1
|
Geng G, Yu C, Yuan X. Variable eIF4E-binding sites and their synergistic effect on cap-independent translation in a novel IRES of wheat yellow mosaic virus RNA2 isolates. Int J Biol Macromol 2024; 254:128062. [PMID: 37967597 DOI: 10.1016/j.ijbiomac.2023.128062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Some viral proteins are translated cap-independently via the internal ribosome entry site (IRES), which maintains conservative characteristic among different isolates of the same virus species. However, IRES activity showed a 7-fold variance in RNA2 of wheat yellow mosaic virus (WYMV) HC and LYJN isolates in this study. Based on RNA structure probing and mutagenesis assay, the loosened middle stem of H1 and the hepta-nucleotide top loop of H2 in the LYJN isolate synergistically ensured higher IRES activity than that in the HC isolate. In addition, the conserved top loop of H1 ensured basic IRES activity in HC and LYJN isolates. WYMV RNA2 5'-UTR specifically interacted with the wheat eIF4E, accomplished by the top loop of H1 in the HC isolate or the top loop of H1 and H2 in the LYJN isolate. The high IRES activity of the WYMV RNA2 LYJN isolate was regulated by two eIF4E-binding sites, which showed a synergistic effect mediated by the proximity of the H1 and H2 top loops owing to the flexibility of the middle stem in H1. This report presents a novel evolution pattern of IRES, which altered the number of eIF4E-binding sites to regulate IRES activity.
Collapse
Affiliation(s)
- Guowei Geng
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China
| | - Chengming Yu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China
| | - Xuefeng Yuan
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China.
| |
Collapse
|
2
|
Translation of Plant RNA Viruses. Viruses 2021; 13:v13122499. [PMID: 34960768 PMCID: PMC8708638 DOI: 10.3390/v13122499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Plant RNA viruses encode essential viral proteins that depend on the host translation machinery for their expression. However, genomic RNAs of most plant RNA viruses lack the classical characteristics of eukaryotic cellular mRNAs, such as mono-cistron, 5′ cap structure, and 3′ polyadenylation. To adapt and utilize the eukaryotic translation machinery, plant RNA viruses have evolved a variety of translation strategies such as cap-independent translation, translation recoding on initiation and termination sites, and post-translation processes. This review focuses on advances in cap-independent translation and translation recoding in plant viruses.
Collapse
|
3
|
Pineda B. Quinacrine, an Old Drug with Potentially usefull in the Treatment for COVID-19. Arch Med Res 2021; 52:858-859. [PMID: 34154830 PMCID: PMC8180551 DOI: 10.1016/j.arcmed.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/26/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin Pineda
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México.
| |
Collapse
|
4
|
O'Donovan SM, Imami A, Eby H, Henkel ND, Creeden JF, Asah S, Zhang X, Wu X, Alnafisah R, Taylor RT, Reigle J, Thorman A, Shamsaei B, Meller J, McCullumsmith RE. Identification of candidate repurposable drugs to combat COVID-19 using a signature-based approach. Sci Rep 2021; 11:4495. [PMID: 33627767 PMCID: PMC7904823 DOI: 10.1038/s41598-021-84044-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/21/2021] [Indexed: 02/08/2023] Open
Abstract
The COVID-19 pandemic caused by the novel SARS-CoV-2 is more contagious than other coronaviruses and has higher rates of mortality than influenza. Identification of effective therapeutics is a crucial tool to treat those infected with SARS-CoV-2 and limit the spread of this novel disease globally. We deployed a bioinformatics workflow to identify candidate drugs for the treatment of COVID-19. Using an "omics" repository, the Library of Integrated Network-Based Cellular Signatures (LINCS), we simultaneously probed transcriptomic signatures of putative COVID-19 drugs and publicly available SARS-CoV-2 infected cell lines to identify novel therapeutics. We identified a shortlist of 20 candidate drugs: 8 are already under trial for the treatment of COVID-19, the remaining 12 have antiviral properties and 6 have antiviral efficacy against coronaviruses specifically, in vitro. All candidate drugs are either FDA approved or are under investigation. Our candidate drug findings are discordant with (i.e., reverse) SARS-CoV-2 transcriptome signatures generated in vitro, and a subset are also identified in transcriptome signatures generated from COVID-19 patient samples, like the MEK inhibitor selumetinib. Overall, our findings provide additional support for drugs that are already being explored as therapeutic agents for the treatment of COVID-19 and identify promising novel targets that are worthy of further investigation.
Collapse
Affiliation(s)
- Sinead M O'Donovan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Ali Imami
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Hunter Eby
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Nicholas D Henkel
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Justin Fortune Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Sophie Asah
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Xiaolu Zhang
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Xiaojun Wu
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Rawan Alnafisah
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - R Travis Taylor
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH, USA
| | - James Reigle
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexander Thorman
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Behrouz Shamsaei
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jarek Meller
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Electrical Engineering and Computing Systems, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Informatics, Nicolaus Copernicus University, Torun, Poland
| | - Robert E McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA.
- Neurosciences Institute, Promedica, Toledo, OH, USA.
