1
|
Shrivastav G, Borkotoky S, Dey D, Singh B, Malhotra N, Azad K, Jayaram B, Agarwal M, Banerjee M. Structure and energetics guide dynamic behaviour in a T = 3 icosahedral virus capsid. Biophys Chem 2024; 305:107152. [PMID: 38113782 DOI: 10.1016/j.bpc.2023.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Although virus capsids appear as rigid, symmetric particles in experimentally determined structures; biochemical studies suggest a significant degree of structural flexibility in the particles. We carried out all-atom simulations on the icosahedral capsid of an insect virus, Flock House Virus, which show intriguing differences in the degree of flexibility of quasi-equivalent capsid subunits consistent with previously described biological behaviour. The flexibility of all the β and γ subunits of the protein and RNA fragments is analysed and compared. Both γA subunit and RNA fragment exhibit higher flexibility than the γB and γC subunits. The capsid shell is permeable to the bidirectional movement of water molecules, and the movement is heavily influenced by the geometry of the capsid shell along specific symmetry axes. In comparison to the symmetry axes along I5 and I3, the I2 axis exhibits a slightly higher water content. This enriched water environment along I2 could play a pivotal role in facilitating the structural transitions necessary for RNA release, shedding some light on the intricate and dynamic processes underlying the viral life cycle. Our study suggests that the physical characterization of whole virus capsids is the key to identifying biologically relevant transition states in the virus life cycle and understanding the basis of virus infectivity.
Collapse
Affiliation(s)
- Gourav Shrivastav
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Subhomoi Borkotoky
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Debajit Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bhumika Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nidhi Malhotra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kimi Azad
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - B Jayaram
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manish Agarwal
- Computer Services Centre, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
2
|
Jana AK, Sharawy M, May ER. Non-equilibrium virus particle dynamics: Microsecond MD simulations of the complete Flock House virus capsid under different conditions. J Struct Biol 2023; 215:107964. [PMID: 37105277 PMCID: PMC10205670 DOI: 10.1016/j.jsb.2023.107964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Flock House virus (FHV) is an animal virus and considered a model system for non-enveloped viruses. It has a small, icosahedral capsid (T=3) and a bipartite positive-sense RNA genome. We present an extensive study of the FHV capsid dynamics from all-atom molecular dynamics simulations of the complete capsid. The simulations explore different biologically relevant conditions (neutral/low pH, with/without RNA in the capsid) using the CHARMM force field. The results show that low pH destabilizes the capsid, causing radial expansion, and RNA stabilizes the capsid. The finding of low pH destabilization is biologically relevant because the capsid is exposed to low pH in the endosome, where conformational changes occur leading to genome release. We also observe structural changes at the fivefold and twofold symmetry axes that likely relate to the externalization of membrane active γ peptides through the fivefold vertex and extrusion of RNA at the twofold axis. Simulations using the Amber force field at neutral pH are also performed and display similar characteristics to the CHARMM simulations.
Collapse
Affiliation(s)
- Asis K Jana
- DepartmentofMolecularandCellBiology, UniversityofConnecticut, Storrs, CT06269-3125, USA; Department of Microbiology and Biotechnology, Sister Nivedita University, New Town, West Bengal 700156, India
| | - Mahmoud Sharawy
- DepartmentofMolecularandCellBiology, UniversityofConnecticut, Storrs, CT06269-3125, USA
| | - Eric R May
- DepartmentofMolecularandCellBiology, UniversityofConnecticut, Storrs, CT06269-3125, USA.
