1
|
Ostermann E, Luoto LM, Clausen M, Virdi S, Brune W. E2F3-dependent activation of FAM111B restricts mouse cytomegalovirus replication in primate cells. J Virol 2024:e0134924. [PMID: 39494906 DOI: 10.1128/jvi.01349-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Cytomegaloviruses are highly species-specific as they replicate only in cells of their own or a closely related species. For instance, human cytomegalovirus cannot replicate in rodent cells, and mouse cytomegalovirus (MCMV) cannot replicate in human and monkey cells. However, the mechanisms underlying the host species restriction remain poorly understood. We have previously shown that passaging MCMV in human retinal pigment epithelial cells allows the virus to replicate to high titers in these cells due to the accumulation of adaptive mutations, such as loss-of-function mutations in the viral M117 gene. The M117 protein interacts with E2F transcription factors and activates E2F-dependent transcription. Here, we show that activation of E2F3 is primarily responsible for MCMV's inability to replicate in human cells. By transcriptome analysis, we identified two E2F3-induced serine proteases, FAM111A and FAM111B, as potential host restriction factors. By using shRNA-mediated gene knockdown and CRISPR/Cas9-mediated gene knockout, we demonstrated that FAM111B, but not its paralog FAM111A, suppresses MCMV replication in human and rhesus macaque cells. By immunofluorescence, we detected FAM111B predominantly in the nucleus of infected cells with enrichment in viral replication compartments, suggesting that it might play a role during viral replication. The fact that the FAM111B gene is conserved in primates but absent in rodents suggests that MCMV has not evolved to evade or counteract this restriction factor, which is not present in its natural host. IMPORTANCE Viruses must counteract host cell defenses to facilitate viral replication. Viruses with a narrow host range, such as the cytomegaloviruses, are unable to counteract cellular defenses in cells of a foreign species. However, little is known about the cellular host range factors restricting cytomegalovirus replication. Here, we show that mouse cytomegalovirus (MCMV) induces the expression of the FAM111 proteases and that FAM111B, but not FAM111A that has previously been shown to restrict the replication of polyomavirus and orthopoxvirus host range mutants, acts as a cellular factor suppressing MCMV replication in human and rhesus monkey cells. The identification of FAM111B as a host range factor should provide new insight into the physiological functions of this poorly characterized protein.
Collapse
Affiliation(s)
| | | | | | | | - Wolfram Brune
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
2
|
Riedl A, Bojková D, Tan J, Jeney Á, Larsen PK, Jeney C, Full F, Kalinke U, Ruzsics Z. Construction and Characterization of a High-Capacity Replication-Competent Murine Cytomegalovirus Vector for Gene Delivery. Vaccines (Basel) 2024; 12:791. [PMID: 39066429 PMCID: PMC11281640 DOI: 10.3390/vaccines12070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
We investigated the basic characteristics of a new murine cytomegalovirus (MCMV) vector platform. Using BAC technology, we engineered replication-competent recombinant MCMVs with deletions of up to 26% of the wild-type genome. To this end, we targeted five gene blocks (m01-m17, m106-m109, m129-m141, m144-m158, and m159-m170). BACs featuring deletions from 18% to 26% of the wild-type genome exhibited delayed virus reconstitution, while smaller deletions (up to 16%) demonstrated reconstitution kinetics similar to those of the wild type. Utilizing an innovative methodology, we introduced large genomic DNA segments, up to 35 kbp, along with reporter genes into a newly designed vector with a potential cloning capacity of 46 kbp (Q4). Surprisingly, the insertion of diverse foreign DNAs alleviated the delayed plaque formation phenotype of Q4, and these large inserts remained stable through serial in vitro passages. With reporter-gene-expressing recombinant MCMVs, we successfully transduced not only mouse cell lines but also non-rodent mammalian cells, including those of human, monkey, bovine, and bat origin. Remarkably, even non-mammalian cell lines derived from chickens exhibited successful transduction.
Collapse
Affiliation(s)
- André Riedl
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Denisa Bojková
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Medical Virology, Goethe University Frankfurt, University Hospital, 60596 Frankfurt am Main, Germany
| | - Jiang Tan
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Ábris Jeney
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Pia-Katharina Larsen
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Institute for Experimental Infection Research, 30625 Hanover, Germany
| | - Csaba Jeney
- Department of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Florian Full
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Ulrich Kalinke
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Institute for Experimental Infection Research, 30625 Hanover, Germany
| | - Zsolt Ruzsics
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Muscolino E, Castiglioni C, Brixel R, Frascaroli G, Brune W. Species-Specific Inhibition of Necroptosis by HCMV UL36. Viruses 2021; 13:v13112134. [PMID: 34834942 PMCID: PMC8621378 DOI: 10.3390/v13112134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Viral infection activates cellular antiviral defenses including programmed cell death (PCD). Many viruses, particularly those of the Herpesviridae family, encode cell death inhibitors that antagonize different forms of PCD. While some viral inhibitors are broadly active in cells of different species, others have species-specific functions, probably reflecting the co-evolution of the herpesviruses with their respective hosts. Human cytomegalovirus (HCMV) protein UL36 is a dual cell death pathway inhibitor. It blocks death receptor-dependent apoptosis by inhibiting caspase-8 activation, and necroptosis by binding to the mixed lineage kinase domain-like (MLKL) protein and inducing its degradation. While UL36 has been shown to inhibit apoptosis in human and murine cells, the specificity of its necroptosis-inhibiting function has not been investigated. Here we show that UL36 interacts with both human and murine MLKL, but has a higher affinity for human MLKL. When expressed by a recombinant mouse cytomegalovirus (MCMV), UL36 caused a modest reduction of murine MLKL levels but did not inhibit necroptosis in murine cells. These data suggest that UL36 inhibits necroptosis, but not apoptosis, in a species-specific manner, similar to ICP6 of herpes simplex virus type 1 and MC159 of molluscum contagiosum virus. Species-specific necroptosis inhibition might contribute to the narrow host range of these viruses.
