1
|
Jain A, Govindan R, Berkman AR, Luban J, Díaz-Salinas MA, Durham ND, Munro JB. Regulation of Ebola GP conformation and membrane binding by the chemical environment of the late endosome. PLoS Pathog 2023; 19:e1011848. [PMID: 38055723 PMCID: PMC10727438 DOI: 10.1371/journal.ppat.1011848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/18/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Interaction between the Ebola virus envelope glycoprotein (GP) and the endosomal membrane is an essential step during virus entry into the cell. Acidic pH and Ca2+ have been implicated in mediating the GP-membrane interaction. However, the molecular mechanism by which these environmental factors regulate the conformational changes that enable engagement of GP with the target membrane is unknown. Here, we apply fluorescence correlation spectroscopy (FCS) and single-molecule Förster resonance energy transfer (smFRET) imaging to elucidate how the acidic pH, Ca2+ and anionic phospholipids in the late endosome promote GP-membrane interaction, thereby facilitating virus entry. We find that bis(monoacylglycero)phosphate (BMP), which is specific to the late endosome, is especially critical in determining the Ca2+-dependence of the GP-membrane interaction. Molecular dynamics (MD) simulations suggested residues in GP that sense pH and induce conformational changes that make the fusion loop available for insertion into the membrane. We similarly confirm residues in the fusion loop that mediate GP's interaction with Ca2+, which likely promotes local conformational changes in the fusion loop and mediates electrostatic interactions with the anionic phospholipids. Collectively, our results provide a mechanistic understanding of how the environment of the late endosome regulates the timing and efficiency of virus entry.
Collapse
Affiliation(s)
- Aastha Jain
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Ramesh Govindan
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
- Medical Scientist Training Program, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Alex R. Berkman
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Jeremy Luban
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Marco A. Díaz-Salinas
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Natasha D. Durham
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - James B. Munro
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
2
|
Pseudotyped Viruses for Marburgvirus and Ebolavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:105-132. [PMID: 36920694 DOI: 10.1007/978-981-99-0113-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Marburg virus (MARV) and Ebola virus (EBOV) of the Filoviridae family are the most lethal viruses in terms of mortality rate. However, the development of antiviral treatment is hampered by the requirement for biosafety level-4 (BSL-4) containment. The establishment of BSL-2 pseudotyped viruses can provide important tools for the study of filoviruses. This chapter summarizes general information on the filoviruses and then focuses on the construction of replication-deficient pseudotyped MARV and EBOV (e.g., lentivirus system and vesicular stomatitis virus system). It also details the potential applications of the pseudotyped viruses, including neutralization antibody detection, the study of infection mechanisms, the evaluation of antibody-dependent enhancement, virus entry inhibitor screening, and glycoprotein mutation analysis.
Collapse
|
3
|
Structural and Functional Aspects of Ebola Virus Proteins. Pathogens 2021; 10:pathogens10101330. [PMID: 34684279 PMCID: PMC8538763 DOI: 10.3390/pathogens10101330] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/14/2023] Open
Abstract
Ebola virus (EBOV), member of genus Ebolavirus, family Filoviridae, have a non-segmented, single-stranded RNA that contains seven genes: (a) nucleoprotein (NP), (b) viral protein 35 (VP35), (c) VP40, (d) glycoprotein (GP), (e) VP30, (f) VP24, and (g) RNA polymerase (L). All genes encode for one protein each except GP, producing three pre-proteins due to the transcriptional editing. These pre-proteins are translated into four products, namely: (a) soluble secreted glycoprotein (sGP), (b) Δ-peptide, (c) full-length transmembrane spike glycoprotein (GP), and (d) soluble small secreted glycoprotein (ssGP). Further, shed GP is released from infected cells due to cleavage of GP by tumor necrosis factor α-converting enzyme (TACE). This review presents a detailed discussion on various functional aspects of all EBOV proteins and their residues. An introduction to ebolaviruses and their life cycle is also provided for clarity of the available analysis. We believe that this review will help understand the roles played by different EBOV proteins in the pathogenesis of the disease. It will help in targeting significant protein residues for therapeutic and multi-protein/peptide vaccine development.
Collapse
|
4
|
Wirchnianski AS, Wec AZ, Nyakatura EK, Herbert AS, Slough MM, Kuehne AI, Mittler E, Jangra RK, Teruya J, Dye JM, Lai JR, Chandran K. Two Distinct Lysosomal Targeting Strategies Afford Trojan Horse Antibodies With Pan-Filovirus Activity. Front Immunol 2021; 12:729851. [PMID: 34721393 PMCID: PMC8551868 DOI: 10.3389/fimmu.2021.729851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple agents in the family Filoviridae (filoviruses) are associated with sporadic human outbreaks of highly lethal disease, while others, including several recently identified agents, possess strong zoonotic potential. Although viral glycoprotein (GP)-specific monoclonal antibodies have demonstrated therapeutic utility against filovirus disease, currently FDA-approved molecules lack antiviral breadth. The development of broadly neutralizing antibodies has been challenged by the high sequence divergence among filovirus GPs and the complex GP proteolytic cleavage cascade that accompanies filovirus entry. Despite this variability in the antigenic surface of GP, all filoviruses share a site of vulnerability-the binding site for the universal filovirus entry receptor, Niemann-Pick C1 (NPC1). Unfortunately, this site is shielded in extracellular GP and only uncovered by proteolytic cleavage by host proteases in late endosomes and lysosomes, which are generally inaccessible to antibodies. To overcome this obstacle, we previously developed a 'Trojan horse' therapeutic approach in which engineered bispecific antibodies (bsAbs) coopt viral particles to deliver GP:NPC1 interaction-blocking antibodies to their endo/lysosomal sites of action. This approach afforded broad protection against members of the genus Ebolavirus but could not neutralize more divergent filoviruses. Here, we describe next-generation Trojan horse bsAbs that target the endo/lysosomal GP:NPC1 interface with pan-filovirus breadth by exploiting the conserved and widely expressed host cation-independent mannose-6-phosphate receptor for intracellular delivery. Our work highlights a new avenue for the development of single therapeutics protecting against all known and newly emerging filoviruses.
Collapse
Affiliation(s)
- Ariel S. Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Anna Z. Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Elisabeth K. Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Andrew S. Herbert
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
- The Geneva Foundation, Tacoma, WA, United States
| | - Megan M. Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ana I. Kuehne
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jonathan Teruya
- Antibody Discovery and Research group, Mapp Biopharmaceutical, San Diego, CA, United States
| | - John M. Dye
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
5
|
A Naturally Occurring Polymorphism in the Base of Sudan Virus Glycoprotein Decreases Glycoprotein Stability in a Species-Dependent Manner. J Virol 2021; 95:e0107321. [PMID: 34232742 DOI: 10.1128/jvi.01073-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sudan virus (SUDV) is one of five filoviruses that compose the genus Ebolavirus that has been responsible for episodic outbreaks in Central Africa. While the SUDV glycoprotein (GP) structure has been solved, GP residues that affect SUDV entry have not been extensively examined; many of the entry characteristics of SUDV GP are inferred from studies with the Zaire Ebola virus (EBOV) GP. Here, we investigate the effect on virus entry of a naturally occurring polymorphism in SUDV GP. Two of the earliest SUDV isolates contain glutamine at residue 95 (Q95) within the base region of GP1, whereas more recent SUDV isolates and GPs from all other ebolaviruses carry lysine at this position (K95). A K95Q change dramatically decreased titers of pseudovirions bearing SUDV GP, whereas the K95Q substitution in EBOV GP had no effect on titer. We evaluated virus entry to identify SUDV GP Q95-specific entry defects. The presence of Q95 in either EBOV or SUDV GP resulted in enhanced sensitivity of GP to proteolytic processing, yet this could not account for the SUDV-specific decrease in GP Q95 infectivity. We found that SUDV GP Q95 pseudovirions were more sensitive to imipramine, a GP-destabilizing antiviral. In contrast, SUDV GP K95 was more stable, requiring elevated temperatures to inhibit virus infection. Thus, the residue present at GP 95 has a critical role in stabilizing the SUDV glycoprotein, whereas this polymorphism has no effect on EBOV GP stability. These results provide novel insights into filovirus species-specific GP structure that affects virus infectivity. IMPORTANCE Filovirus outbreaks are associated with significant morbidity and mortality. Understanding the structural constraints of filoviral GPs that control virus entry into cells is critical for rational development of novel antivirals to block infection. Here, we identify a naturally occurring glutamine (Q) to lysine (K) polymorphism at residue 95 as a critical determinant of Sudan virus GP stability but not Zaire Ebola virus GP stability. We propose that glutamine at residue 95 in Sudan virus GP mediates decreased virus entry, thereby reducing infectivity. Our findings highlight a unique structural characteristic of Sudan virus GP that affects GP-mediated functionality. Further, it provides a cautionary note for the development of future broad-spectrum filovirus antivirals.