| |
Collapse
|
3
|
Popovic M. The SARS-CoV-2 Hydra, a tiny monster from the 21st century: Thermodynamics of the BA.5.2 and BF.7 variants. MICROBIAL RISK ANALYSIS 2023; 23:100249. [PMID: 36777924 PMCID: PMC9898946 DOI: 10.1016/j.mran.2023.100249] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 06/01/2023]
Abstract
SARS-CoV-2 resembles the ancient mythical creature Hydra. Just like with the Hydra, when one head is cut, it is followed by appearance of two more heads, suppression of one SARS-CoV-2 variant causes appearance of newer variants. Unlike Hydra that grows identical heads, newer SARS-CoV-2 variants are usually more infective, which can be observed as time evolution of the virus at hand, which occurs through acquisition of mutations during time. The appearance of new variants is followed by appearance of new COVID-19 pandemic waves. With the appearance of new pandemic waves and determining of sequences, in the scientific community and general public the question is always raised of whether the new variant will be more virulent and more pathogenic. The two variants characterized in this paper, BA.5.2 and BF.7, have caused a pandemic wave during the late 2022. This paper gives full chemical and thermodynamic characterization of the BA.5.2 and BF.7 variants of SARS-CoV-2. Having in mind that Gibbs energy of binding and biosynthesis represent the driving forces for the viral life cycle, based on the calculated thermodynamic properties we can conclude that the newer variants are more infective than earlier ones, but that their pathogenicity has not changed.
Collapse
Affiliation(s)
- Marko Popovic
- School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
4
|
Chen NC, Wang CH, Yoshimura M, Yeh YQ, Guan HH, Chuankhayan P, Lin CC, Lin PJ, Huang YC, Wakatsuki S, Ho MC, Chen CJ. Structures of honeybee-infecting Lake Sinai virus reveal domain functions and capsid assembly with dynamic motions. Nat Commun 2023; 14:545. [PMID: 36726015 PMCID: PMC9892032 DOI: 10.1038/s41467-023-36235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Understanding the structural diversity of honeybee-infecting viruses is critical to maintain pollinator health and manage the spread of diseases in ecology and agriculture. We determine cryo-EM structures of T = 4 and T = 3 capsids of virus-like particles (VLPs) of Lake Sinai virus (LSV) 2 and delta-N48 LSV1, belonging to tetraviruses, at resolutions of 2.3-2.6 Å in various pH environments. Structural analysis shows that the LSV2 capsid protein (CP) structural features, particularly the protruding domain and C-arm, differ from those of other tetraviruses. The anchor loop on the central β-barrel domain interacts with the neighboring subunit to stabilize homo-trimeric capsomeres during assembly. Delta-N48 LSV1 CP interacts with ssRNA via the rigid helix α1', α1'-α1 loop, β-barrel domain, and C-arm. Cryo-EM reconstructions, combined with X-ray crystallographic and small-angle scattering analyses, indicate that pH affects capsid conformations by regulating reversible dynamic particle motions and sizes of LSV2 VLPs. C-arms exist in all LSV2 and delta-N48 LSV1 VLPs across varied pH conditions, indicating that autoproteolysis cleavage is not required for LSV maturation. The observed linear domino-scaffold structures of various lengths, made up of trapezoid-shape capsomeres, provide a basis for icosahedral T = 4 and T = 3 architecture assemblies. These findings advance understanding of honeybee-infecting viruses that can cause Colony Collapse Disorder.
Collapse
Affiliation(s)
- Nai-Chi Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Masato Yoshimura
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Yi-Qi Yeh
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Phimonphan Chuankhayan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Chien-Chih Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Pei-Ju Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30043, Taiwan, ROC
| | - Yen-Chieh Huang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Soichi Wakatsuki
- Department of Structural Biology, Stanford University, Stanford, CA, 94305, USA
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Structural Molecular Biology, Menlo Park, CA, 94025, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan, ROC.
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC.
- Department of Physics, National Tsing Hua University, Hsinchu, 30043, Taiwan, ROC.
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC.
