1
|
Hou Y, Li Q, Huang X, Wang J, Hou J, Sun Y, Wu X, Dian Z, Wang B, Xia X. Distribution and genetic characterization of hantaviruses in bats and rodents from Yunnan. PLoS Negl Trop Dis 2024; 18:e0012437. [PMID: 39208380 PMCID: PMC11412632 DOI: 10.1371/journal.pntd.0012437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 09/19/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Hemorrhagic fever with renal syndrome caused by hantaviruses has long been a serious public health issue in Yunnan Province. Hantaviruses exhibit a high extent of biodiversity in their natural hosts, particularly in mammalian hosts. This study was conducted to screen for hantaviruses in bats and rodents in Yunnan Province and elucidate their genetic characteristics and possible zoonotic disease risk. Hantaviruses were detected in 202 bats and 372 rodents with the positive rates 27.49% and 1.25% respectively. A novel lineage (named Lineage 10) of the Seoul virus (SEOV) from rodents and the geographic clustering of hantavirus in bats were identified using phylogenetic analyses of the full-length M- and S-segments. Our study suggest a high cross-species transmissibility of hantaviruses in bats and existence of a new lineage of SEOV in rodents differing significantly from other SEOVs. These results provide data to support the prevention and control of hantavirus-associated diseases in Yunnan Province.
Collapse
Affiliation(s)
- Yutong Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
- Dali University, Dali, P.R. China
| | - Xingyu Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Jiale Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Junjie Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Yunze Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Xinrui Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Ziqin Dian
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Yunnan, P.R. China
| | - Binghui Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
- School of Public Health, Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Williams EP, Nandi A, Nam V, Allen LJS, Trindade AA, Kosiewicz MM, Jonsson CB. Modeling the Immune Response for Pathogenic and Nonpathogenic Orthohantavirus Infections in Human Lung Microvasculature Endothelial Cells. Viruses 2023; 15:1806. [PMID: 37766212 PMCID: PMC10535571 DOI: 10.3390/v15091806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Hantaviruses, genus Orthohantavirus, family Hantaviridae, order Bunyavirales, are negative-sense, single-stranded, tri-segmented RNA viruses that persistently infect rodents, shrews, and moles. Of these, only certain virus species harbored by rodents are pathogenic to humans. Infection begins with inhalation of virus particles into the lung and trafficking to the lung microvascular endothelial cells (LMVEC). The reason why certain rodent-borne hantavirus species are pathogenic has long been hypothesized to be related to their ability to downregulate and dysregulate the immune response as well as increase vascular permeability of infected endothelial cells. We set out to study the temporal dynamics of host immune response modulation in primary human LMVECs following infection by Prospect Hill (nonpathogenic), Andes (pathogenic), and Hantaan (pathogenic) viruses. We measured the level of RNA transcripts for genes representing antiviral, proinflammatory, anti-inflammatory, and metabolic pathways from 12 to 72 h with time points every 12 h. Gene expression analysis in conjunction with mathematical modeling revealed a similar profile for all three viruses in terms of upregulated genes that partake in interferon signaling (TLR3, IRF7, IFNB1), host immune cell recruitment (CXCL10, CXCL11, and CCL5), and host immune response modulation (IDO1). We examined secreted protein levels of IFN-β, CXCL10, CXCL11, CCL5, and IDO in two male and two female primary HLMVEC donors at 48 and 60 h post infection. All three viruses induced similar levels of CCL5, CXCL10, and CXCL11 within a particular donor, and the levels were similar in three of the four donors. All three viruses induced different protein secretion levels for both IFN-β and IDO and secretion levels differed between donors. In conclusion, we show that there was no difference in the transcriptional profiles of key genes in primary HLMVECs following infection by pathogenic and nonpathogenic hantaviruses, with protein secretion levels being more donor-specific than virus-specific.
Collapse
Affiliation(s)
- Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Aadrita Nandi
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA; (A.N.); (V.N.); (L.J.S.A.); (A.A.T.)
| | - Victoria Nam
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA; (A.N.); (V.N.); (L.J.S.A.); (A.A.T.)
| | - Linda J. S. Allen
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA; (A.N.); (V.N.); (L.J.S.A.); (A.A.T.)
| | - A. Alexandre Trindade
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA; (A.N.); (V.N.); (L.J.S.A.); (A.A.T.)
| | - Michele M. Kosiewicz
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA;
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
3
|
LaPointe A, Gale M, Kell AM. Orthohantavirus Replication in the Context of Innate Immunity. Viruses 2023; 15:1130. [PMID: 37243216 PMCID: PMC10220641 DOI: 10.3390/v15051130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Orthohantaviruses are rodent-borne, negative-sense RNA viruses that are capable of causing severe vascular disease in humans. Over the course of viral evolution, these viruses have tailored their replication cycles in such a way as to avoid and/or antagonize host innate immune responses. In the rodent reservoir, this results in life long asymptomatic infections. However, in hosts other than its co-evolved reservoir, the mechanisms for subduing the innate immune response may be less efficient or absent, potentially leading to disease and/or viral clearance. In the case of human orthohantavirus infection, the interaction of the innate immune response with viral replication is thought to give rise to severe vascular disease. The orthohantavirus field has made significant advancements in understanding how these viruses replicate and interact with host innate immune responses since their identification by Dr. Ho Wang Lee and colleagues in 1976. Therefore, the purpose of this review, as part of this special issue dedicated to Dr. Lee, was to summarize the current knowledge of orthohantavirus replication, how viral replication activates innate immunity, and how the host antiviral response, in turn, impacts viral replication.
Collapse
Affiliation(s)
- Autumn LaPointe
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Alison M. Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| |
Collapse
|
4
|
Delayed viral clearance despite high number of activated T cells during the acute phase in Argentinean patients with hantavirus pulmonary syndrome. EBioMedicine 2022; 75:103765. [PMID: 34986457 PMCID: PMC8743200 DOI: 10.1016/j.ebiom.2021.103765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/08/2021] [Accepted: 12/03/2021] [Indexed: 01/16/2023] Open
Abstract
Background The hallmarks of HPS are increase of vascular permeability and endothelial dysfunction. Although an exacerbated immune response is thought to be implicated in pathogenesis, clear evidence is still elusive. As orthohantaviruses are not cytopathic CD8+ T cells are believed to be the central players involved in pathogenesis. Methods Serum and blood samples from Argentinean HPS patients were collected from 2014 to 2019. Routine white blood cell analyses, quantification and characterization of T-cell phenotypic profile, viral load, neutralizing antibody response and quantification of inflammatory mediators were performed. Findings High numbers of activated CD4+ and CD8+ T cells were found in all HPS cases independently of disease severity. We found increased levels of some proinflammatory mediators during the acute phase of illness. Nonetheless, viral RNA remained high, showing a delay in clearance from blood up to late convalescence, when titers of neutralizing antibodies reached a high level. Interpretation The high activated phenotypic profile of T cells seems to be unable to resolve infection during the acute and early convalescent phases, and it was not associated with the severity of the disease. Thus, at least part of the activated T cells could be induced by the dysregulated inflammatory response in an unspecific manner. Viral clearance seems to have been more related to high titers of neutralizing antibodies than to the T-cell response. Funding This work was supported mainly by the Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos Malbrán”. Further details of fundings sources is included in the appendix.
Collapse
|
5
|
He W, Fu J, Wen Y, Cheng M, Mo Y, Chen Q. Detection and Genetic Characterization of Seoul Virus in Liver Tissue Samples From Rattus norvegicus and Rattus tanezumi in Urban Areas of Southern China. Front Vet Sci 2021; 8:748232. [PMID: 34966803 PMCID: PMC8710597 DOI: 10.3389/fvets.2021.748232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/17/2021] [Indexed: 12/05/2022] Open
Abstract
Rodents are important hosts of hantaviruses, and lungs and kidneys are known to be the preferred organs of these viruses. Recently, hantaviruses were detected in liver samples from wild rodents in Hungary and the United States, and feeder rats in the Netherlands. However, few studies have detected hantaviruses in the liver of rats from China. In this study, hantaviruses were investigated in liver samples from R. norvegicus and R. tanezumi trapped in urban areas of southern China. A total of 461 R. norvegicus and 64 R. tanezumi were trapped. Using a pan-hantavirus PCR method, hantaviruses were detected in liver, lung, and serum samples from these animals. About 7.43% of liver samples were positive for Seoul virus (SEOV). The detection rate of SEOV in liver samples from R. norvegicus (8.24%) was higher than that from R. tanezumi (1.56%), suggesting the predominant role of R. norvegicus in the transmission of SEOV in urban areas of China. Three R. norvegicus had SEOV RNA in their liver samples but not in their lung samples, suggesting that the liver might be one of the targeted organs of SEOV. The first full SEOV protein-coding sequences (CDS) of the S and M segments, and partial CDS of the L segment from R. tanezumi were amplified. Several full and partial CDS of the S, M, and L segments from R. norvegicus were also obtained. The SEOV sequences obtained from different animals were highly similar, suggesting the cross-species transmission potential of SEOV between R. norvegicus and R. tanezumi.
Collapse
Affiliation(s)
- Wenqiao He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Jiaqi Fu
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Yuqi Wen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Mingji Cheng
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Yun Mo
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Kell AM. Innate Immunity to Orthohantaviruses: Could Divergent Immune Interactions Explain Host-specific Disease Outcomes? J Mol Biol 2021; 434:167230. [PMID: 34487792 PMCID: PMC8894506 DOI: 10.1016/j.jmb.2021.167230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
The genus Orthohantavirus (family Hantaviridae, order Bunyavirales) consists of numerous genetic and pathologically distinct viral species found within rodent and mammalian insectivore populations world-wide. Although reservoir hosts experience persistent asymptomatic infection, numerous rodent-borne orthohantaviruses cause severe disease when transmitted to humans, with case-fatality rates up to 40%. The first isolation of an orthohantavirus occurred in 1976 and, since then, the field has made significant progress in understanding the immune correlates of disease, viral interactions with the human innate immune response, and the immune kinetics of reservoir hosts. Much still remains elusive regarding the molecular mechanisms of orthohantavirus recognition by the innate immune response and viral antagonism within the reservoir host, however. This review provides a summary of the last 45 years of research into orthohantavirus interaction with the host innate immune response. This summary includes discussion of current knowledge involving human, non-reservoir rodent, and reservoir innate immune responses to viruses which cause hemorrhagic fever with renal syndrome and hantavirus cardio-pulmonary syndrome. Review of the literature concludes with a brief proposition for the development of novel tools needed to drive forward investigations into the molecular mechanisms of innate immune activation and consequences for disease outcomes in the various hosts for orthohantaviruses.
