1
|
Immonen TT, Camus C, Reid C, Fennessey CM, Del Prete GQ, Davenport MP, Lifson JD, Keele BF. Genetically barcoded SIV reveals the emergence of escape mutations in multiple viral lineages during immune escape. Proc Natl Acad Sci U S A 2020; 117:494-502. [PMID: 31843933 PMCID: PMC6955354 DOI: 10.1073/pnas.1914967117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The rapidity of replication coupled with a high mutation rate enables HIV to evade selective pressures imposed by host immune responses. Investigating the ability of HIV to escape different selection forces has generally relied on population-level measures, such as the time to detectable escape mutations in plasma and the rate these mutations subsequently take over the virus population. Here we employed a barcoded synthetic swarm of simian immunodeficiency virus (SIV) in rhesus macaques to investigate the generation and selection of escape mutations within individual viral lineages at the Mamu-A*01-restricted Tat-SL8 epitope. We observed the persistence of more than 1,000 different barcode lineages following selection after acquiring escape mutations. Furthermore, the increased resolution into the virus population afforded by barcode analysis revealed changes in the population structure of the viral quasispecies as it adapted to immune pressure. The high frequency of emergence of escape mutations in parallel viral lineages at the Tat-SL8 epitope highlights the challenge posed by viral escape for the development of T cell-based vaccines. Importantly, the level of viral replication required for generating escape mutations in individual lineages can be directly estimated using the barcoded virus, thereby identifying the level of efficacy required for a successful vaccine to limit escape. Overall, assessing the survival of barcoded viral lineages during selection provides a direct and quantitative measure of the stringency of the underlying genetic bottleneck, making it possible to predict the ability of the virus to escape selective forces induced by host immune responses as well as during therapeutic interventions.
Collapse
Affiliation(s)
- Taina T Immonen
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21769
| | - Celine Camus
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21769
| | - Carolyn Reid
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21769
| | | | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21769
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21769
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21769;
| |
Collapse
|
2
|
Yang Y, Ganusov VV. Kinetics of HIV-Specific CTL Responses Plays a Minimal Role in Determining HIV Escape Dynamics. Front Immunol 2018; 9:140. [PMID: 29472921 PMCID: PMC5810297 DOI: 10.3389/fimmu.2018.00140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/16/2018] [Indexed: 11/13/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) have been suggested to play an important role in controlling human immunodeficiency virus (HIV-1 or simply HIV) infection. HIV, due to its high mutation rate, can evade recognition of T cell responses by generating escape variants that cannot be recognized by HIV-specific CTLs. Although HIV escape from CTL responses has been well documented, factors contributing to the timing and the rate of viral escape from T cells have not been fully elucidated. Fitness costs associated with escape and magnitude of the epitope-specific T cell response are generally considered to be the key in determining timing of HIV escape. Several previous analyses generally ignored the kinetics of T cell responses in predicting viral escape by either considering constant or maximal T cell response; several studies also considered escape from different T cell responses to be independent. Here, we focus our analysis on data from two patients from a recent study with relatively frequent measurements of both virus sequences and HIV-specific T cell response to determine impact of CTL kinetics on viral escape. In contrast with our expectation, we found that including temporal dynamics of epitope-specific T cell response did not improve the quality of fit of different models to escape data. We also found that for well-sampled escape data, the estimates of the model parameters including T cell killing efficacy did not strongly depend on the underlying model for escapes: models assuming independent, sequential, or concurrent escapes from multiple CTL responses gave similar estimates for CTL killing efficacy. Interestingly, the model assuming sequential escapes (i.e., escapes occurring along a defined pathway) was unable to accurately describe data on escapes occurring rapidly within a short-time window, suggesting that some of model assumptions must be violated for such escapes. Our results thus suggest that the current sparse measurements of temporal CTL dynamics in blood bear little quantitative information to improve predictions of HIV escape kinetics. More frequent measurements using more sensitive techniques and sampling in secondary lymphoid tissues may allow to better understand whether and how CTL kinetics impacts viral escape.
