1
|
Zheng K, Ren Z, Wang Y. Serine-arginine protein kinases and their targets in viral infection and their inhibition. Cell Mol Life Sci 2023; 80:153. [PMID: 37198350 PMCID: PMC10191411 DOI: 10.1007/s00018-023-04808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Accumulating evidence has consolidated the interaction between viral infection and host alternative splicing. Serine-arginine (SR) proteins are a class of highly conserved splicing factors critical for the spliceosome maturation, alternative splicing and RNA metabolism. Serine-arginine protein kinases (SRPKs) are important kinases that specifically phosphorylate SR proteins to regulate their distribution and activities in the central pre-mRNA splicing and other cellular processes. In addition to the predominant SR proteins, other cytoplasmic proteins containing a serine-arginine repeat domain, including viral proteins, have been identified as substrates of SRPKs. Viral infection triggers a myriad of cellular events in the host and it is therefore not surprising that viruses explore SRPKs-mediated phosphorylation as an important regulatory node in virus-host interactions. In this review, we briefly summarize the regulation and biological function of SRPKs, highlighting their involvement in the infection process of several viruses, such as viral replication, transcription and capsid assembly. In addition, we review the structure-function relationships of currently available inhibitors of SRPKs and discuss their putative use as antivirals against well-characterized viruses or newly emerging viruses. We also highlight the viral proteins and cellular substrates targeted by SRPKs as potential antiviral therapeutic candidates.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518055, China.
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research On Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research On Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
2
|
Ojha PS, Maste MM, Tubachi S, Patil VS. Human papillomavirus and cervical cancer: an insight highlighting pathogenesis and targeting strategies. Virusdisease 2022; 33:132-154. [DOI: 10.1007/s13337-022-00768-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/07/2022] [Indexed: 11/29/2022] Open
|
3
|
Pastor F, Shkreta L, Chabot B, Durantel D, Salvetti A. Interplay Between CMGC Kinases Targeting SR Proteins and Viral Replication: Splicing and Beyond. Front Microbiol 2021; 12:658721. [PMID: 33854493 PMCID: PMC8040976 DOI: 10.3389/fmicb.2021.658721] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/04/2021] [Indexed: 12/27/2022] Open
Abstract
Protein phosphorylation constitutes a major post-translational modification that critically regulates the half-life, intra-cellular distribution, and activity of proteins. Among the large number of kinases that compose the human kinome tree, those targeting RNA-binding proteins, in particular serine/arginine-rich (SR) proteins, play a major role in the regulation of gene expression by controlling constitutive and alternative splicing. In humans, these kinases belong to the CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group and several studies indicate that they also control viral replication via direct or indirect mechanisms. The aim of this review is to describe known and emerging activities of CMGC kinases that share the common property to phosphorylate SR proteins, as well as their interplay with different families of viruses, in order to advance toward a comprehensive knowledge of their pro- or anti-viral phenotype and better assess possible translational opportunities.
Collapse
Affiliation(s)
- Florentin Pastor
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Lulzim Shkreta
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - David Durantel
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Anna Salvetti
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| |
Collapse
|
4
|
Phosphorylation of Phylogenetically Conserved Amino Acid Residues Confines HBx within Different Cell Compartments of Human Hepatocarcinoma Cells. Molecules 2021; 26:molecules26051254. [PMID: 33652602 PMCID: PMC7956559 DOI: 10.3390/molecules26051254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 01/05/2023] Open
Abstract
Hepatitis B virus (HBV) is a circular, and partially double-stranded DNA virus. Upon infection, the viral genome is translocated into the cell nucleus, generating the covalently closed circular DNA (cccDNA) intermediate, and forming a mini chromosome. HBV HBx is a small protein displaying multiple roles in HBV-infected cells, and in different subcellular locations. In the nucleus, the HBx protein is required to initiate and maintain viral transcription from the viral mini chromosome. In contrast, HBx also functions in the cytoplasm, where it is able to alter multiple cellular functions such as mitochondria metabolism, apoptosis and signal transduction pathways. It has been reported that in cultured cells, at low expression levels, the HBx protein is localized in the nucleus, whereas at high expression levels, it accumulates in the cytoplasm. This dynamic subcellular distribution of HBx might be essential to exert its multiple roles during viral infection. However, the mechanism that regulates different subcellular localizations of the HBx protein is unknown. We have previously taken a bioinformatics approach to investigate whether HBx might be regulated via post-translational modification, and we have proposed that the multiple nucleocytoplasmic functions of HBx might be regulated by an evolutionarily conserved mechanism via phosphorylation. In the current study, phylogenetically conserved amino acids of HBx with a high potential of phosphorylation were targeted for site-directed mutagenesis. Two conserved serine (Ser25 and Ser41), and one conserved threonine (Thr81) amino acids were replaced by either alanine or aspartic acid residues to simulate an unphosphorylated or phosphorylated state, respectively. Human hepatoma cells were transfected with increasing amounts of the HBx DNA constructs, and the cells were analyzed by fluorescence microscopy. Together, our results show that the nucleocytoplasmic distribution of the HBx protein could be regulated by phosphorylation since some of the modified proteins were mainly confined to distinct subcellular compartments. Remarkably, both HBx Ser41A, and HBx Thr81D proteins were predominantly localized within the nuclear compartment throughout the different expression levels of HBx mutants.
Collapse
|
5
|
Kajitani N, Schwartz S. Role of Viral Ribonucleoproteins in Human Papillomavirus Type 16 Gene Expression. Viruses 2020; 12:E1110. [PMID: 33007936 PMCID: PMC7600041 DOI: 10.3390/v12101110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPVs) depend on the cellular RNA-processing machineries including alternative RNA splicing and polyadenylation to coordinate HPV gene expression. HPV RNA processing is controlled by cis-regulatory RNA elements and trans-regulatory factors since the HPV splice sites are suboptimal. The definition of HPV exons and introns may differ between individual HPV mRNA species and is complicated by the fact that many HPV protein-coding sequences overlap. The formation of HPV ribonucleoproteins consisting of HPV pre-mRNAs and multiple cellular RNA-binding proteins may result in the different outcomes of HPV gene expression, which contributes to the HPV life cycle progression and HPV-associated cancer development. In this review, we summarize the regulation of HPV16 gene expression at the level of RNA processing with focus on the interactions between HPV16 pre-mRNAs and cellular RNA-binding factors.