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.
| |
Collapse
|
5
|
Biothermodynamics of Viruses from Absolute Zero (1950) to Virothermodynamics (2022). Vaccines (Basel) 2022; 10:vaccines10122112. [PMID: 36560522 PMCID: PMC9784531 DOI: 10.3390/vaccines10122112] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Biothermodynamics of viruses is among the youngest but most rapidly developing scientific disciplines. During the COVID-19 pandemic, it closely followed the results published by molecular biologists. Empirical formulas were published for 50 viruses and thermodynamic properties for multiple viruses and virus variants, including all variants of concern of SARS-CoV-2, SARS-CoV, MERS-CoV, Ebola virus, Vaccinia and Monkeypox virus. A review of the development of biothermodynamics of viruses during the last several decades and intense development during the last 3 years is described in this paper.
Collapse
|
6
|
Liu S, Xia J, Tian Y, Yao L, Xu T, Li X, Li X, Wang W, Kong J, Zhang Q. Investigation of Pathogenic Mechanism of Covert Mortality Nodavirus Infection in Penaeus vannamei. Front Microbiol 2022; 13:904358. [PMID: 35711775 PMCID: PMC9195102 DOI: 10.3389/fmicb.2022.904358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Viral covert mortality disease (VCMD), also known as running mortality syndrome (RMS), is caused by covert mortality nodavirus (CMNV) and has impacted the shrimp farming industry in Asia and Latin America in recent years. The pathogenic mechanism of CMNV infecting Penaeus vannamei was investigated in this study. In the naturally infected shrimp, histopathological and in situ hybridization (ISH) analysis verified that CMNV infection and severe cellar structural damage occurred in almost all cells of the ommatidium. Under transmission electron microscopic (TEM), vacuolation and necrosis, together with numerous CMNV-like particles, could be observed in the cytoplasm of most cell types of the ommatidium. The challenge test showed that a low CMNV infectious dose caused cumulative mortality of 66.7 ± 6.7% and 33.3 ± 3.6% of shrimp in the 31-day outdoor and indoor farming trials, respectively. The shrimp in the infection group grew slower than those in the control group; the percentage of soft-shell individuals in the infection group (42.9%) was much higher than that of the control group (17.1%). The histopathological and ISH examinations of individuals artificially infected with CMNV revealed that severe cellar damage, including vacuolation, karyopyknosis, and structural failure, occurred not only in the cells of the refraction part of the ommatidium, but also in the cells of the nerve enrichment and hormone secretion zones. And the pathological damages were severe in the nerve cells of both the ventral nerve cord and segmental nerve of the pleopods. TEM examination revealed the ultrastructural pathological changes and vast amounts of CMNV-like particles in the above-mentioned tissues. The differential transcriptome analysis showed that the CMNV infection resulted in the significant down-regulated expression of genes of photo-transduction, digestion, absorption, and growth hormones, which might be the reason for the slow growth of shrimp infected by CMNV. This study uncovered unique characteristics of neurotropism of CMNV for the first time and explored the pathogenesis of slow growth and shell softening of P. vannamei caused by CMNV infection.
Collapse
Affiliation(s)
- Shuang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jitao Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Yuan Tian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Liang Yao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Tingting Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xupeng Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Xiaoping Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Jie Kong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingli Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
7
|
A smart viral vector for targeted delivery of hydrophobic drugs. Sci Rep 2021; 11:7030. [PMID: 33782428 PMCID: PMC8007742 DOI: 10.1038/s41598-021-86198-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Targeted delivery of hydrophobic chemotherapeutic drugs to tumor cells remains a fundamental problem in cancer therapy. Effective encapsulation of hydrophobic drugs in nano-vehicles can improve their pharmacokinetics, bioavailability and prevent off-target localization. We have devised a method for easy chemical conjugation and multivalent display of a tumor-homing peptide to virus-like particles of a non-mammalian virus, Flock House Virus (FHV), to engineer it into a smart vehicle for targeted delivery of hydrophobic drugs. This conjugation method provides dual functionalization to the VLPs, first, a 2 kDa PEG spacer arm shields VLPs from immune reactivity, and second, attachment of the tumor homing peptide tLyP-1 chauffeurs the encapsulated hydrophobic drugs to target cells. The fortuitous affinity of the FHV capsid towards hydrophobic molecules, and dependence on Ca2+ for maintaining a stable capsid shell, were utilized for incorporation of hydrophobic drugs—doxorubicin and ellipticine—in tLyP-1 conjugated VLPs. The drug release profile from the VLP was observed to be gradual, and strictly endosomal pH dependent. We propose that this accessible platform empowers surface functionalization of VLP with numerous ligands containing terminal cysteines, for generating competent delivery vehicles, antigenic display and other biomedical applications.