Collapse
|
6
|
Ebola virus requires phosphatidylserine scrambling activity for efficient budding and optimal infectivity. J Virol 2021; 95:e0116521. [PMID: 34319156 DOI: 10.1128/jvi.01165-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ebola virus (EBOV) attaches to target cells using two categories of cell surface receptors, C-type lectins and phosphatidylserine (PS) receptors. PS receptors typically bind to apoptotic cell membrane PS and orchestrate the uptake and clearance of apoptotic debris. Many enveloped viruses also contain exposed PS and can therefore exploit these receptors for cell entry. Viral infection can induce PS externalization in host cells, resulting in increased outer PS levels on budding virions. Scramblase enzymes carry out cellular PS externalization, thus, we targeted these proteins in order to manipulate viral envelope PS levels. We investigated two scramblases previously identified to be involved in EBOV PS levels, transmembrane protein 16F and Xk-related protein 8 (XKR8), as possible mediators of cellular and viral envelope surface PS levels during the replication of recombinant vesicular stomatitis virus containing its native glycoprotein (rVSV/G) or the EBOV glycoprotein (rVSV/EBOV-GP). We found that rVSV/G and rVSV/EBOV-GP virions produced in XKR8 knockout cells contain decreased levels of PS on their surfaces, and the PS-deficient rVSV/EBOV-GP virions are 70% less efficient at infecting cells through PS receptors. We also observed reduced rVSV and EBOV virus-like particle (VLP) budding in ΔXKR8 cells. Deleting XKR8 in HAP1 cells reduced rVSV/G and rVSV/EBOV-GP budding by 60% and 65% respectively, and reduced Ebola VLP budding more than 60%. We further demonstrated that caspase cleavage of XKR8 is required to promote budding. This suggests that XKR8, in addition to mediating virion PS levels, may also be critical for enveloped virus budding at the plasma membrane. Importance Within the last decade, countries in western and central Africa have experienced the most widespread and deadly Ebola outbreaks since the virus was identified in 1976. While outbreaks are primarily attributed to zoonotic transfer events, new evidence is emerging that outbreaks may be caused by a combination of spillover events and viral latency or persistence in survivors. The possibility that Ebola can remain dormant then re-emerge in survivors highlights the critical need to prevent the virus from entering and establishing infection in human cells. Thus far, host-cell scramblases TMEM16F and XKR8 have been implicated in Ebola envelope surface phosphatidylserine (PS) and cell entry using PS receptors. We assessed the contributions of these proteins using CRISPR knockout cells and two EBOV models: rVSV/EBOV-GP and EBOV VLPs. We observed that XKR8 is required for optimal EBOV envelope PS levels and infectivity, and particle budding across all viral models.
Collapse
|
7
|
Ebola Virus Uptake into Polarized Cells from the Apical Surface. Viruses 2019; 11:v11121117. [PMID: 31810353 PMCID: PMC6949903 DOI: 10.3390/v11121117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 12/17/2022] Open
Abstract
Ebola virus (EBOV) causes severe hemorrhagic fever with high mortality rates. EBOV can infect many types of cells. During severe EBOV infection, polarized epithelial and endothelial cells are damaged, which promotes vascular instability and dysregulation. However, the mechanism causing these symptoms is largely unknown. Here, we studied virus infection in polarized Vero C1008 cells grown on semipermeable Transwell by using EGFP-labeled Ebola virus-like particles (VLPs). Our results showed that Ebola VLPs preferred to enter polarized Vero cells from the apical cell surface. Furthermore, we showed that the EBOV receptors TIM-1 and Axl were distributed apically, which could be responsible for mediating efficient apical viral entry. Macropinocytosis and intracellular receptor Niemann–Pick type C1 (NPC1) had no polarized distribution, although they played roles in virus entry. This study provides a new view of EBOV uptake and cell polarization, which facilitates a further understanding of EBOV infection and pathogenesis.
Collapse
|
8
|
Vaughan K, Xu X, Peters B, Sette A. Investigation of Outbreak-Specific Nonsynonymous Mutations on Ebolavirus GP in the Context of Known Immune Reactivity. J Immunol Res 2018; 2018:1846207. [PMID: 30581874 PMCID: PMC6276448 DOI: 10.1155/2018/1846207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/01/2018] [Accepted: 10/22/2018] [Indexed: 11/17/2022] Open
Abstract
The global response to the most recent EBOV outbreak has led to increased generation and availability of data, which can be globally analyzed to increase our understanding of immune responses to EBOV. We analyzed the published antibody epitope data to identify regions immunogenic for humans on the main GP antigenic target and determine sequence variance/nonsynonymous mutations between historical isolates and variants from the 2013-2016 outbreak. Approximately half of the GP sequence has been reported as targeted by antibody responses. Our results show an enrichment of nonsynonymous mutations (NSMs) within epitopic regions on GP (70%, p = 0.0133). Mapping NSMs to human epitope reactivity may be useful for future therapeutic and prophylaxis development as well as for our general understanding of immunity against EBOV.
Collapse
Affiliation(s)
- Kerrie Vaughan
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Xiaojun Xu
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- University of California San Diego, Department of Medicine, La Jolla, CA 92093, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- University of California San Diego, Department of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Locher S, Schweneker M, Hausmann J, Zimmer G. Immunogenicity of propagation-restricted vesicular stomatitis virus encoding Ebola virus glycoprotein in guinea pigs. J Gen Virol 2018; 99:866-879. [PMID: 29869979 PMCID: PMC6152369 DOI: 10.1099/jgv.0.001085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vesicular stomatitis virus (VSV) expressing the Ebola virus (EBOV) glycoprotein (GP) in place of the VSV glycoprotein G (VSV/EBOV-GP) is a promising EBOV vaccine candidate which has already entered clinical phase 3 studies. Although this chimeric virus was tolerated overall by volunteers, it still caused viremia and adverse effects such as fever and arthritis, suggesting that it might not be sufficiently attenuated. In this study, the VSV/EBOV-GP vector was further modified in order to achieve attenuation while maintaining immunogenicity. All recombinant VSV constructs were propagated on VSV G protein expressing helper cells and used to immunize guinea pigs via the intramuscular route. The humoral immune response was analysed by EBOV-GP-specific fluorescence-linked immunosorbent assay, plaque reduction neutralization test and in vitro virus-spreading inhibition test that employed recombinant VSV/EBOV-GP expressing either green fluorescent protein or secreted Nano luciferase. Most modified vector constructs induced lower levels of protective antibodies than the parental VSV/EBOV-GP or a recombinant modified vaccinia virus Ankara vector encoding full-length EBOV-GP. However, the VSV/EBOV-GP(F88A) mutant was at least as immunogenic as the parental vaccine virus although it was highly propagation-restricted. This finding suggests that VSV-vectored vaccines need not be propagation-competent to induce a robust humoral immune response. However, VSV/EBOV-GP(F88A) rapidly reverted to a fully propagation-competent virus indicating that a single-point mutation is not sufficient to maintain the propagation-restricted phenotype.
Collapse
Affiliation(s)
- Samira Locher
- Institut für Virologie und Immunologie (IVI), Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland
| | - Marc Schweneker
- Bavarian Nordic GmbH, Fraunhoferstraße 13, D-82152 Martinsried, Germany
| | - Jürgen Hausmann
- Bavarian Nordic GmbH, Fraunhoferstraße 13, D-82152 Martinsried, Germany
| | - Gert Zimmer
- Institut für Virologie und Immunologie (IVI), Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland
| |
Collapse
|
10
|
Discovery and evolution of aloperine derivatives as novel anti-filovirus agents through targeting entry stage. Eur J Med Chem 2018; 149:45-55. [DOI: 10.1016/j.ejmech.2018.02.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 11/19/2022]
|
11
|
Abstract
Filoviruses are highly filamentous enveloped animal viruses that can cause severe haemorrhagic fevers. The filovirus ribonucleoprotein forms a highly organized double-layered helical nucleocapsid (NC) containing five different virally encoded proteins. The inner layer consists of NP, the RNA binding protein, complexed with the monopartite linear genome. A distinctive outer layer links individual NP subunits with bridges composed of VP24-VP35 heterodimers, which achieves condensation of the NP-RNA into tight helical coils. There are no vertical connections between the outer helical layers, explaining the flexibility of the NC and its ability to bend into tight curves without breaking the genomic RNA. These properties allow the formation of enveloped virions with varying polymorphisms, including single, linear, continuous, linked, comma-shaped and torroidal forms. Virion length is modular so that just one, or two or more genome copies may be present in each virion, producing polyploid particles. The matrix protein VP40, which drives budding and envelopment, is found in a layer adjacent to the inner cytoplasmic side of viral envelope and is arranged in a 5 nm lattice structure, but its exact symmetry is unclear. There is a constant low density gap between VP40 and the nucleocapsid, so that the latter is held rigidly centred on the long axis of the viral filament. This gap likely contains a region of flexible contacts between VP40 and the NC. The unique morphology of filoviruses may be related to high titre replication, their ease of transmission, and abilities to invade a wide range of host cells and tissues.
Collapse
|
12
|
Balmith M, Soliman MES. Potential Ebola drug targets — filling the gap: a critical step forward towards the design and discovery of potential drugs. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
The Tetherin Antagonism of the Ebola Virus Glycoprotein Requires an Intact Receptor-Binding Domain and Can Be Blocked by GP1-Specific Antibodies. J Virol 2016; 90:11075-11086. [PMID: 27707924 DOI: 10.1128/jvi.01563-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022] Open
Abstract
The glycoprotein of Ebola virus (EBOV GP), a member of the family Filoviridae, facilitates viral entry into target cells. In addition, EBOV GP antagonizes the antiviral activity of the host cell protein tetherin, which may otherwise restrict EBOV release from infected cells. However, it is unclear how EBOV GP antagonizes tetherin, and it is unknown whether the GP of Lloviu virus (LLOV), a filovirus found in dead bats in Northern Spain, also counteracts tetherin. Here, we show that LLOV GP antagonizes tetherin, indicating that tetherin may not impede LLOV spread in human cells. Moreover, we demonstrate that appropriate processing of N-glycans in tetherin/GP-coexpressing cells is required for tetherin counteraction by EBOV GP. Furthermore, we show that an intact receptor-binding domain (RBD) in the GP1 subunit of EBOV GP is a prerequisite for tetherin counteraction. In contrast, blockade of Niemann-Pick disease type C1 (NPC1), a cellular binding partner of the RBD, did not interfere with tetherin antagonism. Finally, we provide evidence that an antibody directed against GP1, which protects mice from a lethal EBOV challenge, may block GP-dependent tetherin antagonism. Our data, in conjunction with previous reports, indicate that tetherin antagonism is conserved among the GPs of all known filoviruses and demonstrate that the GP1 subunit of EBOV GP plays a central role in tetherin antagonism. IMPORTANCE Filoviruses are reemerging pathogens that constitute a public health threat. Understanding how Ebola virus (EBOV), a highly pathogenic filovirus responsible for the 2013-2016 Ebola virus disease epidemic in western Africa, counteracts antiviral effectors of the innate immune system might help to define novel targets for antiviral intervention. Similarly, determining whether Lloviu virus (LLOV), a filovirus detected in bats in northern Spain, is inhibited by innate antiviral effectors in human cells might help to determine whether the virus constitutes a threat to humans. The present study shows that LLOV, like EBOV, counteracts the antiviral effector protein tetherin via its glycoprotein (GP), suggesting that tetherin does not pose a defense against LLOV spread in humans. Moreover, our work identifies the GP1 subunit of EBOV GP, in particular an intact receptor-binding domain, as critical for tetherin counteraction and provides evidence that antibodies directed against GP1 can interfere with tetherin counteraction.
