1
|
Kleinpeter AB, Zhu Y, Mallery DL, Ablan SD, Chen L, Hardenbrook N, Saiardi A, James LC, Zhang P, Freed EO. The Effect of Inositol Hexakisphosphate on HIV-1 Particle Production and Infectivity can be Modulated by Mutations that Affect the Stability of the Immature Gag Lattice. J Mol Biol 2023; 435:168037. [PMID: 37330292 PMCID: PMC10544863 DOI: 10.1016/j.jmb.2023.168037] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 06/19/2023]
Abstract
The assembly of an HIV-1 particle begins with the construction of a spherical lattice composed of hexamer subunits of the Gag polyprotein. The cellular metabolite inositol hexakisphosphate (IP6) binds and stabilizes the immature Gag lattice via an interaction with the six-helix bundle (6HB), a crucial structural feature of Gag hexamers that modulates both virus assembly and infectivity. The 6HB must be stable enough to promote immature Gag lattice formation, but also flexible enough to be accessible to the viral protease, which cleaves the 6HB during particle maturation. 6HB cleavage liberates the capsid (CA) domain of Gag from the adjacent spacer peptide 1 (SP1) and IP6 from its binding site. This pool of IP6 molecules then promotes the assembly of CA into the mature conical capsid that is required for infection. Depletion of IP6 in virus-producer cells results in severe defects in assembly and infectivity of wild-type (WT) virions. Here we show that in an SP1 double mutant (M4L/T8I) with a hyperstable 6HB, IP6 can block virion infectivity by preventing CA-SP1 processing. Thus, depletion of IP6 in virus-producer cells markedly increases M4L/T8I CA-SP1 processing and infectivity. We also show that the introduction of the M4L/T8I mutations partially rescues the assembly and infectivity defects induced by IP6 depletion on WT virions, likely by increasing the affinity of the immature lattice for limiting IP6. These findings reinforce the importance of the 6HB in virus assembly, maturation, and infection and highlight the ability of IP6 to modulate 6HB stability.
Collapse
Affiliation(s)
- Alex B Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA. https://twitter.com/AlexKleinpeter
| | - Yanan Zhu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Donna L Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sherimay D Ablan
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Long Chen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Nathan Hardenbrook
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London, UK. https://twitter.com/SaiardiLab
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. https://twitter.com/JamesLab9
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|
2
|
The Role of Exosome and the ESCRT Pathway on Enveloped Virus Infection. Int J Mol Sci 2021; 22:ijms22169060. [PMID: 34445766 PMCID: PMC8396519 DOI: 10.3390/ijms22169060] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) system consists of peripheral membrane protein complexes ESCRT-0, -I, -II, -III VPS4-VTA1, and ALIX homodimer. This system plays an important role in the degradation of non-essential or dangerous plasma membrane proteins, the biogenesis of lysosomes and yeast vacuoles, the budding of most enveloped viruses, and promoting membrane shedding of cytokinesis. Recent results show that exosomes and the ESCRT pathway play important roles in virus infection. This review mainly focuses on the roles of exosomes and the ESCRT pathway in virus assembly, budding, and infection of enveloped viruses. The elaboration of the mechanism of exosomes and the ESCRT pathway in some enveloped viruses provides important implications for the further study of the infection mechanism of other enveloped viruses.
Collapse
|
3
|
Brown JB, Summers HR, Brown LA, Marchant J, Canova PN, O'Hern CT, Abbott ST, Nyaunu C, Maxwell S, Johnson T, Moser MB, Ablan SD, Carter H, Freed EO, Summers MF. Structural and Mechanistic Studies of the Rare Myristoylation Signal of the Feline Immunodeficiency Virus. J Mol Biol 2020; 432:4076-4091. [PMID: 32442659 PMCID: PMC7316625 DOI: 10.1016/j.jmb.2020.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
All retroviruses encode a Gag polyprotein containing an N-terminal matrix domain (MA) that anchors Gag to the plasma membrane and recruits envelope glycoproteins to virus assembly sites. Membrane binding by the Gag protein of HIV-1 and most other lentiviruses is dependent on N-terminal myristoylation of MA by host N-myristoyltransferase enzymes (NMTs), which recognize a six-residue "myristoylation signal" with consensus sequence: M1GXXX[ST]. For unknown reasons, the feline immunodeficiency virus (FIV), which infects both domestic and wild cats, encodes a non-consensus myristoylation sequence not utilized by its host or by other mammals (most commonly: M1GNGQG). To explore the evolutionary basis for this sequence, we compared the structure, dynamics, and myristoylation properties of native FIV MA with a mutant protein containing a consensus feline myristoylation motif (MANOS) and examined the impact of MA mutations on virus assembly and ability to support spreading infection. Unexpectedly, myristoylation efficiency of MANOS in Escherichia coli by co-expressed mammalian NMT was reduced by ~70% compared to the wild-type protein. NMR studies revealed that residues of the N-terminal myristoylation signal are fully exposed and mobile in the native protein but partially sequestered in the MANOS chimera, suggesting that the unusual FIV sequence is conserved to promote exposure and efficient myristoylation of the MA N terminus. In contrast, virus assembly studies indicate that the MANOS mutation does not affect virus assembly, but does prevent virus spread, in feline kidney cells. Our findings indicate that residues of the FIV myristoylation sequence play roles in replication beyond NMT recognition and Gag-membrane binding.
Collapse
Affiliation(s)
- Janae B Brown
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Holly R Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Lola A Brown
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Jan Marchant
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Paige N Canova
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Colin T O'Hern
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Sophia T Abbott
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Constance Nyaunu
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Simon Maxwell
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Talayah Johnson
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Morgan B Moser
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Sherimay D Ablan
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute at Fredrick, Fredrick, MD 21702-1201, USA
| | - Hannah Carter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute at Fredrick, Fredrick, MD 21702-1201, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute at Fredrick, Fredrick, MD 21702-1201, USA.
| | - Michael F Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
4
|
Alix-Mediated Rescue of Feline Immunodeficiency Virus Budding Differs from That Observed with Human Immunodeficiency Virus. J Virol 2020; 94:JVI.02019-19. [PMID: 32213612 DOI: 10.1128/jvi.02019-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
The structural protein Gag is the only viral component required for retroviral budding from infected cells. Each of the three conserved domains-the matrix (MA), capsid (CA), and nucleocapsid (NC) domains-drives different phases of viral particle assembly and egress. Once virus assembly is complete, retroviruses, like most enveloped viruses, utilize host proteins to catalyze membrane fission and to free progeny virions. These proteins are members of the endosomal sorting complex required for transport (ESCRT), a cellular machinery that coats the inside of budding necks to perform membrane-modeling events necessary for particle abscission. The ESCRT is recruited through interactions with PTAP and LYPXnL, two highly conserved sequences named late (L) domains, which bind TSG101 and Alix, respectively. A TSG101-binding L-domain was identified in the p2 region of the feline immunodeficiency virus (FIV) Gag protein. Here, we show that the human protein Alix stimulates the release of virus from FIV-expressing human cells. Furthermore, we demonstrate that the Alix Bro1 domain rescues FIV mutants lacking a functional TSG101-interacting motif, independently of the entire p2 region and of the canonical Alix-binding L-domain(s) in FIV Gag. However, in contrast to the effect on human immunodeficiency virus type 1 (HIV-1), the C377,409S double mutation, which disrupts both CCHC zinc fingers in the NC domain, does not abrogate Alix-mediated virus rescue. These studies provide insight into conserved and divergent mechanisms of lentivirus-host interactions involved in virus budding.IMPORTANCE FIV is a nonprimate lentivirus that infects domestic cats and causes a syndrome that is reminiscent of AIDS in humans. Based on its similarity to HIV with regard to different molecular and biochemical properties, FIV represents an attractive model for the development of strategies to prevent and/or treat HIV infection. Here, we show that the Bro1 domain of the human cellular protein Alix is sufficient to rescue the budding of FIV mutants devoid of canonical L-domains. Furthermore, we demonstrate that the integrity of the CCHC motifs in the Gag NC domain is dispensable for Alix-mediated rescue of virus budding, suggesting the involvement of other regions of the Gag viral protein. Our research is pertinent to the identification of a conserved yet mechanistically divergent ESCRT-mediated lentivirus budding process in general, and to the role of Alix in particular, which underlies the complex viral-cellular network of interactions that promote late steps of the retroviral life cycle.
