1
|
Wang T, Becker D, Twizerimana AP, Luedde T, Gohlke H, Münk C. Cyclophilin A Regulates Tripartite Motif 5 Alpha Restriction of HIV-1. Int J Mol Sci 2025; 26:495. [PMID: 39859212 PMCID: PMC11764967 DOI: 10.3390/ijms26020495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The peptidyl-prolyl isomerase A (PPIA), also known as cyclophilin A (CYPA), is involved in multiple steps of the HIV-1 replication cycle. CYPA regulates the restriction of many host factors by interacting with the CYPA-binding loop on the HIV-1 capsid (CA) surface. TRIM5 (tripartite motif protein 5) in primates is a key species-specific restriction factor defining the HIV-1 pandemic. The incomplete adaptation of HIV-1 to humans is due to the different utilization of CYPA by pandemic and non-pandemic HIV-1. The enzymatic activity of CYPA on the viral core is likely an important reason for regulating the TRIM5 restriction activity. Thus, the HIV-1 capsid and its CYPA interaction may serve as new targets for future anti-AIDS therapeutic agents. This article will describe the species-specificity of the restriction factor TRIM5, understand the role of CYPA in regulating restriction factors in retroviral infection, and discuss important future research issues.
Collapse
Affiliation(s)
- Tingting Wang
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| | - Daniel Becker
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Augustin Penda Twizerimana
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| | - Tom Luedde
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| |
Collapse
|
2
|
Yi B, Tanaka YL, Cornish D, Kosako H, Butlertanaka EP, Sengupta P, Lippincott-Schwartz J, Hultquist JF, Saito A, Yoshimura SH. Host ZCCHC3 blocks HIV-1 infection and production through a dual mechanism. iScience 2024; 27:109107. [PMID: 38384847 PMCID: PMC10879702 DOI: 10.1016/j.isci.2024.109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Most mammalian cells prevent viral infection and proliferation by expressing various restriction factors and sensors that activate the immune system. Several host restriction factors that inhibit human immunodeficiency virus type 1 (HIV-1) have been identified, but most of them are antagonized by viral proteins. Here, we describe CCHC-type zinc-finger-containing protein 3 (ZCCHC3) as a novel HIV-1 restriction factor that suppresses the production of HIV-1 and other retroviruses, but does not appear to be directly antagonized by viral proteins. It acts by binding to Gag nucleocapsid (GagNC) via zinc-finger motifs, which inhibits viral genome recruitment and results in genome-deficient virion production. ZCCHC3 also binds to the long terminal repeat on the viral genome via the middle-folded domain, sequestering the viral genome to P-bodies, which leads to decreased viral replication and production. This distinct, dual-acting antiviral mechanism makes upregulation of ZCCHC3 a novel potential therapeutic strategy.
Collapse
Affiliation(s)
- Binbin Yi
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuri L. Tanaka
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Daphne Cornish
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Erika P. Butlertanaka
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Prabuddha Sengupta
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | | | - Judd F. Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Akatsuki Saito
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki, Miyazaki 889-1692, Japan
| | - Shige H. Yoshimura
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
- Center for Living Systems Information Science (CeLiSIS), Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Li JY, Zhao Y, Gong S, Wang MM, Liu X, He QM, Li YQ, Huang SY, Qiao H, Tan XR, Ye ML, Zhu XH, He SW, Li Q, Liang YL, Chen KL, Huang SW, Li QJ, Ma J, Liu N. TRIM21 inhibits irradiation-induced mitochondrial DNA release and impairs antitumour immunity in nasopharyngeal carcinoma tumour models. Nat Commun 2023; 14:865. [PMID: 36797289 PMCID: PMC9935546 DOI: 10.1038/s41467-023-36523-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Although radiotherapy can promote antitumour immunity, the mechanisms underlying this phenomenon remain unclear. Here, we demonstrate that the expression of the E3 ubiquitin ligase, tumour cell-intrinsic tripartite motif-containing 21 (TRIM21) in tumours, is inversely associated with the response to radiation and CD8+ T cell-mediated antitumour immunity in nasopharyngeal carcinoma (NPC). Knockout of TRIM21 modulates the cGAS/STING cytosolic DNA sensing pathway, potentiates the antigen-presenting capacity of NPC cells, and activates cytotoxic T cell-mediated antitumour immunity in response to radiation. Mechanistically, TRIM21 promotes the degradation of the mitochondrial voltage-dependent anion-selective channel protein 2 (VDAC2) via K48-linked ubiquitination, which inhibits pore formation by VDAC2 oligomers for mitochondrial DNA (mtDNA) release, thereby inhibiting type-I interferon responses following radiation exposure. In patients with NPC, high TRIM21 expression was associated with poor prognosis and early tumour relapse after radiotherapy. Our findings reveal a critical role of TRIM21 in radiation-induced antitumour immunity, providing potential targets for improving the efficacy of radiotherapy in patients with NPC.
Collapse
Affiliation(s)
- Jun-Yan Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Yin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Sha Gong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Miao-Miao Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Xu Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Qing-Mei He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Sheng-Yan Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Xi-Rong Tan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Ming-Liang Ye
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Xun-Hua Zhu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Shi-Wei He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Qian Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Ye-Lin Liang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Kai-Lin Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Sai-Wei Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Qing-Jie Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China.
| |
Collapse
|
4
|
Tan CT, Soh NJH, Chang HC, Yu VC. p62/SQSTM1 in liver diseases: the usual suspect with multifarious identities. FEBS J 2023; 290:892-912. [PMID: 34882306 DOI: 10.1111/febs.16317] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/23/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022]
Abstract
p62/Sequestosome-1 (SQSTM1) is a selective autophagy receptor that recruits and delivers intracellular substrates for bulk clearance through the autophagy lysosomal pathway. Interestingly, p62 also serves as a signaling scaffold to participate in the regulation of multiple physiological processes, including oxidative stress response, metabolism, inflammation, and programmed cell death. Perturbation of p62 activity has been frequently found to be associated with the pathogenesis of many liver diseases. p62 has been identified as a critical component of protein aggregates in the forms of Mallory-Denk bodies (MDBs) or intracellular hyaline bodies (IHBs), which are known to be frequently detected in biopsy samples from alcoholic steatohepatitis (ASH), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC) patients. Importantly, abundance of these p62 inclusion bodies is increasingly recognized as a biomarker for NASH and HCC. Although the level of p62 bodies seems to predict the progression and prognosis of these liver diseases, understanding of the underlying mechanisms by which p62 regulates and contributes to the development and progression of these diseases remains incomplete. In this review, we will focus on the function and regulation of p62, and its pathophysiological roles in the liver, by critically reviewing the findings from preclinical models that recapitulate the pathogenesis and manifestation of these liver diseases in humans. In addition, we will also explore the suitability of p62 as a predictive biomarker and a potential therapeutic target for the treatment of liver diseases, including NASH and HCC, as well as recent development of small-molecule compounds for targeting the p62 signaling axis.
Collapse
Affiliation(s)
- Chong Teik Tan
- Department of Pharmacy, National University of Singapore, Singapore
| | | | - Hao-Chun Chang
- Department of Pharmacy, National University of Singapore, Singapore
| | - Victor C Yu
- Department of Pharmacy, National University of Singapore, Singapore
| |
Collapse
|
5
|
Zhu Y, Afolabi LO, Wan X, Shim JS, Chen L. TRIM family proteins: roles in proteostasis and neurodegenerative diseases. Open Biol 2022; 12:220098. [PMID: 35946309 PMCID: PMC9364147 DOI: 10.1098/rsob.220098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases (NDs) are a diverse group of disorders characterized by the progressive degeneration of the structure and function of the central or peripheral nervous systems. One of the major features of NDs, such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), is the aggregation of specific misfolded proteins, which induces cellular dysfunction, neuronal death, loss of synaptic connections and eventually brain damage. By far, a great amount of evidence has suggested that TRIM family proteins play crucial roles in the turnover of normal regulatory and misfolded proteins. To maintain cellular protein quality control, cells rely on two major classes of proteostasis: molecular chaperones and the degradative systems, the latter includes the ubiquitin-proteasome system (UPS) and autophagy; and their dysfunction has been established to result in various physiological disorders including NDs. Emerging evidence has shown that TRIM proteins are key players in facilitating the clearance of misfolded protein aggregates associated with neurodegenerative disorders. Understanding the different pathways these TRIM proteins employ during episodes of neurodegenerative disorder represents a promising therapeutic target. In this review, we elucidated and summarized the diverse roles with underlying mechanisms of members of the TRIM family proteins in NDs.