Collapse
Affiliation(s)
- Naoko Kajitani
- Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden;
| | | |
Collapse
|
6
|
Mole S, Faizo AAA, Hernandez-Lopez H, Griffiths M, Stevenson A, Roberts S, Graham SV. Human papillomavirus type 16 infection activates the host serine arginine protein kinase 1 (SRPK1) - splicing factor axis. J Gen Virol 2020; 101:523-532. [PMID: 32182205 PMCID: PMC7414453 DOI: 10.1099/jgv.0.001402] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
The infectious life cycle of human papillomaviruses (HPVs) is tightly linked to keratinocyte differentiation. Evidence suggests a sophisticated interplay between host gene regulation and virus replication. Alternative splicing is an essential process for host and viral gene expression, and is generally upregulated by serine arginine-rich splicing factors (SRSFs). SRSF activity can be positively or negatively controlled by cycles of phosphorylation/dephosphorylation. Here we show that HPV16 infection leads to accumulation of the paradigm SRSF protein, SRSF1, in the cytoplasm in a keratinocyte differentiation-specific manner. Moreover, HPV16 infection leads to increased levels of cytoplasmic and nuclear phosphorylated SRSF1. SR protein kinase 1 (SRPK1) phosphorylates SRSF1. Similar to HPV upregulation of SRSF1, we demonstrate HPV upregulation of SRPK1 via the viral E2 protein. SRPK1 depletion or drug inhibition of SRPK1 kinase activity resulted in reduced levels of SRSF1, suggesting that phosphorylation stabilizes the protein in differentiated HPV-infected keratinocytes. Together, these data indicate HPV infection stimulates the SRPK1-SRSF axis in keratinocytes.
Collapse
Affiliation(s)
- Sarah Mole
- MRC – University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
- Present address: GlaxoSmithKline, Stevenage, UK
| | - Arwa Ali A. Faizo
- MRC – University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
- Present address: Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hegel Hernandez-Lopez
- MRC – University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
- Present address: Bristol-Myers Squibb, Mexico City, USA
| | - Megan Griffiths
- MRC – University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Andrew Stevenson
- MRC – University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research West, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Sheila V Graham
- MRC – University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| |
Collapse
|
7
|
Abstract
The largest Ebola virus (EBOV) epidemic in West Africa ever caused more than 28,000 cases and 11,000 deaths, and the current EBOV epidemic in the Democratic Republic of the Congo continues, with more than 3,000 cases to date. Therefore, it is essential to develop antivirals against EBOV. Recently, an inhibitor of the cellular phosphatase PP2A-mediated dephosphorylation of the EBOV transcription factor VP30 has been shown to suppress the spread of Ebola virus. Here, we identified the protein kinase SRPK1 as a VP30-specific kinase that phosphorylates serine 29, the same residue that is dephosphorylated by PP2A. SRPK1-mediated phosphorylation of serine 29 enabled primary viral transcription. Mutation of the SRPK1 recognition motif in VP30 resulted in significant growth inhibition of EBOV. Similarly, elevation of the phosphorylation status of serine 29 by overexpression of SRPK1 inhibited EBOV growth, highlighting the importance of reversible phosphorylation of VP30 as a potential therapeutic target. Ebola virus (EBOV) causes a severe and often fatal disease for which no approved vaccines or antivirals are currently available. EBOV VP30 has been described as a viral phosphoprotein, and nonphosphorylated VP30 is essential and sufficient to support secondary transcription in an EBOV-specific minigenome system; however, phosphorylatable serine residues near the N terminus of VP30 are required to support primary viral transcription as well as the reinitiation of VP30-mediated transcription at internal EBOV genes. While the dephosphorylation of VP30 by the cellular phosphatase PP2A was found to be mediated by nucleoprotein, the VP30-specific kinases and the role of phosphorylation remain unknown. Here, we report that serine-arginine protein kinase 1 (SRPK1) and SRPK2 phosphorylate serine 29 of VP30, which is located in an N-terminal R26xxS29 motif. Interaction with VP30 via the R26xxS29 motif recruits SRPK1 into EBOV-induced inclusion bodies, the sites of viral RNA synthesis, and an inhibitor of SRPK1/SRPK2 downregulates primary viral transcription. When the SRPK1 recognition motif of VP30 was mutated in a recombinant EBOV, virus replication was severely impaired. It is presumed that the interplay between SRPK1 and PP2A in the EBOV inclusions provides a comprehensive regulatory circuit to ensure the activity of VP30 in EBOV transcription. Thus, the identification of SRPK1 is an important mosaic stone that completes our picture of the players involved in Ebola virus transcription regulation.