Collapse
|
5
|
Chen Y, Li J, Zhou Y, Feng Y, Guan X, Li D, Ren X, Gao S, Huang J, Guan X, Shi W, Liu M. The role of infectious hematopoietic necrosis virus (IHNV) proteins in recruiting the ESCRT pathway through three ways in the host cells of fish during IHNV budding. FISH & SHELLFISH IMMUNOLOGY 2019; 92:833-841. [PMID: 31299463 DOI: 10.1016/j.fsi.2019.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
In cytokinetic abscission, phagophore formation, and enveloped virus budding are mediated by the endosomal sorting complex required for transport (ESCRT). Many retroviruses and RNA viruses encode "late-domain" motifs that can interact with the components of the ESCRT pathway to mediate the viral assembly and budding. However, the rhabdovirus in fish has been rarely investigated. In this study, inhibition the protein expression of the ESCRT components reduces the extracellular virion production, which preliminarily indicates that the ESCRT pathway is involved in IHNV release. The respective interactions of IHNV proteins including M, G, L protein with Nedd4, Tsg101, and Alix suggest the underlying molecular mechanism by which IHNV gets access to the ESCRT pathway. These results are the first observation that rhabdovirus in fish gains access to the ESCRT pathway through three ways of interactions between viral proteins and host proteins. In addition, the results show that IHNV is released from host cells through the ESCRT pathway. Taken together, our study provides a theoretical basis for studying the budding mechanism of IHNV.
Collapse
Affiliation(s)
- Yaping Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiahui Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xin Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Dechuan Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xuanyu Ren
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shuai Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jinshan Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xueting Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wen Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
6
|
Purification and Functional Characterization of a Biologically Active Full-Length Feline Immunodeficiency Virus (FIV) Pr50 Gag. Viruses 2019; 11:v11080689. [PMID: 31357656 PMCID: PMC6723490 DOI: 10.3390/v11080689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023] Open
Abstract
The feline immunodeficiency virus (FIV) full-length Pr50Gag precursor is a key player in the assembly of new viral particles. It is also a critical component of the efficient selection and packaging of two copies of genomic RNA (gRNA) into the newly formed virus particles from a wide pool of cellular and spliced viral RNA. To understand the molecular mechanisms involved during FIV gRNA packaging, we expressed the His6-tagged and untagged recombinant FIV Pr50Gag protein both in eukaryotic and prokaryotic cells. The recombinant Pr50Gag-His6-tag fusion protein was purified from soluble fractions of prokaryotic cultures using immobilized metal affinity chromatography (IMAC). This purified protein was able to assemble in vitro into virus-like particles (VLPs), indicating that it preserved its ability to oligomerize/multimerize. Furthermore, VLPs formed in eukaryotic cells by the FIV full-length Pr50Gag both in the presence and absence of His6-tag could package FIV sub-genomic RNA to similar levels, suggesting that the biological activity of the recombinant full-length Pr50Gag fusion protein was retained in the presence of His6-tag at the carboxy terminus. Successful expression and purification of a biologically active, recombinant full-length Pr50Gag-His6-tag fusion protein will allow study of the intricate RNA-protein interactions involved during FIV gRNA encapsidation.
Collapse
|
7
|
Properties and Functions of Feline Immunodeficiency Virus Gag Domains in Virion Assembly and Budding. Viruses 2018; 10:v10050261. [PMID: 29772651 PMCID: PMC5977254 DOI: 10.3390/v10050261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 01/11/2023] Open
Abstract
Feline immunodeficiency virus (FIV) is an important cat pathogen worldwide whose biological and pathophysiological properties resemble those of human immunodeficiency virus type 1 (HIV-1). Therefore, the study of FIV not only benefits its natural host but is also useful for the development of antiviral strategies directed against HIV-1 infections in humans. FIV assembly results from the multimerization of a single but complex viral polypeptide, the Gag precursor. In this review, we will first give an overview of the current knowledge of the proteins encoded by the FIV pol, env, rev, vif, and orf-A genes, and then we will describe and discuss in detail the critical roles that each of the FIV Gag domains plays in virion morphogenesis. Since retroviral assembly is an attractive target for therapeutic interventions, gaining a better understanding of this process is highly desirable.
Collapse
|
8
|
Reed JC, Westergreen N, Barajas BC, Ressler DTB, Phuong DJ, Swain JV, Lingappa VR, Lingappa JR. Formation of RNA Granule-Derived Capsid Assembly Intermediates Appears To Be Conserved between Human Immunodeficiency Virus Type 1 and the Nonprimate Lentivirus Feline Immunodeficiency Virus. J Virol 2018; 92:e01761-17. [PMID: 29467316 PMCID: PMC5899207 DOI: 10.1128/jvi.01761-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/14/2018] [Indexed: 01/18/2023] Open
Abstract
During immature capsid assembly in cells, human immunodeficiency virus type 1 (HIV-1) Gag co-opts a host RNA granule, forming a pathway of intracellular assembly intermediates containing host components, including two cellular facilitators of assembly, ABCE1 and DDX6. A similar assembly pathway has been observed for other primate lentiviruses. Here we asked whether feline immunodeficiency virus (FIV), a nonprimate lentivirus, also forms RNA granule-derived capsid assembly intermediates. First, we showed that the released FIV immature capsid and a large FIV Gag-containing intracellular complex are unstable during analysis, unlike for HIV-1. We identified harvest conditions, including in situ cross-linking, that overcame this problem, revealing a series of FIV Gag-containing complexes corresponding in size to HIV-1 assembly intermediates. Previously, we showed that assembly-defective HIV-1 Gag mutants are arrested at specific assembly intermediates; here we identified four assembly-defective FIV Gag mutants, including three not previously studied, and demonstrated that they appear to be arrested at the same intermediate as the cognate HIV-1 mutants. Further evidence that these FIV Gag-containing complexes correspond to assembly intermediates came from coimmunoprecipitations demonstrating that endogenous ABCE1 and the RNA granule protein DDX6 are associated with FIV Gag, as shown previously for HIV-1 Gag, but are not associated with a ribosomal protein, at steady state. Additionally, we showed that FIV Gag associates with another RNA granule protein, DCP2. Finally, we validated the FIV Gag-ABCE1 and FIV Gag-DCP2 interactions with proximity ligation assays demonstrating colocalization in situ Together, these data support a model in which primate and nonprimate lentiviruses form intracellular capsid assembly intermediates derived from nontranslating host RNA granules.IMPORTANCE Like HIV-1 Gag, FIV Gag assembles into immature capsids; however, it is not known whether FIV Gag progresses through a pathway of immature capsid assembly intermediates derived from host RNA granules, as shown for HIV-1 Gag. Here we showed that FIV Gag forms complexes that resemble HIV-1 capsid assembly intermediates in size and in their association with ABCE1 and DDX6, two host facilitators of HIV-1 immature capsid assembly that are found in HIV-1 assembly intermediates. Our studies also showed that known and novel assembly-defective FIV Gag mutants fail to progress past putative intermediates in a pattern resembling that observed for HIV-1 Gag mutants. Finally, we used imaging to demonstrate colocalization of FIV Gag with ABCE1 and with the RNA granule protein DCP2. Thus, we conclude that formation of assembly intermediates derived from host RNA granules is likely conserved between primate and nonprimate lentiviruses and could provide targets for future antiviral strategies.