Collapse
Affiliation(s)
- Yan Zhu
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100864, People's Republic of China
| | - Lukman O. Afolabi
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100864, People's Republic of China
| | - Xiaochun Wan
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100864, People's Republic of China
| | - Joong Sup Shim
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, People's Republic of China
| | - Liang Chen
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100864, People's Republic of China
| |
Collapse
|
6
|
Campbell GR, Spector SA. Induction of Autophagy to Achieve a Human Immunodeficiency Virus Type 1 Cure. Cells 2021; 10:cells10071798. [PMID: 34359967 PMCID: PMC8307643 DOI: 10.3390/cells10071798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Effective antiretroviral therapy has led to significant human immunodeficiency virus type 1 (HIV-1) suppression and improvement in immune function. However, the persistence of integrated proviral DNA in latently infected reservoir cells, which drive viral rebound post-interruption of antiretroviral therapy, remains the major roadblock to a cure. Therefore, the targeted elimination or permanent silencing of this latently infected reservoir is a major focus of HIV-1 research. The most studied approach in the development of a cure is the activation of HIV-1 expression to expose latently infected cells for immune clearance while inducing HIV-1 cytotoxicity—the “kick and kill” approach. However, the complex and highly heterogeneous nature of the latent reservoir, combined with the failure of clinical trials to reduce the reservoir size casts doubt on the feasibility of this approach. This concern that total elimination of HIV-1 from the body may not be possible has led to increased emphasis on a “functional cure” where the virus remains but is unable to reactivate which presents the challenge of permanently silencing transcription of HIV-1 for prolonged drug-free remission—a “block and lock” approach. In this review, we discuss the interaction of HIV-1 and autophagy, and the exploitation of autophagy to kill selectively HIV-1 latently infected cells as part of a cure strategy. The cure strategy proposed has the advantage of significantly decreasing the size of the HIV-1 reservoir that can contribute to a functional cure and when optimised has the potential to eradicate completely HIV-1.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Correspondence: ; Tel.: +1-858-534-7477
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
7
|
Somlapura M, Gottschalk B, Lahiri P, Kufferath I, Pabst D, Rülicke T, Graier WF, Denk H, Zatloukal K. Different Roles of p62 (SQSTM1) Isoforms in Keratin-Related Protein Aggregation. Int J Mol Sci 2021; 22:ijms22126227. [PMID: 34207662 PMCID: PMC8227998 DOI: 10.3390/ijms22126227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 12/03/2022] Open
Abstract
p62/Sequestosome-1 (p62) is a multifunctional adaptor protein and is also a constant component of disease-associated protein aggregates, including Mallory–Denk bodies (MDBs), in steatohepatitis and hepatocellular carcinoma. We investigated the interaction of the two human p62 isoforms, p62-H1 (full-length isoform) and p62-H2 (partly devoid of PB1 domain), with keratins 8 and 18, the major components of MDBs. In human liver, p62-H2 is expressed two-fold higher compared to p62-H1 at the mRNA level and is present in slightly but not significantly higher concentrations at the protein level. Co-transfection studies in CHO-K1 cells, PLC/PRF/5 cells as well as p62− total-knockout and wild-type mouse fibroblasts revealed marked differences in the cytoplasmic distribution and aggregation behavior of the two p62 isoforms. Transfection-induced overexpression of p62-H2 generated large cytoplasmic aggregates in PLC/PRF/5 and CHO-K1 cells that mostly co-localized with transfected keratins resembling MDBs or (transfection without keratins) intracytoplasmic hyaline bodies. In fibroblasts, however, transfected p62-H2 was predominantly diffusely distributed in the cytoplasm. Aggregation of p62-H2 and p62ΔSH2 as well as the interaction with K8 (but not with K18) involves acquisition of cross-β-sheet conformation as revealed by staining with luminescent conjugated oligothiophenes. These results indicate the importance of considering p62 isoforms in protein aggregation disease.
Collapse
Affiliation(s)
- Meghana Somlapura
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (M.S.); (I.K.); (D.P.); (H.D.)
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (B.G.); (W.F.G.)
| | - Pooja Lahiri
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| | - Iris Kufferath
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (M.S.); (I.K.); (D.P.); (H.D.)
| | - Daniela Pabst
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (M.S.); (I.K.); (D.P.); (H.D.)
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Wolfgang F. Graier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (B.G.); (W.F.G.)
| | - Helmut Denk
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (M.S.); (I.K.); (D.P.); (H.D.)
| | - Kurt Zatloukal
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (M.S.); (I.K.); (D.P.); (H.D.)
- Correspondence: ; Tel.: +43-(0)316-385-71731
| |
Collapse
|
8
|
Ciccosanti F, Corazzari M, Casetti R, Amendola A, Collalto D, Refolo G, Vergori A, Taibi C, D’Offizi G, Antinori A, Agrati C, Fimia GM, Ippolito G, Piacentini M, Nardacci R. High Levels of TRIM5α Are Associated with Xenophagy in HIV-1-Infected Long-Term Nonprogressors. Cells 2021; 10:cells10051207. [PMID: 34069225 PMCID: PMC8156091 DOI: 10.3390/cells10051207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a lysosomal-dependent degradative mechanism essential in maintaining cellular homeostasis, but it is also considered an ancient form of innate eukaryotic fighting against invading microorganisms. Mounting evidence has shown that HIV-1 is a critical target of autophagy that plays a role in HIV-1 replication and disease progression. In a special subset of HIV-1-infected patients that spontaneously and durably maintain extremely low viral replication, namely, long-term nonprogressors (LTNP), the resistance to HIV-1-induced pathogenesis is accompanied, in vivo, by a significant increase in the autophagic activity in peripheral blood mononuclear cells. Recently, a new player in the battle of autophagy against HIV-1 has been identified, namely, tripartite motif protein 5α (TRIM5α). In vitro data demonstrated that TRIM5α directly recognizes HIV-1 and targets it for autophagic destruction, thus protecting cells against HIV-1 infection. In this paper, we analyzed the involvement of this factor in the control of HIV-1 infection through autophagy, in vivo, in LTNP. The results obtained showed significantly higher levels of TRIM5α expression in cells from LTNP with respect to HIV-1-infected normal progressor patients. Interestingly, the colocalization of TRIM5α and HIV-1 proteins in autophagic vacuoles in LTNP cells suggested the participation of TRIM5α in the autophagy containment of HIV-1 in LTNP. Altogether, our results point to a protective role of TRIM5α in the successful control of the chronic viral infection in HIV-1-controllers through the autophagy mechanism. In our opinion, these findings could be relevant in fighting against HIV-1 disease, because autophagy inducers might be employed in combination with antiretroviral drugs.
Collapse
Affiliation(s)
- Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
| | - Marco Corazzari
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Rita Casetti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
| | - Alessandra Amendola
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
| | - Diletta Collalto
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
| | - Giulia Refolo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
| | - Alessandra Vergori
- Clinical Department, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (A.V.); (C.T.); (G.D.); (A.A.)
| | - Chiara Taibi
- Clinical Department, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (A.V.); (C.T.); (G.D.); (A.A.)
| | - Gianpiero D’Offizi
- Clinical Department, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (A.V.); (C.T.); (G.D.); (A.A.)
| | - Andrea Antinori
- Clinical Department, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (A.V.); (C.T.); (G.D.); (A.A.)
| | - Chiara Agrati
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Ippolito
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Roberta Nardacci
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases, Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (F.C.); (M.C.); (R.C.); (A.A.); (D.C.); (G.R.); (C.A.); (G.M.F.); (G.I.); (M.P.)
- Correspondence:
| |
Collapse
|
9
|
Toccafondi E, Lener D, Negroni M. HIV-1 Capsid Core: A Bullet to the Heart of the Target Cell. Front Microbiol 2021; 12:652486. [PMID: 33868211 PMCID: PMC8046902 DOI: 10.3389/fmicb.2021.652486] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
The first step of the intracellular phase of retroviral infection is the release of the viral capsid core in the cytoplasm. This structure contains the viral genetic material that will be reverse transcribed and integrated into the genome of infected cells. Up to recent times, the role of the capsid core was considered essentially to protect this genetic material during the earlier phases of this process. However, increasing evidence demonstrates that the permanence inside the cell of the capsid as an intact, or almost intact, structure is longer than thought. This suggests its involvement in more aspects of the infectious cycle than previously foreseen, particularly in the steps of viral genomic material translocation into the nucleus and in the phases preceding integration. During the trip across the infected cell, many host factors are brought to interact with the capsid, some possessing antiviral properties, others, serving as viral cofactors. All these interactions rely on the properties of the unique component of the capsid core, the capsid protein CA. Likely, the drawback of ensuring these multiple functions is the extreme genetic fragility that has been shown to characterize this protein. Here, we recapitulate the busy agenda of an HIV-1 capsid in the infectious process, in particular in the light of the most recent findings.
Collapse
Affiliation(s)
| | - Daniela Lener
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, Strasbourg, France
| | - Matteo Negroni
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Human TRIM5α: Autophagy Connects Cell-Intrinsic HIV-1 Restriction and Innate Immune Sensor Functioning. Viruses 2021; 13:v13020320. [PMID: 33669846 PMCID: PMC7923229 DOI: 10.3390/v13020320] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) persists as a global health concern, with an incidence rate of approximately 2 million, and estimated global prevalence of over 35 million. Combination antiretroviral treatment is highly effective, but HIV-1 patients that have been treated still suffer from chronic inflammation and residual viral replication. It is therefore paramount to identify therapeutically efficacious strategies to eradicate viral reservoirs and ultimately develop a cure for HIV-1. It has been long accepted that the restriction factor tripartite motif protein 5 isoform alpha (TRIM5α) restricts HIV-1 infection in a species-specific manner, with rhesus macaque TRIM5α strongly restricting HIV-1, and human TRIM5α having a minimal restriction capacity. However, several recent studies underscore human TRIM5α as a cell-dependent HIV-1 restriction factor. Here, we present an overview of the latest research on human TRIM5α and propose a novel conceptualization of TRIM5α as a restriction factor with a varied portfolio of antiviral functions, including mediating HIV-1 degradation through autophagy- and proteasome-mediated mechanisms, and acting as a viral sensor and effector of antiviral signaling. We have also expanded on the protective antiviral roles of autophagy and outline the therapeutic potential of autophagy modulation to intervene in chronic HIV-1 infection.