Collapse
Affiliation(s)
- Yiding Yang
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Vitaly V. Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN, United States
- Department of Mathematics, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
3
|
Chan CHS, Sanders LP, Tanaka MM. Modelling the role of immunity in reversion of viral antigenic sites. J Theor Biol 2015; 392:23-34. [PMID: 26723535 DOI: 10.1016/j.jtbi.2015.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022]
Abstract
Antigenic sites in viral pathogens exhibit distinctive evolutionary dynamics due to their role in evading recognition by host immunity. Antigenic selection is known to drive higher rates of non-synonymous substitution; less well understood is why differences are observed between viruses in their propensity to mutate to a novel or previously encountered amino acid. Here, we present a model to explain patterns of antigenic reversion and forward substitution in terms of the epidemiological and molecular processes of the viral population. We develop an analytical three-strain model and extend the analysis to a multi-site model to predict characteristics of observed sequence samples. Our model provides insight into how the balance between selection to escape immunity and to maintain viability is affected by the rate of mutational input. We also show that while low probabilities of reversion may be due to either a low cost of immune escape or slowly decaying host immunity, these two scenarios can be differentiated by the frequency patterns at antigenic sites. Comparison between frequency patterns of human influenza A (H3N2) and human RSV-A suggests that the increased rates of antigenic reversion in RSV-A is due to faster decaying immunity and not higher costs of escape.
Collapse
Affiliation(s)
- Carmen H S Chan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia.
| | - Lloyd P Sanders
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia; Computational Social Science, ETH, Zürich, Switzerland
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
4
|
Garcia V, Richter K, Graw F, Oxenius A, Regoes RR. Estimating the In Vivo Killing Efficacy of Cytotoxic T Lymphocytes across Different Peptide-MHC Complex Densities. PLoS Comput Biol 2015; 11:e1004178. [PMID: 25933039 PMCID: PMC4416789 DOI: 10.1371/journal.pcbi.1004178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/06/2015] [Indexed: 11/18/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) are important agents in the control of intracellular pathogens, which specifically recognize and kill infected cells. Recently developed experimental methods allow the estimation of the CTL's efficacy in detecting and clearing infected host cells. One method, the in vivo killing assay, utilizes the adoptive transfer of antigen displaying target cells into the bloodstream of mice. Surprisingly, killing efficacies measured by this method are often much higher than estimates obtained by other methods based on, for instance, the dynamics of escape mutations. In this study, we investigated what fraction of this variation can be explained by differences in peptide loads employed in in vivo killing assays. We addressed this question in mice immunized with lymphocytic choriomeningitis virus (LCMV). We conducted in vivo killing assays varying the loads of the immunodominant epitope GP33 on target cells. Using a mathematical model, we determined the efficacy of effector and memory CTL, as well as CTL in chronically infected mice. We found that the killing efficacy is substantially reduced at lower peptide loads. For physiological peptide loads, our analysis predicts more than a factor 10 lower CTL efficacies than at maximum peptide loads. Assuming that the efficacy scales linearly with the frequency of CTL, a clear hierarchy emerges among the groups across all peptide antigen concentrations. The group of mice with chronic LCMV infections shows a consistently higher killing efficacy per CTL than the acutely infected mouse group, which in turn has a consistently larger efficacy than the memory mouse group. We conclude that CTL killing efficacy dependence on surface epitope frequencies can only partially explain the variation in in vivo killing efficacy estimates across experimental methods and viral systems, which vary about four orders of magnitude. In contrast, peptide load differences can explain at most two orders of magnitude.