Collapse
Affiliation(s)
- Elena Muscolino
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (E.M.); (C.C.); (R.B.); (G.F.)
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Claudia Castiglioni
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (E.M.); (C.C.); (R.B.); (G.F.)
| | - Renke Brixel
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (E.M.); (C.C.); (R.B.); (G.F.)
| | - Giada Frascaroli
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (E.M.); (C.C.); (R.B.); (G.F.)
| | - Wolfram Brune
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (E.M.); (C.C.); (R.B.); (G.F.)
- Correspondence: ; Tel.: +49-40-48051351
| |
Collapse
|
4
|
Griessl M, Renzaho A, Freitag K, Seckert CK, Reddehase MJ, Lemmermann NAW. Stochastic Episodes of Latent Cytomegalovirus Transcription Drive CD8 T-Cell "Memory Inflation" and Avoid Immune Evasion. Front Immunol 2021; 12:668885. [PMID: 33968074 PMCID: PMC8100209 DOI: 10.3389/fimmu.2021.668885] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022] Open
Abstract
Acute infection with murine cytomegalovirus (mCMV) is controlled by CD8+ T cells and develops into a state of latent infection, referred to as latency, which is defined by lifelong maintenance of viral genomes but absence of infectious virus in latently infected cell types. Latency is associated with an increase in numbers of viral epitope-specific CD8+ T cells over time, a phenomenon known as "memory inflation" (MI). The "inflationary" subset of CD8+ T cells has been phenotyped as KLRG1+CD62L- effector-memory T cells (iTEM). It is agreed upon that proliferation of iTEM requires repeated episodes of antigen presentation, which implies that antigen-encoding viral genes must be transcribed during latency. Evidence for this has been provided previously for the genes encoding the MI-driving antigenic peptides IE1-YPHFMPTNL and m164-AGPPRYSRI of mCMV in the H-2d haplotype. There exist two competing hypotheses for explaining MI-driving viral transcription. The "reactivation hypothesis" proposes frequent events of productive virus reactivation from latency. Reactivation involves a coordinated gene expression cascade from immediate-early (IE) to early (E) and late phase (L) transcripts, eventually leading to assembly and release of infectious virus. In contrast, the "stochastic transcription hypothesis" proposes that viral genes become transiently de-silenced in latent viral genomes in a stochastic fashion, not following the canonical IE-E-L temporal cascade of reactivation. The reactivation hypothesis, however, is incompatible with the finding that productive virus reactivation is exceedingly rare in immunocompetent mice and observed only under conditions of compromised immunity. In addition, the reactivation hypothesis fails to explain why immune evasion genes, which are regularly expressed during reactivation in the same cells in which epitope-encoding genes are expressed, do not prevent antigen presentation and thus MI. Here we show that IE, E, and L genes are transcribed during latency, though stochastically, not following the IE-E-L temporal cascade. Importantly, transcripts that encode MI-driving antigenic peptides rarely coincide with those that encode immune evasion proteins. As immune evasion can operate only in cis, that is, in a cell that simultaneously expresses antigenic peptides, the stochastic transcription hypothesis explains why immune evasion is not operative in latently infected cells and, therefore, does not interfere with MI.