Collapse
|
8
|
Structural Dynamics of Nonenveloped Virus Disassembly Intermediates. J Virol 2019; 93:JVI.01115-19. [PMID: 31484752 DOI: 10.1128/jvi.01115-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
The stability of icosahedral viruses is crucial for protecting the viral genome during transit; however, successful infection requires eventual disassembly of the capsid. A comprehensive understanding of how stable, uniform icosahedrons disassemble remains elusive, mainly due to the complexities involved in isolating transient intermediates. We utilized incremental heating to systematically characterize the disassembly pathway of a model nonenveloped virus and identified an intriguing link between virus maturation and disassembly. Further, we isolated and characterized two intermediates by cryo-electron microscopy and three-dimensional reconstruction, without imposing icosahedral symmetry. The first intermediate displayed a series of major, asymmetric alterations, whereas the second showed that the act of genome release, through the 2-fold axis, is actually confined to a small section on the capsid. Our study thus presents a comprehensive structural analysis of nonenveloped virus disassembly and emphasizes the asymmetric nature of programmed conformational changes.IMPORTANCE Disassembly or uncoating of an icosahedral capsid is a crucial step during infection by nonenveloped viruses. However, the dynamic and transient nature of the disassembly process makes it challenging to isolate intermediates in a temporal, stepwise manner for structural characterization. Using controlled, incremental heating, we isolated two disassembly intermediates: "eluted particles" and "puffed particles" of an insect nodavirus, Flock House virus (FHV). Cryo-electron microscopy and three-dimensional reconstruction of the FHV disassembly intermediates indicated that disassembly-related conformational alterations are minimally global and largely local, leading to asymmetry in the particle and eventual genome release without complete disintegration of the icosahedron.
Collapse
|
9
|
The atomic structures of shrimp nodaviruses reveal new dimeric spike structures and particle polymorphism. Commun Biol 2019; 2:72. [PMID: 30820467 PMCID: PMC6382870 DOI: 10.1038/s42003-019-0311-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/17/2019] [Indexed: 12/16/2022] Open
Abstract
Shrimp nodaviruses, including Penaeus vannamei (PvNV) and Macrobrachium rosenbergii nodaviruses (MrNV), cause white-tail disease in shrimps, with high mortality. The viral capsid structure determines viral assembly and host specificity during infections. Here, we show cryo-EM structures of T = 3 and T = 1 PvNV-like particles (PvNV-LPs), crystal structures of the protrusion-domains (P-domains) of PvNV and MrNV, and the crystal structure of the ∆N-ARM-PvNV shell-domain (S-domain) in T = 1 subviral particles. The capsid protein of PvNV reveals five domains: the P-domain with a new jelly-roll structure forming cuboid-like spikes; the jelly-roll S-domain with two calcium ions; the linker between the S- and P-domains exhibiting new cross and parallel conformations; the N-arm interacting with nucleotides organized along icosahedral two-fold axes; and a disordered region comprising the basic N-terminal arginine-rich motif (N-ARM) interacting with RNA. The N-ARM controls T = 3 and T = 1 assemblies. Increasing the N/C-termini flexibility leads to particle polymorphism. Linker flexibility may influence the dimeric-spike arrangement. Nai-Chi Chen et al. solved the structures of two shrimp nodaviruses, focusing on the major domains to improve understanding of capsid organization. By combining cryo-EM and x-ray crystallography, the authors were able to observe the structures at a high resolution.