Collapse
|
11
|
Correlated cryogenic fluorescence microscopy and electron cryo-tomography shows that exogenous TRIM5α can form hexagonal lattices or autophagy aggregates in vivo. Proc Natl Acad Sci U S A 2020; 117:29702-29711. [PMID: 33154161 PMCID: PMC7703684 DOI: 10.1073/pnas.1920323117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
One of the most notable features of TRIM5 proteins is their ability to restrict retroviral infections by binding viral capsids. TRIM5α forms highly dynamic puncta of various sizes, and, when purified, hexagonal nets on the surface of HIV virions, but the molecular ultrastructure of the cellular bodies and the relationship of the in vitro nets to HIV restriction has remained unclear. To define the cellular ultrastructure underlying the punctate and dynamic nature of YFP-rhTRIM5α bodies, we applied cryogenic correlated light and electron microscopy combined with electron cryo-tomography to TRIM5α bodies and observed YFP-rhTRIM5α-localization to organelles found along the aggrephagy branch of the autophagy pathway. Consistent with previous work, we also found that TRIM5α forms hexagonal nets inside cells. Members of the tripartite motif (TRIM) protein family have been shown to assemble into structures in both the nucleus and cytoplasm. One TRIM protein family member, TRIM5α, has been shown to form cytoplasmic bodies involved in restricting retroviruses such as HIV-1. Here we applied cryogenic correlated light and electron microscopy, combined with electron cryo-tomography, to intact mammalian cells expressing YFP-rhTRIM5α and found the presence of hexagonal nets whose arm lengths were similar to those of the hexagonal nets formed by purified TRIM5α in vitro. We also observed YFP-rhTRIM5α within a diversity of structures with characteristics expected for organelles involved in different stages of macroautophagy, including disorganized protein aggregations (sequestosomes), sequestosomes flanked by flat double-membraned vesicles (sequestosome:phagophore complexes), sequestosomes within double-membraned vesicles (autophagosomes), and sequestosomes within multivesicular autophagic vacuoles (amphisomes or autolysosomes). Vaults were also seen in these structures, consistent with their role in autophagy. Our data 1) support recent reports that TRIM5α can form both well-organized signaling complexes and nonsignaling aggregates, 2) offer images of the macroautophagy pathway in a near-native state, and 3) reveal that vaults arrive early in macroautophagy.
Collapse
|
12
|
Saha B, Chisholm D, Kell AM, Mandell MA. A non-canonical role for the autophagy machinery in anti-retroviral signaling mediated by TRIM5α. PLoS Pathog 2020; 16:e1009017. [PMID: 33052966 PMCID: PMC7588057 DOI: 10.1371/journal.ppat.1009017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/26/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022] Open
Abstract
TRIM5α is a key cross-species barrier to retroviral infection, with certain TRIM5 alleles conferring increased risk of HIV-1 infection in humans. TRIM5α is best known as a species-specific restriction factor that directly inhibits the viral life cycle. Additionally, it is also a pattern-recognition receptor (PRR) that activates inflammatory signaling. How TRIM5α carries out its multi-faceted actions in antiviral defense remains incompletely understood. Here, we show that proteins required for autophagy, a cellular self-digestion pathway, play an important role in TRIM5α’s function as a PRR. Genetic depletion of proteins involved in all stages of the autophagy pathway prevented TRIM5α-driven expression of NF-κB and AP1 responsive genes. One of these genes is the preeminent antiviral cytokine interferon β (IFN-β), whose TRIM5-dependent expression was lost in cells lacking the autophagy proteins ATG7, BECN1, and ULK1. Moreover, we found that the ability of TRIM5α to stimulate IFN-β expression in response to recognition of a TRIM5α-restricted HIV-1 capsid mutant (P90A) was abrogated in cells lacking autophagy factors. Stimulation of human macrophage-like cells with the P90A virus protected them against subsequent infection with an otherwise resistant wild type HIV-1 in a manner requiring TRIM5α, BECN1, and ULK1. Mechanistically, TRIM5α was attenuated in its ability to activate the kinase TAK1 in autophagy deficient cells, and both BECN1 and ATG7 contributed to the assembly of TRIM5α-TAK1 complexes. These data demonstrate a non-canonical role for the autophagy machinery in assembling antiviral signaling complexes and in establishing a TRIM5α-dependent antiviral state. TRIM5α is an antiretroviral protein that employs multiple mechanisms to protect cells against infection. Previous studies have linked TRIM5α to autophagy, a cytoplasmic quality control pathway with numerous roles in immunity, raising the possibility that TRIM5α engages autophagy in antiviral defense. This concept has been controversial, since TRIM5α’s best-known role as a directly acting antiretroviral effector is autophagy independent. However, retroviral restriction is only one aspect of TRIM5α function. We demonstrate that autophagy is crucial to another TRIM5α action: its role as a pattern-recognition receptor. We show that autophagy machinery is required for TRIM5α to transduce antiviral signaling and to establish an antiviral state. Our data indicate that autophagy provides TRIM5α with a platform upon which to activate antiviral responses.
Collapse
Affiliation(s)
- Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Devon Chisholm
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Alison M. Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Michael A. Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
13
|
Chiramel AI, Meyerson NR, McNally KL, Broeckel RM, Montoya VR, Méndez-Solís O, Robertson SJ, Sturdevant GL, Lubick KJ, Nair V, Youseff BH, Ireland RM, Bosio CM, Kim K, Luban J, Hirsch VM, Taylor RT, Bouamr F, Sawyer SL, Best SM. TRIM5α Restricts Flavivirus Replication by Targeting the Viral Protease for Proteasomal Degradation. Cell Rep 2020; 27:3269-3283.e6. [PMID: 31189110 PMCID: PMC8666140 DOI: 10.1016/j.celrep.2019.05.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/11/2019] [Accepted: 05/10/2019] [Indexed: 12/25/2022] Open
Abstract
Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this current understanding, we show that both human and rhesus macaque TRIM5α suppress replication of specific flaviviruses. Multiple viruses in the tick-borne encephalitis complex are sensitive to TRIM5α-dependent restriction, but mosquito-borne flaviviruses, including yellow fever, dengue, and Zika viruses, are resistant. TRIM5α suppresses replication by binding to the viral protease NS2B/3 to promote its K48-linked ubiquitination and proteasomal degradation. Importantly, TRIM5α contributes to the antiviral function of IFN-I against sensitive flaviviruses in human cells. Thus, TRIM5α possesses remarkable plasticity in the recognition of diverse virus families, with the potential to influence human susceptibility to emerging flaviviruses of global concern. The antiviral activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. Here, Chiramel et al. demonstrate that TRIM5α restricts replication of specific flaviviruses by binding and degrading the viral protease.
Collapse
Affiliation(s)
- Abhilash I Chiramel
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Nicholas R Meyerson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kristin L McNally
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Rebecca M Broeckel
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Vanessa R Montoya
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Omayra Méndez-Solís
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Shelly J Robertson
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Gail L Sturdevant
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Kirk J Lubick
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Vinod Nair
- Research Technology Branch, RML, NIAID, NIH, Hamilton, MT 59840, USA
| | - Brian H Youseff
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH 43606, USA
| | - Robin M Ireland
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, RML, NIAID, NIH, Hamilton, MT 59840, USA
| | - Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, RML, NIAID, NIH, Hamilton, MT 59840, USA
| | - Kyusik Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Vanessa M Hirsch
- Laboratory of Molecular Microbiology, NIAID, Bethesda, MD 20892, USA
| | - R Travis Taylor
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH 43606, USA
| | - Fadila Bouamr
- Laboratory of Molecular Microbiology, NIAID, Bethesda, MD 20892, USA
| | - Sara L Sawyer
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Sonja M Best
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA.
| |
Collapse
|
14
|
Mandell MA, Saha B, Thompson TA. The Tripartite Nexus: Autophagy, Cancer, and Tripartite Motif-Containing Protein Family Members. Front Pharmacol 2020; 11:308. [PMID: 32226386 PMCID: PMC7081753 DOI: 10.3389/fphar.2020.00308] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a cellular degradative process that has multiple important actions in cancer. Autophagy modulation is under consideration as a promising new approach to cancer therapy. However, complete autophagy dysregulation is likely to have substantial undesirable side effects. Thus, more targeted approaches to autophagy modulation may prove clinically beneficial. One potential avenue to achieving this goal is to focus on the actions of tripartite motif-containing protein family members (TRIMs). TRIMs have key roles in an array of cellular processes, and their dysregulation has been extensively linked to cancer risk and prognosis. As detailed here, emerging data shows that TRIMs can play important yet context-dependent roles in controlling autophagy and in the selective targeting of autophagic substrates. This review covers how the autophagy-related actions of TRIM proteins contribute to cancer and the possibility of targeting TRIM-directed autophagy in cancer therapy.
Collapse
Affiliation(s)
- Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Todd A Thompson
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, United States
| |
Collapse
|
15
|
Sánchez-Martín P, Komatsu M. Physiological Stress Response by Selective Autophagy. J Mol Biol 2020; 432:53-62. [DOI: 10.1016/j.jmb.2019.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 01/06/2023]
|
16
|
Kehl SR, Soos BA, Saha B, Choi SW, Herren AW, Johansen T, Mandell MA. TAK1 converts Sequestosome 1/p62 from an autophagy receptor to a signaling platform. EMBO Rep 2019; 20:e46238. [PMID: 31347268 PMCID: PMC6726904 DOI: 10.15252/embr.201846238] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/14/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022] Open
Abstract
The protein p62/Sequestosome 1 (p62) has been described as a selective autophagy receptor and independently as a platform for pro-inflammatory and other intracellular signaling. How these seemingly disparate functional roles of p62 are coordinated has not been resolved. Here, we show that TAK1, a kinase involved in immune signaling, negatively regulates p62 action in autophagy. TAK1 reduces p62 localization to autophagosomes, dampening the autophagic degradation of both p62 and p62-directed autophagy substrates. TAK1 also relocalizes p62 into dynamic cytoplasmic bodies, a phenomenon that accompanies the stabilization of TAK1 complex components. On the other hand, p62 facilitates the assembly and activation of TAK1 complexes, suggesting a connection between p62's signaling functions and p62 body formation. Thus, TAK1 governs p62 action, switching it from an autophagy receptor to a signaling platform. This ability of TAK1 to disable p62 as an autophagy receptor may allow certain autophagic substrates to accumulate when needed for cellular functions.