Collapse
Affiliation(s)
| | | | | | | | | | - Niels A. W. Lemmermann
- Institute for Virology, Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
5
|
Murine cytomegaloviruses m139 targets DDX3 to curtail interferon production and promote viral replication. PLoS Pathog 2020; 16:e1008546. [PMID: 33031466 PMCID: PMC7575108 DOI: 10.1371/journal.ppat.1008546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/20/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Cytomegaloviruses (CMV) infect many different cell types and tissues in their respective hosts. Monocytes and macrophages play an important role in CMV dissemination from the site of infection to target organs. Moreover, macrophages are specialized in pathogen sensing and respond to infection by secreting cytokines and interferons. In murine cytomegalovirus (MCMV), a model for human cytomegalovirus, several genes required for efficient replication in macrophages have been identified, but their specific functions remain poorly understood. Here we show that MCMV m139, a gene of the conserved US22 gene family, encodes a protein that interacts with the DEAD box helicase DDX3, a protein involved in pathogen sensing and interferon (IFN) induction, and the E3 ubiquitin ligase UBR5. DDX3 and UBR5 also participate in the transcription, processing, and translation of a subset of cellular mRNAs. We show that m139 inhibits DDX3-mediated IFN-α and IFN-β induction and is necessary for efficient viral replication in bone-marrow derived macrophages. In vivo, m139 is crucial for viral dissemination to local lymph nodes and to the salivary glands. An m139-deficient MCMV also replicated to lower titers in SVEC4-10 endothelial cells. This replication defect was not accompanied by increased IFN-β transcription, but was rescued by knockout of either DDX3 or UBR5. Moreover, m139 co-localized with DDX3 and UBR5 in viral replication compartments in the cell nucleus. These results suggest that m139 inhibits DDX3-mediated IFN production in macrophages and antagonizes DDX3 and UBR5-dependent functions related to RNA metabolism in endothelial cells. Human cytomegalovirus is an opportunistic pathogen that causes severe infections in immunocompromised individuals. The virus infects certain cell types, such as macrophages and endothelial cells, to ensure its dissemination within the body. Little is known about the viral factors that promote a productive infection of these cell types. The identification of critical viral factors and the molecular pathways they target can lead to the development of novel antiviral treatment strategies. Using the mouse cytomegalovirus as a model, we studied the viral m139 gene, which is important for virus replication in macrophages and endothelial cells and for dissemination in the mouse. This gene encodes a protein that interacts with the host proteins DDX3 and UBR5. Both proteins are involved in gene expression, and the RNA helicase DDX3 also participates in mounting an innate antiviral response. By interacting with DDX3 and UBR5, m139 ensures efficient viral replication in endothelial cells. Importantly, we identify m139 as a new viral DDX3 inhibitor, which curtails the production of interferon by macrophages.
Collapse
|
6
|
Cruz-cosme R, Armstrong N, Tang Q. One of the Triple Poly(A) Signals in the M112-113 Gene Is Important and Sufficient for Stabilizing the M112-113 mRNA and the Replication of Murine Cytomegalovirus. Viruses 2020; 12:E954. [PMID: 32872150 PMCID: PMC7552018 DOI: 10.3390/v12090954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 11/17/2022] Open
Abstract
The M112-113 gene is the first early gene of the murine cytomegalovirus (MCMV), and its expression is activated by the immediate-early 3 (IE3) protein during MCMV infection in permissive cells. At its 5' terminus, a 10-bp motif, upstream of the TATA box of the M112-113 gene, was identified to bind to IE3, and it is necessary for IE3 to activate M112-113 gene expression (Perez KJ et al. 2013 JVI). At the 3' terminus of the M112-113 gene, three poly(A) signals (PASs) are arranged closely, forming a PAS cluster. We asked whether it is necessary to have the PAS cluster for the M112-113 gene and wondered which PAS is required or important for M112-113 gene expression. In this study, we mutated one, two, or all three PASs in expressing plasmids. Then, we applied bacterial artificial chromosome (BAC) techniques to mutate PASs in viruses. Gene expression and viral replication were analyzed. We found that not all three PASs are needed for M112-113 gene expression. Moreover, we revealed that just one of the three poly(A)s is enough for MCMV replication. However, the deletion of all three PASs did not kill MCMV, although it significantly attenuated viral replication. Finally, an mRNA stability assay was performed and demonstrated that PASs are important to stabilize M112-113 mRNA. Therefore, we conclude that just one of the PASs of the M112-113 gene is sufficient and important for MCMV replication through the stabilization of M112-113 mRNA.
Collapse
Affiliation(s)
| | | | - Qiyi Tang
- Department of Microbiology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA; (R.C.-c.); (N.A.)