Collapse
|
10
|
Ho KL, Gabrielsen M, Beh PL, Kueh CL, Thong QX, Streetley J, Tan WS, Bhella D. Structure of the Macrobrachium rosenbergii nodavirus: A new genus within the Nodaviridae? PLoS Biol 2018; 16:e3000038. [PMID: 30346944 PMCID: PMC6211762 DOI: 10.1371/journal.pbio.3000038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/01/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022] Open
Abstract
Macrobrachium rosenbergii nodavirus (MrNV) is a pathogen of freshwater prawns that poses a threat to food security and causes significant economic losses in the aquaculture industries of many developing nations. A detailed understanding of the MrNV virion structure will inform the development of strategies to control outbreaks. The MrNV capsid has also been engineered to display heterologous antigens, and thus knowledge of its atomic resolution structure will benefit efforts to develop tools based on this platform. Here, we present an atomic-resolution model of the MrNV capsid protein (CP), calculated by cryogenic electron microscopy (cryoEM) of MrNV virus-like particles (VLPs) produced in insect cells, and three-dimensional (3D) image reconstruction at 3.3 Å resolution. CryoEM of MrNV virions purified from infected freshwater prawn post-larvae yielded a 6.6 Å resolution structure, confirming the biological relevance of the VLP structure. Our data revealed that unlike other known nodavirus structures, which have been shown to assemble capsids having trimeric spikes, MrNV assembles a T = 3 capsid with dimeric spikes. We also found a number of surprising similarities between the MrNV capsid structure and that of the Tombusviridae: 1) an extensive network of N-terminal arms (NTAs) lines the capsid interior, forming long-range interactions to lace together asymmetric units; 2) the capsid shell is stabilised by 3 pairs of Ca2+ ions in each asymmetric unit; 3) the protruding spike domain exhibits a very similar fold to that seen in the spikes of the tombusviruses. These structural similarities raise questions concerning the taxonomic classification of MrNV.
Collapse
Affiliation(s)
- Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Mads Gabrielsen
- CRUK Beatson Institute, Garscube Campus, Glasgow, Scotland United Kingdom
| | - Poay Ling Beh
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Chare Li Kueh
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Qiu Xian Thong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - James Streetley
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor Malaysia
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, Glasgow, Scotland, United Kingdom
| |
Collapse
|
11
|
Breach: Host Membrane Penetration and Entry by Nonenveloped Viruses. Trends Microbiol 2017; 26:525-537. [PMID: 29079499 DOI: 10.1016/j.tim.2017.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/06/2017] [Accepted: 09/26/2017] [Indexed: 11/22/2022]
Abstract
Disruption of host membranes by nonenveloped viruses, which allows the nucleocapsid or genome to enter the cytosol, is a mechanistically diverse process. Although the membrane-penetrating agents are usually small, hydrophobic or amphipathic peptides deployed from the capsid interior during entry, their manner of membrane interaction varies substantially. In this review, we discuss recent data about the molecular pathways for externalization of viral peptides amidst conformational alterations in the capsid, as well as mechanisms of membrane penetration, which is influenced by structural features of the peptides themselves as well as physicochemical properties of membranes, and other host factors. The membrane-penetrating components of nonenveloped viruses constitute an interesting class of cell-penetrating peptides, and may have potential therapeutic value for gene transfer.