Collapse
Affiliation(s)
- Stephanie R Kehl
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Biomedical Sciences Graduate ProgramUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Brandy‐Lee A Soos
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Present address:
Biochemistry and Molecular Biology Graduate ProgramUniversity of MaineOronoMEUSA
| | - Bhaskar Saha
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Seong Won Choi
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | | | - Terje Johansen
- Molecular Cancer Research GroupInstitute of Medical BiologyUniversity of Tromsø ‐ The Arctic University of NorwayTromsøNorway
| | - Michael A Mandell
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| |
Collapse
|
17
|
Ganser-Pornillos BK, Pornillos O. Restriction of HIV-1 and other retroviruses by TRIM5. Nat Rev Microbiol 2019; 17:546-556. [PMID: 31312031 DOI: 10.1038/s41579-019-0225-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
Mammalian cells express a variety of innate immune proteins - known as restriction factors - which defend against invading retroviruses such as HIV-1. Two members of the tripartite motif protein family - TRIM5α and TRIMCyp - were identified in 2004 as restriction factors that recognize and inactivate the capsid shell that surrounds and protects the incoming retroviral core. Research on these TRIM5 proteins has uncovered a novel mode of non-self recognition that protects against cross-species transmission of retroviruses. Our developing understanding of the mechanism of TRIM5 restriction underscores the concept that core uncoating and reverse transcription of the viral genome are coordinated processes rather than discrete steps of the post-entry pathway of retrovirus replication. In this Review, we provide an overview of the current state of knowledge of the molecular mechanism of TRIM5-mediated restriction, highlight recent advances and discuss implications for the development of capsid-targeted antiviral therapeutics.
Collapse
Affiliation(s)
- Barbie K Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
18
|
K63-Linked Ubiquitin Is Required for Restriction of HIV-1 Reverse Transcription and Capsid Destabilization by Rhesus TRIM5α. J Virol 2019; 93:JVI.00558-19. [PMID: 31068426 DOI: 10.1128/jvi.00558-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 11/20/2022] Open
Abstract
TRIM5α is an antiviral restriction factor that inhibits retroviral infection in a species-specific fashion. TRIM5α binds to and forms assemblies around the retroviral capsid. Following binding, poorly understood, ubiquitin-dependent events lead to the disassembly of the viral core, prior to the accumulation of viral reverse transcription products in the target cell. It is also known that assemblies of TRIM5α and other TRIM family proteins can be targets of autophagic degradation. The goal of this study was to define the role of specific ubiquitin linkages in the retroviral restriction and autophagic degradation of TRIM5α and delineate any connection between these two processes. To this end, we generated fusion proteins in which the catalytic domains of different deubiquitinase (DUB) enzymes, with different specificities for polyubiquitinated linkages, were fused to the N-terminal RING domain of Rhesus macaque TRIM5α. We assessed the role of ubiquitination in restriction and the degree to which specific types of ubiquitination are required for the association of TRIM5α with autophagic proteins. We determined that K63-linked ubiquitination by TRIM5α is required to induce capsid disassembly and to inhibit reverse transcription of HIV, while the ability to inhibit HIV-1 infection was not dependent on K63-linked ubiquitination. We also observed that K63-linked ubiquitination is required for the association of TRIM5α with autophagosomal membranes and the autophagic adapter protein p62.IMPORTANCE Although the mechanisms by which TRIM5α can induce the abortive disassembly of retroviral capsids have remained obscure, numerous studies have suggested a role for ubiquitination and cellular degradative pathways. These studies have typically relied on global perturbation of cellular degradative pathways. Here, through the use of linkage-specific deubiquitinating enzymes tethered to TRIM5α, we delineate the ubiquitin linkages which drive specific steps in restriction and degradation by TRIM5α, providing evidence for a noncanonical role for K63-linked ubiquitin in the process of retroviral restriction by TRIM5α and potentially providing insight into the mechanism of action of other TRIM family proteins.
Collapse
|
19
|
D Urbano V, De Crignis E, Re MC. Host Restriction Factors and Human Immunodeficiency Virus (HIV-1): A Dynamic Interplay Involving All Phases of the Viral Life Cycle. Curr HIV Res 2019; 16:184-207. [PMID: 30117396 DOI: 10.2174/1570162x16666180817115830] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 02/08/2023]
Abstract
Mammalian cells have evolved several mechanisms to prevent or block lentiviral infection and spread. Among the innate immune mechanisms, the signaling cascade triggered by type I interferon (IFN) plays a pivotal role in limiting the burden of HIV-1. In the presence of IFN, human cells upregulate the expression of a number of genes, referred to as IFN-stimulated genes (ISGs), many of them acting as antiviral restriction factors (RFs). RFs are dominant proteins that target different essential steps of the viral cycle, thereby providing an early line of defense against the virus. The identification and characterization of RFs have provided unique insights into the molecular biology of HIV-1, further revealing the complex host-pathogen interplay that characterizes the infection. The presence of RFs drove viral evolution, forcing the virus to develop specific proteins to counteract their activity. The knowledge of the mechanisms that prevent viral infection and their viral counterparts may offer new insights to improve current antiviral strategies. This review provides an overview of the RFs targeting HIV-1 replication and the mechanisms that regulate their expression as well as their impact on viral replication and the clinical course of the disease.
Collapse
Affiliation(s)
- Vanessa D Urbano
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Elisa De Crignis
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Maria Carla Re
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
20
|
Colomer-Lluch M, Ruiz A, Moris A, Prado JG. Restriction Factors: From Intrinsic Viral Restriction to Shaping Cellular Immunity Against HIV-1. Front Immunol 2018; 9:2876. [PMID: 30574147 PMCID: PMC6291751 DOI: 10.3389/fimmu.2018.02876] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023] Open
Abstract
Antiviral restriction factors are host cellular proteins that constitute a first line of defense blocking viral replication and propagation. In addition to interfering at critical steps of the viral replication cycle, some restriction factors also act as innate sensors triggering innate responses against infections. Accumulating evidence suggests an additional role for restriction factors in promoting antiviral cellular immunity to combat viruses. Here, we review the recent progress in our understanding on how restriction factors, particularly APOBEC3G, SAMHD1, Tetherin, and TRIM5α have the cell-autonomous potential to induce cellular resistance against HIV-1 while promoting antiviral innate and adaptive immune responses. Also, we provide an overview of how these restriction factors may connect with protein degradation pathways to modulate anti-HIV-1 cellular immune responses, and we summarize the potential of restriction factors-based therapeutics. This review brings a global perspective on the influence of restrictions factors in intrinsic, innate, and also adaptive antiviral immunity opening up novel research avenues for therapeutic strategies in the fields of drug discovery, gene therapy, and vaccines to control viral infections.
Collapse
Affiliation(s)
- Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Alba Ruiz
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Arnaud Moris
- Sorbonne Université, INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| |
Collapse
|
21
|
Cabe M, Rademacher DJ, Karlsson AB, Cherukuri S, Bakowska JC. PB1 and UBA domains of p62 are essential for aggresome-like induced structure formation. Biochem Biophys Res Commun 2018; 503:2306-2311. [PMID: 29966650 DOI: 10.1016/j.bbrc.2018.06.153] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/27/2018] [Indexed: 11/26/2022]
Abstract
ALIS are large, transient, cytosolic aggregates that serve as storage compartments for ubiquitin-tagged defective ribosomal products. We determined the importance of the protein p62 in the formation of ALIS and demonstrated that two domains of p62-PB1 and UBA-are essential for ALIS assembly. Those two major binding domains of p62, also known as sequestosome 1, were shown to play a critical role in the formation of autophagosomes or cytoplasmic aggregates. Specifically, the PB1 domain is essential for self-oligomerization, and the UBA domain allows p62 to bind to polyubiquitin chains or ubiquitinated proteins. After stimulation of RAW 264.7 macrophages with lipopolysaccharide, we observed a significant decrease in the number of cells with ALIS. Importantly, cells overexpressing either a PB1 mutant or UBA-deleted p62 construct also exhibited a substantially diminished number of cells containing ALIS. Since both p62 and ubiquitin are found in ALIS, we evaluated the dynamics of YFP-tagged p62 in ALIS. In contrast to the findings of a previous study that evaluated GFP-tagged ubiquitin motility in ALIS, we determined that YFP-tagged p62 has very limited mobility. Lastly, we determined that GST-tagged full-length p62 binds to Lys-63-linked polyubiquitin chains but not to Lys-48-linked chains. Overall, our findings provide insight on the essential role that p62, particularly its PB1 and UBA domains, has in the formation of ALIS.
Collapse
Affiliation(s)
- Maleen Cabe
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL 60153, USA
| | - David J Rademacher
- Core Imaging Facility and Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Amelia B Karlsson
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL 60153, USA
| | - Srinivas Cherukuri
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL 60153, USA
| | - Joanna C Bakowska
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
22
|
Alegre F, Moragrega ÁB, Polo M, Marti‐Rodrigo A, Esplugues JV, Blas‐Garcia A, Apostolova N. Role of p62/SQSTM1 beyond autophagy: a lesson learned from drug-induced toxicity in vitro. Br J Pharmacol 2018; 175:440-455. [PMID: 29148034 PMCID: PMC5773949 DOI: 10.1111/bph.14093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 10/02/2017] [Accepted: 11/07/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE SQSTM1/p62 is a multifunctional, stress-induced, scaffold protein involved in multiple cellular processes including autophagic clearance, regulation of inflammatory responses and redox homeostasis. Its altered function has been associated with different human pathologies, such as neurodegenerative, metabolic and bone diseases (down-regulation), and cancerogenesis (up-regulation). However, its role in the off-target effects of clinically used drugs is still not understood. EXPERIMENTAL APPROACH We evaluated the expression of p62 in cultured Hep3B cells and their derived ρ° cells (lacking mitochondria), along with markers of autophagy and mitochondrial dysfunction. The effects of efavirenz were compared with those of known pharmacological stressors, rotenone, thapsigargin and CCCP, and we also used transient silencing with siRNA and p62 overexpression. Western blotting, quantRT-PCR and fluorescence microscopy were used to assay these effects and their underlying mechanisms. KEY RESULTS In Hep3B cells, efavirenz augmented p62 protein content, an effect not observed in the corresponding ρ° cells. p62 up-regulation followed enhanced SQSTM1 expression mediated through the transcription factor CHOP/DDIT3, while other well-known regulators (NF-kB and Nrf2) were not involved. Inhibition of autophagy with 3MA or with transient silencing of Atg5 did not affect SQSTM1 expression in efavirenz-treated cells while p62 overexpression ameliorated the deleterious effect of efavirenz on cell viability. CONCLUSION AND IMPLICATIONS In our model, p62 exerted a specific, autophagy-independent role and protected against efavirenz-induced mitochondrial ROS generation and activation of the NLRP3 inflammasome. These findings add to the multifunctional nature of p62 and may help to understand the off-target effects of clinically useful drugs.