Collapse
Affiliation(s)
- Victor Garcia
- Institute of Integrative Biology, ETH Zurich, Universitätstr, Zurich, Switzerland
- * E-mail: (VG); (RRR)
| | | | - Frederik Graw
- Center for Modeling and Simulation in the Biosciences, Bio-Quant Center, Heidelberg University, Heidelberg, Germany
| | | | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zurich, Universitätstr, Zurich, Switzerland
- * E-mail: (VG); (RRR)
| |
Collapse
|
5
|
Martyushev AP, Petravic J, Grimm AJ, Alinejad-Rokny H, Gooneratne SL, Reece JC, Cromer D, Kent SJ, Davenport MP. Epitope-specific CD8+ T cell kinetics rather than viral variability determine the timing of immune escape in simian immunodeficiency virus infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:4112-21. [PMID: 25825438 DOI: 10.4049/jimmunol.1400793] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 03/01/2015] [Indexed: 11/19/2022]
Abstract
CD8(+) T cells are important for the control of chronic HIV infection. However, the virus rapidly acquires "escape mutations" that reduce CD8(+) T cell recognition and viral control. The timing of when immune escape occurs at a given epitope varies widely among patients and also among different epitopes within a patient. The strength of the CD8(+) T cell response, as well as mutation rates, patterns of particular amino acids undergoing escape, and growth rates of escape mutants, may affect when escape occurs. In this study, we analyze the epitope-specific CD8(+) T cells in 25 SIV-infected pigtail macaques responding to three SIV epitopes. Two epitopes showed a variable escape pattern and one had a highly monomorphic escape pattern. Despite very different patterns, immune escape occurs with a similar delay of on average 18 d after the epitope-specific CD8(+) T cells reach 0.5% of total CD8(+) T cells. We find that the most delayed escape occurs in one of the highly variable epitopes, and that this is associated with a delay in the epitope-specific CD8(+) T cells responding to this epitope. When we analyzed the kinetics of immune escape, we found that multiple escape mutants emerge simultaneously during the escape, implying that a diverse population of potential escape mutants is present during immune selection. Our results suggest that the conservation or variability of an epitope does not appear to affect the timing of immune escape in SIV. Instead, timing of escape is largely determined by the kinetics of epitope-specific CD8(+) T cells.
Collapse
Affiliation(s)
- Alexey P Martyushev
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Janka Petravic
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Andrew J Grimm
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Hamid Alinejad-Rokny
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Shayarana L Gooneratne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jeanette C Reece
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Deborah Cromer
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Miles P Davenport
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| |
Collapse
|
6
|
Rates of CTL killing in persistent viral infection in vivo. PLoS Comput Biol 2014; 10:e1003534. [PMID: 24699260 PMCID: PMC3974637 DOI: 10.1371/journal.pcbi.1003534] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 02/05/2014] [Indexed: 01/12/2023] Open
Abstract
The CD8+ cytotoxic T lymphocyte (CTL) response is an important defence against viral invasion. Although CTL-mediated cytotoxicity has been widely studied for many years, the rate at which virus-infected cells are killed in vivo by the CTL response is poorly understood. To date the rate of CTL killing in vivo has been estimated for three virus infections but the estimates differ considerably, and killing of HIV-1-infected cells was unexpectedly low. This raises questions about the typical anti-viral capability of CTL and whether CTL killing is abnormally low in HIV-1. We estimated the rate of killing of infected cells by CD8+ T cells in two distinct persistent virus infections: sheep infected with Bovine Leukemia Virus (BLV) and humans infected with Human T Lymphotropic Virus type 1 (HTLV-1) which together with existing data allows us to study a total of five viruses in parallel. Although both BLV and HTLV-1 infection are characterised by large expansions of chronically activated CTL with immediate effector function ex vivo and no evidence of overt immune suppression, our estimates are at the lower end of the reported range. This enables us to put current estimates into perspective and shows that CTL killing of HIV-infected cells may not be atypically low. The estimates at the higher end of the range are obtained in more manipulated systems and may thus represent the potential rather than the realised CTL efficiency. Virus replication is countered by a range of innate and adaptive host defences. One important and widely studied adaptive defence is the CD8+ cytotoxic T lymphocyte (CTL) response. Quantification of the in vivo lytic capability of CTLs is essential for a detailed understanding of the immune response. This includes understanding the balance between viral replication and viral clearance, understanding the rate limiting steps in CTL killing and thus how killing can be increased and understanding the failure of CTL vaccines. However, the typical rate at which virus-infected cells are killed by the CTL response in vivo is poorly understood. Current estimates differ considerably and are especially low for HIV-1-infection. We estimated the rate of killing of infected cells by CD8+ T cells in two distinct persistent virus infections which enables us to put current estimates into perspective. We show that CTL killing of HIV-infected cells may not be atypically low. The estimates at the higher end of the range are obtained in more manipulated systems and may thus represent the potential rather than the realised CTL efficiency.