Collapse
|
8
|
Wu M, Feng G, Zhang B, Xu K, Wang Z, Cheng S, Chang C, Vyas A, Tang Z, Liu X. Phosphoproteomics Reveals Novel Targets and Phosphoprotein Networks in Cell Cycle Mediated by Dsk1 Kinase. J Proteome Res 2020; 19:1776-1787. [DOI: 10.1021/acs.jproteome.0c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mei Wu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Gang Feng
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou 350122, China
| | - Buyu Zhang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kaikun Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (Beijing), Beijing 102206, P.R. China
| | - Zhen Wang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Sen Cheng
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (Beijing), Beijing 102206, P.R. China
| | - Aditi Vyas
- W.M. Keck Science Center, 925 North Mills Avenue, The Claremont Colleges, Claremont, California 91711, United States
| | - Zhaohua Tang
- W.M. Keck Science Center, 925 North Mills Avenue, The Claremont Colleges, Claremont, California 91711, United States
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
9
|
Tunnicliffe RB, Hu WK, Wu MY, Levy C, Mould AP, McKenzie EA, Sandri-Goldin RM, Golovanov AP. Molecular Mechanism of SR Protein Kinase 1 Inhibition by the Herpes Virus Protein ICP27. mBio 2019; 10:e02551-19. [PMID: 31641093 PMCID: PMC6805999 DOI: 10.1128/mbio.02551-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
Serine-arginine (SR) protein kinase 1 (SRPK1) catalyzes the phosphorylation of SR proteins, which are a conserved family of splicing factors that contain a domain rich in arginine and serine repeats. SR proteins play important roles in constitutive pre-mRNA splicing and are also important regulators of alternative splicing. During herpes simplex virus infection, SRPK1 is inactivated and its cellular distribution is markedly altered by interaction with the viral protein ICP27, resulting in hypophosphorylation of SR proteins. Mutational analysis previously showed that the RGG box motif of ICP27 is required for interaction with SRPK1; however, the mechanism for the inhibition and the exact role of the RGG box was unknown. Here, we used solution nuclear magnetic resonance (NMR) spectroscopy and isothermal titration calorimetry (ITC) to demonstrate that the isolated peptide comprising the RGG box of ICP27 binds to SRPK1 with high affinity, competing with a native substrate, the SR repeat region of SR protein SRSF1. We determined the crystal structure of the complex between SRPK1 and an RGG box peptide, which revealed that the viral peptide binds to the substrate docking groove, mimicking the interactions of SR repeats. Site-directed mutagenesis within the RGG box further confirmed the importance of selected arginine residues for interaction, relocalization, and inhibition of SRPK1 in vivo Together these data reveal the molecular mechanism of the competitive inhibition of cellular SRPK1 by viral ICP27, which modulates SRPK1 activity.IMPORTANCE Serine arginine (SR) proteins are a family of mRNA regulatory proteins that can modulate spliceosome association with different splice sites and therefore regulate alternative splicing. Phosphorylation within SR proteins is necessary for splice-site recognition, and this is catalyzed by SR protein kinase 1 (SRPK1). The herpes simplex virus (HSV-1) protein ICP27 has been shown previously to interact with and downregulate SRPK1 activity in vivo; however, the molecular mechanism for this interaction and inhibition was unknown. Here, we demonstrate that the isolated peptide fragment of ICP27 containing RGG box binds to SRPK1 with high affinity, and competes with a native cellular substrate. Elucidation of the SRPK1-RGG box crystal structure further showed that a short palindromic RGRRRGR sequence binds in the substrate docking groove of SRPK1, mimicking the binding of SR repeats of substrates. These data reveal how the viral protein ICP27 inactivates SRPK1, promoting hypophosphorylation of proteins regulating splicing.
Collapse
Affiliation(s)
- Richard B Tunnicliffe
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - William K Hu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, USA
| | - Michele Y Wu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, USA
| | - Colin Levy
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - A Paul Mould
- Biomolecular Analysis Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Edward A McKenzie
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - Rozanne M Sandri-Goldin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, USA
| | - Alexander P Golovanov
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
10
|
Ewaisha R, Panicker G, Maranian P, Unger ER, Anderson KS. Serum Immune Profiling for Early Detection of Cervical Disease. Am J Cancer Res 2017; 7:3814-3823. [PMID: 29109779 PMCID: PMC5667406 DOI: 10.7150/thno.21098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/09/2017] [Indexed: 12/25/2022] Open
Abstract
Background: The most recent (2012) worldwide estimates from International Agency for Research on Cancer indicate that approximately 528,000 new cases and 270,000 deaths per year are attributed to cervical cancer worldwide. The disease is preventable with HPV vaccination and with early detection and treatment of pre-invasive cervical intraepithelial neoplasia, CIN. Antibodies (Abs) to HPV proteins are under investigation as potential biomarkers for early detection. Methods: To detect circulating HPV-specific IgG Abs, we developed programmable protein arrays (NAPPA) that display the proteomes of two low-risk HPV types (HPV6 and 11) and ten oncogenic high-risk HPV types (HPV16, 18, 31, 33, 35, 39, 45, 51, 52 and 58). Arrays were probed with sera from women with CIN 0/I (n=78), CIN II/III (n=84), or invasive cervical cancer (ICC, n=83). Results: Abs to any early (E) HPV protein were detected less frequently in women with CIN 0/I (23.7%) than women with CIN II/III (39.0%) and ICC (46.1%, p<0.04). Of the E Abs, anti-E7 Abs were the most frequently detected (6.6%, 19.5%, and 30.3%, respectively). The least frequently detected Abs were E1 and E2-Abs in CIN 0/I (1.3%) and E1-Abs in CIN II/III (1.2%) and ICC (7.9%). HPV16-specific Abs correlated with HPV16 DNA detected in the cervix in 0% of CIN 0/I, 21.2% of CIN II/III, and 45.5% of ICC. A significant number (29 - 73%) of E4, E7, L1, and L2 Abs had cross-reactivity between HPV types. Conclusion: HPV protein arrays provide a valuable high-throughput tool for measuring the breadth, specificity, and heterogeneity of the serologic response to HPV in cervical disease.