| |
Collapse
|
7
|
Mozzi A, Forni D, Cagliani R, Clerici M, Pozzoli U, Sironi M. Intrinsically disordered regions are abundant in simplexvirus proteomes and display signatures of positive selection. Virus Evol 2020; 6:veaa028. [PMID: 32411391 PMCID: PMC7211401 DOI: 10.1093/ve/veaa028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Whereas the majority of herpesviruses co-speciated with their mammalian hosts, human herpes simplex virus 2 (HSV-2, genus Simplexvirus) most likely originated from the cross-species transmission of chimpanzee herpesvirus 1 to an ancestor of modern humans. We exploited the peculiar evolutionary history of HSV-2 to investigate the selective events that drove herpesvirus adaptation to a new host. We show that HSV-2 intrinsically disordered regions (IDRs)-that is, protein domains that do not adopt compact three-dimensional structures-are strongly enriched in positive selection signals. Analysis of viral proteomes indicated that a significantly higher portion of simplexvirus proteins is disordered compared with the proteins of other human herpesviruses. IDR abundance in simplexvirus proteomes was not a consequence of the base composition of their genomes (high G + C content). Conversely, protein function determines the IDR fraction, which is significantly higher in viral proteins that interact with human factors. We also found that the average extent of disorder in herpesvirus proteins tends to parallel that of their human interactors. These data suggest that viruses that interact with fast-evolving, disordered human proteins, in turn, evolve disordered viral interactors poised for innovation. We propose that the high IDR fraction present in simplexvirus proteomes contributes to their wider host range compared with other herpesviruses.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| | - Diego Forni
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| | - Rachele Cagliani
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan 20090, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan 20148, Italy
| | - Uberto Pozzoli
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| | - Manuela Sironi
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| |
Collapse
|
8
|
Past and ongoing adaptation of human cytomegalovirus to its host. PLoS Pathog 2020; 16:e1008476. [PMID: 32384127 PMCID: PMC7239485 DOI: 10.1371/journal.ppat.1008476] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/20/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
Cytomegaloviruses (order Herpesvirales) display remarkable species-specificity as a result of long-term co-evolution with their mammalian hosts. Human cytomegalovirus (HCMV) is exquisitely adapted to our species and displays high genetic diversity. We leveraged information on inter-species divergence of primate-infecting cytomegaloviruses and intra-species diversity of clinical isolates to provide a genome-wide picture of HCMV adaptation across different time-frames. During adaptation to the human host, core viral genes were commonly targeted by positive selection. Functional characterization of adaptive mutations in the primase gene (UL70) indicated that selection favored amino acid replacements that decrease viral replication in human fibroblasts, suggesting evolution towards viral temperance. HCMV intra-species diversity was largely governed by immune system-driven selective pressure, with several adaptive variants located in antigenic domains. A significant excess of positively selected sites was also detected in the signal peptides (SPs) of viral proteins, indicating that, although they are removed from mature proteins, SPs can contribute to viral adaptation. Functional characterization of one of these SPs indicated that adaptive variants modulate the timing of cleavage by the signal peptidase and the dynamics of glycoprotein intracellular trafficking. We thus used evolutionary information to generate experimentally-testable hypotheses on the functional effect of HCMV genetic diversity and we define modulators of viral phenotypes. Human cytomegalovirus (HCMV), which represents the most common infectious cause of birth defects, is perfectly adapted to infect humans. We performed a two-tier analysis of HCMV evolution, by describing selective events that occurred during HCMV adaptation to our species and by identifying more recently emerged adaptive variants in clinical isolates. We show that distinct viral genes were targeted by natural selection over different time frames and we generate a catalog of adaptive variants that represent candidate determinants of viral phenotypic variation. As a proof of concept, we show that adaptive changes in the viral primase modulate viral growth in vitro and that selected variants in the UL144 signal peptide affect glycoprotein intracellular trafficking.
Collapse
|
9
|
Cagliani R, Forni D, Mozzi A, Sironi M. Evolution and Genetic Diversity of Primate Cytomegaloviruses. Microorganisms 2020; 8:E624. [PMID: 32344906 PMCID: PMC7285053 DOI: 10.3390/microorganisms8050624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/30/2022] Open
Abstract
Cytomegaloviruses (CMVs) infect many mammals, including humans and non-human primates (NHPs). Human cytomegalovirus (HCMV) is an important opportunistic pathogen among immunocompromised patients and represents the most common infectious cause of birth defects. HCMV possesses a large genome and very high genetic diversity. NHP-infecting CMVs share with HCMV a similar genomic organization and coding content, as well as the course of viral infection. Recent technological advances have allowed the sequencing of several HCMV strains from clinical samples and provided insight into the diversity of NHP-infecting CMVs. The emerging picture indicates that, with the exclusion of core genes (genes that have orthologs in all herpesviruses), CMV genomes are relatively plastic and diverse in terms of gene content, both at the inter- and at the intra-species level. Such variability most likely underlies the strict species-specificity of these viruses, as well as their ability to persist lifelong and with relatively little damage to their hosts. However, core genes, despite their strong conservation, also represented a target of adaptive evolution and subtle changes in their coding sequence contributed to CMV adaptation to different hosts. Indubitably, important knowledge gaps remain, the most relevant of which concerns the role of viral genetics in HCMV-associated human disease.
Collapse
Affiliation(s)
| | | | | | - Manuela Sironi
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| |
Collapse
|
10
|
The Susceptibility of Primary Dermis Fibroblasts from the Chinese Tree Shrew to Human Cytomegalovirus Infection. Virol Sin 2019; 34:270-277. [PMID: 30989428 DOI: 10.1007/s12250-019-00106-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/18/2019] [Indexed: 10/27/2022] Open
Abstract
As a universal pathogen leading to neonatal defects and transplant failure, human cytomegalovirus (HCMV) has strict species specificity and this has prevented the development of a suitable animal model for the pathogenesis study. The mechanism of cross-species barrier remains elusive and there are so far no non-human cell culture models that support HCMV replication. The Chinese tree shrew (Tupaia belangeri chinensis) is a small laboratory animal and evolutionary closely related with primates. We investigated the susceptibility of primary tree shrew dermis fibroblasts (TSDF) to HCMV infection. Infection with a GFP-expressing HCMV virus resulted in green fluorescence in infected cells with the expression of IE1, UL44 and pp28. The titers of cell-free viruses reached 103 PFU/mL at 96 hpi, compared to titers of 104 PFU/mL observed in primary human foreskin fibroblasts. Our results suggested that TSDF was semi-permissive for HCMV infection. The TSDF model could be further used to investigate key factors influencing cross-species multiplication of HCMV.