Collapse
Affiliation(s)
- Fernando Alegre
- Departamento de Farmacología, Facultad de MedicinaUniversidad de ValenciaValenciaSpain
- FISABIO–Hospital Universitario Dr. PesetValenciaSpain
| | - Ángela B Moragrega
- Departamento de Farmacología, Facultad de MedicinaUniversidad de ValenciaValenciaSpain
| | - Miriam Polo
- Departamento de Farmacología, Facultad de MedicinaUniversidad de ValenciaValenciaSpain
- FISABIO–Hospital Universitario Dr. PesetValenciaSpain
| | - Alberto Marti‐Rodrigo
- Departamento de Farmacología, Facultad de MedicinaUniversidad de ValenciaValenciaSpain
| | - Juan V Esplugues
- Departamento de Farmacología, Facultad de MedicinaUniversidad de ValenciaValenciaSpain
- FISABIO–Hospital Universitario Dr. PesetValenciaSpain
- CIBERehdValenciaSpain
| | - Ana Blas‐Garcia
- Departamento de Farmacología, Facultad de MedicinaUniversidad de ValenciaValenciaSpain
- CIBERehdValenciaSpain
| | - Nadezda Apostolova
- Departamento de Farmacología, Facultad de MedicinaUniversidad de ValenciaValenciaSpain
- CIBERehdValenciaSpain
| |
Collapse
|
23
|
Implication of Different HIV-1 Genes in the Modulation of Autophagy. Viruses 2017; 9:v9120389. [PMID: 29258265 PMCID: PMC5744163 DOI: 10.3390/v9120389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a complex cellular degradation pathway, which plays important roles in the regulation of several developmental processes, cellular stress responses, and immune responses induced by pathogens. A number of studies have previously demonstrated that HIV-1 was capable of altering the regulation of autophagy and that this biological process could be induced in uninfected and infected cells. Furthermore, previous reports have indicated that the involvement of HIV-1 in autophagy regulation is a complex phenomenon and that different viral proteins are contributing in its modulation upon viral infection. Herein, we review the recent literature over the complex crosstalk of the autophagy pathway and HIV-1, with a particular focus on HIV-1 viral proteins, which have been shown to modulate autophagy.
Collapse
|
24
|
Dantoft W, Martínez-Vicente P, Jafali J, Pérez-Martínez L, Martin K, Kotzamanis K, Craigon M, Auer M, Young NT, Walsh P, Marchant A, Angulo A, Forster T, Ghazal P. Genomic Programming of Human Neonatal Dendritic Cells in Congenital Systemic and In Vitro Cytomegalovirus Infection Reveal Plastic and Robust Immune Pathway Biology Responses. Front Immunol 2017; 8:1146. [PMID: 28993767 PMCID: PMC5622154 DOI: 10.3389/fimmu.2017.01146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These findings support a set-point control mechanism rather than immaturity for explaining not only neonatal susceptibility but also resilience to infection. In summary, our findings show that neonatal HCMV infection leads to a highly plastic and functional robust programming of dendritic cells in vivo and in vitro. In comparison with adults, a minimal number of subtle quantitative and temporal differences may contribute to variability in host susceptibility and resilience, in a context dependent manner.
Collapse
Affiliation(s)
- Widad Dantoft
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pablo Martínez-Vicente
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - James Jafali
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lara Pérez-Martínez
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Quantitative Proteomics, Institute of Molecular Biology, Mainz, Germany
| | - Kim Martin
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Synexa Life Sciences, Cape Town, South Africa
| | - Konstantinos Kotzamanis
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie Craigon
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Manfred Auer
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,SynthSys-Centre for Synthetic and Systems Biology, School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil T Young
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Paul Walsh
- NSilico Life Science and Department of Computing, Institute of Technology, Cork, Ireland
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Thorsten Forster
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Ghazal
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Tasaki T, Nukuzuma S, Takegami T. Impaired Japanese encephalitis virus replication in p62/SQSTM1 deficient mouse embryonic fibroblasts. Microbiol Immunol 2017; 60:708-711. [PMID: 27624873 DOI: 10.1111/1348-0421.12440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/22/2016] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
The role of the autophagy adaptor protein p62/SQSTM1 in Japanese encephalitis virus (JEV) replication in mouse embryonic fibroblasts (MEFs) was investigated. Amounts of JEV RNA and E protein were significantly smaller in p62-deficient cells than wild-type cells at 24 hr post-infection (p.i.). JEV RNA quantitation and viral plaque assays showed significant reductions in viral titers in p62-deficient cell culture fluid. Our results indicate that JEV replication is impaired in p62-deficient MEFs, suggesting that p62 positively regulates JEV replication in host cells.
Collapse
Affiliation(s)
- Takafumi Tasaki
- Division of Protein Regulation Research, Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan.
| | - Souichi Nukuzuma
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5, Minatojima-Nakamachi, Chuo-ku, Kobe 650-0046, Japan
| | - Tsutomu Takegami
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| |
Collapse
|
26
|
Kimura T, Mandell M, Deretic V. Precision autophagy directed by receptor regulators - emerging examples within the TRIM family. J Cell Sci 2016; 129:881-91. [PMID: 26906420 DOI: 10.1242/jcs.163758] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Selective autophagy entails cooperation between target recognition and assembly of the autophagic apparatus. Target recognition is conducted by receptors that often recognize tags, such as ubiquitin and galectins, although examples of selective autophagy independent of these tags are emerging. It is less known how receptors cooperate with the upstream autophagic regulators, beyond the well-characterized association of receptors with Atg8 or its homologs, such as LC3B (encoded by MAP1LC3B), on autophagic membranes. The molecular details of the emerging role in autophagy of the family of proteins called TRIMs shed light on the coordination between cargo recognition and the assembly and activation of the principal autophagy regulators. In their autophagy roles, TRIMs act both as receptors and as platforms ('receptor regulators') for the assembly of the core autophagy regulators, such as ULK1 and Beclin 1 in their activated state. As autophagic receptors, TRIMs can directly recognize endogenous or exogenous targets, obviating a need for intermediary autophagic tags, such as ubiquitin and galectins. The receptor and regulatory features embodied within the same entity allow TRIMs to govern cargo degradation in a highly exact process termed 'precision autophagy'.
Collapse
Affiliation(s)
- Tomonori Kimura
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Michael Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| |
Collapse
|
27
|
Imam S, Talley S, Nelson RS, Dharan A, O'Connor C, Hope TJ, Campbell EM. TRIM5α Degradation via Autophagy Is Not Required for Retroviral Restriction. J Virol 2016; 90:3400-10. [PMID: 26764007 PMCID: PMC4794682 DOI: 10.1128/jvi.03033-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/06/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED TRIM5α is an interferon-inducible retroviral restriction factor that prevents infection by inducing the abortive disassembly of capsid cores recognized by its C-terminal PRY/SPRY domain. The mechanism by which TRIM5α mediates the disassembly of viral cores is poorly understood. Previous studies demonstrated that proteasome inhibitors abrogate the ability of TRIM5α to induce premature core disassembly and prevent reverse transcription; however, viral infection is still inhibited, indicating that the proteasome is partially involved in the restriction process. Alternatively, we and others have observed that TRIM5α associates with proteins involved in autophagic degradation pathways, and one recent study found that autophagic degradation is required for the restriction of retroviruses by TRIM5α. Here, we show that TRIM5α is basally degraded via autophagy in the absence of restriction-sensitive virus. We observe that the autophagy markers LC3b and lysosome-associated membrane protein 2A (LAMP2A) localize to a subset of TRIM5α cytoplasmic bodies, and inhibition of lysosomal degradation with bafilomycin A1 increases this association. To test the requirement for macroautophagy in restriction, we examined the ability of TRIM5α to restrict retroviral infection in cells depleted of the autophagic mediators ATG5, Beclin1, and p62. In all cases, restriction of retroviruses by human TRIM5α, rhesus macaque TRIM5α, and owl monkey TRIM-Cyp remained potent in cells depleted of these autophagic effectors by small interfering RNA (siRNA) knockdown or clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 genome editing. Collectively, these results are consistent with observations that the turnover of TRIM5α proteins is sensitive to autophagy inhibition; however, the data presented here do not support observations that the inhibition of autophagy abrogates retroviral restriction by TRIM5 proteins. IMPORTANCE Restriction factors are a class of proteins that inhibit viral replication. Following fusion of a retrovirus with a host cell membrane, the retroviral capsid is released into the cytoplasm of the target cell. TRIM5α inhibits retroviral infection by promoting the abortive disassembly of incoming retroviral capsid cores; as a result, the retroviral genome is unable to traffic to the nucleus, and the viral life cycle is extinguished. In the process of restriction, TRIM5α itself is degraded by the proteasome. However, in the present study, we have shown that in the absence of a restriction-sensitive virus, TRIM5α is degraded by both proteasomal and autophagic degradation pathways. Notably, we observed that restriction of retroviruses by TRIM5α does not require autophagic machinery. These data indicate that the effector functions of TRIM5α can be separated from its degradation and may have further implications for understanding the mechanisms of other TRIM family members.