Collapse
|
11
|
Ewaisha R, Meshay I, Resnik J, Katchman BA, Anderson KS. Programmable protein arrays for immunoprofiling HPV-associated cancers. Proteomics 2016; 16:1215-24. [PMID: 27089055 DOI: 10.1002/pmic.201500376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/10/2016] [Accepted: 02/24/2016] [Indexed: 11/12/2022]
Abstract
Over 600,000 cancers each year are attributed to the human papillomavirus (HPV), including cervical, anogenital and oropharyngeal cancers (OPC). A key challenge in understanding HPV immunobiology is the diversity of oncogenic HPV types and the need for multiplexed display of HPV antigens to measure antibody responses. We have generated custom HPV protein microarrays displaying 98 proteins as C-terminal GST fusion proteins, representing eight antigens of two low-risk HPV types (HPV6 and 11) and ten oncogenic high-risk HPV types (HPV16, 18, 31, 33, 35, 39, 45, 51, 52 and 58). We demonstrate robust and reproducible protein expression of 96/98 of the antigens using a human cell lysate expression system. The target epitopes and specificities of four monoclonal antibodies were identified. Using sera from ten patients with newly diagnosed OPC and ten controls, we demonstrate specific IgG seroreactivity to HPV16 E1, E2, and E7 (a fold increase of 1.52, 2.19 and 1.35 in cases vs. controls, respectively, all p < 0.005), confirming our prior data on an ELISA platform. We also detect HPV52 E7 Abs in serum from a patient with cervical cancer. The HPV protein array has potential for rapid identification of serologic responses to 12 HPV types.
Collapse
Affiliation(s)
- Radwa Ewaisha
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Ian Meshay
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Jack Resnik
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Benjamin A Katchman
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Karen S Anderson
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
12
|
RNA Binding Proteins that Control Human Papillomavirus Gene Expression. Biomolecules 2015; 5:758-74. [PMID: 25950509 PMCID: PMC4496695 DOI: 10.3390/biom5020758] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 12/23/2022] Open
Abstract
The human papillomavirus (HPV) life cycle is strictly linked to the differentiation program of the infected mucosal epithelial cell. In the basal and lower levels of the epithelium, early genes coding for pro-mitotic proteins and viral replication factors are expressed, while terminal cell differentiation is required for activation of late gene expression and production of viral particles at the very top of the epithelium. Such productive infections are normally cleared within 18–24 months. In rare cases, the HPV infection is stuck in the early stage of the infection. Such infections may give rise to cervical lesions that can progress to cancer, primarily cancer of the uterine cervix. Since cancer progression is strictly linked to HPV gene expression, it is of interest to understand how HPV gene expression is regulated. Cis-acting HPV RNA elements and cellular RNA-binding proteins control HPV mRNA splicing and polyadenylation. These interactions are believed to play a particularly important role in the switch from early to late gene expression, thereby contributing to the pathogenesis of HPV. Indeed, it has been shown that the levels of various RNA binding proteins change in response to differentiation and in response to HPV induced cervical lesions and cancer. Here we have compiled published data on RNA binding proteins involved in the regulation of HPV gene expression.
Collapse
|
13
|
Prescott EL, Brimacombe CL, Hartley M, Bell I, Graham S, Roberts S. Human papillomavirus type 1 E1^E4 protein is a potent inhibitor of the serine-arginine (SR) protein kinase SRPK1 and inhibits phosphorylation of host SR proteins and of the viral transcription and replication regulator E2. J Virol 2014; 88:12599-611. [PMID: 25142587 PMCID: PMC4248925 DOI: 10.1128/jvi.02029-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/13/2014] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED The serine-arginine-specific protein kinase SRPK1 is a common binding partner of the E1^E4 protein of diverse human papillomavirus types. We show here for the first time that the interaction between HPV1 E1^E4 and SRPK1 leads to potent inhibition of SRPK1 phosphorylation of host serine-arginine (SR) proteins that have critical roles in mRNA metabolism, including pre-mRNA processing, mRNA export, and translation. Furthermore, we show that SRPK1 phosphorylates serine residues of SR/RS dipeptides in the hinge region of the HPV1 E2 protein in in vitro kinase assays and that HPV1 E1^E4 inhibits this phosphorylation. After mutation of the putative phosphoacceptor serine residues, the localization of the E2 protein was altered in primary human keratinocytes; with a significant increase in the cell population showing intense E2 staining of the nucleolus. A similar effect was observed following coexpression of E2 and E1^E4 that is competent for inhibition of SRPK1 activity, suggesting that the nuclear localization of E2 is sensitive to E1^E4-mediated SRPK1 inhibition. Collectively, these data suggest that E1^E4-mediated inhibition of SRPK1 could affect the functions of host SR proteins and those of the virus transcription/replication regulator E2. We speculate that the novel E4 function identified here is involved in the regulation of E2 and SR protein function in posttranscriptional processing of viral transcripts. IMPORTANCE The HPV life cycle is tightly linked to the epithelial terminal differentiation program, with the virion-producing phase restricted to differentiating cells. While the most abundant HPV protein expressed in this phase is the E4 protein, we do not fully understand the role of this protein. Few E4 interaction partners have been identified, but we had previously shown that E4 proteins from diverse papillomaviruses interact with the serine-arginine-specific protein kinase SRPK1, a kinase important in the replication cycles of a diverse range of DNA and RNA viruses. We show that HPV1 E4 is a potent inhibitor of this host cell kinase. We show that E4 inhibits SRPK1 phosphorylation, not only of cellular SR proteins involved in regulating alternative splicing of RNA but also the viral transcription/replication regulator E2. Our findings reveal a potential E4 function in regulation of viral late gene expression through the inhibition of a host cell kinase.