Collapse
Affiliation(s)
- Alison M Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud, Albuquerque, NM 87131, United States.
| |
Collapse
|
7
|
Saavedra F, Díaz FE, Retamal‐Díaz A, Covián C, González PA, Kalergis AM. Immune response during hantavirus diseases: implications for immunotherapies and vaccine design. Immunology 2021; 163:262-277. [PMID: 33638192 PMCID: PMC8207335 DOI: 10.1111/imm.13322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Orthohantaviruses, previously named hantaviruses, cause two emerging zoonotic diseases: haemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus cardiopulmonary syndrome (HCPS) in the Americas. Overall, over 200 000 cases are registered every year worldwide, with a fatality rate ranging between 0·1% and 15% for HFRS and between 20% and 40% for HCPS. No specific treatment or vaccines have been approved by the U.S. Food and Drug Administration (FDA) to treat or prevent hantavirus-caused syndromes. Currently, little is known about the mechanisms at the basis of hantavirus-induced disease. However, it has been hypothesized that an excessive inflammatory response plays an essential role in the course of the disease. Furthermore, the contributions of the cellular immune response to either viral clearance or pathology have not been fully elucidated. This article discusses recent findings relative to the immune responses elicited to hantaviruses in subjects suffering HFRS or HCPS, highlighting the similarities and differences between these two clinical diseases. Also, we summarize the most recent data about the cellular immune response that could be important for designing new vaccines to prevent this global public health problem.
Collapse
Affiliation(s)
- Farides Saavedra
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Fabián E. Díaz
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Angello Retamal‐Díaz
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Camila Covián
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Pablo A. González
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
- Millennium Institute on Immunology and ImmunotherapyDepartamento de EndocrinologíaFacultad de MedicinaEscuela de MedicinaPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
8
|
Host Cell Restriction Factors of Bunyaviruses and Viral Countermeasures. Viruses 2021; 13:v13050784. [PMID: 33925004 PMCID: PMC8146327 DOI: 10.3390/v13050784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023] Open
Abstract
The Bunyavirales order comprises more than 500 viruses (generally defined as bunyaviruses) classified into 12 families. Some of these are highly pathogenic viruses infecting different hosts, including humans, mammals, reptiles, arthropods, birds, and/or plants. Host cell sensing of infection activates the innate immune system that aims at inhibiting viral replication and propagation. Upon recognition of pathogen-associated molecular patterns (PAMPs) by cellular pattern recognition receptors (PRRs), numerous signaling cascades are activated, leading to the production of interferons (IFNs). IFNs act in an autocrine and paracrine manner to establish an antiviral state by inducing the expression of hundreds of IFN-stimulated genes (ISGs). Some of these ISGs are known to restrict bunyavirus infection. Along with other constitutively expressed host cellular factors with antiviral activity, these proteins (hereafter referred to as “restriction factors”) target different steps of the viral cycle, including viral entry, genome transcription and replication, and virion egress. In reaction to this, bunyaviruses have developed strategies to circumvent this antiviral response, by avoiding cellular recognition of PAMPs, inhibiting IFN production or interfering with the IFN-mediated response. Herein, we review the current knowledge on host cellular factors that were shown to restrict infections by bunyaviruses. Moreover, we focus on the strategies developed by bunyaviruses in order to escape the antiviral state developed by the infected cells.
Collapse
|
9
|
Gallo G, Caignard G, Badonnel K, Chevreux G, Terrier S, Szemiel A, Roman-Sosa G, Binder F, Gu Q, Da Silva Filipe A, Ulrich RG, Kohl A, Vitour D, Tordo N, Ermonval M. Interactions of Viral Proteins from Pathogenic and Low or Non-Pathogenic Orthohantaviruses with Human Type I Interferon Signaling. Viruses 2021; 13:140. [PMID: 33478127 PMCID: PMC7835746 DOI: 10.3390/v13010140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/13/2022] Open
Abstract
Rodent-borne orthohantaviruses are asymptomatic in their natural reservoir, but they can cause severe diseases in humans. Although an exacerbated immune response relates to hantaviral pathologies, orthohantaviruses have to antagonize the antiviral interferon (IFN) response to successfully propagate in infected cells. We studied interactions of structural and nonstructural (NSs) proteins of pathogenic Puumala (PUUV), low-pathogenic Tula (TULV), and non-pathogenic Prospect Hill (PHV) viruses, with human type I and III IFN (IFN-I and IFN-III) pathways. The NSs proteins of all three viruses inhibited the RIG-I-activated IFNβ promoter, while only the glycoprotein precursor (GPC) of PUUV, or its cleavage product Gn/Gc, and the nucleocapsid (N) of TULV inhibited it. Moreover, the GPC of both PUUV and TULV antagonized the promoter of IFN-stimulated responsive elements (ISRE). Different viral proteins could thus contribute to inhibition of IFNβ response in a viral context. While PUUV and TULV strains replicated similarly, whether expressing entire or truncated NSs proteins, only PUUV encoding a wild type NSs protein led to late IFN expression and activation of IFN-stimulated genes (ISG). This, together with the identification of particular domains of NSs proteins and different biological processes that are associated with cellular proteins in complex with NSs proteins, suggested that the activation of IFN-I is probably not the only antiviral pathway to be counteracted by orthohantaviruses and that NSs proteins could have multiple inhibitory functions.
Collapse
Affiliation(s)
- Giulia Gallo
- Unité des Stratégies Antivirales, Institut Pasteur, 75015 Paris, France; (G.G.); (N.T.)
- Ecole Doctorale Complexité du Vivant, Sorbonne Université, 75006 Paris, France
| | - Grégory Caignard
- UMR 1161 Virologie, Anses-INRAE-EnvA, 94700 Maisons-Alfort, France; (G.C.); (D.V.)
| | - Karine Badonnel
- BREED, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| | - Guillaume Chevreux
- Institut Jacques Monod, CNRS UMR 7592, ProteoSeine Mass Spectrometry Plateform, Université de Paris, 75013 Paris, France; (G.C.); (S.T.)
| | - Samuel Terrier
- Institut Jacques Monod, CNRS UMR 7592, ProteoSeine Mass Spectrometry Plateform, Université de Paris, 75013 Paris, France; (G.C.); (S.T.)
| | - Agnieszka Szemiel
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (A.S.); (Q.G.); (A.D.S.F.); (A.K.)
| | | | - Florian Binder
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany; (F.B.); (R.G.U.)
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (A.S.); (Q.G.); (A.D.S.F.); (A.K.)
| | - Ana Da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (A.S.); (Q.G.); (A.D.S.F.); (A.K.)
| | - Rainer G. Ulrich
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany; (F.B.); (R.G.U.)
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (A.S.); (Q.G.); (A.D.S.F.); (A.K.)
| | - Damien Vitour
- UMR 1161 Virologie, Anses-INRAE-EnvA, 94700 Maisons-Alfort, France; (G.C.); (D.V.)
| | - Noël Tordo
- Unité des Stratégies Antivirales, Institut Pasteur, 75015 Paris, France; (G.G.); (N.T.)
- Institut Pasteur de Guinée, BP 4416 Conakry, Guinea
| | - Myriam Ermonval
- Unité des Stratégies Antivirales, Institut Pasteur, 75015 Paris, France; (G.G.); (N.T.)
| |
Collapse
|
10
|
The Andes Orthohantavirus NSs Protein Antagonizes the Type I Interferon Response by Inhibiting MAVS Signaling. J Virol 2020; 94:JVI.00454-20. [PMID: 32321811 DOI: 10.1128/jvi.00454-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
The small messenger RNA (SmRNA) of the Andes orthohantavirus (ANDV), a rodent-borne member of the Hantaviridae family of viruses of the Bunyavirales order, encodes a multifunctional nucleocapsid (N) protein and for a nonstructural (NSs) protein of unknown function. We have previously shown the expression of the ANDV-NSs, but only in infected cell cultures. In this study, we extend our early findings by confirming the expression of the ANDV-NSs protein in the lungs of experimentally infected golden Syrian hamsters. Next, we show, using a virus-free system, that the ANDV-NSs protein antagonizes the type I interferon (IFN) induction pathway by suppressing signals downstream of the melanoma differentiation-associated protein 5 (MDA5) and the retinoic acid-inducible gene 1 (RIG-I) and upstream of TBK1. Consistent with this observation, the ANDV-NSs protein antagonized mitochondrial antiviral-signaling protein (MAVS)-induced IFN-β, NF-κB, IFN-regulatory factor 3 (IRF3), and IFN-sensitive response element (ISRE) promoter activity. Results demonstrate that ANDV-NSs binds to MAVS in cells without disrupting the MAVS-TBK-1 interaction. However, in the presence of the ANDV-NSs ubiquitination of MAVS is reduced. In summary, this study provides evidence showing that the ANDV-NSs protein acts as an antagonist of the cellular innate immune system by suppressing MAVS downstream signaling by a yet not fully understand mechanism. Our findings reveal new insights into the molecular regulation of the hosts' innate immune response by the Andes orthohantavirus.IMPORTANCE Andes orthohantavirus (ANDV) is endemic in Argentina and Chile and is the primary etiological agent of hantavirus cardiopulmonary syndrome (HCPS) in South America. ANDV is distinguished from other hantaviruses by its unique ability to spread from person to person. In a previous report, we identified a novel ANDV protein, ANDV-NSs. Until now, ANDV-NSs had no known function. In this new study, we established that ANDV-NSs acts as an antagonist of cellular innate immunity, the first line of defense against invading pathogens, hindering the cellular antiviral response during infection. This study provides novel insights into the mechanisms used by ANDV to establish its infection.
Collapse
|
11
|
Gravinatti ML, Barbosa CM, Soares RM, Gregori F. Synanthropic rodents as virus reservoirs and transmitters. Rev Soc Bras Med Trop 2020; 53:e20190486. [PMID: 32049206 PMCID: PMC7083353 DOI: 10.1590/0037-8682-0486-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022] Open
Abstract
This review focuses on reports of hepatitis E virus, hantavirus, rotavirus,
coronavirus, and arenavirus in synanthropic rodents (Rattus
rattus, Rattus norvegicus, and Mus
musculus) within urban environments. Despite their potential impact
on human health, relatively few studies have addressed the monitoring of these
viruses in rodents. Comprehensive control and preventive activities should
include actions such as the elimination or reduction of rat and mouse
populations, sanitary education, reduction of shelters for the animals, and
restriction of the access of rodents to residences, water, and food
supplies.