Collapse
Affiliation(s)
- Sabrina Imam
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Sarah Talley
- Integrative Cell Biology Program, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Rachel S Nelson
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Adarsh Dharan
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Christopher O'Connor
- Department of Biological Sciences, Maryville University, St. Louis, Missouri, USA
| | - Thomas J Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA Integrative Cell Biology Program, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
28
|
Chang TH, Yoshimi R, Ozato K. Tripartite Motif (TRIM) 12c, a Mouse Homolog of TRIM5, Is a Ubiquitin Ligase That Stimulates Type I IFN and NF-κB Pathways along with TNFR-Associated Factor 6. THE JOURNAL OF IMMUNOLOGY 2015; 195:5367-79. [PMID: 26503954 DOI: 10.4049/jimmunol.1402064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/05/2015] [Indexed: 11/19/2022]
Abstract
Tripartite motif (TRIM) protein TRIM5 of the primate species restricts replication of HIV and other retroviruses. Whereas primates have a single TRIM5 gene, the corresponding locus in the mouse has expanded during evolution, now containing more than eight related genes. Owing to the complexity of the genomic organization, a mouse homolog of TRIM5 has not been fully studied thus far. In the present study, we report that Trim12c (formerly Trim12-2) encodes a TRIM5-like protein with a ubiquitin ligase activity. Similar to the primate TRIM5, TRIM12c is expressed in the cytoplasm as a punctate structure and induced upon IFN and pathogen stimulation in macrophages and dendritic cells. We show that TRIM12c interacts with TRAF6, a key protein in the pathogen recognition receptor signaling, and reciprocally enhances their ubiquitination, leading to cooperative activation of IFN and NF-κB pathways. This study identifies TRIM12c as a mouse TRIM5 equivalent, critical for host innate immunity.
Collapse
Affiliation(s)
- Tsung-Hsien Chang
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, 20892; and Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, 81362
| | - Ryusuke Yoshimi
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, 20892; and
| | - Keiko Ozato
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, 20892; and
| |
Collapse
|
29
|
TRIM5 Retroviral Restriction Activity Correlates with the Ability To Induce Innate Immune Signaling. J Virol 2015; 90:308-16. [PMID: 26468522 PMCID: PMC4702541 DOI: 10.1128/jvi.02496-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 01/06/2023] Open
Abstract
Host restriction factor TRIM5 inhibits retroviral transduction in a species-specific manner by binding to and destabilizing the retroviral capsid lattice before reverse transcription is completed. However, the restriction mechanism may not be that simple since TRIM5 E3 ubiquitin ligase activity, the proteasome, autophagy, and TAK1-dependent AP-1 signaling have been suggested to contribute to restriction. Here, we show that, among a panel of seven primate and Carnivora TRIM5 orthologues, each of which has potential for potent retroviral restriction activity, all activated AP-1 signaling. In contrast, TRIM family paralogues most closely related to TRIM5 did not. While each primate species has a single TRIM5 gene, mice have at least seven TRIM5 homologues that cluster into two groups, Trim12a, -b, and -c and Trim30a, -b, -c, and -d. The three Trim12 proteins activated innate immune signaling, while the Trim30 proteins did not, though none of the murine Trim5 homologues restricted any of a panel of cloned retroviruses. To determine if any mouse TRIM5 homologues had potential for restriction activity, each was fused to the human immunodeficiency virus type 1 (HIV-1) CA binding protein cyclophilin A (CypA). The three Trim12-CypA fusions all activated AP-1 and restricted HIV-1 transduction, whereas the Trim30-CypA fusions did neither. AP-1 activation and HIV-1 restriction by the Trim12-CypA fusions were inhibited by disruption of TAK1. Overall then, these experiments demonstrate that there is a strong correlation between TRIM5 retroviral restriction activity and the ability to activate TAK1-dependent innate immune signaling. IMPORTANCE The importance of retroviruses for the evolution of susceptible host organisms cannot be overestimated. Eight percent of the human genome is retrovirus sequence, fixed in the germ line during past infection. Understanding how metazoa protect their genomes from mutagenic retrovirus infection is therefore of fundamental importance to biology. TRIM5 is a cellular protein that protects host genome integrity by disrupting the retroviral capsid as it transports viral nucleic acid to the host cell nucleus. Previous data suggest that innate immune signaling contributes to TRIM5-mediated restriction. Here, we show that activation of innate immune signaling is conserved among primate and carnivore TRIM5 orthologues and among 3 of the 7 mouse Trim5 homologues and that such activity is required for TRIM5-mediated restriction activity.
Collapse
|
30
|
Haldar AK, Foltz C, Finethy R, Piro AS, Feeley EM, Pilla-Moffett DM, Komatsu M, Frickel EM, Coers J. Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins. Proc Natl Acad Sci U S A 2015; 112:E5628-37. [PMID: 26417105 PMCID: PMC4611635 DOI: 10.1073/pnas.1515966112] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many microbes create and maintain pathogen-containing vacuoles (PVs) as an intracellular niche permissive for microbial growth and survival. The destruction of PVs by IFNγ-inducible guanylate binding protein (GBP) and immunity-related GTPase (IRG) host proteins is central to a successful immune response directed against numerous PV-resident pathogens. However, the mechanism by which IRGs and GBPs cooperatively detect and destroy PVs is unclear. We find that host cell priming with IFNγ prompts IRG-dependent association of Toxoplasma- and Chlamydia-containing vacuoles with ubiquitin through regulated translocation of the E3 ubiquitin ligase tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6). This initial ubiquitin labeling elicits p62-mediated escort and deposition of GBPs to PVs, thereby conferring cell-autonomous immunity. Hypervirulent strains of Toxoplasma gondii evade this process via specific rhoptry protein kinases that inhibit IRG function, resulting in blockage of downstream PV ubiquitination and GBP delivery. Our results define a ubiquitin-centered mechanism by which host cells deliver GBPs to PVs and explain how hypervirulent parasites evade GBP-mediated immunity.
Collapse
Affiliation(s)
- Arun K Haldar
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Clémence Foltz
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Ryan Finethy
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Anthony S Piro
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Eric M Feeley
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Danielle M Pilla-Moffett
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Masaki Komatsu
- Department of Biochemistry, School of Medicine Niigata University, Niigata-shi, 951-8510, Japan
| | - Eva-Maria Frickel
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Jörn Coers
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710;
| |
Collapse
|
31
|
Tripathi A, Vana PG, Chavan TS, Brueggemann LI, Byron KL, Tarasova NI, Volkman BF, Gaponenko V, Majetschak M. Heteromerization of chemokine (C-X-C motif) receptor 4 with α1A/B-adrenergic receptors controls α1-adrenergic receptor function. Proc Natl Acad Sci U S A 2015; 112:E1659-68. [PMID: 25775528 PMCID: PMC4386352 DOI: 10.1073/pnas.1417564112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent evidence suggests that chemokine (C-X-C motif) receptor 4 (CXCR4) contributes to the regulation of blood pressure through interactions with α1-adrenergic receptors (ARs) in vascular smooth muscle. The underlying molecular mechanisms, however, are unknown. Using proximity ligation assays to visualize single-molecule interactions, we detected that α1A/B-ARs associate with CXCR4 on the cell surface of rat and human vascular smooth muscle cells (VSMC). Furthermore, α1A/B-AR could be coimmunoprecipitated with CXCR4 in a HeLa expression system and in human VSMC. A peptide derived from the second transmembrane helix of CXCR4 induced chemical shift changes in the NMR spectrum of CXCR4 in membranes, disturbed the association between α1A/B-AR and CXCR4, and inhibited Ca(2+) mobilization, myosin light chain (MLC) 2 phosphorylation, and contraction of VSMC upon α1-AR activation. CXCR4 silencing reduced α1A/B-AR:CXCR4 heteromeric complexes in VSMC and abolished phenylephrine-induced Ca(2+) fluxes and MLC2 phosphorylation. Treatment of rats with CXCR4 agonists (CXCL12, ubiquitin) reduced the EC50 of the phenylephrine-induced blood pressure response three- to fourfold. These observations suggest that disruption of the quaternary structure of α1A/B-AR:CXCR4 heteromeric complexes by targeting transmembrane helix 2 of CXCR4 and depletion of the heteromeric receptor complexes by CXCR4 knockdown inhibit α1-AR-mediated function in VSMC and that activation of CXCR4 enhances the potency of α1-AR agonists. Our findings extend the current understanding of the molecular mechanisms regulating α1-AR and provide an example of the importance of G protein-coupled receptor (GPCR) heteromerization for GPCR function. Compounds targeting the α1A/B-AR:CXCR4 interaction could provide an alternative pharmacological approach to modulate blood pressure.
Collapse
Affiliation(s)
- Abhishek Tripathi
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153
| | - P Geoff Vana
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153
| | - Tanmay S Chavan
- Department of Medicinal Chemistry, University of Illinois, Chicago, IL 60607
| | - Lioubov I Brueggemann
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153
| | - Kenneth L Byron
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153
| | - Nadya I Tarasova
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702-1201
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607
| | - Matthias Majetschak
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153; Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153;
| |
Collapse
|
32
|
Mandell MA, Jain A, Arko-Mensah J, Chauhan S, Kimura T, Dinkins C, Silvestri G, Münch J, Kirchhoff F, Simonsen A, Wei Y, Levine B, Johansen T, Deretic V. TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. Dev Cell 2014; 30:394-409. [PMID: 25127057 DOI: 10.1016/j.devcel.2014.06.013] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/11/2014] [Accepted: 06/17/2014] [Indexed: 12/22/2022]
Abstract
Autophagy, a homeostatic process whereby eukaryotic cells target cytoplasmic cargo for degradation, plays a broad role in health and disease states. Here we screened the TRIM family for roles in autophagy and found that half of TRIMs modulated autophagy. In mechanistic studies, we show that TRIMs associate with autophagy factors and act as platforms assembling ULK1 and Beclin 1 in their activated states. Furthermore, TRIM5α acts as a selective autophagy receptor. Based on direct sequence-specific recognition, TRIM5α delivered its cognate cytosolic target, a viral capsid protein, for autophagic degradation. Thus, our study establishes that TRIMs can function both as regulators of autophagy and as autophagic cargo receptors, and reveals a basis for selective autophagy in mammalian cells.