Collapse
|
7
|
Leviyang S. Constructing lower-bounds for CTL escape rates in early SIV infection. J Theor Biol 2014; 352:82-91. [PMID: 24603063 DOI: 10.1016/j.jtbi.2014.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 01/15/2014] [Accepted: 02/17/2014] [Indexed: 12/30/2022]
Abstract
Intrahost human and simian immunodeficiency virus (HIV and SIV) evolution is marked by repeated viral escape from cytotoxic T-lymphocyte (CTL) response. Typically, the first such CTL escape starts around the time of peak viral load and completes within one or two weeks. Many authors have developed methods to quantify CTL escape rates, but existing methods depend on sampling at two or more timepoints. Since many datasets capture the dynamics of the first CTL escape at a single timepoint, we develop inference methods applicable to single timepoint datasets. To account for model uncertainty, we construct estimators which serve as lower bounds for the escape rate. These lower-bound estimators allow for statistically meaningful comparison of escape rates across different times and different compartments. We apply our methods to two SIV datasets, showing that escape rates are relatively high during the initial days of the first CTL escape and drop to lower levels as the escape proceeds.
Collapse
Affiliation(s)
- Sivan Leviyang
- Georgetown University, Department of Mathematics and Statistics, United States
| |
Collapse
|
8
|
Kessinger TA, Perelson AS, Neher RA. Inferring HIV Escape Rates from Multi-Locus Genotype Data. Front Immunol 2013; 4:252. [PMID: 24027569 PMCID: PMC3760075 DOI: 10.3389/fimmu.2013.00252] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/12/2013] [Indexed: 12/13/2022] Open
Abstract
Cytotoxic T-lymphocytes (CTLs) recognize viral protein fragments displayed by major histocompatibility complex molecules on the surface of virally infected cells and generate an anti-viral response that can kill the infected cells. Virus variants whose protein fragments are not efficiently presented on infected cells or whose fragments are presented but not recognized by CTLs therefore have a competitive advantage and spread rapidly through the population. We present a method that allows a more robust estimation of these escape rates from serially sampled sequence data. The proposed method accounts for competition between multiple escapes by explicitly modeling the accumulation of escape mutations and the stochastic effects of rare multiple mutants. Applying our method to serially sampled HIV sequence data, we estimate rates of HIV escape that are substantially larger than those previously reported. The method can be extended to complex escapes that require compensatory mutations. We expect our method to be applicable in other contexts such as cancer evolution where time series data is also available.
Collapse
Affiliation(s)
- Taylor A Kessinger
- Evolutionary Dynamics and Biophysics, Max Planck Institute for Developmental Biology , Tübingen , Germany
| | | | | |
Collapse
|
9
|
Trivalent live attenuated influenza-simian immunodeficiency virus vaccines: efficacy and evolution of cytotoxic T lymphocyte escape in macaques. J Virol 2013; 87:4146-60. [PMID: 23345519 DOI: 10.1128/jvi.02645-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is an urgent need for a human immunodeficiency virus (HIV) vaccine that induces robust mucosal immunity. CD8(+) cytotoxic T lymphocytes (CTLs) apply substantial antiviral pressure, but CTLs to individual epitopes select for immune escape variants in both HIV in humans and SIV in macaques. Inducing multiple simian immunodeficiency virus (SIV)-specific CTLs may assist in controlling viremia. We vaccinated 10 Mane-A1*08401(+) female pigtail macaques with recombinant influenza viruses expressing three Mane-A1*08401-restricted SIV-specific CTL epitopes and subsequently challenged the animals, along with five controls, intravaginally with SIV(mac251). Seroconversion to the influenza virus vector resulted and small, but detectable, SIV-specific CTL responses were induced. There was a boost in CTL responses after challenge but no protection from high-level viremia or CD4 depletion was observed. All three CTL epitopes underwent a coordinated pattern of immune escape during early SIV infection. CTL escape was more rapid in the vaccinees than in the controls at the more dominant CTL epitopes. Although CTL escape can incur a "fitness" cost to the virus, a putative compensatory mutation 20 amino acids upstream from an immunodominant Gag CTL epitope also evolved soon after the primary CTL escape mutation. We conclude that vaccines based only on CTL epitopes will likely be undermined by rapid evolution of both CTL escape and compensatory mutations. More potent and possibly broader immune responses may be required to protect pigtail macaques from SIV.