| |
Collapse
|
5
|
Abstract
Recent studies have renewed interest in developing novel antiviral therapeutics and vaccines based on defective interfering particles (DIPs)—a subset of viral deletion mutants that conditionally replicate. Identifying and engineering DIPs require that viral cis- and trans-acting elements be accurately mapped. It has long been known that noncoding genomic regions can be obligate cis elements acted upon in trans by gene products. In viruses, cis elements regulate gene expression, encapsidation, and other maturation processes, but mapping these elements relies on targeted iterative deletion or laborious prospecting for rare spontaneously occurring mutants. Here, we introduce a method to comprehensively map viral cis and trans elements at single-nucleotide resolution by high-throughput random deletion. Variable-size deletions are randomly generated by transposon integration, excision, and exonuclease chewback and then barcoded for tracking via sequencing (i.e., random deletion library sequencing [RanDeL-seq]). Using RanDeL-seq, we generated and screened >23,000 HIV-1 variants to generate a single-base resolution map of HIV-1’s cis and trans elements. The resulting landscape recapitulated HIV-1’s known cis-acting elements (i.e., long terminal repeat [LTR], Ψ, and Rev response element [RRE]) and, surprisingly, indicated that HIV-1’s central DNA flap (i.e., central polypurine tract [cPPT] to central termination sequence [CTS]) is as critical as the LTR, Ψ, and RRE for long-term passage. Strikingly, RanDeL-seq identified a previously unreported ∼300-bp region downstream of RRE extending to splice acceptor 7 that is equally critical for sustained viral passage. RanDeL-seq was also used to construct and screen a library of >90,000 variants of Zika virus (ZIKV). Unexpectedly, RanDeL-seq indicated that ZIKV’s cis-acting regions are larger than the untranscribed (UTR) termini, encompassing a large fraction of the nonstructural genes. Collectively, RanDeL-seq provides a versatile framework for generating viral deletion mutants, enabling discovery of replication mechanisms and development of novel antiviral therapeutics, particularly for emerging viral infections.
Collapse
|
6
|
Salas Rojas M, Silva Garcia R, Bini E, Pérez de la Cruz V, León Contreras JC, Hernández Pando R, Bastida Gonzalez F, Davila-Gonzalez E, Orozco Morales M, Gamboa Domínguez A, Sotelo J, Pineda B. Quinacrine, an Antimalarial Drug with Strong Activity Inhibiting SARS-CoV-2 Viral Replication In Vitro. Viruses 2021; 13:121. [PMID: 33477376 PMCID: PMC7830524 DOI: 10.3390/v13010121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
Quinacrine (Qx), a molecule used as an antimalarial, has shown anticancer, antiprion, and antiviral activity. The most relevant antiviral activities of Qx are related to its ability to raise pH in acidic organelles, diminishing viral enzymatic activity for viral cell entry, and its ability to bind to viral DNA and RNA. Moreover, Qx has been used as an immunomodulator in cutaneous lupus erythematosus and various rheumatological diseases, by inhibiting phospholipase A2 modulating the Th1/Th2 response. The aim of this study was to evaluate the potential antiviral effect of Qx against denominated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Vero E6 cells. The cytotoxicity of Qx in Vero E6 cells was determined by the MTT assay. Afterwards, Vero E6 cells were infected with SARS-CoV-2 at different multiplicities of infections (MOIs) of 0.1 and 0.01 in the presence of Qx (0-30 µM) to determinate the half maximal effective concentration (EC50). After 48 h, the effect of Qx against SARS-CoV-2 was assessed by viral cytotoxicity and viral copy numbers, the last were determined by digital real-time RT-PCR (ddRT-PCR). Additionally, electron and confocal microscopy of Vero E6 cells infected and treated with Qx was studied. Our data show that Qx reduces SARS-CoV-2 virus replication and virus cytotoxicity, apparently by inhibition of viral ensemble, as observed by ultrastructural images, suggesting that Qx could be a potential drug for further clinical studies against coronavirus disease 2019 (COVID-19) infection.
Collapse
Affiliation(s)
- Mónica Salas Rojas
- Unidad de Investigación Médica en Inmunología, Unidad Medica de Alta Especialidad, Hospital de Pediatría, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social, Cuauhtémoc 330, Mexico Ctiy 06720, Mexico; (M.S.R.); (R.S.G.)
| | - Raúl Silva Garcia
- Unidad de Investigación Médica en Inmunología, Unidad Medica de Alta Especialidad, Hospital de Pediatría, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social, Cuauhtémoc 330, Mexico Ctiy 06720, Mexico; (M.S.R.); (R.S.G.)
| | - Estela Bini
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Mexico Ctiy 14080, Mexico; (E.B.); (J.C.L.C.); (R.H.P.)
| | - Verónica Pérez de la Cruz
- Laboratorio de Neurobioquímica y Conducta, Instituto Nacional de Neurología y Neurocirugía, Insurgentes sur 3877, Mexico Ctiy 14269, Mexico;
| | - Juan Carlos León Contreras
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Mexico Ctiy 14080, Mexico; (E.B.); (J.C.L.C.); (R.H.P.)
| | - Rogelio Hernández Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Mexico Ctiy 14080, Mexico; (E.B.); (J.C.L.C.); (R.H.P.)
| | - Fernando Bastida Gonzalez
- Laboratorio de Biología Molecular, Laboratorio Estatal de Salud Pública del Estado de Mexico, Estado de México, Toluca 50130, Mexico; (F.B.G.); (E.D.-G.)
| | - Eduardo Davila-Gonzalez
- Laboratorio de Biología Molecular, Laboratorio Estatal de Salud Pública del Estado de Mexico, Estado de México, Toluca 50130, Mexico; (F.B.G.); (E.D.-G.)
| | - Mario Orozco Morales
- Unidad Funcional de Oncología Torácica y Medicina Personalizada, Instituto Nacional de Cancerología, San Fernando 22, Mexico Ctiy 14080, Mexico;
| | - Armando Gamboa Domínguez
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico Ctiy 14080, Mexico;
| | - Julio Sotelo
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Insurgentes sur 3877, Mexico Ctiy 14269, Mexico;
| | - Benjamín Pineda
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Insurgentes sur 3877, Mexico Ctiy 14269, Mexico;
| |
Collapse
|
7
|
Marinho EM, Batista de Andrade Neto J, Silva J, Rocha da Silva C, Cavalcanti BC, Marinho ES, Nobre Júnior HV. Virtual screening based on molecular docking of possible inhibitors of Covid-19 main protease. Microb Pathog 2020; 148:104365. [PMID: 32619669 PMCID: PMC7834391 DOI: 10.1016/j.micpath.2020.104365] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
Coronavirus (COVID-19) is an enveloped RNA virus that is diversely found in humans and that has now been declared a global pandemic by the World Health Organization. Thus, there is an urgent need to develop effective therapies and vaccines against this disease. In this context, this study aimed to evaluate in silico the molecular interactions of drugs with therapeutic indications for treatment of COVID-19 (Azithromycin, Baricitinib and Hydroxychloroquine) and drugs with similar structures (Chloroquine, Quinacrine and Ruxolitinib) in docking models from the SARS-CoV-2 main protease (M-pro) protein. The results showed that all inhibitors bound to the same enzyme site, more specifically in domain III of the SARS-CoV-2 main protease. Therefore, this study allows proposing the use of baricitinib and quinacrine, in combination with azithromycin; however, these computer simulations are just an initial step for conceiving new projects for the development of antiviral molecules.