Collapse
|
11
|
Ostermann E, Loroch S, Qian Z, Sickmann A, Wiebusch L, Brune W. Activation of E2F-dependent transcription by the mouse cytomegalovirus M117 protein affects the viral host range. PLoS Pathog 2018; 14:e1007481. [PMID: 30532172 PMCID: PMC6301716 DOI: 10.1371/journal.ppat.1007481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/20/2018] [Accepted: 11/21/2018] [Indexed: 01/02/2023] Open
Abstract
Cytomegaloviruses (CMVs) have a highly restricted host range as they replicate only in cells of their own or closely related species. To date, the molecular mechanisms underlying the CMV host restriction remain poorly understood. However, it has been shown that mouse cytomegalovirus (MCMV) can be adapted to human cells and that adaptation goes along with adaptive mutations in several viral genes. In this study, we identify MCMV M117 as a novel host range determinant. Mutations in this gene enable the virus to cross the species barrier and replicate in human RPE-1 cells. We show that the M117 protein is expressed with early kinetics, localizes to viral replication compartments, and contributes to the inhibition of cellular DNA synthesis. Mechanistically, M117 interacts with members of the E2F transcription factor family and induces E2F target gene expression in murine and human cells. While the N-terminal part of M117 mediates E2F interaction, the C-terminal part mediates self-interaction. Both parts are required for the activation of E2F-dependent transcription. We further show that M117 is dispensable for viral replication in cultured mouse fibroblasts and endothelial cells, but is required for colonization of mouse salivary glands in vivo. Conversely, inactivation of M117 or pharmacological inhibition of E2F facilitates MCMV replication in human RPE-1 cells, whereas replacement of M117 by adenovirus E4orf6/7, a known E2F activator, prevents it. These results indicate that E2F activation is detrimental for MCMV replication in human cells. In summary, this study identifies MCMV M117 as a novel E2F activator that functions as a host range determinant by precluding MCMV replication in human cells.
Collapse
Affiliation(s)
- Eléonore Ostermann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Stefan Loroch
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany
| | - Zhikang Qian
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany
| | - Lüder Wiebusch
- Labor für Pädiatrische Molekularbiologie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfram Brune
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
12
|
Differential Requirement of Human Cytomegalovirus UL112-113 Protein Isoforms for Viral Replication. J Virol 2017. [PMID: 28637762 DOI: 10.1128/jvi.00254-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The UL112-113 gene is one of the few alternatively spliced genes of human cytomegalovirus (HCMV). It codes for four phosphoproteins, p34, p43, p50, and p84, all of which are expressed with early kinetics and accumulate at sites of viral DNA replication within the host cell nucleus. Although these proteins are known to play important, possibly essential, roles in the viral replication cycle, little is known about the contribution of individual UL112-113 protein products. Here we used splice site mutagenesis, intron deletion and substitution, and nonsense mutagenesis to prevent the individual expression of each UL112-113 protein isoform and to investigate the importance of each isoform for viral replication. We show that HCMV mutants lacking p34 or p50 expression replicated to high titers in human fibroblasts and endothelial cells, indicating that these proteins are nonessential for viral replication, while mutant viruses carrying a stop mutation within the p84 coding sequence were severely growth impaired. Viral replication could not be detected upon the inactivation of p43 expression, indicating that this UL112-113 protein is essential for viral replication. We also analyzed the ability of UL112-113 proteins to recruit other viral proteins to intranuclear prereplication compartments. While UL112-113 expression was sufficient to recruit the UL44-encoded viral DNA polymerase processivity factor, it was not sufficient for the recruitment of the viral UL84 and UL117 proteins. Remarkably, both the p43 and p84 isoforms were required for the efficient recruitment of pUL44, which is consistent with their critical role in the viral life cycle.IMPORTANCE Human cytomegalovirus requires gene products from 11 genetic loci for the lytic replication of its genome. One of these loci, UL112-113, encodes four proteins with common N termini by alternative splicing. In this study, we inactivated the expression of each of the four UL112-113 proteins individually and determined their requirement for HCMV replication. We found that two of the UL112-113 gene products were dispensable for viral replication in human fibroblasts and endothelial cells. In contrast, viral replication was severely reduced or absent when one of the other two gene products was inactivated, indicating that they are of crucial importance for the viral replication cycle. We further showed that the latter two gene products are involved in the recruitment of pUL44, an essential cofactor of the viral DNA polymerase, to specific sites within the cell nucleus that are thought to serve as starting points for viral DNA replication.