Collapse
Affiliation(s)
| | | | - Brook C Barajas
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | | | - Daryl J Phuong
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - John V Swain
- Prosetta Biosciences, San Francisco, California, USA
| | | | - Jaisri R Lingappa
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Analysis of the functional compatibility of SIV capsid sequences in the context of the FIV gag precursor. PLoS One 2017; 12:e0177297. [PMID: 28475623 PMCID: PMC5419655 DOI: 10.1371/journal.pone.0177297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/25/2017] [Indexed: 02/02/2023] Open
Abstract
The formation of immature lentiviral particles is dependent on the multimerization of the Gag polyprotein at the plasma membrane of the infected cells. One key player in the virus assembly process is the capsid (CA) domain of Gag, which establishes the protein-protein interactions that give rise to the hexagonal lattice of Gag molecules in the immature virion. To gain a better understanding of the functional equivalence between the CA proteins of simian and feline immunodeficiency viruses (SIV and FIV, respectively), we generated a series of chimeric FIV Gag proteins in which the CA-coding region was partially or totally replaced by its SIV counterpart. All the FIV Gag chimeras were found to be assembly-defective; however, all of them are able to interact with wild-type SIV Gag and be recruited into extracellular virus-like particles, regardless of the SIV CA sequences present in the chimeric FIV Gag. The results presented here markedly contrast with our previous findings showing that chimeric SIVs carrying FIV CA-derived sequences are assembly-competent. Overall, our data support the notion that although the SIV and FIV CA proteins share 51% amino acid sequence similarity and exhibit a similar organization, i.e., an N-terminal domain joined by a flexible linker to a C-terminal domain, their functional exchange between these different lentiviruses is strictly dependent on the context of the recipient Gag precursor.
Collapse
|
10
|
Mi S, Qin XW, Lin YF, He J, Chen NN, Liu C, Weng SP, He JG, Guo CJ. Budding of Tiger Frog Virus (an Iridovirus) from HepG2 Cells via Three Ways Recruits the ESCRT Pathway. Sci Rep 2016; 6:26581. [PMID: 27225426 PMCID: PMC4880917 DOI: 10.1038/srep26581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/04/2016] [Indexed: 12/11/2022] Open
Abstract
The cellular endosomal sorting complex required for transport (ESCRT) pathway is a multifunctional pathway involved in cell physiological activities. While the majority of RNA viruses bearing L-domains are known to hijack the ESCRT pathway to complete the budding process, the budding of large and complex enveloped DNA viruses, especially iridoviruses, has been rarely investigated. In the present study, we use the tiger frog virus (TFV) as a model to investigate whether iridoviruses are released from host cells through the ESCRT pathway. Inhibition of class E proteins and auxiliary proteins (VPS4A, VPS4B, Tsg101, Alix, and Nedd4.1) reduces extracellular virion production, which preliminarily indicates that the ESCRT pathway is involved in TFV release. The respective interactions of TFV VP031L, VP065L, VP093L with Alix, Tsg101, Nedd4 suggest the underlying molecular mechanism by which TFV gets access to the ESCRT pathway. Co-depletion of Alix, Tsg101, and Nedd4.1 induces a significant reduction in extracellular virion production, which implies the functional redundancy of host factors in TFV budding. Those results are first observation that iridovirus gains access to ESCRT pathway through three ways of interactions between viral proteins and host proteins. Our study provides a better understanding of the budding mechanism of enveloped DNA viruses.
Collapse
Affiliation(s)
- Shu Mi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
| | - Xiao-Wei Qin
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
| | - Yi-Fan Lin
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
| | - Jian He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
| | - Nan-Nan Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
| | - Chang Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
| | - Shao-Ping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
| | - Jian-Guo He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
| | - Chang-Jun Guo
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, P. R. China
| |
Collapse
|
11
|
Brown LA, Cox C, Baptiste J, Summers H, Button R, Bahlow K, Spurrier V, Kyser J, Luttge BG, Kuo L, Freed EO, Summers MF. NMR structure of the myristylated feline immunodeficiency virus matrix protein. Viruses 2015; 7:2210-29. [PMID: 25941825 PMCID: PMC4452903 DOI: 10.3390/v7052210] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 03/30/2015] [Accepted: 04/21/2015] [Indexed: 11/25/2022] Open
Abstract
Membrane targeting by the Gag proteins of the human immunodeficiency viruses (HIV types-1 and -2) is mediated by Gag's N-terminally myristylated matrix (MA) domain and is dependent on cellular phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. To determine if other lentiviruses employ a similar membrane targeting mechanism, we initiated studies of the feline immunodeficiency virus (FIV), a widespread feline pathogen with potential utility for development of human therapeutics. Bacterial co-translational myristylation was facilitated by mutation of two amino acids near the amino-terminus of the protein (Q5A/G6S; myrMAQ5A/G6S). These substitutions did not affect virus assembly or release from transfected cells. NMR studies revealed that the myristyl group is buried within a hydrophobic pocket in a manner that is structurally similar to that observed for the myristylated HIV-1 protein. Comparisons with a recent crystal structure of the unmyristylated FIV protein [myr(-)MA] indicate that only small changes in helix orientation are required to accommodate the sequestered myr group. Depletion of PI(4,5)P2 from the plasma membrane of FIV-infected CRFK cells inhibited production of FIV particles, indicating that, like HIV, FIV hijacks the PI(4,5)P2 cellular signaling system to direct intracellular Gag trafficking during virus assembly.
Collapse
Affiliation(s)
- Lola A Brown
- Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Cassiah Cox
- Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Janae Baptiste
- Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Holly Summers
- Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Ryan Button
- Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Kennedy Bahlow
- Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Vaughn Spurrier
- Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Jenna Kyser
- Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Benjamin G Luttge
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| | - Lillian Kuo
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| | - Michael F Summers
- Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
12
|
Esteva MJ, Affranchino JL, González SA. Lentiviral Gag assembly analyzed through the functional characterization of chimeric simian immunodeficiency viruses expressing different domains of the feline immunodeficiency virus capsid protein. PLoS One 2014; 9:e114299. [PMID: 25462889 PMCID: PMC4252113 DOI: 10.1371/journal.pone.0114299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/07/2014] [Indexed: 12/18/2022] Open
Abstract
To gain insight into the functional relationship between the capsid (CA) domains of the Gag polyproteins of simian and feline immunodeficiency viruses (SIV and FIV, respectively), we constructed chimeric SIVs in which the CA-coding region was partially or totally replaced by the equivalent region of the FIV CA. The phenotypic characterization of the chimeras allowed us to group them into three categories: the chimeric viruses that, while being assembly-competent, exhibit a virion-associated unstable FIV CA; a second group represented only by the chimeric SIV carrying the N-terminal domain (NTD) of the FIV CA which proved to be assembly-defective; and a third group constituted by the chimeric viruses that produce virions exhibiting a mature and stable FIV CA protein, and which incorporate the envelope glycoprotein and contain wild-type levels of viral genome RNA and reverse transcriptase. Further analysis of the latter group of chimeric SIVs demonstrated that they are non-infectious due to a post-entry impairment, such as uncoating of the viral core, reverse transcription or nuclear import of the preintegration complex. Furthermore, we show here that the carboxyl-terminus domain (CTD) of the FIV CA has an intrinsic ability to dimerize in vitro and form high-molecular-weight oligomers, which, together with our finding that the FIV CA-CTD is sufficient to confer assembly competence to the resulting chimeric SIV Gag polyprotein, provides evidence that the CA-CTD exhibits more functional plasticity than the CA-NTD. Taken together, our results provide relevant information on the biological relationship between the CA proteins of primate and nonprimate lentiviruses.