Collapse
Affiliation(s)
- Emanuelle Machado Marinho
- Department of Analytical Chemistry and Physical Chemistry, Group of Theoretical Chemistry (GQT), Science Center, Federal University of Ceará, Fortaleza, CE, 60.455-760, Brazil
| | - João Batista de Andrade Neto
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil; Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil; Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Jacilene Silva
- Department of Chemistry, Group of Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Cecília Rocha da Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil; Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Emmanuel Silva Marinho
- Department of Chemistry, Group of Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil; Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
8
|
Kimura C, Li R, Ouda R, Nishimura H, Fujita T, Watanabe T. Production of Antiviral Substance from Sugarcane Bagasse by Chemical Alteration of its Native Lignin Structure through Microwave Solvolysis. CHEMSUSCHEM 2020; 13:4519-4527. [PMID: 32291945 DOI: 10.1002/cssc.202000490] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 05/27/2023]
Abstract
The production of bioactive agents from lignocelluloses has received limited attention because plant cell walls are essentially non-bioactive. In this study, a chemical reaction is reported, which produces a lignin-derived antiviral substance from sugarcane bagasse by microwave heating at 200 °C in aqueous glycerol containing 0.5 % H2 SO4 . The purified fraction, designated as FR200 , strongly inhibited the replication of encephalomyocarditis virus (EMCV) in L929 cells without cytotoxicity. HSQC NMR spectra demonstrated that the principal interunit linkages in the native lignin were cleaved by the reaction. Gel permeation chromatography (GPC) and pyrolysis-GCMS revealed that FR200 is composed of oligomeric lignin with a weight average molecular weight of approximately 2000. When the bagasse was reacted at lower temperatures, 140 °C and 160 °C, the native lignin substructures were partially retained and the antiviral activity significantly decreased. The results thus indicate that the antiviral activity emerged through severe alteration of the native lignin structure. Furthermore, it was revealed that the antiviral lignin inactivated the EMCV virions through direct contact, as the innate immune system of L929 was not activated by FR200 treatment, and no antiviral activity was found when L929 was pre-treated with the lignin before viral infection.
Collapse
Affiliation(s)
- Chihiro Kimura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan
| | - Ruibo Li
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan
| | - Ryota Ouda
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin, Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Current address: Graduate School of Medicine, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hiroshi Nishimura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan
| | - Takashi Fujita
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin, Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
9
|
Ultrasound Assisted Exosomal Delivery of Tissue Responsive mRNA for Enhanced Efficacy and Minimized Off-Target Effects. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:558-567. [PMID: 32334416 PMCID: PMC7182664 DOI: 10.1016/j.omtn.2020.03.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022]
Abstract
Exosome-mediated nucleic acids delivery has been emerging as a promising strategy for gene therapy. However, the intrinsic off-target effects due to non-specific uptake of exosomes by other tissues remain the big hurdle for clinical application. In this study, we aimed to enhance the efficacy and minimize the off-target effects by simultaneously encapsulating engineered mRNA translationally activated by tissue-specific microRNA (miRNA) and increasing targeted delivery efficiency via ultrasound-targeted microbubble destruction (UTMD). Briefly, the upstream of interest transcript was engineered to harbor an internal ribosome entry site (IRES) modified with two miRNA recognition sites. In vitro reporter experiments revealed that the engineered mRNA could be encapsulated into exosomes and can be translationally activated by corresponding miRNAs in the recipient cells. By a proof-of-principle in vivo experiment, we encapsulated miR-148a (an adipose relatively specific miRNA)-responsive PGC1α mRNA into exosomes and delivered the exosomes into the adipose tissue with the aid of UTMD. Efficient PGC1α translation was activated in the adipose tissue, together with obvious browning induction. Moreover, there was much lower off-target translation of PGC1 α in lungs and other tissues. Taken together, our study establishes a novel adipose-specific exosome delivery strategy to enhance efficacy and minimize off-target effects simultaneously.
Collapse
|
10
|
Geng G, Yu C, Li X, Yuan X. A unique internal ribosome entry site representing a dynamic equilibrium state of RNA tertiary structure in the 5'-UTR of Wheat yellow mosaic virus RNA1. Nucleic Acids Res 2020; 48:390-404. [PMID: 31713626 PMCID: PMC7145537 DOI: 10.1093/nar/gkz1073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 02/02/2023] Open
Abstract
Internal ribosome entry sites (IRESes) were first reported in RNA viruses and subsequently identified in cellular mRNAs. In this study, IRES activity of the 5'-UTR in Wheat yellow mosaic virus (WYMV) RNA1 was identified, and the 3'-UTR synergistically enhanced this IRES activity via long-distance RNA-RNA interaction between C80U81and A7574G7575. Within the 5'-UTR, the hairpin 1(H1), flexible hairpin 2 (H2) and linker region (LR1) between H1 and H2 played an essential role in cap-independent translation, which is associated with the structural stability of H1, length of discontinuous stems and nucleotide specificity of the H2 upper loop and the long-distance RNA-RNA interaction sites in LR1. The H2 upper loop is a target region of the eIF4E. Cytosines (C55, C66, C105 and C108) in H1 and H2 and guanines (G73, G79 and G85) in LR1 form discontinuous and alternative base pairing to maintain the dynamic equilibrium state, which is used to elaborately regulate translation at a suitable level. The WYMV RNA1 5'-UTR contains a novel IRES, which is different from reported IRESes because of the dynamic equilibrium state. It is also suggested that robustness not at the maximum level of translation is the selection target during evolution of WYMV RNA1.