Collapse
|
14
|
Wec AZ, Nyakatura EK, Herbert AS, Howell KA, Holtsberg FW, Bakken RR, Mittler E, Christin JR, Shulenin S, Jangra RK, Bharrhan S, Kuehne AI, Bornholdt ZA, Flyak AI, Saphire EO, Crowe JE, Aman MJ, Dye JM, Lai JR, Chandran K. A "Trojan horse" bispecific-antibody strategy for broad protection against ebolaviruses. Science 2016; 354:350-354. [PMID: 27608667 PMCID: PMC5647781 DOI: 10.1126/science.aag3267] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/25/2016] [Indexed: 12/26/2022]
Abstract
There is an urgent need for monoclonal antibody (mAb) therapies that broadly protect against Ebola virus and other filoviruses. The conserved, essential interaction between the filovirus glycoprotein, GP, and its entry receptor Niemann-Pick C1 (NPC1) provides an attractive target for such mAbs but is shielded by multiple mechanisms, including physical sequestration in late endosomes. Here, we describe a bispecific-antibody strategy to target this interaction, in which mAbs specific for NPC1 or the GP receptor-binding site are coupled to a mAb against a conserved, surface-exposed GP epitope. Bispecific antibodies, but not parent mAbs, neutralized all known ebolaviruses by coopting viral particles themselves for endosomal delivery and conferred postexposure protection against multiple ebolaviruses in mice. Such "Trojan horse" bispecific antibodies have potential as broad antifilovirus immunotherapeutics.
Collapse
Affiliation(s)
- Anna Z Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Elisabeth K Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrew S Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Katie A Howell
- Integrated Biotherapeutics Inc., Gaithersburg, MD 20878, USA
| | | | - Russell R Bakken
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John R Christin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sergey Shulenin
- Integrated Biotherapeutics Inc., Gaithersburg, MD 20878, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sushma Bharrhan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ana I Kuehne
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Zachary A Bornholdt
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 10550, USA
| | - Andrew I Flyak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37235, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 10550, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 10550, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37235, USA.
- Department of Pediatrics, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN 37232, USA
| | - M Javad Aman
- Integrated Biotherapeutics Inc., Gaithersburg, MD 20878, USA.
| | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
15
|
Yuan S, Cao L, Ling H, Dang M, Sun Y, Zhang X, Chen Y, Zhang L, Su D, Wang X, Rao Z. TIM-1 acts a dual-attachment receptor for Ebolavirus by interacting directly with viral GP and the PS on the viral envelope. Protein Cell 2016; 6:814-24. [PMID: 26487564 PMCID: PMC4624681 DOI: 10.1007/s13238-015-0220-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/30/2015] [Indexed: 11/09/2022] Open
Abstract
Ebolavirus can cause hemorrhagic fever in humans with a mortality rate of 50%–90%. Currently, no approved vaccines and antiviral therapies are available. Human TIM1 is considered as an attachment factor for EBOV, enhancing viral infection through interaction with PS located on the viral envelope. However, reasons underlying the preferable usage of hTIM-1, but not other PS binding receptors by filovirus, remain unknown. We firstly demonstrated a direct interaction between hTIM-1 and EBOV GP in vitro and determined the crystal structures of the Ig V domains of hTIM-1 and hTIM-4. The binding region in hTIM-1 to EBOV GP was mapped by chimeras and mutation assays, which were designed based on structural analysis. Pseudovirion infection assays performed using hTIM-1 and its homologs as well as point mutants verified the location of the GP binding site and the importance of EBOV GP-hTIM-1 interaction in EBOV cellular entry.
Collapse
|
16
|
|
17
|
Misasi J, Gilman MSA, Kanekiyo M, Gui M, Cagigi A, Mulangu S, Corti D, Ledgerwood JE, Lanzavecchia A, Cunningham J, Muyembe-Tamfun JJ, Baxa U, Graham BS, Xiang Y, Sullivan NJ, McLellan JS. Structural and molecular basis for Ebola virus neutralization by protective human antibodies. Science 2016; 351:1343-6. [PMID: 26917592 PMCID: PMC5241105 DOI: 10.1126/science.aad6117] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
Ebola virus causes hemorrhagic fever with a high case fatality rate for which there is no approved therapy. Two human monoclonal antibodies, mAb100 and mAb114, in combination, protect nonhuman primates against all signs of Ebola virus disease, including viremia. Here, we demonstrate that mAb100 recognizes the base of the Ebola virus glycoprotein (GP) trimer, occludes access to the cathepsin-cleavage loop, and prevents the proteolytic cleavage of GP that is required for virus entry. We show that mAb114 interacts with the glycan cap and inner chalice of GP, remains associated after proteolytic removal of the glycan cap, and inhibits binding of cleaved GP to its receptor. These results define the basis of neutralization for two protective antibodies and may facilitate development of therapies and vaccines.
Collapse
Affiliation(s)
- John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02215, USA
| | - Morgan S A Gilman
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miao Gui
- Centre for Infectious Diseases Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 China
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabue Mulangu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Davide Corti
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland. Institute of Microbiology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - James Cunningham
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jean Jacques Muyembe-Tamfun
- National Institute for Biomedical Research, National Laboratory of Public Health, Kinshasa B.P. 1197, Democratic Republic of the Congo
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ye Xiang
- Centre for Infectious Diseases Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 China.
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jason S McLellan
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
18
|
Johansen LM, DeWald LE, Shoemaker CJ, Hoffstrom BG, Lear-Rooney CM, Stossel A, Nelson E, Delos SE, Simmons JA, Grenier JM, Pierce LT, Pajouhesh H, Lehár J, Hensley LE, Glass PJ, White JM, Olinger GG. A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity. Sci Transl Med 2016; 7:290ra89. [PMID: 26041706 DOI: 10.1126/scitranslmed.aaa5597] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently, no approved therapeutics exist to treat or prevent infections induced by Ebola viruses, and recent events have demonstrated an urgent need for rapid discovery of new treatments. Repurposing approved drugs for emerging infections remains a critical resource for potential antiviral therapies. We tested ~2600 approved drugs and molecular probes in an in vitro infection assay using the type species, Zaire ebolavirus. Selective antiviral activity was found for 80 U.S. Food and Drug Administration-approved drugs spanning multiple mechanistic classes, including selective estrogen receptor modulators, antihistamines, calcium channel blockers, and antidepressants. Results using an in vivo murine Ebola virus infection model confirmed the protective ability of several drugs, such as bepridil and sertraline. Viral entry assays indicated that most of these antiviral drugs block a late stage of viral entry. By nature of their approved status, these drugs have the potential to be rapidly advanced to clinical settings and used as therapeutic countermeasures for Ebola virus infections.
Collapse
Affiliation(s)
- Lisa M Johansen
- Horizon Discovery Inc., 245 First Street, Cambridge, MA 02142, USA
| | - Lisa Evans DeWald
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | - Charles J Shoemaker
- University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | | | - Calli M Lear-Rooney
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | - Andrea Stossel
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | - Elizabeth Nelson
- University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Sue E Delos
- University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - James A Simmons
- University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Jill M Grenier
- Horizon Discovery Inc., 245 First Street, Cambridge, MA 02142, USA
| | - Laura T Pierce
- Horizon Discovery Inc., 245 First Street, Cambridge, MA 02142, USA
| | - Hassan Pajouhesh
- Horizon Discovery Inc., 245 First Street, Cambridge, MA 02142, USA
| | - Joseph Lehár
- Horizon Discovery Inc., 245 First Street, Cambridge, MA 02142, USA. Bioinformatics Program, Boston University, 20 Cummington Street, Boston, MA 02215, USA
| | - Lisa E Hensley
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | - Pamela J Glass
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | - Judith M White
- University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Gene G Olinger
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA.
| |
Collapse
|
19
|
Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies. mBio 2016; 7:e02154-15. [PMID: 26908579 PMCID: PMC4791852 DOI: 10.1128/mbio.02154-15] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED The filovirus surface glycoprotein (GP) mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS) that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics. IMPORTANCE Ebola virus uses its glycoprotein (GP) to enter new host cells. During entry, GP must be cleaved by human enzymes in order for receptor binding to occur. Here, we provide the crystal structure of the cleaved form of Ebola virus GP. We demonstrate that cleavage exposes a site at the top of GP and that this site binds the critical domain C of the receptor, termed Niemann-Pick C1 (NPC1). We perform mutagenesis to find parts of the site essential for binding NPC1 and map distinct roles for an upper, charged crest and lower, hydrophobic trough in cleaved GP. We find that this 3-dimensional site is conserved across the filovirus family and that antibody directed against this site is able to bind cleaved GP from every filovirus tested and neutralize viruses bearing those GPs.