Collapse
Affiliation(s)
- María J. Esteva
- Laboratorio de Virología, Universidad de Belgrano (UB) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - José L. Affranchino
- Laboratorio de Virología, Universidad de Belgrano (UB) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Silvia A. González
- Laboratorio de Virología, Universidad de Belgrano (UB) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
13
|
Structural elements in the Gag polyprotein of feline immunodeficiency virus involved in Gag self-association and assembly. J Gen Virol 2014; 95:2050-2059. [DOI: 10.1099/vir.0.065151-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Gag polyprotein of feline immunodeficiency virus (FIV) assembles at the plasma membrane of the infected cells. We aimed to identify the FIV Gag domains that interact and promote Gag multimerization. To do this we generated a series of Gag subdomains and tested their ability to associate with full-length Gag and be recruited into extracellular virus-like particles (VLPs). Removal of 37 residues from the C-terminus of FIV Gag and deletion of the N-terminal and central regions of the nucleocapsid (NC) domain attenuated but did not abrogate association with wild-type Gag, whereas a Gag mutant protein encompassing the matrix (MA) and capsid (CA) domains interacted poorly with full-length Gag. Association with wild-type Gag was abolished by deleting most of the NC together with the N-terminal 40 residues of the MA, which most likely reflects the inability of this Gag mutant to bind RNA. Notably, the CA–NC Gag subdomain both associated with wild-type Gag and was recruited into particles in a proportion close to 50 % of the total Gag-related protein mass of VLPs. Moreover, both a Gag protein lacking the C-terminal p2 peptide and a nonmyristoylated version of the polyprotein exhibited a transdominant-negative effect on the assembly of wild-type Gag. Analysis of Gag mutants carrying internal deletions within the CA revealed that the N-terminal and the C-terminal domains of the CA are necessary for Gag assembly. Our results demonstrate that the FIV CA–NC region constitutes the principal self-interaction domain of Gag and that the RNA-binding capacity of Gag is necessary for its multimerization.
Collapse
|
14
|
Chudak C, Beimforde N, George M, Zimmermann A, Lausch V, Hanke K, Bannert N. Identification of late assembly domains of the human endogenous retrovirus-K(HML-2). Retrovirology 2013; 10:140. [PMID: 24252269 PMCID: PMC3874623 DOI: 10.1186/1742-4690-10-140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 11/11/2013] [Indexed: 11/10/2022] Open
Abstract
Background Late assembly (L)-domains are protein interaction motifs, whose dysfunction causes characteristic budding defects in enveloped viruses. Three different amino acid motifs, namely PT/SAP, PPXY and YPXnL have been shown to play a major role in the release of exogenous retroviruses. Although the L-domains of exogenous retroviruses have been studied comprehensively, little is known about these motifs in endogenous human retroviruses. Results Using a molecular clone of the human endogenous retrovirus K113 that had been engineered to reverse the presumed non-synonymous postinsertional mutations in the major genes, we identified three functional L-domains of the virus, all located in the Gag p15 protein. A consensus PTAP tetrapeptide serves as the core of a main L-domain for the virus and its inactivation reduces virus release in HEK 293T cells by over 80%. Electron microscopy of cells expressing the PTAP mutant revealed predominantly late budding structures and budding chains at the plasma membrane. The fact that this motif determines subcellular colocalization with Tsg101, an ESCRT-I complex protein known to bind to the core tetrapeptide, supports its role as an L-domain. Moreover, two YPXnL motifs providing additional L-domain function were identified in the p15 protein. One is adjacent to the PTAP sequence and the other is in the p15 N-terminus. Mutations in either motif diminishes virus release and induces an L-domain phenotype while inactivation of all three L-domains results in a complete loss of particle release in HEK 293T cells. The flexibility of the virus in the use of L-domains for gaining access to the ESCRT machinery is demonstrated by overexpression of Tsg101 which rescues the release of the YPXnL mutants. Similarly, overexpression of Alix not only enhances release of the PTAP mutant by a factor of four but also the release of a triple mutant, indicating that additional cryptic YPXnL domains with a low affinity for Alix may be present. No L-domain activity is provided by the proline-rich peptides at the Gag C-terminus. Conclusions Our data demonstrate that HERV-K(HML-2) release is predominantly mediated through a consensus PTAP motif and two auxiliary YPXnL motifs in the p15 protein of the Gag precursor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Norbert Bannert
- Department for HIV and other Retroviruses, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| |
Collapse
|
15
|
Yap MW, Stoye JP. Apparent effect of rabbit endogenous lentivirus type K acquisition on retrovirus restriction by lagomorph Trim5αs. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120498. [PMID: 23938750 PMCID: PMC3758185 DOI: 10.1098/rstb.2012.0498] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To test the hypothesis that rabbit endogenous lentivirus type K (RELIK) could play a role in shaping the evolution of TRIM5α, the susceptibility of viruses containing the RELIK capsid (CA) to TRIM5 restriction was evaluated. RELIK CA-containing viruses were susceptible to the TRIM5αs from Old World monkeys but were unaffected by most ape or New World monkey factors. TRIM5αs from various lagomorph species were also isolated and tested for anti-retroviral activity. The TRIM5αs from both cottontail rabbit and pika restrict a range of retroviruses, including HIV-1, HIV-2, FIV, EIAV and N-MLV. TRIM5αs from the European and cottontail rabbit, which have previously been found to contain RELIK, also restricted RELIK CA-containing viruses, whereas a weaker restriction was observed with chimeric TRIM5α containing the B30.2 domain from the pika, which lacks RELIK. Taken together, these results could suggest that the pika had not been exposed to exogenous RELIK and that endogenized RELIK might exert a selective pressure on lagomorph TRIM5α.
Collapse
Affiliation(s)
| | - Jonathan P. Stoye
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
16
|
Luttge BG, Panchal P, Puri V, Checkley MA, Freed EO. Mutations in the feline immunodeficiency virus envelope glycoprotein confer resistance to a dominant-negative fragment of Tsg101 by enhancing infectivity and cell-to-cell virus transmission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1143-52. [PMID: 24036228 DOI: 10.1016/j.bbamem.2013.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 08/04/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
The Pro-Ser-Ala-Pro (PSAP) motif in the p2 domain of feline immunodeficiency virus (FIV) Gag is required for efficient virus release, virus replication, and Gag binding to the ubiquitin-E2-variant (UEV) domain of Tsg101. As a result of this direct interaction, expression of an N-terminal fragment of Tsg101 containing the UEV domain (referred to as TSG-5') inhibits FIV release. In these respects, the FIV p2(Gag) PSAP motif is analogous to the PTAP motif of HIV-1 p6(Gag). To evaluate the feasibility of a late domain-targeted inhibition of virus replication, we created an enriched Crandell-Rees feline kidney (CRFK) cell line (T5'(hi)) that stably expresses high levels of TSG-5'. Here we show that mutations in either the V3 loop or the second heptad repeat (HR2) domain of the FIV envelope glycoprotein (Env) rescue FIV replication in T5'(hi) cells without increasing FIV release efficiency. TSG-5'-resistance mutations in Env enhance virion infectivity and the cell-cell spread of FIV when diffusion is limited using a semi-solid growth medium. These findings show that mutations in functional domains of Env confer TSG-5'-resistance, which we propose enhances specific infectivity and the cell-cell transmission of virus to counteract inefficient virus release. This article is part of a Special Issue entitled: Viral Membrane Proteins-Channels for Cellular Networking.