Collapse
Affiliation(s)
- Guowei Geng
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, P.R. China
| | - Chengming Yu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, P.R. China
| | - Xiangdong Li
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, P.R. China
| | - Xuefeng Yuan
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, P.R. China
| |
Collapse
|
11
|
Shin Y, Kim HG, Park CM, Choi MS, Kim DE, Choi BS, Kim K, Yoon CH. Identification of novel compounds against Tat-mediated human immunodeficiency virus-1 transcription by high-throughput functional screening assay. Biochem Biophys Res Commun 2019; 523:368-374. [PMID: 31866007 DOI: 10.1016/j.bbrc.2019.12.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
Trans-activator (Tat)-mediated human immunodeficiency virus type 1 (HIV-1) transcription is essential for the replication of HIV-1 and is considered a potent therapeutic target for HIV-1 inhibition. In this study, the Library of Pharmacologically Active Compounds (LOPAC1280) was screened using our dual-reporter screening system for repositioning as Tat-inhibitory compounds. Consequently, two compounds were found to be potent, with low cytotoxicity. Of these two compounds, Roscovitine (CYC202) is already known to be a Tat inhibitor, while gemcitabine has been newly identified as an inhibitor of Tat-mediated transcription linked to viral production and replication. In an additional screening using the ribonucleoside analogues of gemcitabine, two analogues (2'-C-methylcytidine and 3-deazauridine) showed a specific Tat-inhibitory effect linked to their anti-HIV-1 activity. Interestingly, these compounds did not affect Tat protein directly, while the mechanism underlying their inhibition of Tat-mediated transcription was linked to pyrimidine biosynthesis, rather than to alteration of the dNTP pool, influenced by the inhibition of ribonucleotide reductase. Taken together, the proposed functional screening system is a useful tool for the identification of inhibitors of Tat-mediated HIV-1 transcription from among a large number of compounds, and the inhibitory effect of HIV-1 transcription by gemcitabine and its analogues may suggest a strategy for developing a new class of therapeutic anti-HIV drugs.
Collapse
Affiliation(s)
- YoungHyun Shin
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea
| | - Hong Gi Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Chul Min Park
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Min Suk Choi
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Dong-Eun Kim
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea
| | - Byeong-Sun Choi
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea
| | - Kisoon Kim
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea
| | - Cheol-Hee Yoon
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea.
| |
Collapse
|
12
|
Li R, Narita R, Ouda R, Kimura C, Nishimura H, Yatagai M, Fujita T, Watanabe T. Structure-dependent antiviral activity of catechol derivatives in pyroligneous acid against the encephalomycarditis virus. RSC Adv 2018; 8:35888-35896. [PMID: 35558500 PMCID: PMC9088284 DOI: 10.1039/c8ra07096b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/13/2018] [Indexed: 01/26/2023] Open
Abstract
The pyrolysis product, wood vinegar (WV), from Japanese larch exhibited strong antiviral activity against the encephalomycarditis virus (EMCV). Catechol, 3-methyl-, 4-methyl-, 4-ethyl-, and 3-methoxycatechol, and 2-methyl-1,4-benzenediol were identified as the major antiviral compounds. The viral inhibition ability of these compounds was affected by the structure and position of the substituent group attached to the aromatic skeleton. The IC50 of catechol was 0.67 mg mL-1 and those of its derivatives were <0.40 mg mL-1. Methyl and ethyl substitution in the para position relative to a hydroxyl group obviously increased the antiviral activities. The mode of antiviral action was investigated by adding catechol derivatives at different times of the viral life cycle. It was found that direct inactivations of EMCV by these compounds were the major pathway for the antiviral activity. The effect of catechol derivatives on the host immune system was studied by quantification of Il6 and Ifnb1 expression levels. Increased Il6 expression levels indicate NF-κB activation by reactive oxygen species from auto-oxidations of catechol derivatives, which is also a possible antiviral route. The present research provides indices for production of potent antiviral agents form lignocellulose biomass.
Collapse
Affiliation(s)
- Ruibo Li
- Research Institute for Sustainable Humanosphere, Kyoto University Uji Kyoto 611-0011 Japan
| | - Ryo Narita
- Research Institute for Sustainable Humanosphere, Kyoto University Uji Kyoto 611-0011 Japan
- Institute for Frontier Life and Medical Science, Kyoto University Kyoto 606-8507 Japan
| | - Ryota Ouda
- Research Institute for Sustainable Humanosphere, Kyoto University Uji Kyoto 611-0011 Japan
- Institute for Frontier Life and Medical Science, Kyoto University Kyoto 606-8507 Japan
| | - Chihiro Kimura
- Research Institute for Sustainable Humanosphere, Kyoto University Uji Kyoto 611-0011 Japan
| | - Hiroshi Nishimura
- Research Institute for Sustainable Humanosphere, Kyoto University Uji Kyoto 611-0011 Japan
| | | | - Takashi Fujita
- Institute for Frontier Life and Medical Science, Kyoto University Kyoto 606-8507 Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University Uji Kyoto 611-0011 Japan
| |
Collapse
|
13
|
Nikonov OS, Chernykh ES, Garber MB, Nikonova EY. Enteroviruses: Classification, Diseases They Cause, and Approaches to Development of Antiviral Drugs. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523062 PMCID: PMC7087576 DOI: 10.1134/s0006297917130041] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The genus Enterovirus combines a portion of small (+)ssRNA-containing viruses and is divided into 10 species of true enteroviruses and three species of rhinoviruses. These viruses are causative agents of the widest spectrum of severe and deadly epidemic diseases of higher vertebrates, including humans. Their ubiquitous distribution and high pathogenici- ty motivate active search to counteract enterovirus infections. There are no sufficiently effective drugs targeted against enteroviral diseases, thus treatment is reduced to supportive and symptomatic measures. This makes it extremely urgent to develop drugs that directly affect enteroviruses and hinder their development and spread in infected organisms. In this review, we cover the classification of enteroviruses, mention the most common enterovirus infections and their clinical man- ifestations, and consider the current state of development of anti-enteroviral drugs. One of the most promising targets for such antiviral drugs is the viral Internal Ribosome Entry Site (IRES). The classification of these elements of the viral mRNA translation system is also examined.