Collapse
Affiliation(s)
- Mara Lucia Gravinatti
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Rodrigo Martins Soares
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fábio Gregori
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Mittler E, Dieterle ME, Kleinfelter LM, Slough MM, Chandran K, Jangra RK. Hantavirus entry: Perspectives and recent advances. Adv Virus Res 2019; 104:185-224. [PMID: 31439149 DOI: 10.1016/bs.aivir.2019.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hantaviruses are important zoonotic pathogens of public health importance that are found on all continents except Antarctica and are associated with hemorrhagic fever with renal syndrome (HFRS) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. Despite the significant disease burden they cause, no FDA-approved specific therapeutics or vaccines exist against these lethal viruses. The lack of available interventions is largely due to an incomplete understanding of hantavirus pathogenesis and molecular mechanisms of virus replication, including cellular entry. Hantavirus Gn/Gc glycoproteins are the only viral proteins exposed on the surface of virions and are necessary and sufficient to orchestrate virus attachment and entry. In vitro studies have implicated integrins (β1-3), DAF/CD55, and gC1qR as candidate receptors that mediate viral attachment for both Old World and New World hantaviruses. Recently, protocadherin-1 (PCDH1) was demonstrated as a requirement for cellular attachment and entry of New World hantaviruses in vitro and lethal HPS in vivo, making it the first clade-specific host factor to be identified. Attachment of hantavirus particles to cellular receptors induces their internalization by clathrin-mediated, dynamin-independent, or macropinocytosis-like mechanisms, followed by particle trafficking to an endosomal compartment where the fusion of viral and endosomal membranes can occur. Following membrane fusion, which requires cholesterol and acid pH, viral nucleocapsids escape into the cytoplasm and launch genome replication. In this review, we discuss the current mechanistic understanding of hantavirus entry, highlight gaps in our existing knowledge, and suggest areas for future inquiry.
Collapse
Affiliation(s)
- Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maria Eugenia Dieterle
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lara M Kleinfelter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Megan M Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
13
|
Resman Rus K, Korva M, Bogovic P, Pal E, Strle F, Avšic-Županc T. Delayed Interferon Type 1-Induced Antiviral State Is a Potential Factor for Hemorrhagic Fever With Renal Syndrome Severity. J Infect Dis 2019; 217:926-932. [PMID: 29281106 DOI: 10.1093/infdis/jix650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/19/2017] [Indexed: 11/13/2022] Open
Abstract
Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) in Europe and Asia. Interferon (IFN) responses play an important role in HFRS pathogenesis and early IFN-β response is delayed by pathogenic hantaviruses. The severity of HFRS caused by Dobrava virus (DOBV) and Puumala virus (PUUV) varies. Our aim was to determine whether differences in early activation of IFN type 1-induced antiviral state influence HFRS severity. Peripheral blood mononuclear cells (PBMCs) from healthy donors and HFRS patients were stimulated with DOBV or PUUV and expression of selected genes was measured. PUUV, but not DOBV, activated IFN type 1-induced antiviral state in stimulated PBMCs, and IFNβ, STAT-1, and MxA were highly upregulated. Upregulation of MxA was earlier in acute-phase PBMCs and higher in convalescent-phase PBMCs from patients with mild compared with severe PUUV infection. Our study showed that delayed IFN type 1-induced antiviral state could contribute to HFRS severity, particularly in PUUV infection.
Collapse
Affiliation(s)
- Katarina Resman Rus
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Petra Bogovic
- Department of Infectious Diseases, University Medical Centre Ljubljana, Slovenia
| | - Emil Pal
- Department of Infectious Diseases, Murska Sobota General Hospital, Slovenia
| | - Franc Strle
- Department of Infectious Diseases, University Medical Centre Ljubljana, Slovenia
| | - Tatjana Avšic-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia
| |
Collapse
|
14
|
Simons MJ, Gorbunova EE, Mackow ER. Unique Interferon Pathway Regulation by the Andes Virus Nucleocapsid Protein Is Conferred by Phosphorylation of Serine 386. J Virol 2019; 93:e00338-19. [PMID: 30867297 PMCID: PMC6498058 DOI: 10.1128/jvi.00338-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 01/29/2023] Open
Abstract
Andes virus (ANDV) causes hantavirus pulmonary syndrome (HPS) and is the only hantavirus shown to spread person to person and cause a highly lethal HPS-like disease in Syrian hamsters. The unique ability of ANDV N protein to inhibit beta interferon (IFNβ) induction may contribute to its virulence and spread. Here we analyzed IFNβ regulation by ANDV N protein substituted with divergent residues from the nearly identical Maporal virus (MAPV) N protein. We found that MAPV N fails to inhibit IFNβ signaling and that replacing ANDV residues 252 to 296 with a hypervariable domain (HVD) from MAPV N prevents IFNβ regulation. In addition, changing ANDV residue S386 to the histidine present in MAPV N or the alanine present in other hantaviruses prevented ANDV N from regulating IFNβ induction. In contrast, replacing serine with phosphoserine-mimetic aspartic acid (S386D) in ANDV N robustly inhibited interferon regulatory factor 3 (IRF3) phosphorylation and IFNβ induction. Additionally, the MAPV N protein gained the ability to inhibit IRF3 phosphorylation and IFNβ induction when ANDV HVD and H386D replaced MAPV residues. Mass spectroscopy analysis of N protein from ANDV-infected cells revealed that S386 is phosphorylated, newly classifying ANDV N as a phosphoprotein and phosphorylated S386 as a unique determinant of IFN regulation. In this context, the finding that the ANDV HVD is required for IFN regulation by S386 but dispensable for IFN regulation by D386 suggests a role for HVD in kinase recruitment and S386 phosphorylation. These findings delineate elements within the ANDV N protein that can be targeted to attenuate ANDV and suggest targeting cellular kinases as potential ANDV therapeutics.IMPORTANCE ANDV contains virulence determinants that uniquely permit it to spread person to person and cause highly lethal HPS in immunocompetent hamsters. We discovered that ANDV S386 and an ANDV-specific hypervariable domain permit ANDV N to inhibit IFN induction and that IFN regulation is directed by phosphomimetic S386D substitutions in ANDV N. In addition, MAPV N proteins containing D386 and ANDV HVD gained the ability to inhibit IFN induction. Validating these findings, mass spectroscopy analysis revealed that S386 of ANDV N protein is uniquely phosphorylated during ANDV infection. Collectively, these findings reveal new paradigms for ANDV N protein as a phosphoprotein and IFN pathway regulator and suggest new mechanisms for hantavirus regulation of cellular kinases and signaling pathways. Our findings define novel IFN-regulating virulence determinants of ANDV, identify residues that can be modified to attenuate ANDV for vaccine development, and suggest the potential for kinase inhibitors to therapeutically restrict ANDV replication.
Collapse
Affiliation(s)
- Matthew J Simons
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Elena E Gorbunova
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Erich R Mackow
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
15
|
Hantavirus infection: a global zoonotic challenge. Virol Sin 2017; 32:32-43. [PMID: 28120221 DOI: 10.1007/s12250-016-3899-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Hantaviruses are comprised of tri-segmented negative sense single-stranded RNA, and are members of the Bunyaviridae family. Hantaviruses are distributed worldwide and are important zoonotic pathogens that can have severe adverse effects in humans. They are naturally maintained in specific reservoir hosts without inducing symptomatic infection. In humans, however, hantaviruses often cause two acute febrile diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). In this paper, we review the epidemiology and epizootiology of hantavirus infections worldwide.
Collapse
|
16
|
Ermonval M, Baychelier F, Tordo N. What Do We Know about How Hantaviruses Interact with Their Different Hosts? Viruses 2016; 8:v8080223. [PMID: 27529272 PMCID: PMC4997585 DOI: 10.3390/v8080223] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/27/2016] [Accepted: 08/05/2016] [Indexed: 11/26/2022] Open
Abstract
Hantaviruses, like other members of the Bunyaviridae family, are emerging viruses that are able to cause hemorrhagic fevers. Occasional transmission to humans is due to inhalation of contaminated aerosolized excreta from infected rodents. Hantaviruses are asymptomatic in their rodent or insectivore natural hosts with which they have co-evolved for millions of years. In contrast, hantaviruses cause different pathologies in humans with varying mortality rates, depending on the hantavirus species and its geographic origin. Cases of hemorrhagic fever with renal syndrome (HFRS) have been reported in Europe and Asia, while hantavirus cardiopulmonary syndromes (HCPS) are observed in the Americas. In some cases, diseases caused by Old World hantaviruses exhibit HCPS-like symptoms. Although the etiologic agents of HFRS were identified in the early 1980s, the way hantaviruses interact with their different hosts still remains elusive. What are the entry receptors? How do hantaviruses propagate in the organism and how do they cope with the immune system? This review summarizes recent data documenting interactions established by pathogenic and nonpathogenic hantaviruses with their natural or human hosts that could highlight their different outcomes.
Collapse
Affiliation(s)
- Myriam Ermonval
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| | - Florence Baychelier
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| | - Noël Tordo
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
17
|
Witkowski PT, Bourquain D, Bankov K, Auste B, Dabrowski PW, Nitsche A, Krüger DH, Schaade L. Infection of human airway epithelial cells by different subtypes of Dobrava-Belgrade virus reveals gene expression patterns corresponding to their virulence potential. Virology 2016; 493:189-201. [PMID: 27058765 DOI: 10.1016/j.virol.2016.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
Abstract
Dobrava-Belgrade virus (DOBV) is a pathogen causing hemorrhagic fever with renal syndrome in Europe. Virulence and case fatality rate are associated with virus genotype; however the reasons for these differences are not well understood. In this work we present virus-specific effects on the gene expression profiles of human lung epithelial cells (A549) infected with different genotypes of DOBV (Dobrava, Kurkino, and Sochi), as well as the low-virulent Tula virus (TULV). The data was collected by whole-genome gene expression microarrays and confirmed by quantitative real-time PCR. Despite their close genetic relationship, the expression profiles induced by infection with different hantaviruses are significantly varying. Major differences were observed in regulation of immune response genes, which were especially induced by highly virulent DOBV genotypes Dobrava and Sochi in contrast to less virulent DOBV-Kurkino and TULV. This work gives first insights into the differences of virus - host interactions of DOBV on genotype level.
Collapse
Affiliation(s)
- Peter T Witkowski
- Institute of Virology, Helmut-Ruska-Haus, Charité Medical School, Charitéplatz 1, 10117 Berlin, Germany.
| | | | - Katrin Bankov
- Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Brita Auste
- Institute of Virology, Helmut-Ruska-Haus, Charité Medical School, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | - Detlev H Krüger
- Institute of Virology, Helmut-Ruska-Haus, Charité Medical School, Charitéplatz 1, 10117 Berlin, Germany
| | - Lars Schaade
- Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|
18
|
Hantaan virus can infect human keratinocytes and activate an interferon response through the nuclear translocation of IRF-3. INFECTION GENETICS AND EVOLUTION 2015; 29:146-55. [DOI: 10.1016/j.meegid.2014.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 11/09/2014] [Accepted: 11/11/2014] [Indexed: 12/11/2022]
|
19
|
Hepojoki J, Vaheri A, Strandin T. The fundamental role of endothelial cells in hantavirus pathogenesis. Front Microbiol 2014; 5:727. [PMID: 25566236 PMCID: PMC4273638 DOI: 10.3389/fmicb.2014.00727] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/03/2014] [Indexed: 01/17/2023] Open
Abstract
Hantavirus, a genus of rodent- and insectivore-borne viruses in the family Bunyaviridae, is a group of emerging zoonotic pathogens. Hantaviruses cause hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome in man, often with severe consequences. Vascular leakage is evident in severe hantavirus infections, and increased permeability contributes to the pathogenesis. This review summarizes the current knowledge on hantavirus interactions with hematopoietic and endothelial cells, and their effects on the increased vascular permeability.