Collapse
Affiliation(s)
- Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - Ashish Jain
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| | - John Arko-Mensah
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - Santosh Chauhan
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - Tomonori Kimura
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - Christina Dinkins
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, 3014 Yerkes, 954 Gatewood Road NE, Atlanta, GA 30329, USA
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstrasse 1, 89081 Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstrasse 1, 89081 Ulm, Germany
| | - Anne Simonsen
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Yongjie Wei
- Center for Autophagy Research and Howard Hughes Medical Institute, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Beth Levine
- Center for Autophagy Research and Howard Hughes Medical Institute, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA.
| |
Collapse
|
33
|
Functional evidence for the involvement of microtubules and dynein motor complexes in TRIM5α-mediated restriction of retroviruses. J Virol 2014; 88:5661-76. [PMID: 24600008 DOI: 10.1128/jvi.03717-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The tripartite motif (TRIM) family of proteins includes the TRIM5α antiretroviral restriction factor. TRIM5α from many Old World and some New World monkeys can restrict the human immunodeficiency virus type 1 (HIV-1), while human TRIM5α restricts N-tropic murine leukemia virus (N-MLV). TRIM5α forms highly dynamic cytoplasmic bodies (CBs) that associate with and translocate on microtubules. However, the functional involvement of microtubules or other cytoskeleton-associated factors in the viral restriction process had not been shown. Here, we demonstrate the dependency of TRIM5α-mediated restriction on microtubule-mediated transport. Pharmacological disruption of the microtubule network using nocodazole or disabling it using paclitaxel (originally named taxol) decreased the restriction of N-MLV and HIV-1 by human or simian alleles of TRIM5α, respectively. In addition, pharmacological inhibition of dynein motor complexes using erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and small interfering RNA-mediated depletion of the dynein heavy chain (DHC) similarly decreased TRIM5α-mediated restriction. The loss in restriction resulting from either the disassembly of microtubules or the disruption of dynein motor activity was seen for both endogenous and overexpressed TRIM5α and was not due to differences in protein stability or cell viability. Both nocodazole treatment and DHC depletion interfered with the dynamics of TRIM5α CBs, increasing their size and altering their intracellular localization. In addition, nocodazole, paclitaxel, and DHC depletion were all found to increase the stability of HIV-1 cores in infected cells, providing an alternative explanation for the decreased restriction. In conclusion, association with microtubules and the translocation activity of dynein motor complexes are required to achieve efficient restriction by TRIM5α. IMPORTANCE The primate innate cellular defenses against infection by retroviruses include a protein named TRIM5α, belonging to the family of restriction factors. TRIM5α is present in the cytoplasm, where it can intercept incoming retroviruses shortly after their entry. How TRIM5α manages to be present at the appropriate subcytoplasmic location to interact with its target is unknown. We hypothesized that TRIM5α, either as a soluble protein or a high-molecular-weight complex (the cytoplasmic body), is transported within the cytoplasm by a molecular motor called the dynein complex, which is known to interact with and move along microtubules. Our results show that destructuring microtubules or crippling their function decreased the capacity of human or simian TRIM5α to restrict their retroviral targets. Inhibiting dynein motor activity, or reducing the expression of a key component of this complex, similarly affected TRIM5α-mediated restriction. Thus, we have identified specific cytoskeleton structures involved in innate antiretroviral defenses.
Collapse
|
34
|
Boasso A. Type I Interferon at the Interface of Antiviral Immunity and Immune Regulation: The Curious Case of HIV-1. SCIENTIFICA 2013; 2013:580968. [PMID: 24455433 PMCID: PMC3885208 DOI: 10.1155/2013/580968] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
Type I interferon (IFN-I) play a critical role in the innate immune response against viral infections. They actively participate in antiviral immunity by inducing molecular mechanisms of viral restriction and by limiting the spread of the infection, but they also orchestrate the initial phases of the adaptive immune response and influence the quality of T cell immunity. During infection with the human immunodeficiency virus type 1 (HIV-1), the production of and response to IFN-I may be severely altered by the lymphotropic nature of the virus. In this review I consider the different aspects of virus sensing, IFN-I production, signalling, and effects on target cells, with a particular focus on the alterations observed following HIV-1 infection.
Collapse
Affiliation(s)
- Adriano Boasso
- Immunology Section, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| |
Collapse
|
35
|
Danielson CM, Hope TJ. Using antiubiquitin antibodies to probe the ubiquitination state within rhTRIM5α cytoplasmic bodies. AIDS Res Hum Retroviruses 2013; 29:1373-85. [PMID: 23799296 DOI: 10.1089/aid.2013.0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The first line of defense protecting rhesus macaques from HIV-1 is the restriction factor rhTRIM5α, which recognizes the capsid core of the virus early after entry and normally blocks infection prior to reverse transcription. Cytoplasmic bodies containing rhTRIM5α have been implicated in the ubiquitin-proteasome pathway, but the specific roles these structures play remain uncharacterized. Here, we examine the ubiquitination status of cytoplasmic body proteins. Using antibodies specific for different forms of ubiquitin, we show that ubiquitinated proteins are present in cytoplasmic bodies, and that this localization is altered after proteasome inhibition. A decrease in polyubiquitinated proteins localizing to cytoplasmic bodies was apparent after 1 h of proteasome inhibition, and greater differences were seen after extended proteasome inhibition. The decrease in polyubiquitin conjugates within cytoplasmic bodies was also observed when deubiquitinating enzymes were inhibited, suggesting that the removal of ubiquitin moieties from polyubiquitinated cytoplasmic body proteins after extended proteasome inhibition is not responsible for this phenomenon. Superresolution structured illumination microscopy revealed finer details of rhTRIM5α cytoplasmic bodies and the polyubiquitin conjugates that localize to these structures. Finally, linkage-specific polyubiquitin antibodies revealed that K48-linked ubiquitin chains localize to rhTRIM5α cytoplasmic bodies, implicating these structures in proteasomal degradation. Differential staining of cytoplasmic bodies seen with different polyubiquitin antibodies suggests that structural changes occur during proteasome inhibition that alter epitope availability. Taken together, it is likely that rhTRIM5α cytoplasmic bodies are involved in recruiting components of the ubiquitin-proteasome system to coordinate proteasomal destruction of a viral or cellular protein(s) during restriction of HIV-1.
Collapse
Affiliation(s)
- Cindy M. Danielson
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Thomas J. Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
36
|
Role of SUMO-1 and SUMO interacting motifs in rhesus TRIM5α-mediated restriction. Retrovirology 2013; 10:10. [PMID: 23369348 PMCID: PMC3599732 DOI: 10.1186/1742-4690-10-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/16/2013] [Indexed: 11/14/2022] Open
Abstract
Background TRIM5α is a member of the tripartite motif family of proteins that restricts retroviral infection in a species-specific manner. The restriction requires an interaction between the viral capsid lattice and the B30.2/SPRY domain of TRIM5α. Previously, we determined that two SUMO interacting motifs (SIMs) present in the B30.2/SPRY domain of human TRIM5α (huTRIM5α) were important for the restriction of N-tropic Murine Leukemia Virus. Here, we examined whether SUMO expression and the SIM1 and SIM2 motifs in rhesus monkey TRIM5α (rhTRIM5α) are similarly important for Human Immunodeficiency Type 1 (HIV-) restriction. Results We found that mutation of SIM1 and SIM2 of rhTRIM5α abolished the restriction of HIV-1 virus. Further, knockdown of SUMO-1 in rhTRIM5α expressing cells abolished restriction of HIV-1. These results may be due, in part, to the ability of SUMO-1 to stabilize rhTRIM5α protein expression, as SUMO-1 knockdown increased rhTRIM5α turnover and the mutations in SIM1 and SIM2 led to more rapid degradation than the wild type protein. The NF-κB signaling ability of rhTRIM5α was also attenuated by SUMO-1 knockdown. Finally, upon inhibition of CRM1-dependent nuclear export with Leptomycin B (LMB), wild type rhTRIM5α localized to SUMO-1 bodies in the nucleus, while the SIM1 and SIM2 mutants did not localize to SUMO-1. Conclusions Our results suggest that the rhTRIM5α B30.2/SPRY domain is not only important for the recognition of the HIV-1 CA, but it is also important for its association with SUMO-1 or SUMO-1 modified proteins. These interactions help to maintain TRIM5α protein levels and its nuclear localization into specific nuclear bodies.
Collapse
|
37
|
|
38
|
TRIM5 and the Regulation of HIV-1 Infectivity. Mol Biol Int 2012; 2012:426840. [PMID: 22701176 PMCID: PMC3369500 DOI: 10.1155/2012/426840] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/08/2012] [Indexed: 01/15/2023] Open
Abstract
The past ten years have seen an explosion of information concerning host restriction factors that inhibit the replication of HIV-1 and other retroviruses. Among these factors is TRIM5, an innate immune signaling molecule that recognizes the capsid lattice as soon as the retrovirion core is released into the cytoplasm of otherwise susceptible target cells. Recognition of the capsid lattice has several consequences that include multimerization of TRIM5 into a complementary lattice, premature uncoating of the virion core, and activation of TRIM5 E3 ubiquitin ligase activity. Unattached, K63-linked ubiquitin chains are generated that activate the TAK1 kinase complex and downstream inflammatory mediators. Polymorphisms in the capsid recognition domain of TRIM5 explain the observed species-specific differences among orthologues and the relatively weak anti-HIV-1 activity of human TRIM5. Better understanding of the complex interaction between TRIM5 and the retrovirus capsid lattice may someday lead to exploitation of this interaction for the development of potent HIV-1 inhibitors.