Collapse
Affiliation(s)
- Benjamin G Luttge
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Prashant Panchal
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Vinita Puri
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Mary Ann Checkley
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
17
|
Selection of Drug-Resistant Feline Immunodeficiency Virus (FIV) Encoding FIV/HIV Chimeric Protease in the Presence of HIV-Specific Protease Inhibitors. J Virol 2013; 87:8524-34. [DOI: 10.1128/jvi.01240-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
An infectious chimeric feline immunodeficiency virus (FIV)/HIV strain carrying six HIV-like protease (PR) mutations (I37V/N55M/V59I/I98S/Q99V/P100N) was subjected to selection in culture against the PR inhibitor lopinavir (LPV), darunavir (DRV), or TL-3. LPV selection resulted in the sequential emergence of V99A (strain S-1X), I59V (strain S-2X), and I108V (strain S-3X) mutations, followed by V37I (strain S-4X). Mutant PRs were analyzed
in vitro
, and an isogenic virus producing each mutant PR was analyzed in culture for LPV sensitivity, yielding results consistent with the original selection. The 50% inhibitory concentrations (IC
50
s) for S-1X, S-2X, S-3X, and S-4X were 95, 643, 627, and 1,543 nM, respectively. The primary resistance mutations, V99
82
A, I59
50
V, and V37
32
I, are consistent with the resistance pattern developed by HIV-1 under similar selection conditions. While resistance to LPV emerged readily, similar PR mutations causing resistance to either DRV or TL-3 failed to emerge after passage for more than a year. However, a G37D mutation in the nucleocapsid (NC) was observed in both selections and an isogenic G37D mutant replicated in the presence of 100 nM DRV or TL-3, whereas parental chimeric FIV could not. An additional mutation, L92V, near the PR active site in the folded structure recently emerged during TL-3 selection. The L92V mutant PR exhibited an IC
50
of 50 nM, compared to 35 nM for 6s-98S PR, and processed the NC-p2 junction more efficiently, consistent with increased viral fitness. These findings emphasize the role of mutations outside the active site of PR in increasing viral resistance to active-site inhibitors and suggest additional targets for inhibitor development.
Collapse
|
18
|
Reevaluation of the requirement for TIP47 in human immunodeficiency virus type 1 envelope glycoprotein incorporation. J Virol 2013; 87:3561-70. [PMID: 23325685 DOI: 10.1128/jvi.03299-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Incorporation of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins into assembling particles is crucial for virion infectivity. Genetic and biochemical data indicate that the matrix (MA) domain of Gag and the cytoplasmic tail of the transmembrane glycoprotein gp41 play an important role in coordinating Env incorporation; however, the molecular mechanism and possible role of host factors in this process remain to be defined. Recent studies suggested that Env incorporation is mediated by interactions between matrix and tail-interacting protein of 47 kDa (TIP47; also known as perilipin-3 and mannose-6-phosphate receptor-binding protein 1), a member of the perilipin, adipophilin, TIP47 (PAT) family of proteins implicated in protein sorting and lipid droplet biogenesis. We have confirmed by nuclear magnetic resonance spectroscopy titration experiments and surface plasmon resonance that MA binds TIP47. We also reevaluated the role of TIP47 in HIV-1 Env incorporation in HeLa cells and in the Jurkat T-cell line. In HeLa cells, TIP47 overexpression or RNA interference (RNAi)-mediated depletion had no significant effect on HIV-1 Env incorporation, virus release, or particle infectivity. Similarly, depletion of TIP47 in Jurkat cells did not impair HIV-1 Env incorporation, virus release, infectivity, or replication. Our results thus do not support a role for TIP47 in HIV-1 Env incorporation or virion infectivity.
Collapse
|
19
|
Kemler I, Saenz D, Poeschla E. Feline immunodeficiency virus Gag is a nuclear shuttling protein. J Virol 2012; 86:8402-11. [PMID: 22623802 PMCID: PMC3421727 DOI: 10.1128/jvi.00692-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/16/2012] [Indexed: 02/03/2023] Open
Abstract
Lentiviral genomic RNAs are encapsidated by the viral Gag protein during virion assembly. The intracellular location of the initial Gag-RNA interaction is unknown. We previously observed feline immunodeficiency virus (FIV) Gag accumulating at the nuclear envelope during live-cell imaging, which suggested that trafficking of human immunodeficiency virus type 1 (HIV-1) and FIV Gag may differ. Here we analyzed the nucleocytoplasmic transport properties of both Gag proteins. We discovered that inhibition of the CRM1 nuclear export pathway with leptomycin B causes FIV Gag but not HIV-1 Gag to accumulate in the nucleus. Virtually all FIV Gag rapidly became intranuclear when the CRM1 export pathway was blocked, implying that most if not all FIV Gag normally undergoes nuclear cycling. In FIV-infected feline cells, some intranuclear Gag was detected in the steady state without leptomycin B treatment. When expressed individually, the FIV matrix (MA), capsid (CA), and nucleocapsid-p2 (NC-p2) domains were not capable of mediating leptomycin B-sensitive nuclear export of a fluorescent protein. In contrast, CA-NC-p2 did mediate nuclear export, with MA being dispensable. We conclude that HIV-1 and FIV Gag differ strikingly in a key intracellular trafficking property. FIV Gag is a nuclear shuttling protein that utilizes the CRM1 nuclear export pathway, while HIV-1 Gag is excluded from the nucleus. These findings expand the spectrum of lentiviral Gag behaviors and raise the possibility that FIV genome encapsidation may initiate in the nucleus.
Collapse
Affiliation(s)
| | | | - Eric Poeschla
- Department of Molecular Medicine
- Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
20
|
Fadel HJ, Saenz DT, Poeschla EM. Construction and testing of orfA +/- FIV reporter viruses. Viruses 2012; 4:184-99. [PMID: 22355458 PMCID: PMC3280524 DOI: 10.3390/v4010184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/15/2012] [Accepted: 01/16/2012] [Indexed: 01/01/2023] Open
Abstract
Single cycle reporter viruses that preserve the majority of the HIV-1 genome, long terminal repeat-promoted transcription and Rev-dependent structural protein expression are useful for investigating the viral life cycle. Reporter viruses that encode the viral proteins in cis in this way have been lacking for feline immunodeficiency virus (FIV), where the field has used genetically minimized transfer vectors with viral proteins supplied in trans. Here we report construction and use of a panel of single cycle FIV reporter viruses that express fluorescent protein markers. The viruses can be produced to high titer using human cell transfection and can transduce diverse target cells. To illustrate utility, we tested versions that are (+) and (-) for OrfA, an FIV accessory protein required for replication in primary lymphocytes and previously implicated in down-regulation of the primary FIV entry receptor CD134. We observed CD134 down-regulation after infection with or without OrfA, and equivalent virion production as well. These results suggest a role for FIV proteins besides Env or OrfA in CD134 down-regulation.
Collapse
Affiliation(s)
- Hind J. Fadel
- Mayo Clinic, Department of Molecular Medicine, Guggenheim 18-11A, College of Medicine, 200 First Street SW, Rochester, MN 55905, USA;
- Mayo Clinic, Division of Infectious Diseases, Guggenheim 18-11A, College of Medicine, 200 First Street SW, Rochester, MN 55905, USA;
| | - Dyana T. Saenz
- Mayo Clinic, Department of Molecular Medicine, Guggenheim 18-11A, College of Medicine, 200 First Street SW, Rochester, MN 55905, USA;
| | - Eric M. Poeschla
- Mayo Clinic, Department of Molecular Medicine, Guggenheim 18-11A, College of Medicine, 200 First Street SW, Rochester, MN 55905, USA;
- Mayo Clinic, Division of Infectious Diseases, Guggenheim 18-11A, College of Medicine, 200 First Street SW, Rochester, MN 55905, USA;
- Author to whom correspondence should be addressed: ; Tel.: +1-507-284-5909; Fax: +1-507-266-2122
| |
Collapse
|
21
|
Waheed AA, Freed EO. HIV type 1 Gag as a target for antiviral therapy. AIDS Res Hum Retroviruses 2012; 28:54-75. [PMID: 21848364 DOI: 10.1089/aid.2011.0230] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Gag proteins of HIV-1 are central players in virus particle assembly, release, and maturation, and also function in the establishment of a productive infection. Despite their importance throughout the replication cycle, there are currently no approved antiretroviral therapies that target the Gag precursor protein or any of the mature Gag proteins. Recent progress in understanding the structural and cell biology of HIV-1 Gag function has revealed a number of potential Gag-related targets for possible therapeutic intervention. In this review, we summarize our current understanding of HIV-1 Gag and suggest some approaches for the development of novel antiretroviral agents that target Gag.