Collapse
Affiliation(s)
- Jussi Hepojoki
- Department of Virology, Haartman Institute, University of Helsinki Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Haartman Institute, University of Helsinki Helsinki, Finland
| | - Tomas Strandin
- Department of Virology, Haartman Institute, University of Helsinki Helsinki, Finland
| |
Collapse
|
20
|
Abstract
Emerging infectious diseases of zoonotic origin are shaping today's infectious disease field more than ever. In this article, we introduce and review three emerging zoonotic viruses. Novel hantaviruses emerged in the Americas in the mid-1990s as the cause of severe respiratory infections, designated hantavirus pulmonary syndrome, with case fatality rates of around 40%. Nipah virus emerged a few years later, causing respiratory infections and encephalitis in Southeast Asia, with case fatality rates ranging from 40% to more than 90%. A new coronavirus emerged in 2012 on the Arabian Peninsula with a clinical syndrome of acute respiratory infections, later designated as Middle East respiratory syndrome (MERS), and an initial case fatality rate of more than 40%. Our current state of knowledge on the pathogenicity of these three severe, emerging viral infections is discussed.
Collapse
Affiliation(s)
- David Safronetz
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana; , ,
| | | | | |
Collapse
|
21
|
Andes virus nucleocapsid protein interrupts protein kinase R dimerization to counteract host interference in viral protein synthesis. J Virol 2014; 89:1628-39. [PMID: 25410857 DOI: 10.1128/jvi.02347-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED Pathogenic hantaviruses delay the type I interferon response during early stages of viral infection. However, the robust interferon response and induction of interferon-stimulated genes observed during later stages of hantavirus infection fail to combat the virus replication in infected cells. Protein kinase R (PKR), a classical interferon-stimulated gene product, phosphorylates the eukaryotic translation initiation factor eIF2α and causes translational shutdown to create roadblocks for the synthesis of viral proteins. The PKR-induced translational shutdown helps host cells to establish an antiviral state to interrupt virus replication. However, hantavirus-infected cells do not undergo translational shutdown and fail to establish an antiviral state during the course of viral infection. In this study, we showed for the first time that Andes virus infection induced PKR overexpression. However, the overexpressed PKR was not active due to a significant inhibition of autophosphorylation. Further studies revealed that Andes virus nucleocapsid protein inhibited PKR dimerization, a critical step required for PKR autophosphorylation to attain activity. The studies reported here establish a hantavirus nucleocapsid protein as a new PKR inhibitor. These studies provide mechanistic insights into hantavirus resistance to the host interferon response and solve the puzzle of the lack of translational shutdown observed in hantavirus-infected cells. The sensitivity of hantavirus replication to PKR has likely imposed a selective evolutionary pressure on hantaviruses to evade the PKR antiviral response for survival. We envision that evasion of the PKR antiviral response by NP has likely helped hantaviruses to exist during evolution and to survive in infected hosts with a multifaceted antiviral defense. IMPORTANCE Protein kinase R (PKR), a versatile antiviral host factor, shuts down the translation machinery upon activation in virus-infected cells to create hurdles for the manufacture of viral proteins. The studies reported here reveal that the hantavirus nucleocapsid protein counteracts the PKR antiviral response by inhibiting PKR dimerization, which is required for its activation. We report the discovery of a new PKR inhibitor whose expression in hantavirus-infected cells prevents the PKR-induced host translational shutdown to ensure the continuous synthesis of viral proteins required for efficient virus replication.
Collapse
|
22
|
Chiang CF, Albariňo CG, Lo MK, Spiropoulou CF. Small interfering RNA inhibition of Andes virus replication. PLoS One 2014; 9:e99764. [PMID: 24924189 PMCID: PMC4055710 DOI: 10.1371/journal.pone.0099764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/16/2014] [Indexed: 01/02/2023] Open
Abstract
Andes virus (ANDV) is the most common causative agent of hantavirus pulmonary syndrome (HPS) in the Americas, and is the only hantavirus associated with human-to-human transmission. Case fatality rates of ANDV-induced HPS are approximately 40%. There are currently no effective vaccines or antivirals against ANDV. Since HPS severity correlates with viral load, we tested small interfering RNA (siRNA) directed against ANDV genes as a potential antiviral strategy. We designed pools of 4 siRNAs targeting each of the ANDV genome segments (S, M, and L), and tested their efficacy in reducing viral replication in vitro. The siRNA pool targeting the S segment reduced viral transcription and replication in Vero-E6 cells more efficiently than those targeting the M and L segments. In contrast, siRNAs targeting the S, M, or L segment were similar in their ability to reduce viral replication in human lung microvascular endothelial cells. Importantly, these siRNAs inhibit ANDV replication even if given after infection. Taken together, our findings indicate that siRNAs targeting the ANDV genome efficiently inhibit ANDV replication, and show promise as a strategy for developing therapeutics against ANDV infection.
Collapse
Affiliation(s)
- Cheng-Feng Chiang
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Cesar G. Albariňo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Michael K. Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
23
|
Abstract
The pathophysiology of hantavirus pulmonary syndrome (HPS) remains unclear because of a lack of surrogate disease models with which to perform pathogenesis studies. Nonhuman primates (NHP) are considered the gold standard model for studying the underlying immune activation/suppression associated with immunopathogenic viruses such as hantaviruses; however, to date an NHP model for HPS has not been described. Here we show that rhesus macaques infected with Sin Nombre virus (SNV), the primary etiological agent of HPS in North America, propagated in deer mice develop HPS, which is characterized by thrombocytopenia, leukocytosis, and rapid onset of respiratory distress caused by severe interstitial pneumonia. Despite establishing a systemic infection, SNV differentially activated host responses exclusively in the pulmonary endothelium, potentially the mechanism leading to acute severe respiratory distress. This study presents a unique chronological characterization of SNV infection and provides mechanistic data into the pathophysiology of HPS in a closely related surrogate animal model. We anticipate this model will advance our understanding of HPS pathogenesis and will greatly facilitate research toward the development of effective therapeutics and vaccines against hantaviral diseases.
Collapse
|
24
|
Srikiatkhachorn A, Spiropoulou CF. Vascular events in viral hemorrhagic fevers: a comparative study of dengue and hantaviruses. Cell Tissue Res 2014; 355:621-33. [PMID: 24623445 PMCID: PMC3972431 DOI: 10.1007/s00441-014-1841-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/03/2014] [Indexed: 11/30/2022]
Abstract
Viral hemorrhagic diseases are a group of systemic viral infections with worldwide distribution and are significant causes of global mortality and morbidity. The hallmarks of viral hemorrhagic fevers are plasma leakage, thrombocytopenia, coagulopathy and hemorrhagic manifestations. The molecular mechanisms leading to plasma leakage in viral hemorrhagic fevers are not well understood. A common theme has emerged in which a complex interplay between pathogens, host immune response, and endothelial cells leads to the activation of endothelial cells and perturbation of barrier integrity. In this article, two clinically distinct viral hemorrhagic fevers caused by dengue viruses and hantaviruses are discussed to highlight their similarities and differences that may provide insights into the pathogenesis and therapeutic approach.
Collapse
Affiliation(s)
- Anon Srikiatkhachorn
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA,
| | | |
Collapse
|
25
|
An innate immunity-regulating virulence determinant is uniquely encoded by the Andes virus nucleocapsid protein. mBio 2014; 5:mBio.01088-13. [PMID: 24549848 PMCID: PMC3944819 DOI: 10.1128/mbio.01088-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Andes virus (ANDV) is the only hantavirus known to spread from person to person and shown to cause highly lethal hantavirus pulmonary syndrome (HPS) in patients and Syrian hamsters. Hantaviruses replicate in human endothelial cells and accomplish this by restricting the early induction of beta interferon (IFN-β)- and IFN-stimulated genes (ISGs). Our studies reveal that the ANDV nucleocapsid (N) protein uniquely inhibits IFN signaling responses directed by cytoplasmic double-stranded RNA (dsRNA) sensors RIG-I and MDA5. In contrast, N proteins from Sin Nombre, New York-1, and Prospect Hill hantaviruses had no effect on RIG-I/MDA5-directed transcriptional responses from IFN-β-, IFN-stimulated response element (ISRE)-, or κB-containing promoters. Ablating a potential S-segment nonstructural open reading frame (ORF) (NSs) within the ANDV plasmid expressing N protein failed to alter IFN regulation by ANDV N protein. Further analysis demonstrated that expressing the ANDV N protein inhibited downstream IFN pathway activation directed by MAVS, TBK1, and IκB kinase ε (IKKε) but failed to inhibit transcriptional responses directed by constitutive expression of active interferon regulatory factor IRF3-5D or after stimulation by alpha interferon (IFN-α) or tumor necrosis factor alpha (TNF-α). Consistent with IFN pathway-specific regulation, the ANDV N protein inhibited TBK1-directed IRF3 phosphorylation (phosphorylation of serine 396 [pS396]) and TBK1 autophosphorylation (pS172). Collectively, these findings indicate that the ANDV N inhibits IFN signaling responses by interfering with TBK1 activation, upstream of IRF3 phosphorylation and NF-κB activation. Moreover, our findings reveal that ANDV uniquely carries a gene encoding a virulence determinant within its N protein that is capable of restricting ISG and IFN-β induction and provide a rationale for the novel pathogenesis and spread of ANDV. Andes virus (ANDV) is distinguished from other hantaviruses by its unique ability to spread from person to person and cause lethal hantavirus pulmonary syndrome (HPS)-like disease in Syrian hamsters. However, virulence determinants that distinguish ANDV from other pathogenic hantaviruses have yet to be defined. Here we reveal that ANDV uniquely contains a virulence determinant within its nucleocapsid (N) protein that potently inhibits innate cellular signaling pathways. This novel function of the N protein provides a new mechanism for hantaviruses to regulate interferon (IFN) and IFN-stimulated gene (ISG) induction that is likely to contribute to the enhanced ability of ANDV to replicate, spread, and cause disease. These findings differentiate ANDV from other HPS-causing hantaviruses and provide a potential target for viral attenuation that needs to be considered in vaccine development.