Collapse
|
20
|
Miller CR, Johnson EL, Burke AZ, Martin KP, Miura TA, Wichman HA, Brown CJ, Ytreberg FM. Initiating a watch list for Ebola virus antibody escape mutations. PeerJ 2016; 4:e1674. [PMID: 26925318 PMCID: PMC4768679 DOI: 10.7717/peerj.1674] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/18/2016] [Indexed: 12/26/2022] Open
Abstract
The 2014 Ebola virus (EBOV) outbreak in West Africa is the largest in recorded history and resulted in over 11,000 deaths. It is essential that strategies for treatment and containment be developed to avoid future epidemics of this magnitude. With the development of vaccines and antibody-based therapies using the envelope glycoprotein (GP) of the 1976 Mayinga strain, one important strategy is to anticipate how the evolution of EBOV might compromise these efforts. In this study we have initiated a watch list of potential antibody escape mutations of EBOV by modeling interactions between GP and the antibody KZ52. The watch list was generated using molecular modeling to estimate stability changes due to mutation. Every possible mutation of GP was considered and the list was generated from those that are predicted to disrupt GP-KZ52 binding but not to disrupt the ability of GP to fold and to form trimers. The resulting watch list contains 34 mutations (one of which has already been seen in humans) at six sites in the GP2 subunit. Should mutations from the watch list appear and spread during an epidemic, it warrants attention as these mutations may reflect an evolutionary response from the virus that could reduce the effectiveness of interventions such as vaccination. However, this watch list is incomplete and emphasizes the need for more experimental structures of EBOV interacting with antibodies in order to expand the watch list to other epitopes. We hope that this work provokes experimental research on evolutionary escape in both Ebola and other viral pathogens.
Collapse
Affiliation(s)
- Craig R Miller
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States; Department of Mathematics, University of Idaho, Moscow, ID, United States; Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States; Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Erin L Johnson
- Center for Modeling Complex Interactions, University of Idaho , Moscow, ID , United States
| | - Aran Z Burke
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States; Department of Physics, University of Idaho, Moscow, ID, United States
| | - Kyle P Martin
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States; Department of Physics, University of Idaho, Moscow, ID, United States
| | - Tanya A Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States; Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States
| | - Holly A Wichman
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States; Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States; Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Celeste J Brown
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States; Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States; Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - F Marty Ytreberg
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States; Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States; Department of Physics, University of Idaho, Moscow, ID, United States
| |
Collapse
|
21
|
Markosyan RM, Miao C, Zheng YM, Melikyan GB, Liu SL, Cohen FS. Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger. PLoS Pathog 2016; 12:e1005373. [PMID: 26730950 PMCID: PMC4711667 DOI: 10.1371/journal.ppat.1005373] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 12/08/2015] [Indexed: 12/11/2022] Open
Abstract
Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge—a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry. The devastation and transmissibility of Ebola virus (EBOV) are well known. However, the manner in which EBOV enters host cells through endosomal membrane remains elusive. Here, we have developed a convenient experimental system to mimic EBOV fusion in endosomes: cells expressing the fusion protein of EBOV, GP, on their surface are fused to target cells. This system exhibits the known key properties of EBOV fusion. We show that the pH-dependence of EBOV fusion is caused by the pH-dependence of cathepsins, proteases known to cleave EBOV GP into a fusion-competent form. We demonstrate that the fusion activity of this cleaved form is independent of pH. We further show that the enlargement of the fusion pore created by EBOV GP is unusually slow in reaching sizes necessary to pass EBOV’s genome—this is atypical of virally created fusion pores. This cell-cell fusion system should provide a useful platform for developing drugs against EBOV infection.
Collapse
Affiliation(s)
- Ruben M. Markosyan
- Rush University Medical Center, Department of Molecular Biophysics and Physiology, Chicago, Illinois, United States of America
| | - Chunhui Miao
- University of Missouri School of Medicine, Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, Columbia, Missouri, United States of America
| | - Yi-Min Zheng
- University of Missouri School of Medicine, Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, Columbia, Missouri, United States of America
| | - Gregory B. Melikyan
- Emory University Medical School, Department of Pediatrics, Infectious Diseases, Atlanta, Georgia, United States of America
| | - Shan-Lu Liu
- University of Missouri School of Medicine, Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, Columbia, Missouri, United States of America
- * E-mail: (SLL); (FSC)
| | - Fredric S. Cohen
- Rush University Medical Center, Department of Molecular Biophysics and Physiology, Chicago, Illinois, United States of America
- * E-mail: (SLL); (FSC)
| |
Collapse
|
22
|
Miao C, Li M, Zheng YM, Cohen FS, Liu SL. Cell-cell contact promotes Ebola virus GP-mediated infection. Virology 2015; 488:202-15. [PMID: 26655238 DOI: 10.1016/j.virol.2015.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
Abstract
Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Here we provide evidence that cell-cell contact promotes infection mediated by the glycoprotein (GP) of EBOV. Interestingly, expression of EBOV GP alone, even in the absence of retroviral Gag-Pol, is sufficient to transfer a retroviral vector encoding Tet-off from cell to cell. Cell-to-cell infection mediated by EBOV GP is blocked by inhibitors of actin polymerization, but appears to be less sensitive to KZ52 neutralization. Treatment of co-cultured cells with cathepsin B/L inhibitors, or an entry inhibitor 3.47 that targets the receptor NPC1 for virus binding, also blocks cell-to-cell infection. Cell-cell contact also enhances spread of rVSV bearing GP in monocytes and macrophages, the primary targets of natural EBOV infection. Altogether, our study reveals that cell-cell contact promotes EBOV GP-mediated infection, and provides new insight into understanding EBOV spread and viral pathogenesis.
Collapse
Affiliation(s)
- Chunhui Miao
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Minghua Li
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Yi-Min Zheng
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Fredric S Cohen
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Shan-Lu Liu
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
23
|
Martins K, Carra JH, Cooper CL, Kwilas SA, Robinson CG, Shurtleff AC, Schokman RD, Kuehl KA, Wells JB, Steffens JT, van Tongeren SA, Hooper JW, Bavari S. Cross-protection conferred by filovirus virus-like particles containing trimeric hybrid glycoprotein. Viral Immunol 2015; 28:62-70. [PMID: 25514232 DOI: 10.1089/vim.2014.0071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Filoviruses are causative agents of hemorrhagic fever, and to date no effective vaccine or therapeutic has been approved to combat infection. Filovirus glycoprotein (GP) is the critical immunogenic component of filovirus vaccines, eliciting high levels of antibody after successful vaccination. Previous work has shown that protection against both Ebola virus (EBOV) and Marburg virus (MARV) can be achieved by vaccinating with a mixture of virus-like particles (VLPs) expressing either EBOV GP or MARV GP. In this study, the potential for eliciting effective immune responses against EBOV, Sudan virus, and MARV with a single GP construct was tested. Trimeric hybrid GPs were produced that expressed the sequence of Marburg GP2 in conjunction with a hybrid GP1 composed EBOV and Sudan virus GP sequences. VLPs expressing these constructs, along with EBOV VP40, provided comparable protection against MARV challenge, resulting in 75 or 100% protection. Protection from EBOV challenge differed depending upon the hybrid used, however, with one conferring 75% protection and one conferring no protection. By comparing the overall antibody titers and the neutralizing antibody titers specific for each virus, it is shown that higher antibody responses were elicited by the C terminal region of GP1 than by the N terminal region, and this correlated with protection. These data collectively suggest that GP2 and the C terminal region of GP1 are highly immunogenic, and they advance progress toward the development of a pan-filovirus vaccine.
Collapse
Affiliation(s)
- Karen Martins
- 1 Department of Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID) , Frederick, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Basharat Z, Yasmin A. In silico assessment of phosphorylation and O-β-GlcNAcylation sites in human NPC1 protein critical for Ebola virus entry. INFECTION GENETICS AND EVOLUTION 2015; 34:326-38. [DOI: 10.1016/j.meegid.2015.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 12/01/2022]
|
25
|
Olabode AS, Jiang X, Robertson DL, Lovell SC. Ebolavirus is evolving but not changing: No evidence for functional change in EBOV from 1976 to the 2014 outbreak. Virology 2015; 482:202-7. [PMID: 25880111 PMCID: PMC4503884 DOI: 10.1016/j.virol.2015.03.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/11/2015] [Accepted: 03/15/2015] [Indexed: 01/05/2023]
Abstract
The 2014 epidemic of Ebola virus disease (EVD) has had a devastating impact in West Africa. Sequencing of ebolavirus (EBOV) from infected individuals has revealed extensive genetic variation, leading to speculation that the virus may be adapting to humans, accounting for the scale of the 2014 outbreak. We computationally analyze the variation associated with all EVD outbreaks, and find none of the amino acid replacements lead to identifiable functional changes. These changes have minimal effect on protein structure, being neither stabilizing nor destabilizing, are not found in regions of the proteins associated with known functions and tend to cluster in poorly constrained regions of proteins, specifically intrinsically disordered regions. We find no evidence that the difference between the current and previous outbreaks is due to evolutionary changes associated with transmission to humans. Instead, epidemiological factors are likely to be responsible for the unprecedented spread of EVD.
Collapse
Affiliation(s)
- Abayomi S Olabode
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Xiaowei Jiang
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK; Department of Genetics, University of Cambridge, Cambridge, UK
| | - David L Robertson
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | - Simon C Lovell
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
26
|
Less is more: Ebola virus surface glycoprotein expression levels regulate virus production and infectivity. J Virol 2014; 89:1205-17. [PMID: 25392212 DOI: 10.1128/jvi.01810-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The Ebola virus (EBOV) surface glycoprotein (GP1,2) mediates host cell attachment and fusion and is the primary target for host neutralizing antibodies. Expression of GP1,2 at high levels disrupts normal cell physiology, and EBOV uses an RNA-editing mechanism to regulate expression of the GP gene. In this study, we demonstrate that high levels of GP1,2 expression impair production and release of EBOV virus-like particles (VLPs) as well as infectivity of GP1,2-pseudotyped viruses. We further show that this effect is mediated through two mechanisms. First, high levels of GP1,2 expression reduce synthesis of other proteins needed for virus assembly. Second, viruses containing high levels of GP1,2 are intrinsically less infectious, possibly due to impaired receptor binding or endosomal processing. Importantly, proteolysis can rescue the infectivity of high-GP1,2-containing viruses. Taken together, our findings indicate that GP1,2 expression levels have a profound effect on factors that contribute to virus fitness and that RNA editing may be an important mechanism employed by EBOV to regulate GP1,2 expression in order to optimize virus production and infectivity. IMPORTANCE The Ebola virus (EBOV), as well as other members of the Filoviridae family, causes severe hemorrhagic fever that is highly lethal, with up to 90% mortality. The EBOV surface glycoprotein (GP1,2) plays important roles in virus infection and pathogenesis, and its expression is tightly regulated by an RNA-editing mechanism during virus replication. Our study demonstrates that the level of GP1,2 expression profoundly affects virus particle production and release and uncovers a new mechanism by which Ebola virus infectivity is regulated by the level of GP1,2 expression. These findings extend our understanding of EBOV infection and replication in adaptation of host environments, which will aid the development of countermeasures against EBOV infection.