Collapse
Affiliation(s)
- Emma L Prescott
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Claire L Brimacombe
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Margaret Hartley
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ian Bell
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sheila Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sally Roberts
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Nousiainen L, Sillanpää M, Jiang M, Thompson J, Taipale J, Julkunen I. Human kinome analysis reveals novel kinases contributing to virus infection and retinoic-acid inducible gene I-induced type I and type III IFN gene expression. Innate Immun 2013; 19:516-30. [PMID: 23405030 DOI: 10.1177/1753425912473345] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Activation of host innate antiviral responses are mediated by retinoic-acid inducible gene I (RIG-I)-like receptors, RIG-I and melanoma differentiation-associated gene 5, and TLRs 3, 7, 8 and 9, recognising different types of viral nucleic acids. The major components of the RIG-I- and TLR pathways have putatively been identified, but previously unrecognised kinases may contribute to virus infection-induced activation of the IFN response. Here, we screened a human kinase cDNA library, termed the kinome, using an IFN-λ1 promoter-driven luciferase reporter assay in HEK293 cells during Sendai virus infection. Of the 568 kinases analysed, nearly 50 enhanced IFN-λ1 gene expression at least twofold in response to Sendai virus infection. The best activators were FYN (FYN oncogene related to SRC, FGR, YES), serine/threonine kinase 24, activin A receptor type 1 and SRPK1 (SFRS protein kinase 1). These kinases enhanced RIG-I-dependent IFN-λ1 promoter activation via IFN-stimulated response and NF-κB elements, as confirmed using mutant IFN-λ1 promoter constructs. FYN and SRPK1 enhanced IFN-λ1 and CXCL10 protein production via the RIG-I pathway, and stimulated RIG-I and MyD88-dependent phosphorylation of IRF3 and IRF7 transcription factors, respectively. We conclude that several previously unrecognised kinases, particularly FYN and SRPK1, positively regulate IFN-λ1 and similarly regulated cytokine and chemokine genes during viral infection.
Collapse
Affiliation(s)
- Laura Nousiainen
- 1Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
15
|
Doorbar J. The E4 protein; structure, function and patterns of expression. Virology 2013; 445:80-98. [PMID: 24016539 DOI: 10.1016/j.virol.2013.07.008] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/27/2013] [Accepted: 07/08/2013] [Indexed: 01/05/2023]
Abstract
The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1^E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein's flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1^E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1^E4 gene products generally become detectable at the onset of vegetative viral genome amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1^E4, these kinases regulate one of the E1^E4 proteins main functions, the association with the cellular keratin network, and eventually also its cleavage by the protease calpain which allows assembly into amyloid-like fibres and reorganisation of the keratin network. Although the E4 proteins of different HPV types appear divergent at the level of their primary amino acid sequence, they share a recognisable modular organisation and pattern of expression, which may underlie conserved functions and regulation. Assembly into higher-order multimers and suppression of cell proliferation are common to all E4 proteins examined. Although not yet formally demonstrated, a role in virus release and transmission remains a likely function for E4.
Collapse
Affiliation(s)
- John Doorbar
- Division of Virology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom.
| |
Collapse
|
16
|
Hernández S, Venegas M, Brahm J, Villanueva RA. The viral transactivator HBx protein exhibits a high potential for regulation via phosphorylation through an evolutionarily conserved mechanism. Infect Agent Cancer 2012; 7:27. [PMID: 23079056 PMCID: PMC3533737 DOI: 10.1186/1750-9378-7-27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 09/20/2012] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED BACKGROUND Hepatitis B virus (HBV) encodes an oncogenic factor, HBx, which is a multifunctional protein that can induce dysfunctional regulation of signaling pathways, transcription, and cell cycle progression, among other processes, through interactions with target host factors. The subcellular localization of HBx is both cytoplasmic and nuclear. This dynamic distribution of HBx could be essential to the multiple roles of the protein at different stages during HBV infection. Transactivational functions of HBx may be exerted both in the nucleus, via interaction with host DNA-binding proteins, and in the cytoplasm, via signaling pathways. Although there have been many studies describing different pathways altered by HBx, and its innumerable binding partners, the molecular mechanism that regulates its different roles has been difficult to elucidate. METHODS In the current study, we took a bioinformatics approach to investigate whether the viral protein HBx might be regulated via phosphorylation by an evolutionarily conserved mechanism. RESULTS We found that the phylogenetically conserved residues Ser25 and Ser41 (both within the negative regulatory domain), and Thr81 (in the transactivation domain) are predicted to be phosphorylated. By molecular 3D modeling of HBx, we further show these residues are all predicted to be exposed on the surface of the protein, making them easily accesible to these types of modifications. Furthermore, we have also identified Yin Yang sites that might have the potential to be phosphorylated and O-β-GlcNAc interplay at the same residues. CONCLUSIONS Thus, we propose that the different roles of HBx displayed in different subcellular locations might be regulated by an evolutionarily conserved mechanism of posttranslational modification, via phosphorylation.
Collapse
Affiliation(s)
- Sergio Hernández
- Laboratorio de Virus Hepatitis, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avda. República 217, 3er piso, Santiago 8370146, Chile
| | - Mauricio Venegas
- Sección de Gastroenterología, Departamento de Medicina, Hospital Clínico Universidad de Chile, Avda. Santos Dumont 999, Independencia, Santiago 8340457, Chile
| | - Javier Brahm
- Sección de Gastroenterología, Departamento de Medicina, Hospital Clínico Universidad de Chile, Avda. Santos Dumont 999, Independencia, Santiago 8340457, Chile
| | - Rodrigo A Villanueva
- Laboratorio de Virus Hepatitis, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avda. República 217, 3er piso, Santiago 8370146, Chile
| |
Collapse
|
17
|
Human papillomavirus 18 E1^E4 protein interacts with cyclin A/CDK 2 through an RXL motif. Mol Cell Biochem 2012; 373:29-40. [DOI: 10.1007/s11010-012-1472-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/26/2012] [Indexed: 01/15/2023]
|
18
|
Abstract
Persistent infection with cancer risk-related viruses leads to molecular, cellular and immune response changes in host organisms that in some cases direct cellular transformation. Alternative splicing is a conserved cellular process that increases the coding complexity of genomes at the pre-mRNA processing stage. Human and other animal tumour viruses use alternative splicing as a process to maximize their transcriptomes and proteomes. Medical therapeutics to clear persistent viral infections are still limited. However, specific lessons learned in some viruses [e.g. HIV and HCV (hepatitis C virus)] suggest that drug-directed inhibition of alternative splicing could be useful for this purpose. The present review describes the basic mechanisms of constitutive and alternative splicing in a cellular context and known splicing patterns and the mechanisms by which these might be achieved for the major human infective tumour viruses. The roles of splicing-related proteins expressed by these viruses in cellular and viral gene regulation are explored. Moreover, we discuss some currently available drugs targeting SR (serine/arginine-rich) proteins that are the main regulators of constitutive and alternative splicing, and their potential use in treatment for so-called persistent viral infections.