Collapse
|
26
|
Mackow ER, Dalrymple NA, Cimica V, Matthys V, Gorbunova E, Gavrilovskaya I. Hantavirus interferon regulation and virulence determinants. Virus Res 2014; 187:65-71. [PMID: 24412542 DOI: 10.1016/j.virusres.2013.12.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/16/2013] [Accepted: 12/24/2013] [Indexed: 01/11/2023]
Abstract
Hantaviruses predominantly replicate in primary human endothelial cells and cause 2 diseases characterized by altered barrier functions of vascular endothelium. Most hantaviruses restrict the early induction of interferon-β (IFNβ) and interferon stimulated genes (ISGs) within human endothelial cells to permit their successful replication. PHV fails to regulate IFN induction within human endothelial cells which self-limits PHV replication and its potential as a human pathogen. These findings, and the altered regulation of endothelial cell barrier functions by pathogenic hantaviruses, suggest that virulence is determined by the ability of hantaviruses to alter key signaling pathways within human endothelial cells. Our findings indicate that the Gn protein from ANDV, but not PHV, inhibits TBK1 directed ISRE, kB and IFNβ induction through virulence determinants in the Gn cytoplasmic tail (GnT) that inhibit TBK1 directed IRF3 phosphorylation. Further studies indicate that in response to hypoxia induced VEGF, ANDV infection enhances the permeability and adherens junction internalization of microvascular and lymphatic endothelial cells. These hypoxia/VEGF directed responses are rapamycin sensitive and directed by mTOR signaling pathways. These results demonstrate the presence of at least two hantavirus virulence determinants that act on endothelial cell signaling pathways: one that regulates antiviral IFN signaling responses, and a second that enhances normal hypoxia-VEGF-mTOR signaling pathways to facilitate endothelial cell permeability. These findings suggest signaling pathways as potential targets for therapeutic regulation of vascular deficits that contribute to hantavirus diseases and viral protein targets for attenuating pathogenic hantaviruses.
Collapse
Affiliation(s)
- Erich R Mackow
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5122, United States.
| | - Nadine A Dalrymple
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5122, United States
| | - Velasco Cimica
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5122, United States
| | - Valery Matthys
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5122, United States
| | - Elena Gorbunova
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5122, United States
| | - Irina Gavrilovskaya
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5122, United States
| |
Collapse
|
27
|
Hantavirus GnT elements mediate TRAF3 binding and inhibit RIG-I/TBK1-directed beta interferon transcription by blocking IRF3 phosphorylation. J Virol 2014; 88:2246-59. [PMID: 24390324 DOI: 10.1128/jvi.02647-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hantaviruses successfully replicate in primary human endothelial cells by restricting the early induction of beta interferon (IFN-β) and interferon-stimulated genes (ISGs). Gn proteins from NY-1V, ANDV, and TULV, but not PHV, harbor elements in their 142-residue cytoplasmic tails (GnTs) that inhibit RIG-I/MAVS/TBK1-TRAF3-directed IFN-β induction. Here, we define GnT interactions and residues required to inhibit TRAF3-TBK1-directed IFN-β induction and IRF3 phosphorylation. We observed that GnTs bind TRAF3 via residues within the TRAF-N domain (residues 392 to 415) and that binding is independent of the MAVS-interactive TRAF-C domain (residues 415 to 568). We determined that GnT binding to TRAF3 is mediated by C-terminal degrons within NY-1V or ANDV GnTs and that mutations that add degrons to TULV or PHV GnTs confer TRAF3 binding. Further analysis of GnT domains revealed that TRAF3 binding is a discrete GnT function, independent of IFN regulation, and that residues 15 to 42 from the NY-1V GnT C terminus are required for inhibiting TBK1-directed IFN-β transcription. Mutagenesis of the NY-1V GnT revealed that altering tyrosine 627 (Y627A/S/F) abolished GnT regulation of RIG-I/TBK1-directed IRF3 phosphorylation and transcriptional responses of ISRE, κB, and IFN-β promoters. Moreover, GnTs from NY-1V, ANDV, and TULV, but not PHV, inhibited RIG-I-directed IRF3 phosphorylation. Collectively, these findings suggest a novel role for GnTs in regulating RIG-I/TBK1 pathway-directed IRF3 phosphorylation and IFN-β induction and define virulence determinants within GnTs that may permit the attenuation of pathogenic hantaviruses. IMPORTANCE These findings provide a mechanism for selected hantavirus GnT interactions to regulate RIG-I/TBK1 signaling responses required for IFN-β induction by inhibiting TBK1 phosphorylation of IRF3. These studies culminate in showing that a single GnT residue, Y627, is required for the NY-1V GnT to inhibit RIG-I/TBK1-directed IRF3 phosphorylation and IFN-β induction. These findings define a potential virulence determinant within the NY-1V GnT that may permit hantavirus attenuation.
Collapse
|
28
|
Abstract
ABSTRACT: Hantaviruses productively infect endothelial cells in their rodent reservoirs and humans, but the infection only causes disease in humans – hantavirus pulmonary syndrome and hemorrhagic fever with renal syndrome. Despite the enormous progress that has been made in understanding the pathogenesis and immune responses of hantavirus infection, there is a large gap in our molecular-based knowledge of hantaviral proteins in their structures, functions and the mechanisms that facilitate their entry, replication and assembly. Importantly, we know little about the specific viral determinants and viral protein–host interactions that drive differences noted in immune responses between the reservoir and humans. This review discusses our current understanding and future work needed for unraveling the biology of these viruses in their reservoirs and in humans.
Collapse
Affiliation(s)
- Ryan C McAllister
- Department of Pharmacology & Toxicology, University of Louisville, KY 40202, USA
- Center for Predictive Medicine for Biodefense & Emerging Infectious Diseases, KY, USA
| | - Colleen B Jonsson
- Department of Pharmacology & Toxicology, University of Louisville, KY 40202, USA
- Center for Predictive Medicine for Biodefense & Emerging Infectious Diseases, KY, USA
- Department of Microbiology and Immunology, University of Louisville, KY 40202, USA
- Departments of Microbiology & Immunology & Pharmacology & Toxicology, Center for Predictive Medicine for Biodefense & Emerging Infectious Diseases, University of Louisville, Clinical & Translational Research Building, 505 South Hancock Avenue, Louisville, KY 40202, USA
| |
Collapse
|
29
|
Prescott J, Safronetz D, Haddock E, Robertson S, Scott D, Feldmann H. The adaptive immune response does not influence hantavirus disease or persistence in the Syrian hamster. Immunology 2013; 140:168-78. [PMID: 23600567 DOI: 10.1111/imm.12116] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 12/22/2022] Open
Abstract
Pathogenic New World hantaviruses cause severe disease in humans characterized by a vascular leak syndrome, leading to pulmonary oedema and respiratory distress with case fatality rates approaching 40%. Hantaviruses infect microvascular endothelial cells without conspicuous cytopathic effects, indicating that destruction of the endothelium is not a mechanism of disease. In humans, high levels of inflammatory cytokines are present in the lungs of patients that succumb to infection. This, along with other observations, suggests that disease has an immunopathogenic component. Currently the only animal model available to study hantavirus disease is the Syrian hamster, where infection with Andes virus (ANDV), the primary agent of disease in South America, results in disease that closely mimics that seen in humans. Conversely, inoculation of hamsters with a passaged Sin Nombre virus (SNV), the virus responsible for most cases of disease in North America, results in persistent infection with high levels of viral replication. We found that ANDV elicited a stronger innate immune response, whereas SNV elicited a more robust adaptive response in the lung. Additionally, ANDV infection resulted in significant changes in the blood lymphocyte populations. To determine whether the adaptive immune response influences infection outcome, we depleted hamsters of CD4(+) and CD8(+) T cells before infection with hantaviruses. Depletion resulted in inhibition of virus-specific antibody responses, although the pathogenesis and replication of these viruses were unaltered. These data show that neither hantavirus replication, nor pathogenesis caused by these viruses, is influenced by the adaptive immune response in the Syrian hamster.
Collapse
Affiliation(s)
- Joseph Prescott
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | | | | | | | | | | |
Collapse
|
30
|
Spiropoulou CF, Srikiatkhachorn A. The role of endothelial activation in dengue hemorrhagic fever and hantavirus pulmonary syndrome. Virulence 2013; 4:525-36. [PMID: 23841977 PMCID: PMC5359750 DOI: 10.4161/viru.25569] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The loss of the endothelium barrier and vascular leakage play a central role in the pathogenesis of hemorrhagic fever viruses. This can be caused either directly by the viral infection and damage of the vascular endothelium, or indirectly by a dysregulated immune response resulting in an excessive activation of the endothelium. This article briefly reviews our knowledge of the importance of the disruption of the vascular endothelial barrier in two severe disease syndromes, dengue hemorrhagic fever and hantavirus pulmonary syndrome. Both viruses cause changes in vascular permeability without damaging the endothelium. Here we focus on our understanding of the virus interaction with the endothelium, the role of the endothelium in the induced pathogenesis, and the possible mechanisms by which each virus causes vascular leakage. Understanding the dynamics between viral infection and the dysregulation of the endothelial cell barrier will help us to define potential therapeutic targets for reducing disease severity.
Collapse
|
31
|
Toscana virus NSs protein inhibits the induction of type I interferon by interacting with RIG-I. J Virol 2013; 87:6660-7. [PMID: 23552410 DOI: 10.1128/jvi.03129-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Toscana virus (TOSV) is a phlebovirus, of the Bunyaviridae family, that is responsible for central nervous system (CNS) injury in humans. Previous data have shown that the TOSV NSs protein is a gamma interferon (IFN-β) antagonist when transiently overexpressed in mammalian cells, inhibiting IRF-3 induction (G. Gori Savellini, F. Weber, C. Terrosi, M. Habjan, B. Martorelli, and M. G. Cusi, J. Gen. Virol. 92:71-79, 2011). In this study, we investigated whether an upstream sensor, which has a role in the signaling cascade leading to the production of type I IFN, was involved. We found a significant decrease in RIG-I protein levels in cells overexpressing TOSV NSs, suggesting that the nonstructural protein interacts with RIG-I and targets it for proteasomal degradation. In fact, the MG-132 proteasome inhibitor was able to restore IFN-β promoter activation in cells expressing NSs, demonstrating the existence of an evasion mechanism based on inhibition of the RIG-I sensor. Furthermore, a C-terminal truncated NSs protein (ΔNSs), although able to interact with RIG-I, did not affect the RIG-I-mediated IFN-β promoter activation, suggesting that the NSs domains responsible for RIG-I-mediated signaling and interaction with RIG-I are mapped on different regions. These results contribute to identify a novel mechanism for bunyaviruses by which TOSV NSs counteracts the early IFN response.
Collapse
|
32
|
Weber M, Gawanbacht A, Habjan M, Rang A, Borner C, Schmidt AM, Veitinger S, Jacob R, Devignot S, Kochs G, García-Sastre A, Weber F. Incoming RNA virus nucleocapsids containing a 5'-triphosphorylated genome activate RIG-I and antiviral signaling. Cell Host Microbe 2013; 13:336-46. [PMID: 23498958 PMCID: PMC5515363 DOI: 10.1016/j.chom.2013.01.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 10/12/2012] [Accepted: 01/25/2013] [Indexed: 12/24/2022]
Abstract
Host defense to RNA viruses depends on rapid intracellular recognition of viral RNA by two cytoplasmic RNA helicases: RIG-I and MDA5. RNA transfection experiments indicate that RIG-I responds to naked double-stranded RNAs (dsRNAs) with a triphosphorylated 5' (5'ppp) terminus. However, the identity of the RIG-I stimulating viral structures in an authentic infection context remains unresolved. We show that incoming viral nucleocapsids containing a 5'ppp dsRNA "panhandle" structure trigger antiviral signaling that commences with RIG-I, is mediated through the adaptor protein MAVS, and terminates with transcription factor IRF-3. Independent of mammalian cofactors or viral polymerase activity, RIG-I bound to viral nucleocapsids, underwent a conformational switch, and homo-oligomerized. Enzymatic probing and superresolution microscopy suggest that RIG-I interacts with the panhandle structure of the viral nucleocapsids. These results define cytoplasmic entry of nucleocapsids as the proximal RIG-I-sensitive step during infection and establish viral nucleocapsids with a 5'ppp dsRNA panhandle as a RIG-I activator.