Collapse
|
27
|
Identification of continuous human B-cell epitopes in the VP35, VP40, nucleoprotein and glycoprotein of Ebola virus. PLoS One 2014; 9:e96360. [PMID: 24914933 PMCID: PMC4051576 DOI: 10.1371/journal.pone.0096360] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 04/04/2014] [Indexed: 12/28/2022] Open
Abstract
Ebola virus (EBOV) is a highly virulent human pathogen. Recovery of infected patients is associated with efficient EBOV-specific immunoglobulin G (IgG) responses, whereas fatal outcome is associated with defective humoral immunity. As B-cell epitopes on EBOV are poorly defined, we sought to identify specific epitopes in four EBOV proteins (Glycoprotein (GP), Nucleoprotein (NP), and matrix Viral Protein (VP)40 and VP35). For the first time, we tested EBOV IgG+ sera from asymptomatic individuals and symptomatic Gabonese survivors, collected during the early humoral response (seven days after the end of symptoms) and the late memory phase (7–12 years post-infection). We also tested sera from EBOV-seropositive patients who had never had clinical signs of hemorrhagic fever or who lived in non-epidemic areas (asymptomatic subjects). We found that serum from asymptomatic individuals was more strongly reactive to VP40 peptides than to GP, NP or VP35. Interestingly, anti-EBOV IgG from asymptomatic patients targeted three immunodominant regions of VP40 reported to play a crucial role in virus assembly and budding. In contrast, serum from most survivors of the three outbreaks, collected a few days after the end of symptoms, reacted mainly with GP peptides. However, in asymptomatic subjects the longest immunodominant domains were identified in GP, and analysis of the GP crystal structure revealed that these domains covered a larger surface area of the chalice bowl formed by three GP1 subunits. The B-cell epitopes we identified in the EBOV VP35, VP40, NP and GP proteins may represent important tools for understanding the humoral response to this virus and for developing new antibody-based therapeutics or detection methods.
Collapse
|
28
|
Gregory DA, Olinger GY, Lucas TM, Johnson MC. Diverse viral glycoproteins as well as CD4 co-package into the same human immunodeficiency virus (HIV-1) particles. Retrovirology 2014; 11:28. [PMID: 24708808 PMCID: PMC3985584 DOI: 10.1186/1742-4690-11-28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/19/2014] [Indexed: 12/17/2022] Open
Abstract
Background Retroviruses can acquire not only their own glycoproteins as they bud from the cellular membrane, but also some cellular and foreign viral glycoproteins. Many of these non-native glycoproteins are actively recruited to budding virions, particularly other viral glycoproteins. This observation suggests that there may be a conserved mechanism underlying the recruitment of glycoproteins into viruses. If a conserved mechanism is used, diverse glycoproteins should localize to a single budding retroviral particle. On the other hand, if viral glycoproteins have divergent mechanisms for recruitment, the different glycoproteins could segregate into different particles. Results To determine if co-packaging occurs among different glycoproteins, we designed an assay that combines virion antibody capture and a determination of infectivity based on a luciferase reporter. Virions were bound to a plate with an antibody against one glycoprotein, and then the infectivity was measured with cells that allow entry only with a second glycoprotein. We tested pairings of glycoproteins from HIV, murine leukemia virus (MLV), Rous sarcoma virus (RSV), vesicular stomatitis virus (VSV), and Ebola virus. The results showed that glycoproteins that were actively recruited into virions were co-packaged efficiently with each other. We also tested cellular proteins and found CD4 also had a similar correlation between active recruitment and efficient co-packaging, but other cellular proteins did not. Conclusion Glycoproteins that are actively incorporated into HIV-1 virions are efficiently co-packaged into the same virus particles, suggesting that the same general mechanism for recruitment may act in many viruses.
Collapse
Affiliation(s)
| | | | | | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
29
|
Abstract
UNLABELLED T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members were recently identified as phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance entry of Ebola virus (EBOV) and other viruses by binding PtdSer on the viral envelope, concentrating virus on the cell surface, and promoting subsequent internalization. The PtdSer-binding activity of the immunoglobulin-like variable (IgV) domain is essential for both virus binding and internalization by TIM-1. However, TIM-3, whose IgV domain also binds PtdSer, does not effectively enhance virus entry, indicating that other domains of TIM proteins are functionally important. Here, we investigate the domains supporting enhancement of enveloped virus entry, thereby defining the features necessary for a functional PVEER. Using a variety of chimeras and deletion mutants, we found that in addition to a functional PtdSer-binding domain PVEERs require a stalk domain of sufficient length, containing sequences that promote an extended structure. Neither the cytoplasmic nor the transmembrane domain of TIM-1 is essential for enhancing virus entry, provided the protein is still plasma membrane bound. Based on these defined characteristics, we generated a mimic lacking TIM sequences and composed of annexin V, the mucin-like domain of α-dystroglycan, and a glycophosphatidylinositol anchor that functioned as a PVEER to enhance transduction of virions displaying Ebola, Chikungunya, Ross River, or Sindbis virus glycoproteins. This identification of the key features necessary for PtdSer-mediated enhancement of virus entry provides a basis for more effective recognition of unknown PVEERs. IMPORTANCE T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members are recently identified phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance virus entry by binding the phospholipid, PtdSer, present on the viral membrane. While it is known that the PtdSer binding is essential for the PVEER function of TIM-1, TIM-3 shares this binding activity but does not enhance virus entry. No comprehensive studies have been done to characterize the other domains of TIM-1. In this study, using a variety of chimeric proteins and deletion mutants, we define the features necessary for a functional PVEER. With these features in mind, we generated a TIM-1 mimic using functionally similar domains from other proteins. This mimic, like TIM-1, effectively enhanced transduction. These studies provide insight into the key features necessary for PVEERs and will allow for more effective identification of unknown PVEERs.
Collapse
|
30
|
Johansen LM, Brannan JM, Delos SE, Shoemaker CJ, Stossel A, Lear C, Hoffstrom BG, Dewald LE, Schornberg KL, Scully C, Lehár J, Hensley LE, White JM, Olinger GG. FDA-approved selective estrogen receptor modulators inhibit Ebola virus infection. Sci Transl Med 2014; 5:190ra79. [PMID: 23785035 DOI: 10.1126/scitranslmed.3005471] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ebola viruses remain a substantial threat to both civilian and military populations as bioweapons, during sporadic outbreaks, and from the possibility of accidental importation from endemic regions by infected individuals. Currently, no approved therapeutics exist to treat or prevent infection by Ebola viruses. Therefore, we performed an in vitro screen of Food and Drug Administration (FDA)- and ex-US-approved drugs and selected molecular probes to identify drugs with antiviral activity against the type species Zaire ebolavirus (EBOV). From this screen, we identified a set of selective estrogen receptor modulators (SERMs), including clomiphene and toremifene, which act as potent inhibitors of EBOV infection. Anti-EBOV activity was confirmed for both of these SERMs in an in vivo mouse infection model. This anti-EBOV activity occurred even in the absence of detectable estrogen receptor expression, and both SERMs inhibited virus entry after internalization, suggesting that clomiphene and toremifene are not working through classical pathways associated with the estrogen receptor. Instead, the response appeared to be an off-target effect where the compounds interfere with a step late in viral entry and likely affect the triggering of fusion. These data support the screening of readily available approved drugs to identify therapeutics for the Ebola viruses and other infectious diseases. The SERM compounds described in this report are an immediately actionable class of approved drugs that can be repurposed for treatment of filovirus infections.
Collapse
|
31
|
Abstract
The cell surface receptor T cell immunoglobulin mucin domain 1 (TIM-1) dramatically enhances filovirus infection of epithelial cells. Here, we showed that key phosphatidylserine (PtdSer) binding residues of the TIM-1 IgV domain are critical for Ebola virus (EBOV) entry through direct interaction with PtdSer on the viral envelope. PtdSer liposomes but not phosphatidylcholine liposomes competed with TIM-1 for EBOV pseudovirion binding and transduction. Further, annexin V (AnxV) substituted for the TIM-1 IgV domain, supporting a PtdSer-dependent mechanism. Our findings suggest that TIM-1-dependent uptake of EBOV occurs by apoptotic mimicry. Additionally, TIM-1 enhanced infection of a wide range of enveloped viruses, including alphaviruses and a baculovirus. As further evidence of the critical role of enveloped-virion-associated PtdSer in TIM-1-mediated uptake, TIM-1 enhanced internalization of pseudovirions and virus-like proteins (VLPs) lacking a glycoprotein, providing evidence that TIM-1 and PtdSer-binding receptors can mediate virus uptake independent of a glycoprotein. These results provide evidence for a broad role of TIM-1 as a PtdSer-binding receptor that mediates enveloped-virus uptake. Utilization of PtdSer-binding receptors may explain the wide tropism of many of these viruses and provide new avenues for controlling their virulence.
Collapse
|
32
|
Abstract
Antigen-presenting cells (APCs) are critical targets of Ebola virus (EBOV) infection in vivo. However, the susceptibility of monocytes to infection is controversial. Studies indicate productive monocyte infection, and yet monocytes are also reported to be resistant to EBOV GP-mediated entry. In contrast, monocyte-derived macrophages and dendritic cells are permissive for both EBOV entry and replication. Here, freshly isolated monocytes are demonstrated to indeed be refractory to EBOV entry. However, EBOV binds monocytes, and delayed entry occurs during monocyte differentiation. Cultured monocytes spontaneously downregulate the expression of viral entry restriction factors such as interferon-inducible transmembrane proteins, while upregulating the expression of critical EBOV entry factors cathepsin B and NPC1. Moreover, these processes are accelerated by EBOV infection. Finally, ectopic expression of NPC1 is sufficient to rescue entry into an undifferentiated, normally nonpermissive monocytic cell line. These results define the molecular basis for infection of APCs and suggest means to limit APC infection.