Collapse
|
19
|
Galván SC, Martínez-Salazar M, Galván VM, Méndez R, Díaz-Contreras GT, Alvarado-Hermida M, Alcántara-Silva R, García-Carrancá A. Analysis of CpG methylation sites and CGI among human papillomavirus DNA genomes. BMC Genomics 2011; 12:580. [PMID: 22118413 PMCID: PMC3293833 DOI: 10.1186/1471-2164-12-580] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 11/25/2011] [Indexed: 11/20/2022] Open
Abstract
Background The Human Papillomavirus (HPV) genome is divided into early and late coding sequences, including 8 open reading frames (ORFs) and a regulatory region (LCR). Viral gene expression may be regulated through epigenetic mechanisms, including cytosine methylation at CpG dinucleotides. We have analyzed the distribution of CpG sites and CpG islands/clusters (CGI) among 92 different HPV genomes grouped in function of their preferential tropism: cutaneous or mucosal. We calculated the proportion of CpG sites (PCS) for each ORF and calculated the expected CpG values for each viral type. Results CpGs are underrepresented in viral genomes. We found a positive correlation between CpG observed and expected values, with mucosal high-risk (HR) virus types showing the smallest O/E ratios. The ranges of the PCS were similar for most genomic regions except E4, where the majority of CpGs are found within islands/clusters. At least one CGI belongs to each E2/E4 region. We found positive correlations between PCS for each viral ORF when compared with the others, except for the LCR against four ORFs and E6 against three other ORFs. The distribution of CpG islands/clusters among HPV groups is heterogeneous and mucosal HR-HPV types exhibit both lower number and shorter island sizes compared to cutaneous and mucosal Low-risk (LR) HPVs (all of them significantly different). Conclusions There is a difference between viral and cellular CpG underrepresentation. There are significant correlations between complete genome PCS and a lack of correlations between several genomic region pairs, especially those involving LCR and E6. L2 and L1 ORF behavior is opposite to that of oncogenes E6 and E7. The first pair possesses relatively low numbers of CpG sites clustered in CGIs while the oncogenes possess a relatively high number of CpG sites not associated to CGIs. In all HPVs, E2/E4 is the only region with at least one CGI and shows a higher content of CpG sites in every HPV type with an identified E4. The mucosal HR-HPVs show either the shortest CGI size, followed by the mucosal LR-HPVs and lastly by the cutaneous viral subgroup, and a trend to the lowest CGI number, followed by the cutaneous viral subgroup and lastly by the mucosal LR-HPVs.
Collapse
Affiliation(s)
- Silvia C Galván
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Keating JA, Striker R. Phosphorylation events during viral infections provide potential therapeutic targets. Rev Med Virol 2011; 22:166-81. [PMID: 22113983 PMCID: PMC3334462 DOI: 10.1002/rmv.722] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/07/2011] [Accepted: 10/10/2011] [Indexed: 01/21/2023]
Abstract
For many medically relevant viruses, there is now considerable evidence that both viral and cellular kinases play important roles in viral infection. Ultimately, these kinases, and the cellular signaling pathways that they exploit, may serve as therapeutic targets for treating patients. Currently, small molecule inhibitors of kinases are under investigation as therapy for herpes viral infections. Additionally, a number of cellular or host-directed tyrosine kinase inhibitors that have been previously FDA approved for cancer treatment are under study in animal models and clinical trials, as they have shown promise for the treatment of various viral infections as well. This review will highlight the wide range of viral proteins phosphorylated by viral and cellular kinases, and the potential for variability of kinase recognition sites within viral substrates to impact phosphorylation and kinase prediction. Research studying kinase-targeting prophylactic and therapeutic treatments for a number of viral infections will also be discussed.
Collapse
Affiliation(s)
- Julie A Keating
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
21
|
Role of calpain in the formation of human papillomavirus type 16 E1^E4 amyloid fibers and reorganization of the keratin network. J Virol 2011; 85:9984-97. [PMID: 21752901 DOI: 10.1128/jvi.02158-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human papillomavirus (HPV) type 16 E1^E4 (16E1^E4) protein is expressed in the middle to upper layers of infected epithelium and has several roles within the virus life cycle. It is apparent that within the epithelium there are multiple species of 16E1^E4 that differ in length and/or degree of phosphorylation and that some or all of these can associate with the cellular keratin networks, leading to network disruption. We show here that the cellular cysteine protease calpain cleaves the 16E1^E4 protein after amino acid 17 to generate species that lack the N terminus. These C-terminal fragments are able to multimerize and form amyloid-like fibers. This can lead to accumulation of 16E1^E4 and disruption of the normal dynamics of the keratin networks. The cleavage of E1^E4 proteins by calpain may be a common strategy used by α-group viruses, since we show that cleavage of type 18 E1^E4 in raft culture is also dependent on calpain. Interestingly, the cleavage of 16E1^E4 by calpain appears to be highly regulated as differentiation of HPV genome-containing cells by methylcellulose is insufficient to induce cleavage. We hypothesize that this is important since it ensures that the formation of the amyloid fibers is not prematurely triggered in the lower layers and is restricted to the upper layers, where calpain is active and where disruption of the keratin networks may aid virus release.