Collapse
|
10
|
Fitness costs and diversity of the cytotoxic T lymphocyte (CTL) response determine the rate of CTL escape during acute and chronic phases of HIV infection. J Virol 2011; 85:10518-28. [PMID: 21835793 DOI: 10.1128/jvi.00655-11] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 often evades cytotoxic T cell (CTL) responses by generating variants that are not recognized by CTLs. We used single-genome amplification and sequencing of complete HIV genomes to identify longitudinal changes in the transmitted/founder virus from the establishment of infection to the viral set point at 1 year after the infection. We found that the rate of viral escape from CTL responses in a given patient decreases dramatically from acute infection to the viral set point. Using a novel mathematical model that tracks the dynamics of viral escape at multiple epitopes, we show that a number of factors could potentially contribute to a slower escape in the chronic phase of infection, such as a decreased magnitude of epitope-specific CTL responses, an increased fitness cost of escape mutations, or an increased diversity of the CTL response. In the model, an increase in the number of epitope-specific CTL responses can reduce the rate of viral escape from a given epitope-specific CTL response, particularly if CD8+ T cells compete for killing of infected cells or control virus replication nonlytically. Our mathematical framework of viral escape from multiple CTL responses can be used to predict the breadth and magnitude of HIV-specific CTL responses that need to be induced by vaccination to reduce (or even prevent) viral escape following HIV infection.
Collapse
|
11
|
Balamurali M, Petravic J, Loh L, Alcantara S, Kent SJ, Davenport MP. Does cytolysis by CD8+ T cells drive immune escape in HIV infection? THE JOURNAL OF IMMUNOLOGY 2010; 185:5093-101. [PMID: 20881189 DOI: 10.4049/jimmunol.1002204] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) "cytotoxic" T cells are important for the immune control of HIV and the closely related simian models SIV and chimeric simian-human immunodeficiency virus (SHIV), although the mechanisms of this control are unclear. One effect of CD8(+) T cell-mediated recognition of virus-infected cells is the rapid selection of escape mutant (EM) virus that is not recognized. To investigate the mechanisms of virus-specific CD8(+) T cell control during immune escape in vivo, we used a real-time PCR assay to study the dynamics of immune escape in early SHIV infection of pigtail macaques. For immune escape mediated by cytolysis, we would expect that the death rate of wild type (WT) infected cells should be faster than that of EM-infected cells. In addition, escape should be fastest during periods when the total viral load is declining. However, we find that there is no significant difference in the rate of decay of WT virus compared with EM virus. Further, immune escape is often fastest during periods of viral growth, rather than viral decline. These dynamics are consistent with an epitope-specific, MHC class I-restricted, noncytolytic mechanism of CD8(+) T cell control of SHIV that specifically inhibits the growth of WT virus in vivo.
Collapse
Affiliation(s)
- Mehala Balamurali
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
12
|
Reece JC, Loh L, Alcantara S, Fernandez CS, Stambas J, Sexton A, De Rose R, Petravic J, Davenport MP, Kent SJ. Timing of immune escape linked to success or failure of vaccination. PLoS One 2010; 5. [PMID: 20862289 PMCID: PMC2940906 DOI: 10.1371/journal.pone.0012774] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 08/24/2010] [Indexed: 11/23/2022] Open
Abstract
Successful vaccination against HIV should limit viral replication sufficiently to prevent the emergence of viral immune escape mutations. Broadly directed immunity is likely to be required to limit opportunities for immune escape variants to flourish. We studied the emergence of an SIV Gag cytotoxic T cell immune escape variant in pigtail macaques expressing the Mane-A*10 MHC I allele using a quantitative RT-PCR to measure viral loads of escape and wild type variants. Animals receiving whole Gag expressing vaccines completely controlled an SIVmac251 challenge, had broader CTL responses and exhibited minimal CTL escape. In contrast, animals vaccinated with only a single CTL epitope and challenged with the same SIVmac251 stock had high levels of viral replication and rapid CTL escape. Unvaccinated naïve animals exhibited a slower emergence of immune escape variants. Thus narrowly directed vaccination against a single epitope resulted in rapid immune escape and viral levels equivalent to that of naïve unvaccinated animals. These results emphasize the importance of inducing broadly directed HIV-specific immunity that effectively quashes early viral replication and limits the generation of immune escape variants. This has important implications for the selection of HIV vaccines for expanded human trials.