Collapse
|
33
|
A mutation in the Ebola virus envelope glycoprotein restricts viral entry in a host species- and cell-type-specific manner. J Virol 2013; 87:3324-34. [PMID: 23302883 DOI: 10.1128/jvi.01598-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zaire Ebola virus (EBOV) is a zoonotic pathogen that causes severe hemorrhagic fever in humans. A single viral glycoprotein (GP) mediates viral attachment and entry. Here, virus-like particle (VLP)-based entry assays demonstrate that a GP mutant, GP-F88A, which is defective for entry into a variety of human cell types, including antigen-presenting cells (APCs), such as macrophages and dendritic cells, can mediate viral entry into mouse CD11b(+) APCs. Like that of wild-type GP (GP-wt), GP-F88A-mediated entry occurs via a macropinocytosis-related pathway and requires endosomal cysteine proteases and an intact fusion peptide. Several additional hydrophobic residues lie in close proximity to GP-F88, including L111, I113, L122, and F225. GP mutants in which these residues are mutated to alanine displayed preferential and often impaired entry into several cell types, although not in a species-specific manner. Niemann-Pick C1 (NPC1) protein is an essential filovirus receptor that binds directly to GP. Overexpression of NPC1 was recently demonstrated to rescue GP-F88A-mediated entry. A quantitative enzyme-linked immunosorbent assay (ELISA) demonstrated that while the F88A mutation impairs GP binding to human NPC1 by 10-fold, it has little impact on GP binding to mouse NPC1. Interestingly, not all mouse macrophage cell lines permit GP-F88A entry. The IC-21 cell line was permissive, whereas RAW 264.7 cells were not. Quantitative reverse transcription (RT)-PCR assays demonstrate higher NPC1 levels in GP-F88A permissive IC-21 cells and mouse peritoneal macrophages than in RAW 264.7 cells. Cumulatively, these studies suggest an important role for NPC1 in the differential entry of GP-F88A into mouse versus human APCs.
Collapse
|
34
|
Kajihara M, Nakayama E, Marzi A, Igarashi M, Feldmann H, Takada A. Novel mutations in Marburg virus glycoprotein associated with viral evasion from antibody mediated immune pressure. J Gen Virol 2013; 94:876-883. [PMID: 23288419 DOI: 10.1099/vir.0.049114-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Marburg virus (MARV) and Ebola virus, members of the family Filoviridae, cause lethal haemorrhagic fever in humans and non-human primates. Although the outbreaks are concentrated mainly in Central Africa, these viruses are potential agents of imported infectious diseases and bioterrorism in non-African countries. Recent studies demonstrated that non-human primates passively immunized with virus-specific antibodies were successfully protected against fatal filovirus infection, highlighting the important role of antibodies in protective immunity for this disease. However, the mechanisms underlying potential evasion from antibody mediated immune pressure are not well understood. To analyse possible mutations involved in immune evasion in the MARV envelope glycoprotein (GP) which is the major target of protective antibodies, we selected escape mutants of recombinant vesicular stomatitis virus (rVSV) expressing MARV GP (rVSVΔG/MARVGP) by using two GP-specific mAbs, AGP127-8 and MGP72-17, which have been previously shown to inhibit MARV budding. Interestingly, several rVSVΔG/MARVGP variants escaping from the mAb pressure-acquired amino acid substitutions in the furin-cleavage site rather than in the mAb-specific epitopes, suggesting that these epitopes are recessed, not exposed on the uncleaved GP molecule, and therefore inaccessible to the mAbs. More surprisingly, some variants escaping mAb MGP72-17 lacked a large proportion of the mucin-like region of GP, indicating that these mutants efficiently escaped the selective pressure by deleting the mucin-like region including the mAb-specific epitope. Our data demonstrate that MARV GP possesses the potential to evade antibody mediated immune pressure due to extraordinary structural flexibility and variability.
Collapse
Affiliation(s)
- Masahiro Kajihara
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020, Japan
| | - Eri Nakayama
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020, Japan
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - Manabu Igarashi
- Division of Bioinformatics, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020, Japan
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - Ayato Takada
- School of Veterinary Medicine, the University of Zambia, P. O. Box 32379, Lusaka, Zambia.,Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020, Japan
| |
Collapse
|
35
|
Mohan GS, Li W, Ye L, Compans RW, Yang C. Antigenic subversion: a novel mechanism of host immune evasion by Ebola virus. PLoS Pathog 2012; 8:e1003065. [PMID: 23271969 PMCID: PMC3521666 DOI: 10.1371/journal.ppat.1003065] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 10/10/2012] [Indexed: 01/02/2023] Open
Abstract
In addition to its surface glycoprotein (GP1,2), Ebola virus (EBOV) directs the production of large quantities of a truncated glycoprotein isoform (sGP) that is secreted into the extracellular space. The generation of secreted antigens has been studied in several viruses and suggested as a mechanism of host immune evasion through absorption of antibodies and interference with antibody-mediated clearance. However such a role has not been conclusively determined for the Ebola virus sGP. In this study, we immunized mice with DNA constructs expressing GP1,2 and/or sGP, and demonstrate that sGP can efficiently compete for anti-GP12 antibodies, but only from mice that have been immunized by sGP. We term this phenomenon “antigenic subversion”, and propose a model whereby sGP redirects the host antibody response to focus on epitopes which it shares with membrane-bound GP1,2, thereby allowing it to absorb anti-GP1,2 antibodies. Unexpectedly, we found that sGP can also subvert a previously immunized host's anti-GP1,2 response resulting in strong cross-reactivity with sGP. This finding is particularly relevant to EBOV vaccinology since it underscores the importance of eliciting robust immunity that is sufficient to rapidly clear an infection before antigenic subversion can occur. Antigenic subversion represents a novel virus escape strategy that likely helps EBOV evade host immunity, and may represent an important obstacle to EBOV vaccine design. The function of the Ebola virus (EBOV) secreted glycoprotein (sGP) has been long debated, and the fact that sGP production is conserved among all known EBOV species strongly indicates an important role in the viral life cycle. Furthermore, the recent finding that EBOV mutates to a predominantly non-sGP-forming phenotype in cell culture, while the mutant virus reverts to an sGP-forming phenotype in vivo, suggests that sGP is critical for EBOV to survive in its infected host. Here we demonstrate that sGP can function to absorb anti-GP antibodies. More importantly, instead of simply passively absorbing host antibodies, sGP actively subverts the host immune response to induce cross-reactivity with epitopes it shares with membrane-bound GP1,2. Immune subversion by sGP represents a distinct mechanism from the use of secreted antigens as antibody decoys, an immune evasion tactic previously proposed for other viruses, and should be an important consideration for future EBOV vaccine design efforts since vaccines may need to be specifically tailored to avoid subversion.
Collapse
Affiliation(s)
- Gopi S. Mohan
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Wenfang Li
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ling Ye
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Richard W. Compans
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (RWC); (CY)
| | - Chinglai Yang
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (RWC); (CY)
| |
Collapse
|
36
|
AMP-activated protein kinase is required for the macropinocytic internalization of ebolavirus. J Virol 2012; 87:746-55. [PMID: 23115293 DOI: 10.1128/jvi.01634-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Identification of host factors that are needed for Zaire Ebolavirus (EBOV) entry provides insights into the mechanism(s) of filovirus uptake, and these factors may serve as potential antiviral targets. In order to identify novel host genes and pathways involved in EBOV entry, gene array findings in the National Cancer Institute's NCI-60 panel of human tumor cell lines were correlated with permissivity for EBOV glycoprotein (GP)-mediated entry. We found that the gene encoding the γ2 subunit of AMP-activated protein kinase (AMPK) strongly correlated with EBOV transduction in the tumor panel. The AMPK inhibitor compound C inhibited infectious EBOV replication in Vero cells and diminished EBOV GP-dependent, but not Lassa fever virus GPC-dependent, entry into a variety of cell lines in a dose-dependent manner. Compound C also prevented EBOV GP-mediated infection of primary human macrophages, a major target of filoviral replication in vivo. Consistent with a role for AMPK in filovirus entry, time-of-addition studies demonstrated that compound C abrogated infection when it was added at early time points but became progressively less effective when added later. Compound C prevented EBOV pseudovirion internalization at 37°C as cell-bound particles remained susceptible to trypsin digestion in the presence of the inhibitor but not in its absence. Mouse embryonic fibroblasts lacking the AMPKα1 and AMPKα2 catalytic subunits were significantly less permissive to EBOV GP-mediated infection than their wild-type counterparts, likely due to decreased macropinocytic uptake. In total, these findings implicate AMPK in macropinocytic events needed for EBOV GP-dependent entry and identify a novel cellular target for new filoviral antivirals.
Collapse
|
37
|
Abstract
Viruses of the genera Ebolavirus and Marburgvirus are filoviruses that cause haemorrhagic fever in primates, with extremely high fatality rates. Studies have focused on elucidating how these viruses enter host cells, with the aim of developing therapeutics. The ebolavirus glycoprotein has been found to play key parts in all steps of entry. Furthermore, recent studies have identified Niemann-Pick C1 (NPC1), a protein that resides deep in the endocytic pathway, as an important host factor in this process.
Collapse
|
38
|
Miller EH, Chandran K. Filovirus entry into cells - new insights. Curr Opin Virol 2012; 2:206-14. [PMID: 22445965 DOI: 10.1016/j.coviro.2012.02.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 02/08/2023]
Abstract
Filoviruses are hemorrhagic fever-causing agents that produce enveloped virions with a filamentous morphology. The viral surface glycoprotein, GP, orchestrates the surprisingly complex process by which filoviruses gain access to the cytoplasm of their host cells. GP mediates viral attachment to cells through multiple, redundant interactions with cell-surface factors. GP then induces virion internalization by a process that resembles cellular macropinocytosis. Within the endo/lysosomal pathway, GP undergoes a series of structural rearrangements, controlled by interactions with host factors, that prime and activate it to bring about fusion between the viral and cellular lipid bilayers. Membrane fusion delivers the viral nucleocapsid core into the cytoplasm, which is the site of filovirus replication. This review summarizes our understanding of the filovirus entry mechanism, with emphasis on recent findings.