Collapse
|
12
|
In vitro assembly of polymorphic virus-like particles from the capsid protein of a nodavirus. Virology 2016; 496:106-115. [DOI: 10.1016/j.virol.2016.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/19/2016] [Accepted: 05/30/2016] [Indexed: 11/18/2022]
|
13
|
Jiwaji M, Short JR, Dorrington RA. Expanding the host range of small insect RNA viruses: Providence virus (Carmotetraviridae) infects and replicates in a human tissue culture cell line. J Gen Virol 2016; 97:2763-2768. [PMID: 27521161 DOI: 10.1099/jgv.0.000578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tetraviruses are small, positive (+ve)-sense ssRNA viruses that infect the midgut cells of lepidopteran larvae. Providence virus (PrV) is the only member of the family Carmotetraviridae (previously Tetraviridae). PrV particles exhibit the characteristic tetraviral T=4 icosahedral symmetry, but PrV is distinct from other tetraviruses with respect to genome organization and viral non-structural proteins. Currently, PrV is the only tetravirus known to infect and replicate in lepidopteran cell culture lines. In this report we demonstrate, using immunofluorescence microscopy, that PrV infects and replicates in a human tissue culture cell line (HeLa), producing infectious virus particles. We also provide evidence for PrV replication in vitro in insect, mammalian and plant cell-free systems. This study challenges the long-held view that tetraviruses have a narrow host range confined to one or a few lepidopteran species and highlights the need to consider the potential for apparently non-infectious viruses to be transferred to new hosts in the laboratory.
Collapse
Affiliation(s)
- Meesbah Jiwaji
- Department of Biochemistry and Microbiology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| | - James Roswell Short
- Department of Biochemistry and Microbiology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| | - Rosemary Ann Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| |
Collapse
|
14
|
Jariyapong P. Nodavirus-based biological container for targeted delivery system. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 43:355-60. [PMID: 24588230 DOI: 10.3109/21691401.2014.889702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biological containers such as virus-like particles (VLPs) have gained increasing interest in the fields of gene therapy and vaccine development. Several virus-based materials have been studied, but the toxicity, biodistribution, and immunology of these systems still require extensive investigation. The specific goal of this review is to provide information about nodaviruses, which are causative infectious agents of insects and aquatic animals, but not humans. By understanding the structure and biophysical properties of such viruses, further chemical or genetic modification for novel nanocarriers could be developed. Therefore, their application for therapeutic purposes, particularly in humans, is of great interest.
Collapse
|
15
|
Xie J, Li K, Gao Y, Huang R, Lai Y, Shi Y, Yang S, Zhu G, Zhang Q, He J. Structural analysis and insertion study reveal the ideal sites for surface displaying foreign peptides on a betanodavirus-like particle. Vet Res 2016; 47:16. [PMID: 26754256 PMCID: PMC4710043 DOI: 10.1186/s13567-015-0294-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/21/2015] [Indexed: 01/09/2023] Open
Abstract
Betanodavirus infection causes fatal disease of viral nervous necrosis in many cultured marine and freshwater fish worldwide and the virus-like particles (VLP) are effective vaccines against betanodavirus. But vaccine and viral vector designs of betanodavirus VLP based on their structures remain lacking. Here, the three-dimensional structure of orange-spotted grouper nervous necrosis virus (OGNNV) VLP (RBS) at 3.9 Å reveals the organization of capsid proteins (CP). Based on the structural results, seven putative important sites were selected to genetically insert a 6× histidine (His)-tag for VLP formation screen, resulting in four His-tagged VLP (HV) at positions N-terminus, Ala220, Pro292 and C-terminus. The His-tags of N-terminal HV (NHV) were concealed inside virions while those of 220HV and C-terminal HV (CHV) were displayed at the outer surface. NHV, 220HV and CHV maintained the same cell entry ability as RBS in the Asian sea bass (SB) cell line, indicating that their similar surface structures can be recognized by the cellular entry receptor(s). For application of vaccine design, chromatography-purified CHV could provoke NNV-specific antibody responses as strong as those of RBS in a sea bass immunization assay. Furthermore, in carrying capacity assays, N-terminus and Ala220 can only carry short peptides and C-terminus can even accommodate large protein such as GFP to generate fluorescent VLP (CGV). For application of a viral vector, CGV could be real-time visualized to enter SB cells in invasion study. All the results confirmed that the C-terminus of CP is a suitable site to accommodate foreign peptides for vaccine design and viral vector development.