Collapse
Affiliation(s)
- Jeanette C. Reece
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Caroline S. Fernandez
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - John Stambas
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Amy Sexton
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Robert De Rose
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Janka Petravic
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Miles P. Davenport
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
13
|
Ahlers JD, Belyakov IM. Lessons learned from natural infection: focusing on the design of protective T cell vaccines for HIV/AIDS. Trends Immunol 2010; 31:120-30. [PMID: 20089450 DOI: 10.1016/j.it.2009.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/08/2009] [Accepted: 12/11/2009] [Indexed: 01/26/2023]
Abstract
CD8(+) cytotoxic T lymphocyte (CTL) responses are crucial in establishing the control of persistent virus infections. Population studies of HIV-1-infected individuals suggest that CD8(+) CTL responses targeting epitopes that take the greatest toll on virus replication are instrumental in immune control. A major question for vaccine design is whether incorporating epitopes responsible for controlling a persistent virus will translate into protection from natural infection or serve solely as a fail-safe mechanism to prevent overt disease in infected individuals. Here, we discuss qualitative parameters of the CD8(+) CTL response and mechanisms operative in the control of persistent virus infections and suggest new strategies for design and delivery of HIV vaccines.
Collapse
|
14
|
Downey JS, Imami N. T-cell dysfunction in HIV-1 infection: targeting the inhibitors. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/hiv.09.51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since AIDS emerged almost three decades ago, there have been considerable advances in the field of antiretroviral chemotherapy for those chronically infected with HIV-1. However, this therapy is noncurative and as our understanding of HIV-1 immunopathogenesis increases, it is becoming apparent that further therapeutic interventions are required to reverse the devastating effects of HIV-1 infection worldwide. While viral clearance remains the principle goal of HIV-1 treatment, this article describes immunotherapeutic options that target the immunological effects of the virus, to reduce its presence in the body and counteract viral-induced T-cell dysfunction and inhibition. Such approaches may augment existing antiretroviral therapy to overturn virus-induced T-cell anergy in the infected host, improving levels of immune control that reduce viremia and decrease the rate of transmission.
Collapse
Affiliation(s)
- Jocelyn S Downey
- Department of Immunology, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| | - Nesrina Imami
- Department of Immunology, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| |
Collapse
|
15
|
Goonetilleke N, Liu MKP, Salazar-Gonzalez JF, Ferrari G, Giorgi E, Ganusov VV, Keele BF, Learn GH, Turnbull EL, Salazar MG, Weinhold KJ, Moore S, Letvin N, Haynes BF, Cohen MS, Hraber P, Bhattacharya T, Borrow P, Perelson AS, Hahn BH, Shaw GM, Korber BT, McMichael AJ. The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. ACTA ACUST UNITED AC 2009; 206:1253-72. [PMID: 19487423 PMCID: PMC2715063 DOI: 10.1084/jem.20090365] [Citation(s) in RCA: 504] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Identification of the transmitted/founder virus makes possible, for the first time, a genome-wide analysis of host immune responses against the infecting HIV-1 proteome. A complete dissection was made of the primary HIV-1–specific T cell response induced in three acutely infected patients. Cellular assays, together with new algorithms which identify sites of positive selection in the virus genome, showed that primary HIV-1–specific T cells rapidly select escape mutations concurrent with falling virus load in acute infection. Kinetic analysis and mathematical modeling of virus immune escape showed that the contribution of CD8 T cell–mediated killing of productively infected cells was earlier and much greater than previously recognized and that it contributed to the initial decline of plasma virus in acute infection. After virus escape, these first T cell responses often rapidly waned, leaving or being succeeded by T cell responses to epitopes which escaped more slowly or were invariant. These latter responses are likely to be important in maintaining the already established virus set point. In addition to mutations selected by T cells, there were other selected regions that accrued mutations more gradually but were not associated with a T cell response. These included clusters of mutations in envelope that were targeted by NAbs, a few isolated sites that reverted to the consensus sequence, and bystander mutations in linkage with T cell–driven escape.