Collapse
Affiliation(s)
- Emily Happy Miller
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | | |
Collapse
|
39
|
Miller EH, Obernosterer G, Raaben M, Herbert AS, Deffieu MS, Krishnan A, Ndungo E, Sandesara RG, Carette JE, Kuehne AI, Ruthel G, Pfeffer SR, Dye JM, Whelan SP, Brummelkamp TR, Chandran K. Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO J 2012; 31:1947-60. [PMID: 22395071 DOI: 10.1038/emboj.2012.53] [Citation(s) in RCA: 259] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 02/03/2012] [Indexed: 01/03/2023] Open
Abstract
Ebola and Marburg filoviruses cause deadly outbreaks of haemorrhagic fever. Despite considerable efforts, no essential cellular receptors for filovirus entry have been identified. We showed previously that Niemann-Pick C1 (NPC1), a lysosomal cholesterol transporter, is required for filovirus entry. Here, we demonstrate that NPC1 is a critical filovirus receptor. Human NPC1 fulfills a cardinal property of viral receptors: it confers susceptibility to filovirus infection when expressed in non-permissive reptilian cells. The second luminal domain of NPC1 binds directly and specifically to the viral glycoprotein, GP, and a synthetic single-pass membrane protein containing this domain has viral receptor activity. Purified NPC1 binds only to a cleaved form of GP that is generated within cells during entry, and only viruses containing cleaved GP can utilize a receptor retargeted to the cell surface. Our findings support a model in which GP cleavage by endosomal cysteine proteases unmasks the binding site for NPC1, and GP-NPC1 engagement within lysosomes promotes a late step in entry proximal to viral escape into the host cytoplasm. NPC1 is the first known viral receptor that recognizes its ligand within an intracellular compartment and not at the plasma membrane.
Collapse
Affiliation(s)
- Emily Happy Miller
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Filovirus entry: a novelty in the viral fusion world. Viruses 2012; 4:258-75. [PMID: 22470835 PMCID: PMC3315215 DOI: 10.3390/v4020258] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/24/2012] [Accepted: 01/30/2012] [Indexed: 12/18/2022] Open
Abstract
Ebolavirus (EBOV) and Marburgvirus (MARV) that compose the filovirus family of negative strand RNA viruses infect a broad range of mammalian cells. Recent studies indicate that cellular entry of this family of viruses requires a series of cellular protein interactions and molecular mechanisms, some of which are unique to filoviruses and others are commonly used by all viral glycoproteins. Details of this entry pathway are highlighted here. Virus entry into cells is initiated by the interaction of the viral glycoprotein(1) subunit (GP(1)) with both adherence factors and one or more receptors on the surface of host cells. On epithelial cells, we recently demonstrated that TIM-1 serves as a receptor for this family of viruses, but the cell surface receptors in other cell types remain unidentified. Upon receptor binding, the virus is internalized into endosomes primarily via macropinocytosis, but perhaps by other mechanisms as well. Within the acidified endosome, the heavily glycosylated GP(1) is cleaved to a smaller form by the low pH-dependent cellular proteases Cathepsin L and B, exposing residues in the receptor binding site (RBS). Details of the molecular events following cathepsin-dependent trimming of GP(1) are currently incomplete; however, the processed GP(1) specifically interacts with endosomal/lysosomal membranes that contain the Niemann Pick C1 (NPC1) protein and expression of NPC1 is required for productive infection, suggesting that GP/NPC1 interactions may be an important late step in the entry process. Additional events such as further GP(1) processing and/or reducing events may also be required to generate a fusion-ready form of the glycoprotein. Once this has been achieved, sequences in the filovirus GP(2) subunit mediate viral/cellular membrane fusion via mechanisms similar to those previously described for other enveloped viruses. This multi-step entry pathway highlights the complex and highly orchestrated path of internalization and fusion that appears unique for filoviruses.
Collapse
|
41
|
Abstract
Many viruses and toxins disassemble to enter host cells and cause disease. These conformational changes must be orchestrated temporally and spatially during entry to avoid premature disassembly leading to nonproductive pathways. Although viruses and toxins are evolutionarily distinct toxic agents, emerging findings in their respective fields have revealed that the cellular locations supporting disassembly, the host factors co-opted during disassembly, the nature of the conformational changes, and the physiological function served by disassembly are strikingly conserved. Here, we examine some of the shared disassembly principles observed in model viruses and toxins. Where appropriate, we also underscore their differences. Our major intention is to draw together the fields of viral and toxin cell entry by using lessons gleaned from each field to inform and benefit one another.
Collapse
Affiliation(s)
- Takamasa Inoue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
42
|
Beniac DR, Melito PL, deVarennes SL, Hiebert SL, Rabb MJ, Lamboo LL, Jones SM, Booth TF. The organisation of Ebola virus reveals a capacity for extensive, modular polyploidy. PLoS One 2012; 7:e29608. [PMID: 22247782 PMCID: PMC3256159 DOI: 10.1371/journal.pone.0029608] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/30/2011] [Indexed: 11/29/2022] Open
Abstract
Background Filoviruses, including Ebola virus, are unusual in being filamentous animal viruses. Structural data on the arrangement, stoichiometry and organisation of the component molecules of filoviruses has until now been lacking, partially due to the need to work under level 4 biological containment. The present study provides unique insights into the structure of this deadly pathogen. Methodology and Principal Findings We have investigated the structure of Ebola virus using a combination of cryo-electron microscopy, cryo-electron tomography, sub-tomogram averaging, and single particle image processing. Here we report the three-dimensional structure and architecture of Ebola virus and establish that multiple copies of the RNA genome can be packaged to produce polyploid virus particles, through an extreme degree of length polymorphism. We show that the helical Ebola virus inner nucleocapsid containing RNA and nucleoprotein is stabilized by an outer layer of VP24-VP35 bridges. Elucidation of the structure of the membrane-associated glycoprotein in its native state indicates that the putative receptor-binding site is occluded within the molecule, while a major neutralizing epitope is exposed on its surface proximal to the viral envelope. The matrix protein VP40 forms a regular lattice within the envelope, although its contacts with the nucleocapsid are irregular. Conclusions The results of this study demonstrate a modular organization in Ebola virus that accommodates a well-ordered, symmetrical nucleocapsid within a flexible, tubular membrane envelope.
Collapse
Affiliation(s)
- Daniel R. Beniac
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Pasquale L. Melito
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Shauna L. deVarennes
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Shannon L. Hiebert
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Melissa J. Rabb
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lindsey L. Lamboo
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Steven M. Jones
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Timothy F. Booth
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
43
|
Filoviruses require endosomal cysteine proteases for entry but exhibit distinct protease preferences. J Virol 2012; 86:3284-92. [PMID: 22238307 DOI: 10.1128/jvi.06346-11] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Filoviruses are enveloped viruses that cause sporadic outbreaks of severe hemorrhagic fever [CDC, MMWR Morb. Mortal. Wkly. Rep. 50:73-77, 2001; Colebunders and Borchert, J. Infect. 40:16-20, 2000; Colebunders et al., J. Infect. Dis. 196(Suppl. 2):S148-S153, 2007; Geisbert and Jahrling, Nat. Med. 10:S110-S121, 2004]. Previous studies revealed that endosomal cysteine proteases are host factors for ebolavirus Zaire (Chandran et al., Science 308:1643-1645, 2005; Schornberg et al., J. Virol. 80:4174-4178, 2006). In this report, we show that infection mediated by glycoproteins from other phylogenetically diverse filoviruses are also dependent on these proteases and provide additional evidence indicating that they cleave GP1 and expose the binding domain for the critical host factor Niemann-Pick C1. Using selective inhibitors and knockout-derived cell lines, we show that the ebolaviruses Zaire and Cote d'Ivoire are strongly dependent on cathepsin B, while the ebolaviruses Sudan and Reston and Marburg virus are not. Taking advantage of previous studies of cathepsin B inhibitor-resistant viruses (Wong et al., J. Virol. 84:163-175, 2010), we found that virus-specific differences in the requirement for cathepsin B are correlated with sequence polymorphisms at residues 47 in GP1 and 584 in GP2. We applied these findings to the analysis of additional ebolavirus isolates and correctly predicted that the newly identified ebolavirus species Bundibugyo, containing D47 and I584, is cathepsin B dependent and that ebolavirus Zaire-1995, the single known isolate of ebolavirus Zaire that lacks D47, is not. We also obtained evidence for virus-specific differences in the role of cathepsin L, including cooperation with cathepsin B. These studies strongly suggest that the use of endosomal cysteine proteases as host factors for entry is a general property of members of the family Filoviridae.
Collapse
|
44
|
Iwasa A, Shimojima M, Kawaoka Y. sGP serves as a structural protein in Ebola virus infection. J Infect Dis 2011; 204 Suppl 3:S897-903. [PMID: 21987767 DOI: 10.1093/infdis/jir313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND sGP, which is perceived as nonstructural, secretory glycoprotein, shares 295 amino acids at its N-terminal with GP(1,2), which include the specific residue necessary to interact with GP(2). In the present study, we tested whether the sGP protein of Zaire ebolavirus (ZEBOV) could substitute for GP(1) and form a complex with GP(2), thus serving as a structural protein. METHODS We expressed ZEBOV GP(1,2), VP40, and NP proteins, together with sGP protein, from expression plasmids and examined the resultant virus-like particles by using Western blot. Cells expressing GP(2) in combination with either GP(1) or sGP were analyzed by using flow cytometry with the KZ52 antibody, which recognizes a GP(1,2) conformational epitope. A VSV pseudotype, VSVΔG*, which expresses a GFP reporter gene instead of the G protein, was used to produce pseudotyped viruses encoding sGP and variants of GP to test the contribution of sGP to infectivity. RESULTS Western blot and flow cytometric analyses suggested the existence of a covalently linked sGP-GP(2) molecule. VSVΔG*(sGP + GP(2)) and VSVΔG*(GP(1,2)) infected Vero E6 cells and were neutralized by the KZ52 antibody. Overexpression of sGP reduced the titer of VSVΔG*(GP(1,2)). CONCLUSIONS ZEBOV sGP can substitute for GP(1), forming a sGP-GP(2) complex and conferring infectivity. Our studies suggest a novel role for sGP as a structural protein.