Collapse
|
13
|
Functional Dissection of an Alternatively Spliced Herpesvirus Gene by Splice Site Mutagenesis. J Virol 2016; 90:4626-4636. [PMID: 26912612 DOI: 10.1128/jvi.02987-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/17/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Herpesviruses have large and complex DNA genomes. The largest among the herpesviruses, those of the cytomegaloviruses, include over 170 genes. Although most herpesvirus gene products are expressed from unspliced transcripts, a substantial number of viral transcripts are spliced. Some viral transcripts are subject to alternative splicing, which leads to the expression of several proteins from a single gene. Functional analysis of individual proteins derived from an alternatively spliced gene is difficult, as deletion and nonsense mutagenesis, both common methods used in the generation of viral gene knockout mutants, affect several or all gene products at the same time. Here, we show that individual gene products of an alternatively spliced herpesvirus gene can be inactivated selectively by mutagenesis of the splice donor or acceptor site and by intron deletion or substitution mutagenesis. We used this strategy to dissect the essential M112/113 gene of murine cytomegalovirus (MCMV), which encodes the MCMV Early 1 (E1) proteins. The expression of each of the four E1 protein isoforms was inactivated individually, and the requirement for each isoform in MCMV replication was analyzed in fibroblasts, endothelial cells, and macrophages. We show that the E1 p87 isoform, but not the p33, p36, and p38 isoforms, is essential for viral replication in cell culture. Moreover, the presence of one of the two medium-size isoforms (p36 or p38) and the presence of intron 1, but not its specific sequence, are required for viral replication. This study demonstrates the usefulness of splice site mutagenesis for the functional analysis of alternatively spliced herpesvirus genes. IMPORTANCE Herpesviruses include up to 170 genes in their DNA genomes. The functions of most viral gene products remain poorly defined. The construction of viral gene knockout mutants has thus been an important tool for functional analysis of viral proteins. However, this strategy is of limited use when viral gene transcripts are alternatively spliced, leading to the expression of several proteins from a single gene. In this study, we showed, as a proof of principle, that each protein product of an alternatively spliced gene can be eliminated individually by splice site mutagenesis. Mutant viruses lacking individual protein products displayed different phenotypes, demonstrating that the products of alternatively spliced genes have nonredundant functions.
Collapse
|
14
|
Ostermann E, Pawletko K, Indenbirken D, Schumacher U, Brune W. Stepwise adaptation of murine cytomegalovirus to cells of a foreign host for identification of host range determinants. Med Microbiol Immunol 2015; 204:461-9. [PMID: 25788395 DOI: 10.1007/s00430-015-0400-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
Ever since their first isolation 60 years ago, cytomegaloviruses have been recognized as being highly species specific. They replicate only in cells of their own or a closely related host species, while cells of phylogenetically more distant hosts are usually not permissive for viral replication. For instance, human cytomegalovirus replicates in human and chimpanzee fibroblasts but not in rodent cells, and murine cytomegalovirus (MCMV) replicates in cells of mice and rats but not in primate cells. However, the viral and cellular factors determining the narrow host range of cytomegaloviruses have remained largely unknown. We show that MCMV can be adapted stepwise to replicate in cultured human retinal pigment epithelial (RPE-1) cells and human fibroblasts. The human RPE-1 cells used for the initial adaptation step showed a pronounced contact inhibition and produced very low level of interferon-β transcripts upon cytomegalovirus infection, suggesting that these cells provide a particularly favorable environment for adaptation. By whole genome sequencing of the 230 kbp viral genomes of several adapted mutants, a limited number of mutations were detected. Comparison of several human cell-adapted MCMV clones and introduction of specific mutations into the wild-type MCMV genome by site-directed mutagenesis allows for the identification of viral host range determinants and provides the basis for elucidating the molecular basis of the cytomegalovirus host species specificity.
Collapse
Affiliation(s)
- Eleonore Ostermann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistr. 52, 22455, Hamburg, Germany
| | | | | | | | | |
Collapse
|
15
|
Schleiss MR. Developing a Vaccine against Congenital Cytomegalovirus (CMV) Infection: What Have We Learned from Animal Models? Where Should We Go Next? Future Virol 2013; 8:1161-1182. [PMID: 24523827 DOI: 10.2217/fvl.13.106] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Congenital human cytomegalovirus (HCMV) infection can lead to long-term neurodevelopmental sequelae, including mental retardation and sensorineural hearing loss. Unfortunately, CMVs are highly adapted to their specific species, precluding the evaluation of HCMV vaccines in animal models prior to clinical trials. Several species-specific CMVs have been characterized and developed in models of pathogenesis and vaccine-mediated protection against disease. These include the murine CMV (MCMV), the porcine CMV (PCMV), the rhesus macaque CMV (RhCMV), the rat CMV (RCMV), and the guinea pig CMV (GPCMV). Because of the propensity of the GPCMV to cross the placenta, infecting the fetus in utero, it has emerged as a model of particular interest in studying vaccine-mediated protection of the fetus. In this paper, a review of these various models, with particular emphasis on the value of the model in the testing and evaluation of vaccines against congenital CMV, is provided. Recent exciting developments and advances in these various models are summarized, and recommendations offered for high-priority areas for future study.