Collapse
Affiliation(s)
- Abdul A. Waheed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
22
|
Kenyon JC, Lever AML. The molecular biology of feline immunodeficiency virus (FIV). Viruses 2011; 3:2192-213. [PMID: 22163340 PMCID: PMC3230847 DOI: 10.3390/v3112192] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 11/29/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is widespread in feline populations and causes an AIDS-like illness in domestic cats. It is highly prevalent in several endangered feline species. In domestic cats FIV infection is a valuable small animal model for HIV infection. In recent years there has been sa significant increase in interest in FIV, in part to exploit this, but also because of the potential it has as a human gene therapy vector. Though much less studied than HIV there are many parallels in the replication of the two viruses, but also important differences and, despite their likely common origin, the viruses have in some cases used alternative strategies to overcome similar problems. Recent advances in understanding the structure and function of FIV RNA and proteins and their interactions has enhanced our knowledge of FIV replication significantly, however, there are still many gaps. This review summarizes our current knowledge of FIV molecular biology and its similarities with, and differences from, other lentiviruses.
Collapse
Affiliation(s)
- Julia C Kenyon
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | | |
Collapse
|
23
|
Poeschla EM. Primate and feline lentiviruses in current intrinsic immunity research: the cat is back. Vet Immunol Immunopathol 2011; 143:215-20. [PMID: 21715025 DOI: 10.1016/j.vetimm.2011.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Retroviral restriction factor research is explaining long-standing lentiviral mysteries. Asking why a particular retrovirus cannot complete a critical part of its life cycle in cells of a particular species has been the starting point for numerous discoveries, including heretofore elusive functions of HIV-1 accessory genes. The potential for therapeutic application is substantial. Analyzing the feline immunodeficiency virus (FIV) life cycle has been instrumental and the source of some surprising observations in this field. FIV is restricted in cells of various primates by several restriction factors including APOBEC3 proteins and, uniquely, TRIM proteins from both Old and New World monkeys. In contrast, the feline genome does not encode functional TRIM5alpha or TRIMCyp proteins and HIV-1 is primarily blocked in feline cells by APOBEC3 proteins. These can be overcome by inserting FIV vif or even SIVmac vif into HIV-1. The domestic cat and its lentivirus are positioned to offer strategic research opportunities as the field moves forward.
Collapse
Affiliation(s)
- Eric M Poeschla
- Department of Molecular Medicine and Division of Infectious Diseases, Guggenheim 18, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
24
|
Weng Y, Lu W, Harmon A, Xiang X, Deng Q, Song M, Wang D, Yu Q, Li F. The cellular endosomal sorting complex required for transport pathway is not involved in avian metapneumovirus budding in a virus-like-particle expression system. J Gen Virol 2011; 92:1205-1213. [PMID: 21248175 DOI: 10.1099/vir.0.029306-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Avian metapneumovirus (AMPV) is a paramyxovirus that principally causes respiratory disease and egg production drops in turkeys and chickens. Together with its closely related human metapneumovirus (HMPV), they comprise the genus Metapneumovirus in the family Paramyxoviridae. Little is currently known about the mechanisms involved in the budding of metapneumovirus. By using AMPV as a model system, we showed that the matrix (M) protein by itself was insufficient to form virus-like-particles (VLPs). The incorporation of M into VLPs was shown to occur only when both the viral nucleoprotein (N) and the fusion (F) proteins were co-expressed. Furthermore, we provided evidence indicating that two YSKL and YAGL segments encoded within the M protein were not a functional late domain, and the endosomal sorting complex required for transport (ESCRT) machinery was not involved in metapneumovirus budding, consistent with a recent observation that human respiratory syncytial virus, closely related to HMPV, uses an ESCRT-independent budding mechanism. Taken together, these results suggest that metapneumovirus budding is independent of the ESCRT pathway and the minimal budding machinery described here will aid our future understanding of metapneumovirus assembly and egress.
Collapse
Affiliation(s)
- Yuejin Weng
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Wuxun Lu
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Aaron Harmon
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Xiaoxiao Xiang
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Qiji Deng
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Minxun Song
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250023, PR China
| | - Dan Wang
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Qingzhong Yu
- Southeast Poultry Research Laboratory, Agricultural Research Services, U. S. Department of Agriculture, Athens, GA 30605, USA
| | - Feng Li
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
25
|
Im YJ, Kuo L, Ren X, Burgos PV, Zhao XZ, Liu F, Burke TR, Bonifacino JS, Freed EO, Hurley JH. Crystallographic and functional analysis of the ESCRT-I /HIV-1 Gag PTAP interaction. Structure 2010; 18:1536-47. [PMID: 21070952 PMCID: PMC3124085 DOI: 10.1016/j.str.2010.08.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 07/14/2010] [Accepted: 08/06/2010] [Indexed: 11/17/2022]
Abstract
Budding of HIV-1 requires the binding of the PTAP late domain of the Gag p6 protein to the UEV domain of the TSG101 subunit of ESCRT-I. The normal function of this motif in cells is in receptor downregulation. Here, we report the 1.4-1.6 Å structures of the human TSG101 UEV domain alone and with wild-type and mutant HIV-1 PTAP and Hrs PSAP nonapeptides. The hydroxyl of the Thr or Ser residue in the P(S/T)AP motif hydrogen bonds with the main chain of Asn69. Mutation of the Asn to Pro, blocking the main-chain amide, abrogates PTAP motif binding in vitro and blocks budding of HIV-1 from cells. N69P and other PTAP binding-deficient alleles of TSG101 did not rescue HIV-1 budding. However, the mutant alleles did rescue downregulation of endogenous EGF receptor. This demonstrates that the PSAP motif is not rate determining in EGF receptor downregulation under normal conditions.
Collapse
Affiliation(s)
- Young Jun Im
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0580, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The ESCRT machinery consists of the peripheral membrane protein complexes ESCRT-0, -I, -II, -III, and Vps4-Vta1, and the ALIX homodimer. The ESCRT system is required for degradation of unneeded or dangerous plasma membrane proteins; biogenesis of the lysosome and the yeast vacuole; the budding of most membrane enveloped viruses; the membrane abscission step in cytokinesis; macroautophagy; and several other processes. From their initial discovery in 2001-2002, the literature on ESCRTs has grown exponentially. This review will describe the structure and function of the six complexes noted above and summarize current knowledge of their mechanistic roles in cellular pathways and in disease.