Collapse
Affiliation(s)
- O S Nikonov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | |
Collapse
|
14
|
9-Aminoacridine-based agents impair the bovine viral diarrhea virus (BVDV) replication targeting the RNA-dependent RNA polymerase (RdRp). Bioorg Med Chem 2018; 26:855-868. [PMID: 29325885 DOI: 10.1016/j.bmc.2018.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/05/2017] [Accepted: 01/03/2018] [Indexed: 11/21/2022]
Abstract
Bovine viral diarrhea virus (BVDV) infection is still a plague that causes important livestock pandemics. Despite the availability of vaccines against BVDV, and the implementation of massive eradication or control programs, this virus still constitutes a serious agronomic burden. Therefore, the alternative approach to combat Pestivirus infections, based on the development of antiviral agents that specifically inhibit the replication of these viruses, is of preeminent actuality and importance. Capitalizing from a long-standing experience in antiviral drug design and development, in this work we present and characterize a series of small molecules based on the 9-aminoacridine scaffold that exhibit potent anti-BVDV activity coupled with low cytotoxicity. The relevant viral protein target - the RNA-dependent RNA polymerase - the binding mode, and the mechanism of action of these new antivirals have been determined by a combination of in vitro (i.e., enzymatic inhibition, isothermal titration calorimetry and site-directed mutagenesis assays) and computational experiments. The overall results obtained confirm that these acridine-based derivatives are promising compounds in the treatment of BVDV infections and, based on the reported structure-activity relationship, can be selected as a starting point for the design of a new generation of improved, safe and selective anti-BVDV agents.
Collapse
|
15
|
Miyazaki Y, Du X, Muramatsu SI, Gomez CM. An miRNA-mediated therapy for SCA6 blocks IRES-driven translation of the CACNA1A second cistron. Sci Transl Med 2017; 8:347ra94. [PMID: 27412786 DOI: 10.1126/scitranslmed.aaf5660] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/21/2016] [Indexed: 12/17/2022]
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a dominantly inherited neurodegenerative disease characterized by slowly progressive ataxia and Purkinje cell degeneration. SCA6 is caused by a polyglutamine repeat expansion within a second CACNA1A gene product, α1ACT. α1ACT expression is under the control of an internal ribosomal entry site (IRES) present within the CACNA1A coding region. Whereas SCA6 allele knock-in mice show indistinguishable phenotypes from wild-type littermates, expression of SCA6-associated α1ACT (α1ACTSCA6) driven by a Purkinje cell-specific promoter in mice produces slowly progressive ataxia and cerebellar atrophy. We developed an early-onset SCA6 mouse model using an adeno-associated virus (AAV)-based gene delivery system to ectopically express CACNA1A IRES-driven α1ACTSCA6 to test the potential of CACNA1A IRES-targeting therapies. Mice expressing AAV9-mediated CACNA1A IRES-driven α1ACTSCA6 exhibited early-onset ataxia, motor deficits, and Purkinje cell degeneration. We identified miR-3191-5p as a microRNA (miRNA) that targeted CACNA1A IRES and preferentially inhibited the CACNA1A IRES-driven translation of α1ACT in an Argonaute 4 (Ago4)-dependent manner. We found that eukaryotic initiation factors (eIFs), eIF4AII and eIF4GII, interacted with the CACNA1A IRES to enhance α1ACT translation. Ago4-bound miR-3191-5p blocked the interaction of eIF4AII and eIF4GII with the CACNA1A IRES, attenuating IRES-driven α1ACT translation. Furthermore, AAV9-mediated delivery of miR-3191-5p protected mice from the ataxia, motor deficits, and Purkinje cell degeneration caused by CACNA1A IRES-driven α1ACTSCA6 We have established proof of principle that viral delivery of an miRNA can rescue a disease phenotype through modulation of cellular IRES activity in a mouse model.
Collapse
Affiliation(s)
- Yu Miyazaki
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Xiaofei Du
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Shin-Ichi Muramatsu
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi 3290498, Japan. Center for Gene and Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 1088639, Japan
| | | |
Collapse
|
16
|
Rivas-Aravena A, Muñoz P, Jorquera P, Diaz A, Reinoso C, González-Catrilelbún S, Sandino AM. Study of RNA-A Initiation Translation of The Infectious Pancreatic Necrosis Virus. Virus Res 2017; 240:121-129. [PMID: 28743463 DOI: 10.1016/j.virusres.2017.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/08/2017] [Accepted: 07/12/2017] [Indexed: 01/24/2023]
Abstract
The infectious pancreatic necrosis virus (IPNV) is a salmonid pathogen that causes significant economic losses to the aquaculture industry. IPNV is a non-enveloped virus containing two uncapped and non-polyadenylated double strand RNA genomic segments, RNA-A and RNA-B. The viral protein Vpg is covalently attached to the 5' end of both segments. There is little knowledge about its viral cycle, particularly about the translation of the RNAs. Through experiments using mono and bicistronic reporters, in this work we show that the 120-nucleotide-long 5'-UTR of RNA-A contains an internal ribosome entry site (IRES) that functions efficiently both in vitro and in salmon cells. IRES activity is strongly dependent on temperature. Also, the IRES structure is confined to the 5'UTR and is not affected by the viral coding sequence. This is the first report of IRES activity in a fish virus and can give us tools to generate antivirals to attack the virus without affecting fish directly.