Collapse
Affiliation(s)
- Ayaka Iwasa
- Division of Virology, Department of Microbiology and Immunology, University of Tokyo, Japan
| | | | | |
Collapse
|
45
|
Cathepsin cleavage potentiates the Ebola virus glycoprotein to undergo a subsequent fusion-relevant conformational change. J Virol 2011; 86:364-72. [PMID: 22031933 DOI: 10.1128/jvi.05708-11] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cellular entry of Ebola virus (EBOV), a deadly hemorrhagic fever virus, is mediated by the viral glycoprotein (GP). The receptor-binding subunit of GP must be cleaved (by endosomal cathepsins) in order for entry and infection to proceed. Cleavage appears to proceed through 50-kDa and 20-kDa intermediates, ultimately generating a key 19-kDa core. How 19-kDa GP is subsequently triggered to bind membranes and induce fusion remains a mystery. Here we show that 50-kDa GP cannot be triggered to bind to liposomes in response to elevated temperature but that 20-kDa and 19-kDa GP can. Importantly, 19-kDa GP can be triggered at temperatures ∼10°C lower than 20-kDa GP, suggesting that it is the most fusion ready form. Triggering by heat (or urea) occurs only at pH 5, not pH 7.5, and involves the fusion loop, as a fusion loop mutant is defective in liposome binding. We further show that mild reduction (preferentially at low pH) triggers 19-kDa GP to bind to liposomes, with the wild-type protein being triggered to a greater extent than the fusion loop mutant. Moreover, mild reduction inactivates pseudovirion infection, suggesting that reduction can also trigger 19-kDa GP on virus particles. Our results support the hypothesis that priming of EBOV GP, specifically to the 19-kDa core, potentiates GP to undergo subsequent fusion-relevant conformational changes. Our findings also indicate that low pH and an additional endosomal factor (possibly reduction or possibly a process mimicked by reduction) act as fusion triggers.
Collapse
|
46
|
Côté M, Zheng YM, Albritton LM, Liu SL. Single residues in the surface subunits of oncogenic sheep retrovirus envelopes distinguish receptor-mediated triggering for fusion at low pH and infection. Virology 2011; 421:173-83. [PMID: 22018783 DOI: 10.1016/j.virol.2011.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 09/13/2011] [Accepted: 09/24/2011] [Indexed: 11/25/2022]
Abstract
Jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV) are two closely related oncogenic retroviruses that share the same cellular receptor yet exhibit distinct fusogenicity and infectivity. Here, we find that the low fusogenicity of ENTV envelope protein (Env) is not because of receptor binding, but lies in its intrinsic insensitivity to receptor-mediated triggering for fusion at low pH. Distinct from JSRV, shedding of ENTV surface (SU) subunit into culture medium was not enhanced by a soluble form of receptor, Hyal2 (sHyal2), and sHyal2 was unable to effectively inactivate the ENTV pseudovirions. Remarkably, replacing either of the two amino acid residues, N191 or S195, located in the ENTV SU with the corresponding JSRV residues, H191 or G195, markedly increased the Env-mediated membrane fusion activity and infection. Reciprocal amino acid substitutions also partly switched the sensitivities of ENTV and JSRV pseudovirions to sHyal2-mediated SU shedding and inactivation. While N191 is responsible for an extra N-linked glycosylation of ENTV SU relative to that of JSRV, S195 possibly forms a hydrogen bond with a surrounding amino acid residue. Molecular modeling of the pre-fusion structure of JSRV Env predicts that the segment of SU that contains H191 to G195 contacts the fusion peptide and suggests that the H191N and G195S changes seen in ENTV may stabilize its pre-fusion structure against receptor priming and therefore modulate fusion activation by Hyal2. In summary, our study reveals critical determinants in the SU subunits of JSRV and ENTV Env proteins that likely regulate their local structures and thereby differential receptor-mediated fusion activation at low pH, and these findings explain, at least in part, their distinct viral infectivity.
Collapse
Affiliation(s)
- Marceline Côté
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | | | | |
Collapse
|
47
|
Côté M, Misasi J, Ren T, Bruchez A, Lee K, Filone CM, Hensley L, Li Q, Ory D, Chandran K, Cunningham J. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 2011; 477:344-8. [PMID: 21866101 PMCID: PMC3230319 DOI: 10.1038/nature10380] [Citation(s) in RCA: 536] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 07/19/2011] [Indexed: 12/26/2022]
Abstract
Ebola virus (EboV) is a highly pathogenic enveloped virus that causes outbreaks of zoonotic infection in Africa. The clinical symptoms are manifestations of the massive production of pro-inflammatory cytokines in response to infection and in many outbreaks, mortality exceeds 75%. The unpredictable onset, ease of transmission, rapid progression of disease, high mortality and lack of effective vaccine or therapy have created a high level of public concern about EboV. Here we report the identification of a novel benzylpiperazine adamantane diamide-derived compound that inhibits EboV infection. Using mutant cell lines and informative derivatives of the lead compound, we show that the target of the inhibitor is the endosomal membrane protein Niemann-Pick C1 (NPC1). We find that NPC1 is essential for infection, that it binds to the virus glycoprotein (GP), and that antiviral compounds interfere with GP binding to NPC1. Combined with the results of previous studies of GP structure and function, our findings support a model of EboV infection in which cleavage of the GP1 subunit by endosomal cathepsin proteases removes heavily glycosylated domains to expose the amino-terminal domain, which is a ligand for NPC1 and regulates membrane fusion by the GP2 subunit. Thus, NPC1 is essential for EboV entry and a target for antiviral therapy.
Collapse
Affiliation(s)
- Marceline Côté
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Characterization of the receptor-binding domain of Ebola glycoprotein in viral entry. Virol Sin 2011; 26:156-70. [PMID: 21667336 PMCID: PMC7091247 DOI: 10.1007/s12250-011-3194-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/25/2011] [Indexed: 11/23/2022] Open
Abstract
Ebola virus infection causes severe hemorrhagic fever in human and non-human primates with high mortality. Viral entry/infection is initiated by binding of glycoprotein GP protein on Ebola virion to host cells, followed by fusion of virus-cell membrane also mediated by GP. Using an human immunodeficiency virus (HIV)-based pseudotyping system, the roles of 41 Ebola GP1 residues in the receptor-binding domain in viral entry were studied by alanine scanning substitutions. We identified that four residues appear to be involved in protein folding/structure and four residues are important for viral entry. An improved entry interference assay was developed and used to study the role of these residues that are important for viral entry. It was found that R64 and K95 are involved in receptor binding. In contrast, some residues such as I170 are important for viral entry, but do not play a major role in receptor binding as indicated by entry interference assay and/or protein binding data, suggesting that these residues are involved in post-binding steps of viral entry. Furthermore, our results also suggested that Ebola and Marburg viruses share a common cellular molecule for entry.
Collapse
|
49
|
Gerlier D. Emerging zoonotic viruses: new lessons on receptor and entry mechanisms. Curr Opin Virol 2011; 1:27-34. [PMID: 22440564 PMCID: PMC7102697 DOI: 10.1016/j.coviro.2011.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 05/20/2011] [Accepted: 05/24/2011] [Indexed: 11/27/2022]
Abstract
Viruses enter the host cell by binding cellular receptors that allow appropriate delivery of the viral genome. Although the horizontal propagation of viruses feeds the continuous emergence of novel pathogenic viruses, the genetic variation of cellular receptors can represent a challenging barrier. The SARS coronavirus, henipaviruses and filoviruses are zoonotic RNA viruses that use bats as their reservoir. Their lethality for man has fostered extensive research both on the cellular receptors they use and their entry pathways. These studies have allowed new insights into the diversity of the molecular mechanisms underlying both virus entry and pathogenesis.
Collapse
Affiliation(s)
- Denis Gerlier
- Human Virology, INSERM, U758, Ecole Normale Supérieure de Lyon, Lyon, F-69007, France.
| |
Collapse
|
50
|
Brindley MA, Hunt CL, Kondratowicz AS, Bowman J, Sinn PL, McCray PB, Quinn K, Weller ML, Chiorini JA, Maury W. Tyrosine kinase receptor Axl enhances entry of Zaire ebolavirus without direct interactions with the viral glycoprotein. Virology 2011; 415:83-94. [PMID: 21529875 DOI: 10.1016/j.virol.2011.04.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 01/28/2011] [Accepted: 04/04/2011] [Indexed: 12/27/2022]
Abstract
In a bioinformatics-based screen for cellular genes that enhance Zaire ebolavirus (ZEBOV) transduction, AXL mRNA expression strongly correlated with ZEBOV infection. A series of cell lines and primary cells were identified that require Axl for optimal ZEBOV entry. Using one of these cell lines, we identified ZEBOV entry events that are Axl-dependent. Interactions between ZEBOV-GP and the Axl ectodomain were not detected in immunoprecipitations and reduction of surface-expressed Axl by RNAi did not alter ZEBOV-GP binding, providing evidence that Axl does not serve as a receptor for the virus. However, RNAi knock down of Axl reduced ZEBOV pseudovirion internalization and α-Axl antisera inhibited pseudovirion fusion with cellular membranes. Consistent with the importance of Axl for ZEBOV transduction, Axl transiently co-localized on the surface of cells with ZEBOV virus particles and was internalized during virion transduction. In total, these findings indicate that endosomal uptake of filoviruses is facilitated by Axl.
Collapse
Affiliation(s)
- Melinda A Brindley
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|