Collapse
Affiliation(s)
- James H Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Generation of infectious feline immunodeficiency virus (FIV) encoding FIV/human immunodeficiency virus chimeric protease. J Virol 2010; 84:6799-809. [PMID: 20410281 DOI: 10.1128/jvi.00294-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline immunodeficiency virus (FIV) and human immunodeficiency virus type 1 (HIV-1) proteases (PRs) share only 23% amino acid identity and exhibit distinct specificities yet have very similar 3-dimensional structures. Chimeric PRs in which HIV residues were substituted in structurally equivalent positions in FIV PR were prepared in order to study the molecular basis of PR specificity. Previous in vitro analyses showed that such substitutions dramatically altered the inhibitor specificity of mutant PRs but changed the rate and specificity of Gag cleavage so that chimeric FIVs were not infectious. Chimeric PRs encoding combinations of the I37V, N55M, M56I, V59I, L97T, I98P, Q99V, and P100N mutations were cloned into FIV Gag-Pol, and those constructs that best approximated the temporal cleavage pattern generated by wild-type FIV PR, while maintaining HIV-like inhibitor specificity, were selected. Two mutations, M56I and L97T, were intolerant to change and caused inefficient cleavage at NC-p2. However, a mutant PR with six substitutions (I37V, N55M, V59I, I98P, Q99V, and P100N) was selected and placed in the context of full-length FIV-34TF10. This virus, termed YCL6, had low-level infectivity ex vivo, and after passage, progeny that exhibited a higher growth rate emerged. The residue at the position of one of the six mutations, I98P, further mutated on passage to either P98H or P98S. Both PRs were sensitive to the HIV-1 PR inhibitors lopinavir (LPV) and darunavir (DRV), as well as to the broad-based inhibitor TL-3, with 50% inhibitory concentrations (IC(50)) of 30 to 40 nM, consistent with ex vivo results obtained using mutant FIVs. The chimeras offer an infectivity system with which to screen compounds for potential as broad-based PR inhibitors, define structural parameters that dictate specificity, and investigate pathways for drug resistance development.
Collapse
|
28
|
Abstract
Human immunodeficiency virus type 1 (HIV-1) Gag and genomic RNA determinants required for encapsidation are well established, but where and when encapsidation occurs in the cell is unknown. We constructed MS2 phage coat protein labeling systems to track spatial dynamics of primate and nonprimate lentiviral genomic RNAs (HIV-1 and feline immunodeficiency virus [FIV]) vis-à-vis their Gag proteins in live cells. Genomic RNAs of both lentiviral genera were observed to traffic into the cytoplasm, and this was Rev dependent. In transit, FIV Gag and genomic RNA accumulated independently of each other at the nuclear envelope, and focal colocalizations of genomic RNA with an intact packaging signal (psi) and Gag were observed to extend outward from the cytoplasmic face. In contrast, although HIV-1 genomic RNA was detected at the nuclear envelope, HIV-1 Gag was not. For both lentiviruses, genomic RNAs were seen at the plasma membrane if and only if Gag was present and psi was intact. In addition, HIV-1 and FIV genomes accumulated with Gag in late endosomal foci, again, only psi dependently. Thus, lentiviral genomic RNAs require specific Gag binding to accumulate at the plasma membrane, packaged genomes cointernalize with Gag into the endosomal pathway, and plasma membrane RNA incorporation by Gag does not trigger committed lentiviral particle egress from the cell. Based on the FIV results, we hypothesize that the Gag-genome association may initiate at the nuclear envelope.
Collapse
|
29
|
Abstract
Infection of domestic cats with virulent strains of the feline immunodeficiency virus (FIV) leads to an acquired immunodeficiency syndrome (AIDS), similar to the pathogenesis induced in humans by infection with human immunodeficiency virus type 1 (HIV-1). Thus, FIV is a highly relevant model for anti-HIV therapy and vaccine development. FIV is not infectious in humans, so it is also a potentially effective non-toxic gene therapy vector. To make better use of this model, it is important to define the cellular machinery utilized by each virus to produce virus particles so that relevant similarities can be identified. It is well understood that all replication-competent retroviruses encode gag, pol, and env genes, which provide core elements for virus replication. As a result, most antiretroviral therapy targets pol-derived enzymes (protease, reverse transcriptase, and integrase) orenv-derived glycoproteins that mediate virus attachment and entry. However, resistance to drugs against these targets is a persistent problem, and novel targets must be identified to produce more effective drugs that can either substitute or be combined with current therapy. Elements of the gag gene (matrix, capsid, nucleocapsid, and "late" domains) have yet to be exploited as antiviral targets, even though the Gag precursor polyprotein is self-sufficient for the assembly and release of virus particles from cells. This process is far better understood in primate lentiviruses, especially HIV-1. However, there has been significant progress in recent years in defining how FIV Gag is targeted to the cellular plasma membrane, assembles into virions, incorporates FIV Env glycoproteins, and utilizes host cell machinery to complete virus release. Recent discoveries of intracellular restriction factors that target HIV-1 and FIV capsids after virus entry have also opened exciting new areas of research. This review summarizes currently known interactions involving HIV-1 and FIV Gag that affect virus release, infectivity, and replication.
Collapse
Affiliation(s)
- Benjamin G Luttge
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA
| | | |
Collapse
|
30
|
Checkley MA, Luttge BG, Soheilian F, Nagashima K, Freed EO. The capsid-spacer peptide 1 Gag processing intermediate is a dominant-negative inhibitor of HIV-1 maturation. Virology 2010; 400:137-44. [PMID: 20172577 DOI: 10.1016/j.virol.2010.01.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/20/2009] [Accepted: 01/23/2010] [Indexed: 01/06/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) maturation inhibitor bevirimat disrupts virus replication by inhibiting the cleavage of the capsid-spacer peptide 1 (CA-SP1) Gag processing intermediate to mature CA. The observation that bevirimat delays but does not completely block CA-SP1 processing suggests that the presence of uncleaved CA-SP1 may disrupt the maturation process in trans. In this study, we validate this hypothesis by using a genetic approach to demonstrate that a non-cleavable CA-SP1 mutant exerts a dominant-negative effect on maturation of wild-type HIV-1. In contrast, a mutant in which cleavage can occur internally within SP1 is significantly less potent as a dominant-negative inhibitor. We also show that bevirimat blocks processing at both the major CA-SP1 cleavage site and the internal site. These data underscore the importance of full CA-SP1 processing for HIV-1 maturation and highlight the therapeutic potential of inhibitors that target this Gag cleavage event.
Collapse
Affiliation(s)
- Mary Ann Checkley
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Bldg. 535/Rm 108, 1050 Boyles Street, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
31
|
Adamson CS, Freed EO. Novel approaches to inhibiting HIV-1 replication. Antiviral Res 2010; 85:119-41. [PMID: 19782103 PMCID: PMC2815006 DOI: 10.1016/j.antiviral.2009.09.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 09/09/2009] [Accepted: 09/12/2009] [Indexed: 01/17/2023]
Abstract
Considerable success has been achieved in the treatment of HIV-1 infection, and more than two-dozen antiretroviral drugs are available targeting several distinct steps in the viral replication cycle. However, resistance to these compounds emerges readily, even in the context of combination therapy. Drug toxicity, adverse drug-drug interactions, and accompanying poor patient adherence can also lead to treatment failure. These considerations make continued development of novel antiretroviral therapeutics necessary. In this article, we highlight a number of steps in the HIV-1 replication cycle that represent promising targets for drug discovery. These include lipid raft microdomains, the RNase H activity of the viral enzyme reverse transcriptase, uncoating of the viral core, host cell machinery involved in the integration of the viral DNA into host cell chromatin, virus assembly, maturation, and budding, and the functions of several viral accessory proteins. We discuss the relevant molecular and cell biology, and describe progress to date in developing inhibitors against these novel targets. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- Catherine S. Adamson
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland, 21702-1201
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland, 21702-1201
| |
Collapse
|
32
|
Joshi A, Nagashima K, Freed EO. Defects in cellular sorting and retroviral assembly induced by GGA overexpression. BMC Cell Biol 2009; 10:72. [PMID: 19788741 PMCID: PMC2760529 DOI: 10.1186/1471-2121-10-72] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 09/29/2009] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND We previously demonstrated that overexpression of Golgi-localized, gamma-ear containing, Arf-binding (GGA) proteins inhibits retrovirus assembly and release by disrupting the function of endogenous ADP ribosylation factors (Arfs). GGA overexpression led to the formation of large, swollen vacuolar compartments, which in the case of GGA1 sequestered HIV-1 Gag. RESULTS In the current study, we extend our previous findings to characterize in depth the GGA-induced compartments and the determinants for retroviral Gag sequestration in these structures. We find that GGA-induced structures are derived from the Golgi and contain aggresome markers. GGA overexpression leads to defects in trafficking of transferrin receptor and recycling of cation-dependent mannose 6-phosphate receptor. Additionally, we find that compartments induced by GGA overexpression sequester Tsg101, poly-ubiquitin, and, in the case of GGA3, Hrs. Interestingly, brefeldin A treatment, which leads to the dissociation of endogenous GGAs from membranes, does not dissociate the GGA-induced compartments. GGA mutants that are defective in Arf binding and hence association with membranes also induce the formation of GGA-induced structures. Overexpression of ubiquitin reverses the formation of GGA-induced structures and partially rescues HIV-1 particle production. We found that in addition to HIV-1 Gag, equine infectious anemia virus Gag is also sequestered in GGA1-induced structures. The determinants in Gag responsible for sequestration map to the matrix domain, and recruitment to these structures is dependent on Gag membrane binding. CONCLUSION These data provide insights into the composition of structures induced by GGA overexpression and their ability to disrupt endosomal sorting and retroviral particle production.
