanyang Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jingjing Ding
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiangdong Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
17
|
Yuan W, Hou Y, Wang Q, Lv T, Ren J, Fan L, Cai J, Xiang B, Lin Q, Liao M, Ding C, Chen L, Ren T. Newcastle disease virus activates methylation-related enzymes to reprogram m 6A methylation in infected cells. Vet Microbiol 2023; 281:109747. [PMID: 37080085 DOI: 10.1016/j.vetmic.2023.109747] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
Newcastle disease virus (NDV) is a paramyxovirus with high incidence and transmissibility in birds and is currently being developed for cancer therapy. N6-methyladenosine (m6A) is a common epigenetic modification of RNA. In this study, we aimed to determine whether this modification plays an important role in NDV infection. We found that methylation-related enzymes were activated in NDV-infected cells, and the abundance of m6A notably increased in vivo and in vitro. Further functional experiments showed that m6A methylation negatively regulates NDV infection. Methylated RNA immunoprecipitation sequencing revealed that the m6A-methylated peaks on different functional components of host genes shifted, underwent reprogramming, and were primarily enriched in the coding sequence after NDV infection. The differentially modified genes were mainly enriched in cellular components, as well as autophagy and ubiquitination-mediated proteolysis signaling pathways. Association analysis of RNA sequencing results showed changes in m6A regulated mRNA transcription and revealed that YTHDC1 is a methylation-related enzyme with important catalytic and recognition roles during NDV infection. Additionally, m6A-methylated peaks were detected in the NDV genome, which may be regulated by methylation-related enzymes in the host, subsequently affecting viral replication. Comprehensive analysis of the m6A expression profile after NDV infection indicated that NDV may cause reprogramming of m6A methylation and that m6A plays important roles during infection. Overall, these findings provide insights into the epigenetic etiology and pathogenesis of NDV.
Collapse
Affiliation(s)
- Weifeng Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yuechi Hou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Qingyi Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Ting Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinlian Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Lei Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Juncheng Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201 Yunnan, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chan Ding
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
| |
Collapse
|
18
|
Seneca Valley Virus Enters PK-15 Cells via Caveolae-Mediated Endocytosis and Macropinocytosis Dependent on Low-pH, Dynamin, Rab5, and Rab7. J Virol 2022; 96:e0144622. [PMID: 36472440 PMCID: PMC9769397 DOI: 10.1128/jvi.01446-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Seneca Valley virus (SVV), a new pathogen resulting in porcine vesicular disease, is prevalent in pig herds worldwide. Although an understanding of SVV biology pathogenesis is crucial for preventing and controlling this disease, the molecular mechanisms for the entry and post-internalization of SVV, which represent crucial steps in viral infection, are not well characterized. In this study, specific inhibitors, Western blotting, and immunofluorescence detection revealed that SVV entry into PK-15 cells depends on low-pH conditions and dynamin. Furthermore, results showed that caveolae-mediated endocytosis (CavME) contributes crucially to the internalization of SVV, as evidenced by cholesterol depletion, downregulation of caveolin-1 expression by small interfering RNA knockdown, and overexpression of a caveolin-1 dominant negative (caveolin-1-DN) in SVV-infected PK-15 cells. However, SVV entry into PK-15 cells did not depend on clathrin-mediated endocytosis (CME). Furthermore, treatment with specific inhibitors demonstrated that SVV entry into PK-15 cells via macropinocytosis depended on the Na+/H+ exchanger (NHE), p21-activated kinase 1 (Pak1), and actin rearrangement, but not phosphatidylinositol 3-kinase (PI3K). Electron microscopy showed that SVV particles or proteins were localized in CavME and macropinocytosis. Finally, knockdown of GTPase Rab5 and Rab7 by siRNA significantly inhibited SVV replication, as determined by measuring viral genome copy numbers, viral protein expression, and viral titers. In this study, our results demonstrated that SVV utilizes caveolae-mediated endocytosis and macropinocytosis to enter PK-15 cells, dependent on low pH, dynamin, Rab5, and Rab7. IMPORTANCE Entry of virus into cells represents the initiation of a successful infection. As an emerging pathogen of porcine vesicular disease, clarification of the process of SVV entry into cells enables us to better understand the viral life cycle and pathogenesis. In this study, patterns of SVV internalization and key factors required were explored. We demonstrated for the first time that SVV entry into PK-15 cells via caveolae-mediated endocytosis and macropinocytosis requires Rab5 and Rab7 and is independent of clathrin-mediated endocytosis, and that low-pH conditions and dynamin are involved in the process of SVV internalization. This information increases our understanding of the patterns in which all members of the family Picornaviridae enter host cells, and provides new insights for preventing and controlling SVV infection.