Collapse
Affiliation(s)
- Andrea Rivas-Aravena
- Comisión Chilena de Energía Nuclear, Departamento de Aplicaciones Nucleares, Laboratorio de Radiobiología Celular y Molecular. Nueva Bilbao 12501, Las Condes, Santiago, Chile; Universidad San Sebastián, Facultad de Ciencias, Lota 2465, Providencia, Santiago, Chile.
| | - Patricio Muñoz
- Universidad de Santiago de Chile, Centro de Biotecnología Acuícola, Laboratorio de Virología,Av. Bernardo O'Higgins 3303, Estación Central, Santiago, Chile
| | - Patricia Jorquera
- Universidad de Santiago de Chile, Centro de Biotecnología Acuícola, Laboratorio de Virología,Av. Bernardo O'Higgins 3303, Estación Central, Santiago, Chile
| | - Alvaro Diaz
- Universidad de Santiago de Chile, Centro de Biotecnología Acuícola, Laboratorio de Virología,Av. Bernardo O'Higgins 3303, Estación Central, Santiago, Chile
| | - Claudia Reinoso
- Universidad de Santiago de Chile, Centro de Biotecnología Acuícola, Laboratorio de Virología,Av. Bernardo O'Higgins 3303, Estación Central, Santiago, Chile
| | - Sebastián González-Catrilelbún
- Comisión Chilena de Energía Nuclear, Departamento de Aplicaciones Nucleares, Laboratorio de Radiobiología Celular y Molecular. Nueva Bilbao 12501, Las Condes, Santiago, Chile; Universidad de Santiago de Chile, Centro de Biotecnología Acuícola, Laboratorio de Virología,Av. Bernardo O'Higgins 3303, Estación Central, Santiago, Chile
| | - Ana María Sandino
- Universidad de Santiago de Chile, Centro de Biotecnología Acuícola, Laboratorio de Virología,Av. Bernardo O'Higgins 3303, Estación Central, Santiago, Chile.
| |
Collapse
|
17
|
Gunaseelan S, Chu JJH. Identifying novel antiviral targets against enterovirus 71: where are we? Future Virol 2017. [DOI: 10.2217/fvl-2016-0144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human enterovirus 71 (HEV71) has been considered as an essential human pathogen, which causes hand, foot and mouth disease in young children. Several HEV71 outbreaks have been observed in many Asia-Pacific countries for the past two decades with significant fatalities. However, there are no competent vaccines or antivirals against HEV71 infection to date. Thus, it is of critical priority to delve into the search for anti-HEV71 agents. Prior to this, there is a need to gain knowledge about the distinct targets of HEV71 that are available and that have been exploited for antiviral therapy. This review aims to provide a better understanding of HEV71 virology and feature potential antivirals for progressive clinical development with respect to their elucidated mechanistic actions.
Collapse
Affiliation(s)
- Saravanan Gunaseelan
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597 Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597 Singapore
- Institute of Molecular & Cell Biology, Agency for Science, Technology & Research (A*STAR), 61 Biopolis Drive, Proteos #06–05, Singapore 138673
| |
Collapse
|
18
|
Jin RZ, Li YL, Wang XS. One-Pot Ullmann C-N Coupling Cyclization Toward Domino Synthesis of Fused Hexacyclic Quinolinotriazoloacridinones Catalyzed by CuI/L-Proline. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Rong-Zhang Jin
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthesis for Functional Materials; Jiangsu Normal University; Xuzhou Jiangsu 221116 China
| | - Yu-Ling Li
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthesis for Functional Materials; Jiangsu Normal University; Xuzhou Jiangsu 221116 China
| | - Xiang-Shan Wang
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthesis for Functional Materials; Jiangsu Normal University; Xuzhou Jiangsu 221116 China
| |
Collapse
|
19
|
Hou HY, Lu WW, Wu KY, Lin CW, Kung SH. Idarubicin is a broad-spectrum enterovirus replication inhibitor that selectively targets the virus internal ribosomal entry site. J Gen Virol 2016; 97:1122-1133. [DOI: 10.1099/jgv.0.000431] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Hsin-Yu Hou
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Wen-Wen Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taiwan, ROC
| | - Kuan-Yin Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan, ROC
| | - Szu-Hao Kung
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
20
|
Nanoquinacrine induced apoptosis in cervical cancer stem cells through the inhibition of hedgehog-GLI1 cascade: Role of GLI-1. Sci Rep 2016; 6:20600. [PMID: 26846872 PMCID: PMC4742869 DOI: 10.1038/srep20600] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/07/2016] [Indexed: 12/30/2022] Open
Abstract
To improve the pharmacokinetics and to study the anti-cervical cancer and anti-stem cells (CSCs) mechanism of Quinacrine (QC), a spherical nano particle of QC (i.e. NQC) was prepared and characterized. QC and NQC showed higher cytotoxicity in multiple cancer cells than the normal epithelial cells. NQC exhibited more toxicity in cervical cancer cells and its CSCs than QC. A dose-dependent decreased expression of Hedgehog-GLI (HH-GLI) components were noted in NQC treated HeLa cells and its CSCs. NQC increased the expressions of negatively regulated HH-GLI components (GSK3β, PTEN) and caused apoptosis in CSCs. Reduction of GLI1 at mRNA and promoter level were noted after NQC exposure. The expressions of HH-GLI components, GLI1 promoter activity and apoptosis were unaltered in NQC treated GLI1-knockdown cells. In silico, cell based and in vitro reconstitution assay revealed that NQC inhibit HH-GLI cascade by binding to the consensus sequence (5'GACCACCCA3') of GLI1 in GLI-DNA complex through destabilizing DNA-GLI1 complex. NQC reduced the tumors size and proliferation marker Ki-67 in an in vivo xenograft mice model. Thus, NQC induced apoptosis in cancers through inhibition of HH-GLI cascade by GLI1. Detail interaction of QC-DNA-GLI complex can pave path for anticancer drug design.