Collapse
Affiliation(s)
- Mark R Schleiss
- University of Minnesota Medical School Center for Infectious Diseases and Microbiology Translational Research Department of Pediatrics Division of Pediatric Infectious Diseases and Immunology 2001 6 Street SE Minneapolis, MN 55455-3007
| |
Collapse
|
16
|
Viral inhibition of BAK promotes murine cytomegalovirus dissemination to salivary glands. J Virol 2013; 87:3592-6. [PMID: 23302869 DOI: 10.1128/jvi.02657-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Apoptosis induction is an important host defense mechanism to control viral infection, which is antagonized by viral proteins. Murine cytomegalovirus m41.1 encodes a viral inhibitor of BAK oligomerization (vIBO) that blocks the mitochondrial apoptosis mediator BAK. However, its importance for viral fitness in vivo has not been investigated. Here, we show that an m41.1-deficient virus attains reduced titers in salivary glands of wild-type but not Bak1(-/-) mice, indicating a requirement of BAK inhibition for optimal dissemination in vivo.
Collapse
|
17
|
A short cis-acting motif in the M112-113 promoter region is essential for IE3 to activate M112-113 gene expression and is important for murine cytomegalovirus replication. J Virol 2012; 87:2639-47. [PMID: 23255797 DOI: 10.1128/jvi.03171-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Immediate-early 3 (IE3) gene products are required to activate early (E)-stage gene expression of murine cytomegaloviruses (MCMV). The first early gene activated by IE3 is the M112-113 gene (also called E1), although a complete understanding of the activation mechanism is still lacking. In this paper, we identify a 10-bp cis-regulating motif upstream of the M112-113 TATA box as important for IE3 activation of M112-113 expression. Results from DNA affinity assays and chromatin immunoprecipitation assays show that the association of IE3 with the M112-113 gene promoter was eliminated by deletion of the 10-bp DNA sequence, now named IE3AM (for IE3 activating motif). In addition, IE3 interacts with TATA box binding protein (TBP), a core protein of TFIID (transcription initiation) complexes. Finally, we created an IE3AM-deleted MCMV (MCMVdIE3AM) using a bacterial artificial chromosome system. The mutant virus can still replicate in NIH 3T3 cells but at a significantly lower level. The defectiveness of the MCMVdIE3AM infection can be rescued in an M112-113-complemented cell line. Our results suggest that the interactions of IE3 with IE3AM and with TBP stabilize the TFIID complex at the M112-113 promoter such that M112-113 gene expression can be activated and/or enhanced.
Collapse
|
18
|
Abstract
The host antiviral protein kinase R (PKR) has rapidly evolved during primate evolution, likely in response to challenges posed by many different viral antagonists, such as the TRS1 gene of cytomegaloviruses (CMVs). In turn, viral antagonists have adapted to changes in PKR. As a result of this "arms race," modern TRS1 alleles in CMVs may function differently in cells derived from alternative species. We have previously shown that human CMV TRS1 (HuTRS1) blocks the PKR pathway and rescues replication of a vaccinia virus mutant lacking its major PKR antagonist in human cells. We now demonstrate that HuTRS1 does not have these activities in Old World monkey cells. Conversely, the rhesus cytomegalovirus homologue of HuTRS1 (RhTRS1) fulfills these functions in African green monkey cells, but not rhesus or human cells. Both TRS1 proteins bind to double-stranded RNA and, in the cell types in which they can rescue VVΔE3L replication, they also bind to PKR and prevent phosphorylation of the α-subunit of eukaryotic initiation factor 2. However, while HuTRS1 binds to inactive human PKR and prevents its autophosphorylation, RhTRS1 binds to phosphorylated African green monkey PKR. These studies reveal that evolutionary adaptations in this critical host defense protein have altered its binding interface in a way that has resulted in a qualitatively altered mechanism of PKR antagonism by viral TRS1 alleles from different CMVs. These results suggest that PKR antagonism is likely one of the factors that contributes to species specificity of cytomegalovirus replication.