Collapse
|
22
|
Knight GL, Pugh AG, Yates E, Bell I, Wilson R, Moody CA, Laimins LA, Roberts S. A cyclin-binding motif in human papillomavirus type 18 (HPV18) E1^E4 is necessary for association with CDK-cyclin complexes and G2/M cell cycle arrest of keratinocytes, but is not required for differentiation-dependent viral genome amplification or L1 capsid protein expression. Virology 2011; 412:196-210. [PMID: 21276999 PMCID: PMC3722429 DOI: 10.1016/j.virol.2011.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/17/2010] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
The G2/M arrest function of human papillomavirus (HPV) E4 proteins is hypothesized to be necessary for viral genome amplification. Full-length HPV18 E1^E4 protein is essential for efficient viral genome amplification. Here we identify key determinants within a CDK-bipartite consensus recognition motif in HPV18 E1^E4 that are critical for association with active CDK-cyclin complexes and in vitro phosphorylation at the predicted CDK phosphorylation site (threonine 23). The optimal cyclin-binding sequence ((43)RRLL(46)) within this E4 motif is required for G2/M arrest of primary keratinocytes and correlates with cytoplasmic retention of cyclin B1, but not cyclin A. Disruption of this motif in the E4 ORF of HPV18 genomes, and the subsequent generation of stable cell lines in primary keratinocytes revealed that this motif was not essential for viral genome amplification or L1 capsid protein induction. We conclude that the HPV18 E4 G2/M arrest function does not play a role in early vegetative events.
Collapse
Affiliation(s)
- Gillian L. Knight
- Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Alice G. Pugh
- Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Emma Yates
- Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Ian Bell
- Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Regina Wilson
- Department of Microbiology-Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 USA
| | - Cary A. Moody
- Department of Microbiology-Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 USA
| | - Laimonis A. Laimins
- Department of Microbiology-Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 USA
| | - Sally Roberts
- Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
23
|
Giannakouros T, Nikolakaki E, Mylonis I, Georgatsou E. Serine-arginine protein kinases: a small protein kinase family with a large cellular presence. FEBS J 2011; 278:570-86. [DOI: 10.1111/j.1742-4658.2010.07987.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Koczorowska MM, Kwasniewska A, Gozdzicka-Jozefiak A. IGF1 mRNA isoform expression in the cervix of HPV-positive women with pre-cancerous and cancer lesions. Exp Ther Med 2010; 2:149-156. [PMID: 22977483 DOI: 10.3892/etm.2010.174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/22/2010] [Indexed: 01/02/2023] Open
Abstract
Human papillomavirus (HPV) plays a crucial role in cervical cancer etiology. However, not all HPV-infected women develop cancer, indicating that additional cellular factors facilitate carcinogenesis. The aim of this study was to analyze the expression profile of insulin-like growth factor 1 (IGF1) isoforms in the context of FOX2, SP1 and IGF1 receptor (IGF1R) expression during HPV-dependent cervical carcinogenesis. One hundred and nine epithelial tissue samples from women with pre-cancerous and cancer lesions of the cervix were analyzed. HPV DNA was identified by PCR, and real-time PCR was used to quantify the expression levels of the analyzed genes. All IGF1 mRNA splicing isoforms were up-regulated in pre-cancerous cells, and a shift in the balance towards mitogenic IGF1Eb was observed in the cancer samples. IGF1 expression was controlled mainly by the P1 promoter, and an increase in P2 usage was observed in the cancer. Correlations between IGF1 mRNA splicing isoforms and the FOX2 splicing factor, as well as P1/P2 activity and SP1 transcription factor expression levels were detected. No correlation was observed between the expression of IGF1 and its receptor IGF1R. Our results suggest that IGF1, in particular its splicing profile, may be an additional prognostic factor in cervical carcinogenesis.
Collapse
|
25
|
Ote I, Lebrun M, Vandevenne P, Bontems S, Medina-Palazon C, Manet E, Piette J, Sadzot-Delvaux C. Varicella-zoster virus IE4 protein interacts with SR proteins and exports mRNAs through the TAP/NXF1 pathway. PLoS One 2009; 4:e7882. [PMID: 19924249 PMCID: PMC2775670 DOI: 10.1371/journal.pone.0007882] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 10/22/2009] [Indexed: 12/28/2022] Open
Abstract
Available data suggest that the Varicella-Zoster virus (VZV) IE4 protein acts as an important regulator on VZV and cellular genes expression and could exert its functions at post-transcriptional level. However, the molecular mechanisms supported by this protein are not yet fully characterized. In the present study, we have attempted to clarify this IE4-mediated gene regulation and identify some cellular partners of IE4. By yeast two-hybrid and immunoprecipitation analysis, we showed that IE4 interacts with three shuttling SR proteins, namely ASF/SF2, 9G8 and SRp20. We positioned the binding domain in the IE4 RbRc region and we showed that these interactions are not bridged by RNA. We demonstrated also that IE4 strongly interacts with the main SR protein kinase, SRPK1, and is phosphorylated in in vitro kinase assay on residue Ser-136 contained in the Rb domain. By Northwestern analysis, we showed that IE4 is able to bind RNA through its arginine-rich region and in immunoprecipitation experiments the presence of RNA stabilizes complexes containing IE4 and the cellular export factors TAP/NXF1 and Aly/REF since the interactions are RNase-sensitive. Finally, we determined that IE4 influences the export of reporter mRNAs and clearly showed, by TAP/NXF1 knockdown, that VZV infection requires the TAP/NXF1 export pathway to express some viral transcripts. We thus highlighted a new example of viral mRNA export factor and proposed a model of IE4-mediated viral mRNAs export.
Collapse
Affiliation(s)
- Isabelle Ote
- Laboratory of Virology and Immunology, GIGA-R, University of Liege (ULg), Liège, Belgium
| | - Marielle Lebrun
- Laboratory of Virology and Immunology, GIGA-R, University of Liege (ULg), Liège, Belgium
| | - Patricia Vandevenne
- Laboratory of Virology and Immunology, GIGA-R, University of Liege (ULg), Liège, Belgium
| | - Sébastien Bontems
- Laboratory of Virology and Immunology, GIGA-R, University of Liege (ULg), Liège, Belgium
| | | | - Evelyne Manet
- Laboratoire de Virologie Humaine, INSERM U758, ENS-Lyon, Lyon, France
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-R, University of Liege (ULg), Liège, Belgium
| | - Catherine Sadzot-Delvaux
- Laboratory of Virology and Immunology, GIGA-R, University of Liege (ULg), Liège, Belgium
- * E-mail:
| |
Collapse
|
26
|
A novel interaction between the human papillomavirus type 16 E2 and E1--E4 proteins leads to stabilization of E2. Virology 2009; 394:266-75. [PMID: 19783272 DOI: 10.1016/j.virol.2009.08.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 06/29/2009] [Accepted: 08/26/2009] [Indexed: 11/21/2022]
Abstract
The E4 (also called E1--E4) and E2 proteins of human papillomavirus type 16 are thought to be expressed within the same cells of a lesion, and their open reading frames overlap, suggesting that they may have a functional relationship. We have examined the effect of co-expression of these two proteins and found that each enhances the level of the other. We also identified the N-terminus of E2 as the first example of a viral protein that directly binds the HPV16 E1--E4 protein. This appears to result in the E2 becoming less soluble and promotes its relocation from the nucleus to the cytoplasm. In addition, the turnover of the E2 protein is decreased in the presence of E1--E4. All this raises the possibility that E1--E4 acts to influence E2 activity by varying the amount of available E2 in the cell.