Collapse
|
21
|
Lozano G, Trapote A, Ramajo J, Elduque X, Grandas A, Robles J, Pedroso E, Martínez-Salas E. Local RNA flexibility perturbation of the IRES element induced by a novel ligand inhibits viral RNA translation. RNA Biol 2016; 12:555-68. [PMID: 25775053 PMCID: PMC4615676 DOI: 10.1080/15476286.2015.1025190] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The internal ribosome entry site (IRES) element located at the 5'untranslated genomic region of various RNA viruses mediates cap-independent initiation of translation. Picornavirus IRES activity is highly dependent on both its structural organization and its interaction with host factors. Small molecules able to interfere with RNA function are valuable candidates for antiviral agents. Here we show that a small molecule based on benzimidazole (IRAB) inhibited foot-and-mouth disease virus (FMDV) IRES-dependent protein synthesis in cells transfected with infectious RNA leading to a decrease of the virus titer, which was higher than that induced by a structurally related benzimidazole derivative. Interestingly, IRAB preferentially inhibited IRES-dependent translation in cell free systems in a dose-dependent manner. RNA structural analysis by SHAPE demonstrated an increased local flexibility of the IRES structure upon incubation with IRAB, which affected 3 stem-loops (SL) of domain 3. Fluorescence binding assays conducted with individual aminopurine-labeled oligoribonucleotides indicated that the SL3A binds IRAB (EC50 18 μM). Taken together, the results derived from SHAPE reactivity and fluorescence binding assays suggested that the target site of IRAB within the FMDV IRES might be a folded RNA structure that involves the entire apical region of domain 3. Our data suggest that the conformational changes induced by this compound on a specific region of the IRES structure which is essential for its activity is, at least in part, responsible for the reduced IRES efficiency observed in cell free lysates and, particularly, in RNA-transfected cells.
Collapse
Affiliation(s)
- Gloria Lozano
- a Centro de Biología Molecular Severo Ochoa; CSIC-UAM; Madrid , Spain
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Komar AA, Hatzoglou M. Exploring Internal Ribosome Entry Sites as Therapeutic Targets. Front Oncol 2015; 5:233. [PMID: 26539410 PMCID: PMC4611151 DOI: 10.3389/fonc.2015.00233] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022] Open
Abstract
Initiation of eukaryotic mRNA translation may proceed via several different routes, each requiring a different subset of factors and relying on different and specific interactions between the mRNA and the ribosome. Two modes predominate: (i) so-called cap-dependent initiation, which requires all canonical initiation factors and is responsible for about 95–97% of all initiation events in eukaryotic cells; and (ii) cap-independent internal initiation, which requires a reduced subset of initiation factors and accounts for up to 5% of the remaining initiation events. Internal initiation relies on the presence of so-called internal ribosome entry site (IRES) elements in the 5′ UTRs of some viral and cellular mRNAs. These elements (often possessing complex secondary and tertiary structures) promote efficient interaction of the mRNA with the 40S ribosome and allow for internal ribosome entry. Internal initiation of translation of specific mRNAs may contribute to development of severe disease and pathological states, such as hepatitis C and cancer. Therefore, this cellular mechanism represents an attractive target for pharmacological modulation. The purpose of this review is to provide insight into current strategies used to target viral and cellular IRESs and discuss the physiological consequences (and potential therapeutic implications) of abrogation/modulation of IRES-mediated translation.
Collapse
Affiliation(s)
- Anton A Komar
- Department of Biological, Geological and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University , Cleveland, OH , USA
| | - Maria Hatzoglou
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, OH , USA
| |
Collapse
|
23
|
Pal S, Bhattacharjee A, Ali A, Mandal NC, Mandal SC, Pal M. Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. JOURNAL OF INFLAMMATION-LONDON 2014; 11:23. [PMID: 25152696 PMCID: PMC4142057 DOI: 10.1186/1476-9255-11-23] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/28/2014] [Indexed: 12/13/2022]
Abstract
Activation of nuclear factor-kappa B (NF- κB) as a mechanism of host defense against infection and stress is the central mediator of inflammatory responses. A normal (acute) inflammatory response is activated on urgent basis and is auto-regulated. Chronic inflammation that results due to failure in the regulatory mechanism, however, is largely considered as a critical determinant in the initiation and progression of various forms of cancer. Mechanistically, NF- κB favors this process by inducing various genes responsible for cell survival, proliferation, migration, invasion while at the same time antagonizing growth regulators including tumor suppressor p53. It has been shown by various independent investigations that a down regulation of NF- κB activity directly, or indirectly through the activation of the p53 pathway reduces tumor growth substantially. Therefore, there is a huge effort driven by many laboratories to understand the NF- κB signaling pathways to intervene the function of this crucial player in inflammation and tumorigenesis in order to find an effective inhibitor directly, or through the p53 tumor suppressor. We discuss here on the role of NF- κB in chronic inflammation and cancer, highlighting mutual antagonism between NF- κB and p53 pathways in the process. We also discuss prospective pharmacological modulators of these two pathways, including those that were already tested to affect this mutual antagonism.