Collapse
|
19
|
Schleiss MR. Congenital cytomegalovirus infection: molecular mechanisms mediating viral pathogenesis. Infect Disord Drug Targets 2011; 11:449-465. [PMID: 21827434 PMCID: PMC3869401 DOI: 10.2174/187152611797636721] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/21/2011] [Indexed: 05/31/2023]
Abstract
Human cytomegalovirus (CMV) is responsible for approximately 40,000 congenital infections in the United States each year. Congenital CMV disease frequently produces serious neurodevelopmental disability, as well as vision impairment and sensorineural hearing loss. Development of a CMV vaccine is therefore considered to be a major public health priority. The mechanisms by which CMV injures the fetus are complex and likely include a combination of direct fetal injury induced by pathologic virally-encoded gene products, an inability of the maternal immune response to control infection, and the direct impact of infection on placental function. CMV encodes gene products that function, both at the RNA and the protein level, to interfere with many cellular processes. These include gene products that modify the cell cycle; interfere with apoptosis; induce an inflammatory response; mediate vascular injury; induce site-specific breakage of chromosomes; promote oncogenesis; dysregulate cellular proliferation; and facilitate evasion of host immune responses. This minireview summarizes current concepts regarding these aspects of the molecular virology of CMV and the potential pathogenic impact of viral gene expression on the developing fetus. Areas for potential development of novel therapeutic intervention are suggested for improving the outcome of this disabling congenital infection.
Collapse
Affiliation(s)
- Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Minneapolis, MN 55455, USA.
| |
Collapse
|
20
|
Virus progeny of murine cytomegalovirus bacterial artificial chromosome pSM3fr show reduced growth in salivary Glands due to a fixed mutation of MCK-2. J Virol 2011; 85:10346-53. [PMID: 21813614 DOI: 10.1128/jvi.00545-11] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine cytomegalovirus (MCMV) Smith strain has been cloned as a bacterial artificial chromosome (BAC) named pSM3fr and used for analysis of virus gene functions in vitro and in vivo. When sequencing the complete BAC genome, we identified a frameshift mutation within the open reading frame (ORF) encoding MCMV chemokine homologue MCK-2. This mutation would result in a truncated MCK-2 protein. When mice were infected with pSM3fr-derived virus, we observed reduced virus production in salivary glands, which could be reverted by repair of the frameshift mutation. When looking for the source of the mutation, we consistently found that virus stocks of cell culture-passaged MCMV Smith strain are mixtures of viruses with or without the MCK-2 mutation. We conclude that the MCK-2 mutation in the pSM3fr BAC is the result of clonal selection during the BAC cloning procedure.
Collapse
|
21
|
Cosme RC, Martínez FP, Tang Q. Functional interaction of nuclear domain 10 and its components with cytomegalovirus after infections: cross-species host cells versus native cells. PLoS One 2011; 6:e19187. [PMID: 21552525 PMCID: PMC3084273 DOI: 10.1371/journal.pone.0019187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/22/2011] [Indexed: 12/12/2022] Open
Abstract
Species-specificity is one of the major characteristics of cytomegaloviruses (CMVs) and is the primary reason for the lack of a mouse model for the direct infection of human CMV (HCMV). It has been determined that CMV cross-species infections are blocked at the post-entry level by intrinsic cellular defense mechanisms, but few details are known. It is important to explore how CMVs interact with the subnuclear structure of the cross-species host cell. In our present study, we discovered that nuclear domain 10 (ND10) of human cells was not disrupted by murine CMV (MCMV) and that the ND10 of mouse cells was not disrupted by HCMV, although the ND10-disrupting protein, immediate-early protein 1 (IE1), also colocalized with ND10 in cross-species infections. In addition, we found that the UL131-repaired HCMV strain AD169 (vDW215-BADrUL131) can infect mouse cells to produce immediate-early (IE) and early (E) proteins but that neither DNA replication nor viral particles were detectable in mouse cells. Unrepaired AD169 can express IE1 only in mouse cells. In both HCMV-infected mouse cells and MCMV-infected human cells, the knocking-down of ND10 components (PML, Daxx, and SP100) resulted in significantly increased viral-protein production. Our observations provide evidence to support our hypothesis that ND10 and ND10 components might be important defensive factors against the CMV cross-species infection.
Collapse
Affiliation(s)
- Ruth Cruz Cosme
- Department of Microbiology/AIDS Research Program, Ponce School of Medicine and Health Sciences, Ponce, Puerto Rico, United States of America
| | | | | |
Collapse
|
22
|
Inhibition of programmed cell death by cytomegaloviruses. Virus Res 2010; 157:144-50. [PMID: 20969904 DOI: 10.1016/j.virusres.2010.10.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 10/07/2010] [Accepted: 10/11/2010] [Indexed: 12/24/2022]
Abstract
The elimination of infected cells by programmed cell death (PCD) is one of the most ancestral defense mechanisms against infectious agents. This mechanism should be most effective against intracellular parasites, such as viruses, which depend on the host cell for their replication. However, even large and slowly replicating viruses like the cytomegaloviruses (CMVs) can prevail and persist in face of cellular suicide programs and other innate defense mechanisms. During evolution, these viruses have developed an impressive set of countermeasures against premature demise of the host cell. In the last decade, several genes encoding suppressors of apoptosis and necrosis have been identified in the genomes of human and murine CMV (HCMV and MCMV). Curiously, most of the gene products are not homologous to cellular antiapoptotic proteins, suggesting that the CMVs did not capture the genes from the host cell genome. This review summarizes our current understanding of how the CMVs suppress PCD and which signaling pathways they target.
Collapse
|