Collapse
|
27
|
Phosphorylation of the human papillomavirus type 16 E1--E4 protein at T57 by ERK triggers a structural change that enhances keratin binding and protein stability. J Virol 2009; 83:3668-83. [PMID: 19211765 DOI: 10.1128/jvi.02063-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The E1--E4 protein of human papillomavirus type 16 (HPV16) causes cytokeratin reorganization in the middle and upper epithelial layers and is thought to contribute to multiple facets of the virus life cycle. Although little is known as to how HPV16 E1--E4 (16E1--E4) functions are controlled following the first expression of this protein, the finding that low-risk E1--E4 proteins can be phosphorylated in vivo suggests an important role for kinases. Here, we show that 16E1--E4 is phosphorylated by cyclin-dependent kinase 1 (CDK1) and CDK2, extracellular signal-regulated kinase (ERK), protein kinase A (PKA), and PKC alpha, with CDK1/2 serine 32 and ERK threonine 57 phosphorylations representing the two primary events seen in cells in cycle. Interestingly, T57 phosphorylation was found to trigger a structural change in the 16E1--E4 protein that compacts the central fold region, leading to an increase in 16E1--E4 stability and overall abundance in the cell. When compared to wild-type 16E1--E4, a T57D phosphomimic was found to have greatly enhanced keratin-binding ability and an ability to modulate the binding of the unphosphorylated form, with keratin binding protecting the T57-phosphorylated form of 16E1--E4 from proteasomal degradation. In HPV16 genome-containing organotypic rafts, the T57-phosphorylated form was specifically detected in the intermediate cell layers, where productive infection occurs, suggesting that T57 phosphorylation may have a functional role at this stage of the viral life cycle. Interestingly, coexpression with 16E5 and ERK activation enhanced T57 phosphorylation, suggesting that E1--E4 and E5 may work together in vivo. Our data suggest a model in which the expression of 16E5 from the major E1--E4-E5 mRNA promotes T57 phosphorylation of E1--E4 and keratin binding, with dephosphorylation occurring following the switch to late poly(A) usage. Other forms of E1--E4, with alternative functional roles, may then increase in prevalence in the upper layers of the epithelium.
Collapse
|
28
|
Identification of an arginine-rich motif in human papillomavirus type 1 E1;E4 protein necessary for E4-mediated inhibition of cellular DNA synthesis in vitro and in cells. J Virol 2008; 82:9056-64. [PMID: 18632869 DOI: 10.1128/jvi.01080-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Productive infections by human papillomaviruses (HPVs) are restricted to nondividing, differentiated keratinocytes. HPV early proteins E6 and E7 deregulate cell cycle progression and activate the host cell DNA replication machinery in these cells, changes essential for virus synthesis. Productive virus replication is accompanied by abundant expression of the HPV E4 protein. Expression of HPV1 E4 in cells is known to activate cell cycle checkpoints, inhibiting G(2)-to-M transition of the cell cycle and also suppressing entry of cells into S phase. We report here that the HPV1 E4 protein, in the presence of a soluble form of the replication-licensing factor (RLF) Cdc6, inhibits initiation of cellular DNA replication in a mammalian cell-free DNA replication system. Chromatin-binding studies show that E4 blocks replication initiation in vitro by preventing loading of the RLFs Mcm2 and Mcm7 onto chromatin. HPV1 E4-mediated replication inhibition in vitro and suppression of entry of HPV1 E4-expressing cells into S phase are both abrogated upon alanine replacement of arginine 45 in the full-length E4 protein (E1;E4), implying that these two HPV1 E4 functions are linked. We hypothesize that HPV1 E4 inhibits competing host cell DNA synthesis in replication-activated suprabasal keratinocytes by suppressing licensing of cellular replication origins, thus modifying the phenotype of the infected cell in favor of viral genome amplification.
Collapse
|
29
|
Lai MC, Peng TY, Tarn WY. Functional interplay between viral and cellular SR proteins in control of post-transcriptional gene regulation. FEBS J 2008; 276:1517-26. [PMID: 19220464 PMCID: PMC7164074 DOI: 10.1111/j.1742-4658.2009.06894.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Viruses take advantage of cellular machineries to facilitate their gene expression in the host. SR proteins, a superfamily of cellular precursor mRNA splicing factors, contain a domain consisting of repetitive arginine/serine dipeptides, termed the RS domain. The authentic RS domain or variants can also be found in some virus‐encoded proteins. Viral proteins may act through their own RS domain or through interaction with cellular SR proteins to facilitate viral gene expression. Numerous lines of evidence indicate that cellular SR proteins are important for regulation of viral RNA splicing and participate in other steps of post‐transcriptional viral gene expression control. Moreover, viral infection may alter the expression levels or modify the phosphorylation status of cellular SR proteins and thus perturb cellular precursor mRNA splicing. We review our current understanding of the interplay between virus and host in post‐transcriptional regulation of gene expression via RS domain‐containing proteins.
Collapse
Affiliation(s)
- Ming-Chih Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|