Collapse
Affiliation(s)
- Michaela Weber
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Ali Gawanbacht
- Department of Virology, University Freiburg, Hermann-Herder-Strasse 11, D-79008 Freiburg, Germany
| | - Matthias Habjan
- Department of Virology, University Freiburg, Hermann-Herder-Strasse 11, D-79008 Freiburg, Germany
| | - Andreas Rang
- Institute of Virology, Helmut-Ruska-Haus, University Hospital Charité, Charité Campus Mitte, Berlin, Germany
| | - Christoph Borner
- Institute of Molecular Medicine, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs University Freiburg, Germany
| | - Anna Mareike Schmidt
- Department of Virology, University Freiburg, Hermann-Herder-Strasse 11, D-79008 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs University Freiburg, Germany
| | - Sophie Veitinger
- Department of Cell Biology and Cell Pathology, Philipps-University Marburg, Marburg, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-University Marburg, Marburg, Germany
| | - Stéphanie Devignot
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Georg Kochs
- Department of Virology, University Freiburg, Hermann-Herder-Strasse 11, D-79008 Freiburg, Germany
| | - Adolfo García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY-10029, USA
- Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, NY-10029, USA
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, NY-10029, USA
| | - Friedemann Weber
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
- Department of Virology, University Freiburg, Hermann-Herder-Strasse 11, D-79008 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs University Freiburg, Germany
| |
Collapse
|
33
|
Experimental Andes virus infection in deer mice: characteristics of infection and clearance in a heterologous rodent host. PLoS One 2013; 8:e55310. [PMID: 23383148 PMCID: PMC3561286 DOI: 10.1371/journal.pone.0055310] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/20/2012] [Indexed: 01/13/2023] Open
Abstract
New World hantaviruses can cause hantavirus cardiopulmonary syndrome with high mortality in humans. Distinct virus species are hosted by specific rodent reservoirs, which also serve as the vectors. Although regional spillover has been documented, it is unknown whether rodent reservoirs are competent for infection by hantaviruses that are geographically separated, and known to have related, but distinct rodent reservoir hosts. We show that Andes virus (ANDV) of South America, carried by the long tailed pygmy rice rat (Oligoryzomys longicaudatus), infects and replicates in vitro and in vivo in the deer mouse (Peromyscus maniculatus), the reservoir host of Sin Nombre virus (SNV), found in North America. In experimentally infected deer mice, viral RNA was detected in the blood, lung, heart and spleen, but virus was cleared by 56 days post inoculation (dpi). All of the inoculated deer mice mounted a humoral immune response by 14 dpi, and produced measurable amounts of neutralizing antibodies by 21 dpi. An up-regulation of Ccl3, Ccl4, Ccl5, and Tgfb, a strong CD4+ T-cell response, and down-regulation of Il17, Il21 and Il23 occurred during infection. Infection was transient with an absence of clinical signs or histopathological changes. This is the first evidence that ANDV asymptomatically infects, and is immunogenic in deer mice, a non-natural host species of ANDV. Comparing the immune response in this model to that of the immune response in the natural hosts upon infection with their co-adapted hantaviruses may help clarify the mechanisms governing persistent infection in the natural hosts of hantaviruses.
Collapse
|
34
|
Strandin T, Hepojoki J, Vaheri A. Cytoplasmic tails of bunyavirus Gn glycoproteins-Could they act as matrix protein surrogates? Virology 2013; 437:73-80. [PMID: 23357734 DOI: 10.1016/j.virol.2013.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/21/2012] [Accepted: 01/02/2013] [Indexed: 12/31/2022]
Abstract
Viruses of the family Bunyaviridae are negative-sense RNA viruses (NRVs). Unlike other NRVs bunyaviruses do not possess a matrix protein, which typically facilitates virus release from host cells and acts as an anchor between the viral membrane and its genetic core. Therefore the functions of matrix protein in bunyaviruses need to be executed by other viral proteins. In fact, the cytoplasmic tail of glycoprotein Gn (Gn-CT) of various bunyaviruses interacts with the genetic core (nucleocapsid protein and/or genomic RNA). In addition the Gn-CT of phleboviruses (a genus in the family Bunyaviridae) has been demonstrated to be essential for budding. This review brings together what is known on the role of various bunyavirus Gn-CTs in budding and assembly, and hypothesizes on their yet unrevealed functions in viral life cycle by comparing to the matrix proteins of NRVs.
Collapse
Affiliation(s)
- Tomas Strandin
- Department of Virology, Haartman Institute, P.O. Box 21, FI-00014, University of Helsinki, Finland.
| | | | | |
Collapse
|
35
|
Shin OS, Yanagihara R, Song JW. Distinct innate immune responses in human macrophages and endothelial cells infected with shrew-borne hantaviruses. Virology 2012; 434:43-9. [PMID: 22944108 DOI: 10.1016/j.virol.2012.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/19/2012] [Accepted: 08/01/2012] [Indexed: 01/09/2023]
Abstract
Although hantaviruses have been previously considered as rodent-borne pathogens, recent studies demonstrate genetically distinct hantaviruses in evolutionarily distant non-rodent reservoirs, including shrews, moles and bats. The immunological responses to these newfound hantaviruses in humans are unknown. We compared the innate immune responses to Imjin virus (MJNV) and Thottapalayam virus (TPMV), two shrew-borne hantaviruses, with that toward two rodent-borne hantaviruses, pathogenic Hantann virus (HTNV) and nonpathogenic Prospect Hill virus (PHV). Infection of human macrophages and endothelial cells with either HTNV or MJNV triggered productive viral replication and up-regulation of anti-viral responsive gene expression from day 1 to day 3 postinfection, compared with PHV and TPMV. Furthermore, HTNV, MJNV and TPMV infection led to prolonged increased production of pro-inflammatory cytokines from days 3 to 7 postinfection. By contrast, PHV infection failed to induce pro-inflammatory responses. Distinct patterns of innate immune activation caused by MJNV suggest that it might be pathogenic to humans.
Collapse
Affiliation(s)
- Ok Sarah Shin
- Institute of Biomedical Science & Food Safety, Korea University, Seoul 136-713, Republic of Korea
| | | | | |
Collapse
|
36
|
Hantavirus regulation of type I interferon responses. Adv Virol 2012; 2012:524024. [PMID: 22924041 PMCID: PMC3423653 DOI: 10.1155/2012/524024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 05/18/2012] [Accepted: 07/04/2012] [Indexed: 11/22/2022] Open
Abstract
Hantaviruses primarily infect human endothelial cells (ECs) and cause two highly lethal human diseases. Early addition of Type I interferon (IFN) to ECs blocks hantavirus replication and thus for hantaviruses to be pathogenic they need to prevent early interferon induction. PHV replication is blocked in human ECs, but not inhibited in IFN deficient VeroE6 cells and consistent with this, infecting ECs with PHV results in the early induction of IFNβ and an array of interferon stimulated genes (ISGs). In contrast, ANDV, HTNV, NY-1V and TULV hantaviruses, inhibit early ISG induction and successfully replicate within human ECs. Hantavirus inhibition of IFN responses has been attributed to several viral proteins including regulation by the Gn proteins cytoplasmic tail (Gn-T). The Gn-T interferes with the formation of STING-TBK1-TRAF3 complexes required for IRF3 activation and IFN induction, while the PHV Gn-T fails to alter this complex or regulate IFN induction. These findings indicate that interfering with early IFN induction is necessary for hantaviruses to replicate in human ECs, and suggest that additional determinants are required for hantaviruses to be pathogenic. The mechanism by which Gn-Ts disrupt IFN signaling is likely to reveal potential therapeutic interventions and suggest protein targets for attenuating hantaviruses.
Collapse
|
37
|
Estrada DF, Conner M, Jeor SC, Guzman RND. The Structure of the Hantavirus Zinc Finger Domain is Conserved and Represents the Only Natively Folded Region of the Gn Cytoplasmic Tail. Front Microbiol 2011; 2:251. [PMID: 22203819 PMCID: PMC3243910 DOI: 10.3389/fmicb.2011.00251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 11/27/2011] [Indexed: 11/25/2022] Open
Abstract
Hantaviruses, of the family Bunyaviridae, are present throughout the world and cause a variety of infections ranging from the asymptomatic to mild and severe hemorrhagic fevers. Hantaviruses are enveloped anti-sense RNA viruses that contain three genomic segments that encode for a nucleocapsid protein, two membrane glycoproteins (Gn and Gc), and an RNA polymerase. Recently, the pathogenicity of hantaviruses has been mapped to the carboxyl end of the 150 residue Gn cytoplasmic tail. The Gn tail has also been shown to play a role in binding the ribonucleoprotein (RNP), a step critical for virus assembly. In this study, we use NMR spectroscopy to compare the structure of a Gn tail zinc finger domain of both a pathogenic (Andes) and a non-pathogenic (Prospect Hill) hantavirus. We demonstrate that despite a stark difference in the virulence of both of these viruses, the structure of the Gn core zinc finger domain is largely conserved in both strains. We also use NMR backbone relaxation studies to demonstrate that the regions of the Andes virus Gn tail immediately outside the zinc finger domain, sites known to bind the RNP, are disordered and flexible, thus intimating that the zinc finger domain is the only structured region of the Gn tail. These structural observations provide further insight into the role of the Gn tail during viral assembly as well as its role in pathogenesis.