Collapse
Affiliation(s)
- Srabani Pal
- Pharmacognosy and Phytotherapy laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur-713209, India
| | - Asif Ali
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | | | - Subhash C Mandal
- Pharmacognosy and Phytotherapy laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| |
Collapse
|
24
|
The DNA virus white spot syndrome virus uses an internal ribosome entry site for translation of the highly expressed nonstructural protein ICP35. J Virol 2013; 87:13263-78. [PMID: 24089551 DOI: 10.1128/jvi.01732-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although shrimp white spot syndrome virus (WSSV) is a large double-stranded DNA virus (∼300 kbp), it expresses many polycistronic mRNAs that are likely to use internal ribosome entry site (IRES) elements for translation. A polycistronic mRNA encodes the gene of the highly expressed nonstructural protein ICP35, and here we use a dual-luciferase assay to demonstrate that this protein is translated cap independently by an IRES element located in the 5' untranslated region of icp35. A deletion analysis of this region showed that IRES activity was due to stem-loops VII and VIII. A promoterless assay, a reverse transcription-PCR together with quantitative real-time PCR analysis, and a stable stem-loop insertion upstream of the Renilla luciferase open reading frame were used, respectively, to rule out the possibility that cryptic promoter activity, abnormal splicing, or read-through was contributing to the IRES activity. In addition, a Northern blot analysis was used to confirm that only a single bicistronic mRNA was expressed. The importance of ICP35 to viral replication was demonstrated in a double-stranded RNA (dsRNA) interference knockdown experiment in which the mortality of the icp35 dsRNA group was significantly reduced. Tunicamycin was used to show that the α subunit of eukaryotic initiation factor 2 is required for icp35 IRES activity. We also found that the intercalating drug quinacrine significantly inhibited icp35 IRES activity in vitro and reduced the mortality rate and viral copy number in WSSV-challenged shrimp. Lastly, in Sf9 insect cells, we found that knockdown of the gene for the Spodoptera frugiperda 40S ribosomal protein RPS10 decreased icp35 IRES-regulated firefly luciferase activity but had no effect on cap-dependent translation.
Collapse
|
25
|
Validation of an antiviral assay method for quantifying IFN-α5 activity in macaque and human serum. Bioanalysis 2013; 5:289-305. [PMID: 23394696 DOI: 10.4155/bio.12.313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND IFN-α5 has been demonstrated to induce stronger signaling and higher expression of antiviral genes than IFN-α2, which is the current treatment in chronic viral hepatitis. However, there is no specific and validated quantification method in order to conduct kinetic studies as part of the preclinical and clinical evaluation for regulatory purposes. RESULTS A novel integration of an antiviral assay against the cytopathic effect of the encephalomyocarditis virus in HeLa cells with a very sensitive method for assay processing - the Vialight(®) Plus assay - is presented for IFN-α5 activity quantification. The bioassay has been validated in macaque and human serum and it has been demonstrated to be selective, precise and accurate. CONCLUSION The validated bioassay meets suitable acceptance criteria for these types of biological assays.
Collapse
|
26
|
Wang J, Du J, Wu Z, Jin Q. Quinacrine impairs enterovirus 71 RNA replication by preventing binding of polypyrimidine-tract binding protein with internal ribosome entry sites. PLoS One 2013; 8:e52954. [PMID: 23301007 PMCID: PMC3536785 DOI: 10.1371/journal.pone.0052954] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/21/2012] [Indexed: 02/05/2023] Open
Abstract
Since the 1980s, epidemics of enterovirus 71 (EV71) and other enteroviruses have occurred in Asian countries and regions, causing a wide range of human diseases. No effective therapy is available for the treatment of these infections. Internal ribosome entry sites (IRESs) are indispensable for the initiation of translation in enteroviruses. Several cellular factors, as well as the ribosome, are recruited to the conserved IRES during this process. Quinacrine intercalates into the RNA architecture and inhibits RNA transcription and protein synthesis, and a recent study showed that quinacrine inhibited encephalomyocarditis virus and poliovirus IRES-mediated translation in vitro without disrupting internal cellular IRES. Here, we report that quinacrine was highly active against EV71, protecting cells from EV71 infection. Replication of viral RNA, expression of viral capsid protein, and production of virus were all strongly inhibited by quinacrine. Interaction of the polypyrimidine tract-binding protein (PTB) with the conserved IRES was prevented by quinacrine. Coxsackieviruses and echovirus were also inhibited by quinacrine in cultured cells. These results indicate that quinacrine may serve as a potential protective agent for use in the treatment of patients with chronic enterovirus infection.
Collapse
Affiliation(s)
- Jianmin Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiang Du
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhiqiang Wu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
27
|
Walsh D, Mathews MB, Mohr I. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol 2013; 5:a012351. [PMID: 23209131 DOI: 10.1101/cshperspect.a012351] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus.
Collapse
Affiliation(s)
- Derek Walsh
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
28
|
Ellenbecker M, Lanchy JM, Lodmell JS. Identification of Rift Valley fever virus nucleocapsid protein-RNA binding inhibitors using a high-throughput screening assay. ACTA ACUST UNITED AC 2012; 17:1062-70. [PMID: 22644268 DOI: 10.1177/1087057112448100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rift Valley fever virus (RVFV) is an emerging infectious pathogen that causes severe disease in humans and livestock and has the potential for global spread. Currently, there is no proven effective treatment for RVFV infection, and there is no licensed vaccine. Inhibition of RNA binding to the essential viral nucleocapsid (N) protein represents a potential antiviral therapeutic strategy because all of the functions performed by N during infection involve RNA binding. To target this interaction, we developed a fluorescence polarization-based high-throughput drug-screening assay and tested 26 424 chemical compounds for their ability to disrupt an N-RNA complex. From libraries of Food and Drug Administration-approved drugs, druglike molecules, and natural product extracts, we identified several lead compounds that are promising candidates for medicinal chemistry.
Collapse
|
29
|
Tonelli M, Vettoretti G, Tasso B, Novelli F, Boido V, Sparatore F, Busonera B, Ouhtit A, Farci P, Blois S, Giliberti G, La Colla P. Acridine derivatives as anti-BVDV agents. Antiviral Res 2011; 91:133-41. [DOI: 10.1016/j.antiviral.2011.05.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 04/29/2011] [Accepted: 05/08/2011] [Indexed: 11/28/2022]
|