Collapse
Affiliation(s)
- Nilu Goonetilleke
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, England, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Loh L, Reece JC, Fernandez CS, Alcantara S, Center R, Howard J, Purcell DFJ, Balamurali M, Petravic J, Davenport MP, Kent SJ. Complexity of the inoculum determines the rate of reversion of SIV Gag CD8 T cell mutant virus and outcome of infection. PLoS Pathog 2009; 5:e1000378. [PMID: 19360124 PMCID: PMC2660429 DOI: 10.1371/journal.ppat.1000378] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 03/12/2009] [Indexed: 11/19/2022] Open
Abstract
Escape mutant (EM) virus that evades CD8+ T cell recognition is frequently observed following infection with HIV-1 or SIV. This EM virus is often less replicatively “fit” compared to wild-type (WT) virus, as demonstrated by reversion to WT upon transmission of HIV to a naïve host and the association of EM virus with lower viral load in vivo in HIV-1 infection. The rate and timing of reversion is, however, highly variable. We quantified reversion to WT of a series of SIV and SHIV viruses containing minor amounts of WT virus in pigtail macaques using a sensitive PCR assay. Infection with mixes of EM and WT virus containing ≥10% WT virus results in immediate and rapid outgrowth of WT virus at SIV Gag CD8 T cell epitopes within 7 days of infection of pigtail macaques with SHIV or SIV. In contrast, infection with biologically passaged SHIVmn229 viruses with much smaller proportions of WT sequence, or a molecular clone of pure EM SIVmac239, demonstrated a delayed or slow pattern of reversion. WT virus was not detectable until ≥8 days after inoculation and took ≥8 weeks to become the dominant quasispecies. A delayed pattern of reversion was associated with significantly lower viral loads. The diversity of the infecting inoculum determines the timing of reversion to WT virus, which in turn predicts the outcome of infection. The delay in reversion of fitness-reducing CD8 T cell escape mutations in some scenarios suggests opportunities to reduce the pathogenicity of HIV during very early infection. Understanding how to contain HIV replication by the immune system is a key goal of vaccine strategies. HIV frequently mutates to avoid immune recognition, but this may come at a “fitness cost”, weakening the virus. When HIV is transmitted to a new host, the mutations often revert back to wild-type, allowing the virus to regain a fitter state. We found that when multiple HIV-like viruses are transmitted to monkeys, containing both mutant and wild-type, reversion to wild-type is very rapid and the fitter virus results in higher viral levels. In contrast, when only escape mutant virus initiates the infection, reversion to wild-type is delayed to later during early infection, and lower levels of virus result. Our results suggest that the composition of the infecting virus plays a role in determining the outcome of HIV infections. Strategies to maintain weakened virus strains during the early HIV infection may help the host control virus replication.
Collapse
Affiliation(s)
- Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jeanette C. Reece
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Caroline S. Fernandez
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Robert Center
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jane Howard
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Mehala Balamurali
- Center for Vascular Research, University of New South Wales, Sydney, Australia
| | - Janka Petravic
- Center for Vascular Research, University of New South Wales, Sydney, Australia
| | - Miles P. Davenport
- Center for Vascular Research, University of New South Wales, Sydney, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
17
|
Soriano V, Perelson AS, Zoulim F. Why are there different dynamics in the selection of drug resistance in HIV and hepatitis B and C viruses? J Antimicrob Chemother 2008; 62:1-4. [PMID: 18441341 DOI: 10.1093/jac/dkn175] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The arrival of new antiviral drugs to treat chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections has given rise to great expectations along with concerns regarding the selection of drug-resistant variants. Many lessons learnt from HIV therapeutics can be helpful for designing adequate treatment strategies against viral hepatitis, the avoidance of sequential weak monotherapies being one of them. Although HIV, HBV and HCV share many biological features, including very rapid viral dynamics, distinctive characteristics explain why the speed of selection of drug resistance differs substantially between these viruses, being faster for HCV than for HIV and slower for HBV.
Collapse
Affiliation(s)
- Vincent Soriano
- Department of Infectious Diseases, Hospital Carlos III, Sinesio Delgado 10, 28029 Madrid, Spain.
| | | | | |
Collapse
|