Collapse
Affiliation(s)
- D Fernando Estrada
- Department of Molecular Biosciences, University of Kansas Lawrence, KS, USA
| | | | | | | |
Collapse
|
38
|
Safronetz D, Zivcec M, LaCasse R, Feldmann F, Rosenke R, Long D, Haddock E, Brining D, Gardner D, Feldmann H, Ebihara H. Pathogenesis and host response in Syrian hamsters following intranasal infection with Andes virus. PLoS Pathog 2011; 7:e1002426. [PMID: 22194683 PMCID: PMC3240607 DOI: 10.1371/journal.ppat.1002426] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 10/22/2011] [Indexed: 12/31/2022] Open
Abstract
Hantavirus pulmonary syndrome (HPS), also referred to as hantavirus cardiopulmonary syndrome (HCPS), is a rare but frequently fatal disease caused by New World hantaviruses. In humans HPS is associated with severe pulmonary edema and cardiogenic shock; however, the pathogenesis of this disease remains unclear largely due to a lack of suitable animal models for the study of disease progression. In this study we monitored clinical, virological, pathophysiological parameters and host immunological responses to decipher pathological factors and events in the lethal Syrian hamster model of HPS following intranasal inoculation of Andes virus. Transcriptional profiling of the host gene responses demonstrated a suppression of innate immune responses in most organs analyzed during the early stage of infection, except for in the lung which had low level activation of several pro-inflammatory genes. During this phase Andes virus established a systemic infection in hamsters, with viral antigen readily detectable in the endothelium of the majority of tissues analyzed by 7-8 days post-inoculation. Despite wide-spread infection, histological analysis confirmed pathological abnormalities were almost exclusively found in the lungs. Immediately preceding clinical signs of disease, intense activation of pro-inflammatory and Th1/Th2 responses were observed in the lungs as well as the heart, but not in peripheral organs, suggesting that localized immune-modulations by infection is paramount to pathogenesis. Throughout the course of infection a strong suppression of regulatory T-cell responses was noted and is hypothesized to be the basis of the aberrant immune activations. The unique and comprehensive monitoring of host immune responses to hantavirus infection increases our understanding of the immuno-pathogenesis of HPS and will facilitate the development of treatment strategies targeting deleterious host immunological responses.
Collapse
Affiliation(s)
- David Safronetz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Marko Zivcec
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rachel LaCasse
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Friederike Feldmann
- Office of Operations and Management, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Montana, United States of America
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Dan Long
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Douglas Brining
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Donald Gardner
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail: (HF); (HE)
| | - Hideki Ebihara
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- * E-mail: (HF); (HE)
| |
Collapse
|
39
|
Macneil A, Nichol ST, Spiropoulou CF. Hantavirus pulmonary syndrome. Virus Res 2011; 162:138-47. [PMID: 21945215 DOI: 10.1016/j.virusres.2011.09.017] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/10/2011] [Accepted: 09/10/2011] [Indexed: 12/27/2022]
Abstract
Hantavirus pulmonary syndrome (HPS) is a severe disease characterized by a rapid onset of pulmonary edema followed by respiratory failure and cardiogenic shock. The HPS associated viruses are members of the genus Hantavirus, family Bunyaviridae. Hantaviruses have a worldwide distribution and are broadly split into the New World hantaviruses, which includes those causing HPS, and the Old World hantaviruses [including the prototype Hantaan virus (HTNV)], which are associated with a different disease, hemorrhagic fever with renal syndrome (HFRS). Sin Nombre virus (SNV) and Andes virus (ANDV) are the most common causes of HPS in North and South America, respectively. Case fatality of HPS is approximately 40%. Pathogenic New World hantaviruses infect the lung microvascular endothelium without causing any virus induced cytopathic effect. However, virus infection results in microvascular leakage, which is the hallmark of HPS. This article briefly reviews the knowledge on HPS-associated hantaviruses accumulated since their discovery, less than 20 years ago.
Collapse
Affiliation(s)
- Adam Macneil
- Viral Special Pathogens Branch, Division of High-consequence Pathogens and Pathology, Centers for Disease Control and Prevention, 1600 Clifton Road, N.E., Atlanta, GA 30333, USA
| | | | | |
Collapse
|
40
|
Comparison of innate immune responses to pathogenic and putative non-pathogenic hantaviruses in vitro. Virus Res 2011; 160:367-73. [PMID: 21820021 DOI: 10.1016/j.virusres.2011.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 02/06/2023]
Abstract
Hantaviruses are human pathogens that cause hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome. The mechanisms accounting for the differences in virulence between pathogenic and non-pathogenic hantaviruses are not well known. We have examined the pathogenesis of different hantavirus groups by comparing the innate immune responses induced in the host cell following infection by pathogenic (Sin Nombre, Hantaan, and Seoul virus) and putative non-pathogenic (Prospect Hill, Tula, and Thottapalayam virus) hantaviruses. Pathogenic hantaviruses were found to replicate more efficiently in interferon-competent A549 cells than putative non-pathogenic hantaviruses. The former also suppressed the expression of the interferon-β and myxovirus resistance protein genes, while the transcription level of both genes increased rapidly within 24 h post-infection in the latter. In addition, the induction level of interferon correlated with the activation level of interferon regulatory factor-3. Taken together, these results suggest that the observed differences are correlated with viral pathogenesis and further indicate that pathogenic and putative non-pathogenic hantaviruses differ in terms of early interferon induction via activation of the interferon regulatory factor-3 in infected host cells.
Collapse
|
41
|
Klingström J, Ahlm C. Hantavirus protein interactions regulate cellular functions and signaling responses. Expert Rev Anti Infect Ther 2011; 9:33-47. [PMID: 21171876 DOI: 10.1586/eri.10.157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rodent-borne pathogenic hantaviruses cause two severe and often lethal zoonotic diseases: hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus cardiopulmonary syndrome (HCPS) in the Americas. Currently, no US FDA-approved therapeutics or vaccines are available for HFRS/HCPS. Infections with hantaviruses are not lytic, and it is currently not known exactly why infections in humans cause disease. A better understanding of how hantaviruses interfere with normal cell functions and activation of innate and adaptive immune responses might provide clues to future development of specific treatment and/or vaccines against hantavirus infection. In this article, the current knowledge regarding immune responses observed in patients, hantavirus interference with cellular proteins and signaling pathways, and possible approaches in the development of therapeutics are discussed.
Collapse
Affiliation(s)
- Jonas Klingström
- Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, Solna, Sweden.
| | | |
Collapse
|
42
|
The C-terminal 42 residues of the Tula virus Gn protein regulate interferon induction. J Virol 2011; 85:4752-60. [PMID: 21367904 DOI: 10.1128/jvi.01945-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hantaviruses primarily infect the endothelial cell lining of capillaries and cause two vascular permeability-based diseases. The ability of pathogenic hantaviruses to regulate the early induction of interferon determines whether hantaviruses replicate in endothelial cells. Tula virus (TULV) and Prospect Hill virus (PHV) are hantaviruses which infect human endothelial cells but fail to cause human disease. PHV is unable to inhibit early interferon (IFN) responses and fails to replicate within human endothelial cells. However, TULV replicates successfully in human endothelial cells, suggesting that TULV is capable of regulating cellular IFN responses. We observed a >300-fold reduction in the IFN-stimulated genes (ISGs) MxA and ISG56 following TULV versus PHV infection of endothelial cells 1 day postinfection. Similar to results with pathogenic hantaviruses, expressing the TULV Gn protein cytoplasmic tail (Gn-T) blocked RIG-I- and TBK1-directed transcription from IFN-stimulated response elements (ISREs) and IFN-β promoters (>90%) but not transcription directed by constitutively active IFN regulatory factor-3 (IRF3). In contrast, expressing the PHV Gn-T had no effect on TBK1-induced transcriptional responses. Analysis of Gn-T truncations demonstrated that the C-terminal 42 residues of the Gn-T (Gn-T-C42) from TULV, but not PHV, inhibited IFN induction >70%. These findings demonstrate that the TULV Gn-T inhibits IFN- and ISRE-directed responses upstream of IRF3 at the level of the TBK1 complex and further define a 42-residue domain of the TULV Gn-T that inhibits IFN induction. In contrast to pathogenic hantavirus Gn-Ts, the TULV Gn-T lacks a C-terminal degron domain and failed to bind tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3), a TBK1 complex component required for IRF3 activation. These findings indicate that the nonpathogenic TULV Gn-T regulates IFN induction but accomplishes this via unique interactions with cellular TBK1 complexes. These findings fundamentally distinguish nonpathogenic hantaviruses, PHV and TULV, and demonstrate that IFN regulation alone is insufficient for hantaviruses to cause disease. Yet regulating the early IFN response is necessary for hantaviruses to replicate within human endothelial cells and to be pathogenic. Thus, in addition to IFN regulation, hantaviruses contain discrete virulence determinants which permit them to be human pathogens.
Collapse
|
43
|
Wang H, Vaheri A, Weber F, Plyusnin A. Old World hantaviruses do not produce detectable amounts of dsRNA in infected cells and the 5' termini of their genomic RNAs are monophosphorylated. J Gen Virol 2011; 92:1199-1204. [PMID: 21289157 DOI: 10.1099/vir.0.029405-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
dsRNA and 5'-triphosphate RNA are considered critical activators of the innate immune response because of their interaction with pattern recognition receptors. It has been reported that no dsRNA is detected in negative-sense RNA virus-infected cells and that Hantaan virus (HTNV) genomic RNA bears a 5' monophosphate group. In this paper we examine the 5' termini of genomic RNAs of and dsRNA production by two major groups of Old World hantaviruses. No detectable amounts of dsRNA were found in infected cells. Also, the genomic RNAs of these hantaviruses bear a 5' monophosphate group and therefore are unable to trigger interferon induction. Taken together with the earlier data on HTNV, these results suggest that in addition to the dsRNA and genomic RNA, which may be only minimally involved in the induction of innate immunity, other cellular signalling pathways may also be involved and that these await further investigation.
Collapse
Affiliation(s)
- Hao Wang
- Department of Virology, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland
| | - Friedemann Weber
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Alexander Plyusnin
- Department of Virology, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland
| |
Collapse
|
44
|
Hantaviruses in the americas and their role as emerging pathogens. Viruses 2010; 2:2559-86. [PMID: 21994631 PMCID: PMC3185593 DOI: 10.3390/v2122559] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/15/2010] [Accepted: 11/24/2010] [Indexed: 12/17/2022] Open
Abstract
The continued emergence and re-emergence of pathogens represent an ongoing, sometimes major, threat to populations. Hantaviruses (family Bunyaviridae) and their associated human diseases were considered to be confined to Eurasia, but the occurrence of an outbreak in 1993–94 in the southwestern United States led to a great increase in their study among virologists worldwide. Well over 40 hantaviral genotypes have been described, the large majority since 1993, and nearly half of them pathogenic for humans. Hantaviruses cause persistent infections in their reservoir hosts, and in the Americas, human disease is manifest as a cardiopulmonary compromise, hantavirus cardiopulmonary syndrome (HCPS), with case-fatality ratios, for the most common viral serotypes, between 30% and 40%. Habitat disturbance and larger-scale ecological disturbances, perhaps including climate change, are among the factors that may have increased the human caseload of HCPS between 1993 and the present. We consider here the features that influence the structure of host population dynamics that may lead to viral outbreaks, as well as the macromolecular determinants of hantaviruses that have been regarded as having potential contribution to pathogenicity.