Collapse
Affiliation(s)
- Anjali Joshi
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland, USA
- Department of Biomedical Sciences, Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Kunio Nagashima
- Image Analysis Laboratory, Advanced Technology Program, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland, USA
| |
Collapse
|
33
|
Fujii K, Munshi UM, Ablan SD, Demirov DG, Soheilian F, Nagashima K, Stephen AG, Fisher RJ, Freed EO. Functional role of Alix in HIV-1 replication. Virology 2009; 391:284-92. [PMID: 19596386 DOI: 10.1016/j.virol.2009.06.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/21/2009] [Accepted: 06/09/2009] [Indexed: 11/17/2022]
Abstract
Retroviral Gag proteins encode small peptide motifs known as late domains that promote the release of virions from infected cells by interacting directly with host cell factors. Three types of retroviral late domains, with core sequences P(T/S)AP, YPX(n)L, and PPPY, have been identified. HIV-1 encodes a primary P(T/S)AP-type late domain and an apparently secondary late domain sequence of the YPX(n)L type. The P(T/S)AP and YPX(n)L motifs interact with the endosomal sorting factors Tsg101 and Alix, respectively. Although biochemical and structural studies support a direct binding between HIV-1 p6 and Alix, the physiological role of Alix in HIV-1 biology remains undefined. To elucidate the function of the p6-Alix interaction in HIV-1 replication, we introduced a series of mutations in the p6 Alix binding site and evaluated the effects on virus particle production and virus replication in a range of cell types, including physiologically relevant primary T cells and macrophages. We also examined the effects of the Alix binding site mutations on virion morphogenesis and single-cycle virus infectivity. We determined that the p6-Alix interaction plays an important role in HIV-1 replication and observed a particularly severe impact of Alix binding site mutations when they were combined with mutational inactivation of the Tsg101 binding site.
Collapse
Affiliation(s)
- Ken Fujii
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21701-1201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Adamson CS, Freed EO. Anti-HIV-1 therapeutics: from FDA-approved drugs to hypothetical future targets. Mol Interv 2009; 9:70-4. [PMID: 19401538 DOI: 10.1124/mi.9.2.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Catherine S Adamson
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland, 21702-1201, USA.
| | | |
Collapse
|
35
|
Abstract
HIV-1 release requires a direct interaction between the p6 domain of the Gag protein and Tsg101, a component of the cellular endosomal sorting complex required for transport I (ESCRT-I). Disruption of the binding between Gag and Tsg101 is highly detrimental to particle release, making this viral-host cell interaction a potential target for the development of novel anti-HIV-1 agents. An article in this issue reports on the application of a bacterial reverse two-hybrid strategy to identify a cyclic peptide that disrupts Gag-Tsg101 binding and suppresses HIV-1 particle release.
Collapse
Affiliation(s)
- Abdul A. Waheed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland 21702
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland 21702
| |
Collapse
|
36
|
Calistri A, Del Vecchio C, Salata C, Celestino M, Celegato M, Göttlinger H, Palù G, Parolin C. Role of the feline immunodeficiency virus L-domain in the presence or absence of Gag processing: involvement of ubiquitin and Nedd4-2s ligase in viral egress. J Cell Physiol 2008; 218:175-82. [PMID: 18792916 DOI: 10.1002/jcp.21587] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA-enveloped viruses bud from infected cells by exploiting the multivesicular body (MVB) pathway. In this context, ubiquitination of structural viral proteins and their direct interaction with cellular factors involved in the MVB biogenesis through short proline rich regions, named late domains (L-domains), are crucial mechanisms. Here we report that, in contrast with the human immunodeficiency virus (HIV), the feline immunodeficiency virus (FIV), a non-primate lentivirus, is strictly dependent for its budding on a "PSAP"-type L-domain, mapping in the carboxy-terminal region of Gag, irrespective of a functional viral protease. Moreover, we provide evidence that FIV egress is related to Gag ubiquitination, that is, linked to the presence of an active L-domain. Finally, although FIV Gag does not contain a PPxY motif, we show that the Nedd4-2s ubiquitin ligase enhances FIV Gag ubiquitination and it is capable to rescue viral mutants lacking a functional L-domain. In conclusion, our data bring to light peculiar aspects of FIV egress, but we also demonstrate that a non-primate lentivirus shares with HIV-1 a novel mechanism of connection to the cellular budding machinery.
Collapse
Affiliation(s)
- Arianna Calistri
- Department of Histology, Microbiology and Medical Biotechnologies, Section of Microbiology and Virology, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Joshi A, Munshi U, Ablan SD, Nagashima K, Freed EO. Functional replacement of a retroviral late domain by ubiquitin fusion. Traffic 2008; 9:1972-83. [PMID: 18817521 DOI: 10.1111/j.1600-0854.2008.00817.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retroviral Gag polyprotein precursors are both necessary and sufficient for the assembly and release of virus-like particles (VLPs) from infected cells. It is well established that small Gag-encoded motifs, known as late domains, promote particle release by interacting with components of the cellular endosomal sorting and ubiquitination machinery. The Gag proteins of a number of different retroviruses are ubiquitinated; however, the role of Gag ubiquitination in particle egress remains undefined. In this study, we investigated this question by using a panel of equine infectious anemia virus (EIAV) Gag derivatives bearing the wild-type EIAV late domain, heterologous retroviral late domains or no late domain. Ubiquitin was fused in cis to the C-termini of these Gag polyproteins, and the effects on VLP budding were measured. Remarkably, fusion of ubiquitin to EIAV Gag lacking a late domain (EIAV/DeltaYPDL-Ub) largely rescued VLP release. We also determined the effects of ubiquitin fusion on the sensitivity of particle release to budding inhibitors and to depletion of key endosomal sorting factors. Ubiquitin fusion rendered EIAV/DeltaYPDL-Ub sensitive to depletion of cellular endosomal sorting factors Tsg101 and Alix and to overexpression of dominant-negative fragments of Tsg101 and Alix. These findings demonstrate that ubiquitin can functionally compensate for the absence of a retroviral late domain and provide insights into the host-cell machinery engaged by ubiquitin during particle egress.
Collapse
Affiliation(s)
- Anjali Joshi
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|