Collapse
|
39
|
Grütter MG, Luban J. TRIM5 structure, HIV-1 capsid recognition, and innate immune signaling. Curr Opin Virol 2012; 2:142-50. [PMID: 22482711 PMCID: PMC3322363 DOI: 10.1016/j.coviro.2012.02.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/01/2012] [Accepted: 02/11/2012] [Indexed: 12/19/2022]
Abstract
TRIM5 is a restriction factor that blocks retrovirus infection soon after the virion core enters the cell cytoplasm. Restriction activity is targeted to the virion core via recognition of the capsid protein lattice that encases the viral genomic RNA. In common with all of the many TRIM family members, TRIM5 has RING, B-box, and coiled-coil domains. As an E3 ubiquitin ligase TRIM5 cooperates with the heterodimeric E2, UBC13/UEV1A, to activate the TAK1 (MAP3K7) kinase, NF-κB and AP-1 signaling, and the transcription of inflammatory cytokines and chemokines. TAK1, UBC13, and UEV1A all contribute to TRIM5-mediated retrovirus restriction activity. Interaction of the carboxy-terminal PRYSPRY or cyclophilin domains of TRIM5 with the retroviral capsid lattice stimulates the formation of a complementary lattice by TRIM5, with greatly increased TRIM5 E3 activity, and host cell signal transduction. Structural and biochemical studies on TRIM5 have opened a much needed window on how the innate immune system detects the distinct molecular features of HIV-1 and other retroviruses.
Collapse
Affiliation(s)
- Markus G Grütter
- Department of Biochemistry, University of Zurich, Zurich CH-8057, Switzerland
| | - Jeremy Luban
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
40
|
Abstract
The tripartite motif (TRIM)-containing proteins are involved in many cellular functions such as cell signaling, apoptosis, cell differentiation, and immune modulation. TRIM5 proteins, including TRIM5α and TRIM-Cyp, are known to possess antiretroviral activity against many different retroviruses. Besides being retroviral restriction factors, TRIM5 proteins participate in other cellular functions that have recently emerged in the study of TRIM5α. In this review, we discuss properties of TRIM5α such as cytoplasmic body formation, protein turnover, and trafficking. Also, we discuss recent insights into innate immune modulation mediated by TRIM5α, highlighting the various functions TRIM5α has in cellular processes.
Collapse
Affiliation(s)
- Zana Lukic
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Edward M. Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, USA
| |
Collapse
|
41
|
Deretic V. Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors. Curr Opin Immunol 2011; 24:21-31. [PMID: 22118953 DOI: 10.1016/j.coi.2011.10.006] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 10/21/2011] [Indexed: 02/07/2023]
Abstract
Autophagy is rapidly developing into a new immunological paradigm. The latest links now include overlaps between autophagy and innate immune signaling via TBK-1 and IKKα/β, and the role of autophagy in inflammation directed by the inflammasome. Autophagy's innate immunity connections include responses to pathogen and damage-associated molecular patterns including alarmins such as HMGB1 and IL-1β, Toll-like receptors, Nod-like receptors including NLRC4, NLRP3 and NLRP4, and RIG-I-like receptors. Autophagic adaptors referred to as SLRs (sequestosome 1/p62-like receptors) are themselves a category of pattern recognition receptors. SLRs empower autophagy to eliminate intracellular microbes by direct capture and by facilitating generation and delivery of antimicrobial peptides, and also serve as inflammatory signaling platforms. SLRs contribute to autophagic control of intracellular microbes, including Mycobacterium tuberculosis, Salmonella, Listeria, Shigella, HIV-1 and Sindbis virus, but act as double-edged sword and contribute to inflammation and cell death. Autophagy roles in innate immunity continue to expand vertically and laterally, and now include antimicrobial function downstream of vitamin D3 action in tuberculosis and AIDS. Recent data expand the connections between immunity-related GTPases and autophagy to include not only IRGM but also several members of the Gbp (guanlyate-binding proteins) family. The efficacy with which autophagy handles microbes, microbial products and sterile endogenous irritants governs whether the outcome will be with suppression of or with excess inflammation, the latter reflected in human diseases that have strong inflammatory components including tuberculosis and Crohn's disease.
Collapse
Affiliation(s)
- Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA.
| |
Collapse
|
42
|
Lukic Z, Hausmann S, Sebastian S, Rucci J, Sastri J, Robia SL, Luban J, Campbell EM. TRIM5α associates with proteasomal subunits in cells while in complex with HIV-1 virions. Retrovirology 2011; 8:93. [PMID: 22078707 PMCID: PMC3279310 DOI: 10.1186/1742-4690-8-93] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/12/2011] [Indexed: 12/24/2022] Open
Abstract
Background The TRIM5 proteins are cellular restriction factors that prevent retroviral infection in a species-specific manner. Multiple experiments indicate that restriction activity requires accessory host factors, including E2-enzymes. To better understand the mechanism of restriction, we conducted yeast-two hybrid screens to identify proteins that bind to two TRIM5 orthologues. Results The only cDNAs that scored on repeat testing with both TRIM5 orthologues were the proteasome subunit PSMC2 and ubiquitin. Using co-immunoprecipitation assays, we demonstrated an interaction between TRIM5α and PSMC2, as well as numerous other proteasome subunits. Fluorescence microscopy revealed co-localization of proteasomes and TRIM5α cytoplasmic bodies. Forster resonance energy transfer (FRET) analysis indicated that the interaction between TRIM5 and PSMC2 was direct. Previous imaging experiments demonstrated that, when cells are challenged with fluorescently-labeled HIV-1 virions, restrictive TRIM5α orthologues assemble cytoplasmic bodies around incoming virion particles. Following virus challenge, we observed localization of proteasome subunits to rhTRIM5α cytoplasmic bodies that contained fluorescently labeled HIV-1 virions. Conclusions Taken together, the results presented here suggest that localization of the proteasome to TRIM5α cytoplasmic bodies makes an important contribution to TRIM5α-mediated restriction.
Collapse
Affiliation(s)
- Zana Lukic
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sastri J, Campbell EM. Recent insights into the mechanism and consequences of TRIM5α retroviral restriction. AIDS Res Hum Retroviruses 2011; 27:231-8. [PMID: 21247355 DOI: 10.1089/aid.2010.0367] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cellular factor TRIM5α inhibits infection by numerous retroviruses in a species-specific manner. The TRIM5α protein from rhesus macaques (rhTRIM5α) restricts infection by HIV-1 while human TRIM5α (huTRIM5α) restricts infection by murine leukemia virus (MLV). In owl monkeys a related protein TRIM-Cyp restricts HIV-1 infection. Several models have been proposed for retroviral restriction by TRIM5 proteins (TRIM5α and TRIM-Cyp). These models collectively suggest that TRIM5 proteins mediate restriction by directly binding to specific determinants in the viral capsid. Through their ability to self-associate TRIM5 proteins compartmentalize the viral capsid core and mediate its abortive disassembly via a poorly understood mechanism that is sensitive to proteasome inhibitors. In this review, we discuss TRIM5-mediated restriction in detail. We also discuss how polymorphisms within human and rhesus macaque populations have been demonstrated to affect disease progression of immunodeficiency viruses in these species.
Collapse
Affiliation(s)
- Jaya Sastri
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Edward M. Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
44
|
Abstract
TRIM5α proteins are restriction factors that protect mammalian cells from retroviral infections by binding incoming viral capsids, accelerating their dissociation, and preventing reverse transcription of the viral genome. Individual TRIM5 isoforms can often protect cells against a broad range of retroviruses, as exemplified by rhesus monkey TRIM5α and its variant, TRIM5-21R, which recognize HIV-1 as well as several distantly related retroviruses. Although capsid recognition is not yet fully understood, previous work has shown that the C-terminal SPRY/B30.2 domain of dimeric TRIM5α binds directly to viral capsids, and that higher-order TRIM5α oligomerization appears to contribute to the efficiency of capsid recognition. Here, we report that recombinant TRIM5-21R spontaneously assembled into two-dimensional paracrystalline hexagonal lattices comprising open, six-sided rings. TRIM5-21R assembly did not require the C-terminal SPRY domain, but did require both protein dimerization and a B-box 2 residue (Arg121) previously implicated in TRIM5α restriction and higher-order assembly. Furthermore, TRIM5-21R assembly was promoted by binding to hexagonal arrays of the HIV-1 CA protein that mimic the surface of the viral capsid. We therefore propose that TRIM5α proteins have evolved to restrict a range of different retroviruses by assembling a deformable hexagonal scaffold that positions the capsid-binding domains to match the symmetry and spacing of the capsid surface lattice. Capsid recognition therefore involves a synergistic combination of direct binding interactions, avidity effects, templated assembly, and lattice complementarity.
Collapse
|
45
|
Tareen SU, Emerman M. Human Trim5α has additional activities that are uncoupled from retroviral capsid recognition. Virology 2010; 409:113-20. [PMID: 21035162 DOI: 10.1016/j.virol.2010.09.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/05/2010] [Accepted: 09/17/2010] [Indexed: 12/31/2022]
Abstract
Trim5α is a host antiviral protein that recognizes incoming retroviral capsids in the cytoplasm and prevents productive infections. Although present in most mammals, the state of the Trim5 gene is dynamic in that primates have one copy with several splice variants, while rodents and cows have multiple copies. Mouse Trim30 (one of the mouse Trim5α homologs) has been shown to negatively regulate NF-kappaB activation by targeting upstream signaling intermediates TAB2 and TAB3 for degradation. We show that human Trim5α also affects levels of TAB2, resulting in abrogation of TAB2-dependent NF-kappaB activation. Surprisingly, unlike mouse Trim30, human and rhesus Trim5α are able to activate NF-kappaB-driven reporter gene expression in a dose-dependent manner. We show that Trim5α uses distinct domains for the distinct abilities of affecting TAB2 levels, regulating NF-kappaB, and recognizing retroviral capsids. Our results demonstrate functions of Trim5α that are not dependent on recognizing the retroviral capsid.
Collapse
Affiliation(s)
- Semih U Tareen
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|