Collapse
|
45
|
Characterization of two substrains of Puumala virus that show phenotypes that are different from each other and from the original strain. J Virol 2010; 85:1747-56. [PMID: 21106742 DOI: 10.1128/jvi.01428-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hantaviruses, the causative agents of two emerging diseases, are negative-stranded RNA viruses with a tripartite genome. We isolated two substrains from a parental strain of Puumala hantavirus (PUUV-Pa), PUUV-small (PUUV-Sm) and PUUV-large (PUUV-La), named after their focus size when titrated. The two isolates were sequenced; this revealed differences at two positions in the nucleocapsid protein and two positions in the RNA-dependent RNA polymerase, but the glycoproteins were identical. We also detected a 43-nucleotide deletion in the PUUV-La S-segment 5' noncoding region covering a predicted hairpin loop structure that was found to be conserved among all hantaviruses with members of the rodent subfamily Arvicolinae as their hosts. Stocks of PUUV-La showed a lower ratio of viral RNA to infectious particles than stocks of PUUV-Sm and PUUV-Pa, indicating that PUUV-La replicated more efficiently in alpha/beta interferon (IFN-α/β)-defective Vero E6 cells. In Vero E6 cells, PUUV-La replicated to higher titers and PUUV-Sm replicated to lower titers than PUUV-Pa. In contrast, in IFN-competent MRC-5 cells, PUUV-La and PUUV-Sm replicated to similar levels, while PUUV-Pa progeny virus production was strongly inhibited. The different isolates clearly differed in their potential to induce innate immune responses in MRC-5 cells. PUUV-Pa caused stronger induction of IFN-β, ISG56, and MxA than PUUV-La and PUUV-Sm, while PUUV-Sm caused stronger MxA and ISG56 induction than PUUV-La. These data demonstrate that the phenotypes of isolated hantavirus substrains can have substantial differences compared to each other and to the parental strain. Importantly, this implies that the reported differences in phenotypes for hantaviruses might depend more on chance due to spontaneous mutations during passage than inherited true differences between hantaviruses.
Collapse
|
46
|
Gori Savellini G, Weber F, Terrosi C, Habjan M, Martorelli B, Cusi MG. Toscana virus induces interferon although its NSs protein reveals antagonistic activity. J Gen Virol 2010; 92:71-9. [PMID: 20861320 DOI: 10.1099/vir.0.025999-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Toscana virus (TOSV) is a phlebotomus-transmitted virus that belongs to the family Bunyaviridae and causes widespread infections in humans; about 30 % of these cases result in aseptic meningitis. In the present study, it was shown that TOSV is an inducer of beta interferon (IFN-β), although its non-structural protein (NSs) could inhibit the induction of IFN-β if expressed in a heterologous context. A recombinant Rift Valley fever virus expressing the TOSV NSs could suppress IFN-β expression in infected cells. Moreover, in cells expressing NSs protein from a cDNA plasmid, IFN-β transcripts were not inducible by poly(I : C). Unlike other members of the family Bunyaviridae, TOSV appears to express an NSs protein that is a weak antagonist of IFN induction. Characterization of the interaction of TOSV with the IFN system will help our understanding of virus-host cell interactions and may explain why the pathogenesis of this disease is mostly mild in humans.
Collapse
Affiliation(s)
- Gianni Gori Savellini
- Department of Molecular Biology, Microbiology Section, University of Siena, 53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Evasion of interferon (IFN)-mediated antiviral signaling is a common defense strategy for pathogenic RNA viruses. To date, research on IFN antagonism by hantaviruses is limited and has focused on only a subset of the numerous recognized hantavirus species. The host IFN response has two phases, an initiation phase, resulting in the induction of alpha/beta IFN (IFN-α/β), and an amplification phase, whereby IFN-α/β signals through the Jak/STAT pathway, resulting in the establishment of the cellular antiviral state. We examined interactions between these critical host responses and the New World hantaviruses. We observed delayed cellular responses in both Andes virus (ANDV)- and Sin Nombre virus (SNV)-infected A549 and Huh7-TLR3 cells. We found that IFN-β induction is inhibited by coexpression of ANDV nucleocapsid protein (NP) and glycoprotein precursor (GPC) and is robustly inhibited by SNV GPC alone. Downstream amplification by Jak/STAT signaling is also inhibited by SNV GPC and by either NP or GPC of ANDV. Therefore, ANDV- and SNV-encoded proteins have the potential for inhibiting both IFN-β induction and signaling, with SNV exhibiting the more potent antagonism ability. Herein we identify ANDV NP, a previously unrecognized inhibitor of Jak/STAT signaling, and show that IFN antagonism by ANDV relies on expression of both the glycoproteins and NP, whereas the glycoproteins appear to be sufficient for antagonism by SNV. These data suggest that IFN antagonism strategies by hantaviruses are quite variable, even between species with similar disease phenotypes, and may help to better elucidate species-specific pathogenesis.
Collapse
|
48
|
Stoltz M, Klingström J. Alpha/beta interferon (IFN-alpha/beta)-independent induction of IFN-lambda1 (interleukin-29) in response to Hantaan virus infection. J Virol 2010; 84:9140-8. [PMID: 20592090 PMCID: PMC2937636 DOI: 10.1128/jvi.00717-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 06/24/2010] [Indexed: 12/24/2022] Open
Abstract
Type III interferons ([IFNs] IFN-lambda and interleukin-28 and -29 [IL-28/29]) are recently recognized cytokines with innate antiviral effects similar to those of type I IFNs (IFN-alpha/beta). Like IFN-alpha/beta, IFN-lambda-expression can be induced by viruses, and it is believed that type I and III IFNs are regulated in the same manner. Hantaviruses are weak IFN-alpha/beta inducers and have surprisingly been shown to activate IFN-alpha/beta-independent IFN-stimulated gene (ISG) expression. Here, we show that in Hantaan virus (HTNV)-infected human epithelial A549 cells, induction of IFN-lambda1 preceded induction of MxA and IFN-beta by 12 and 24 h, respectively, and IFN-alpha was not induced at all. Furthermore, induction of IFN-lambda1 and MxA was observed in HTNV-infected African green monkey epithelial Vero E6 cells, a cell line that cannot produce type I IFNs, clearly showing that HTNV can induce IFN-lambda1 and ISGs in the complete absence of IFN-alpha/beta. In HTNV-infected human fibroblast MRC-5 cells, which lack the IFN-lambda receptor, induction of MxA coincided in time with IFN-beta-induction. UV-inactivated HTNV did not induce any IFNs or MxA in any cell line, showing that activation of IFN-lambda1 is dependent on replicating virus. Induction of both IFN-beta and IFN-lambda1 in A549 cells after poly(I:C)-stimulation was strongly inhibited in HTNV-infected cells, suggesting that HTNV can inhibit signaling pathways used to simultaneously activate types I and III IFNs. In conclusion, we show that HTNV can cause type I IFN-independent IFN-lambda1 induction and IFN-lambda1-specific ISG induction. Importantly, the results suggest the existence of specific signaling pathways that induce IFN-lambda1 without simultaneous type I IFN induction during virus infection.
Collapse
Affiliation(s)
- Malin Stoltz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| | - Jonas Klingström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| |
Collapse
|
49
|
Kirsanovs S, Klempa B, Franke R, Lee MH, Schönrich G, Rang A, Kruger DH. Genetic reassortment between high-virulent and low-virulent Dobrava-Belgrade virus strains. Virus Genes 2010; 41:319-28. [PMID: 20734125 DOI: 10.1007/s11262-010-0523-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 08/05/2010] [Indexed: 12/23/2022]
Abstract
The tri-segmented RNA genome of hantaviruses facilitates genetic reassortment by segment swapping when cells are co-infected with different virus strains. We found efficient in vitro reassortment between members of two different genetic lineages of the Dobrava-Belgrade virus species, the weakly virulent DOBV-Aa and highly virulent DOBV-Af. In all reassortants, S and L segments originated from the same parental strain, and only the M segment was exchanged. To identify functional differences between the parental strains DOBV-Aa and DOBV-Af in cell culture and to compare them with the reassortants, we studied elements of the innate immunity in virus-infected cells. The contrasting phenotypes of the parental viruses were maintained by the reassortants carrying the respective S and L segments of the parental virus and were not influenced by the origin of the M segment.
Collapse
Affiliation(s)
- Sina Kirsanovs
- Institute of Medical Virology (Helmut Ruska Haus), Charité Medical School, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Prescott J, Hall P, Acuna-Retamar M, Ye C, Wathelet MG, Ebihara H, Feldmann H, Hjelle B. New World hantaviruses activate IFNlambda production in type I IFN-deficient vero E6 cells. PLoS One 2010; 5:e11159. [PMID: 20567522 PMCID: PMC2887373 DOI: 10.1371/journal.pone.0011159] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/23/2010] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hantaviruses indigenous to the New World are the etiologic agents of hantavirus cardiopulmonary syndrome (HCPS). These viruses induce a strong interferon-stimulated gene (ISG) response in human endothelial cells. African green monkey-derived Vero E6 cells are used to propagate hantaviruses as well as many other viruses. The utility of the Vero E6 cell line for virus production is thought to owe to their lack of genes encoding type I interferons (IFN), rendering them unable to mount an efficient innate immune response to virus infection. Interferon lambda, a more recently characterized type III IFN, is transcriptionally controlled much like the type I IFNs, and activates the innate immune system in a similar manner. METHODOLOGY/PRINCIPAL FINDINGS We show that Vero E6 cells respond to hantavirus infection by secreting abundant IFNlambda. Three New World hantaviruses were similarly able to induce IFNlambda expression in this cell line. The IFNlambda contained within virus preparations generated with Vero E6 cells independently activates ISGs when used to infect several non-endothelial cell lines, whereas innate immune responses by endothelial cells are specifically due to viral infection. We show further that Sin Nombre virus replicates to high titer in human hepatoma cells (Huh7) without inducing ISGs. CONCLUSIONS/SIGNIFICANCE Herein we report that Vero E6 cells respond to viral infection with a highly active antiviral response, including secretion of abundant IFNlambda. This cytokine is biologically active, and when contained within viral preparations and presented to human epithelioid cell lines, results in the robust activation of innate immune responses. We also show that both Huh7 and A549 cell lines do not respond to hantavirus infection, confirming that the cytoplasmic RNA helicase pathways possessed by these cells are not involved in hantavirus recognition. We demonstrate that Vero E6 actively respond to virus infection and inhibiting IFNlambda production in these cells might increase their utility for virus propagation.
Collapse
Affiliation(s)
- Joseph Prescott
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Pamela Hall
- Research Service (151), New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, United States of America
| | - Mariana Acuna-Retamar
- Department of Pathology, Center for Infectious Diseases and Immunity, School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Chunyan Ye
- Department of Pathology, Center for Infectious Diseases and Immunity, School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Marc G. Wathelet
- Department of Pathology, Center for Infectious Diseases and Immunity, School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
- Infectious Disease Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - Hideki Ebihara
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- * E-mail:
| | - Brian Hjelle
- Department of Pathology, Center for Infectious Diseases and Immunity, School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Biology, Center for Infectious Diseases and Immunity, School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases and Immunity, School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|