Collapse
|
19
|
Li H, Ni R, Wang K, Tian Y, Gong H, Yan W, Tang Y, Lei C, Wang H, Yang X. Chicken interferon-induced transmembrane protein 1 promotes replication of coronavirus infectious bronchitis virus in a cell-specific manner. Vet Microbiol 2022; 275:109597. [PMCID: PMC9616511 DOI: 10.1016/j.vetmic.2022.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/06/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
Abstract
Interferon-induced transmembrane proteins (IFITMs) are broad-spectrum antiviral proteins that inhibit numerous virus infections by impeding viral entry into target cells. However, increasing evidence suggests diverse functions of IFITMs in virus infection, especially with the coronavirus. We analyzed the effect of chicken interferon-induced transmembrane proteins (chIFITMs) on coronavirus infectious bronchitis virus (IBV) infection in vitro. We demonstrated that the antiviral effects of IFITMs are dependent on cell and virus types. The overexpression of chIFITM1 dramatically promoted the replication of IBV Beaudette strain in the chicken hepatocellular carcinoma cell line, LMH. Mechanistically, chIFITMs share roughly the same subcellular localization in different host cells, and overexpressed of chIFITM1 have no effect of viral attachment and entry. Further studies revealed that mutations of amino acids at key positions (60KSRD63, 68KDFV71) in the intracellular loop domain (CIL) caused loss of the promoted function. Interaction with downstream proteins in co-response to viral infection could be the primary reason behind variable functions of chIFITM1 in different cells. In all, our study explored the functions of chIFITMs in viral infection from a new perspective.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Ruiqi Ni
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Kailu Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Yiming Tian
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
| | - Huilin Gong
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Wenjun Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Yizhi Tang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Changwei Lei
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Hongning Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China,Corresponding author at: Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China
| |
Collapse
|
20
|
Virosome, a promising delivery vehicle for siRNA delivery and its novel preparation method. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Porcine deltacoronavirus enters porcine IPI-2I intestinal epithelial cells via macropinocytosis and clathrin-mediated endocytosis dependent on pH and dynamin. J Virol 2021; 95:e0134521. [PMID: 34586858 DOI: 10.1128/jvi.01345-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes serious diarrhoea in suckling piglets and has the potential for cross-species transmission. Although extensive studies have been reported on the biology and pathogenesis of PDCoV, the mechanisms by which PDCoV enters cells are not well characterized. In this study, we investigated how PDCoV enters IPI-2I cells, a line of porcine intestinal epithelial cells derived from pig ileum. Immunofluorescence assays, siRNA interference, specific pharmacological inhibitors and dominant-negative mutation results revealed that PDCoV entry into IPI-2I cells depended on clathrin, dynamin and a low-pH environment, but was independent of caveolae. Specific inhibition of phosphatidylinositol 3-kinase (PI3K) and the Na+/H+ exchanger (NHE) revealed that PDCoV entry involves macropinocytosis and depends on NHE rather than on PI3K. Additionally, Rab5 and Rab7, but not Rab11, regulated PDCoV endocytosis. This is the first study to demonstrate that PDCoV uses clathrin-mediated endocytosis and macropinocytosis as alternative endocytic pathways to enter porcine intestinal epithelial cells. We also discussed the entry pathways of PDCoV into other porcine cell lines. Our findings reveal the entry mechanisms of PDCoV and provide new insight into the PDCoV life cycle. IMPORTANCE An emerging enteropathogenic coronavirus, PDCoV has the potential for cross-species transmission, attracting extensive attenuation. Characterizing the detailed process of PDCoV entry into cells will deepen our understanding of the viral infection and pathogenesis, and provide the clues for therapeutic intervention against PDCoV. With the objective, we used complementary approaches to dissect the process in PDCoV-infected IPI-2I cells, a line of more physiologically relevant intestinal epithelial cells to PDCoV infection in vivo. Here, we demonstrate that PDCoV enters IPI-2I cells via macropinocytosis that does not require a specific receptor and clathrin-mediated endocytosis that requires a low-pH environment and dynamin, while a caveola-mediated endocytic pathway is used by PDCoV to enter swine testicular (ST) cells and porcine kidney (LLC-PK1) cells. These findings provide a molecular detail of the cellular entry pathways of PDCoV and may direct us toward novel antiviral drug development.
Collapse
|