Collapse
Affiliation(s)
- Junfeng Xie
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Kunpeng Li
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yuanzhu Gao
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Runqing Huang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yuxiong Lai
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 518080, China.
| | - Yan Shi
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shaowei Yang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Guohua Zhu
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Qinfen Zhang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Jianguo He
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
16
|
Chen NC, Yoshimura M, Guan HH, Wang TY, Misumi Y, Lin CC, Chuankhayan P, Nakagawa A, Chan SI, Tsukihara T, Chen TY, Chen CJ. Crystal Structures of a Piscine Betanodavirus: Mechanisms of Capsid Assembly and Viral Infection. PLoS Pathog 2015; 11:e1005203. [PMID: 26491970 PMCID: PMC4619592 DOI: 10.1371/journal.ppat.1005203] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/11/2015] [Indexed: 11/25/2022] Open
Abstract
Betanodaviruses cause massive mortality in marine fish species with viral nervous necrosis. The structure of a T = 3 Grouper nervous necrosis virus-like particle (GNNV-LP) is determined by the ab initio method with non-crystallographic symmetry averaging at 3.6 Å resolution. Each capsid protein (CP) shows three major domains: (i) the N-terminal arm, an inter-subunit extension at the inner surface; (ii) the shell domain (S-domain), a jelly-roll structure; and (iii) the protrusion domain (P-domain) formed by three-fold trimeric protrusions. In addition, we have determined structures of the T = 1 subviral particles (SVPs) of (i) the delta-P-domain mutant (residues 35−217) at 3.1 Å resolution; and (ii) the N-ARM deletion mutant (residues 35−338) at 7 Å resolution; and (iii) the structure of the individual P-domain (residues 214−338) at 1.2 Å resolution. The P-domain reveals a novel DxD motif asymmetrically coordinating two Ca2+ ions, and seems to play a prominent role in the calcium-mediated trimerization of the GNNV CPs during the initial capsid assembly process. The flexible N-ARM (N-terminal arginine-rich motif) appears to serve as a molecular switch for T = 1 or T = 3 assembly. Finally, we find that polyethylene glycol, which is incorporated into the P-domain during the crystallization process, enhances GNNV infection. The present structural studies together with the biological assays enhance our understanding of the role of the P-domain of GNNV in the capsid assembly and viral infection by this betanodavirus. Betanodaviruses belong to the family Nodaviridae and cause the mortality of numerous larval-stage fish species. Here we report protein crystal structures of a piscine betanodavirus, the Grouper nervous necrosis virus (GNNV), in four different forms. Highlights are two structural features that contribute to the viral molecular mechanisms of the T = 3 and T = 1 capsid assembly: a calcium-associated protrusion domain and a functional arginine-rich motif. These results also shed insights into the structural basis for evolutionary lineage of the family Nodaviridae.
Collapse
Affiliation(s)
- Nai-Chi Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Masato Yoshimura
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Ting-Yu Wang
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yuko Misumi
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Chien-Chih Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Phimonphan Chuankhayan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Sunney I. Chan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United State of America
| | - Tomitake Tsukihara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Tzong-Yueh Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (TYC); (CJC)
| | - Chun-Jung Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
- Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
- Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (TYC); (CJC)
| |
Collapse
|
17
|
Uncoating Mechanism of Carnation Mottle Virus Revealed by Cryo-EM Single Particle Analysis. Sci Rep 2015; 5:14825. [PMID: 26442593 PMCID: PMC4595797 DOI: 10.1038/srep14825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/04/2015] [Indexed: 01/17/2023] Open
Abstract
Genome uncoating is a prerequisite for the successful infection of plant viruses in host plants. Thus far, little is known about the genome uncoating of the Carnation mottle virus (CarMV). Here, we obtained two reconstructions of CarMV at pH7 in the presence (Ca-pH7) and absence (EDTA-pH7) of calcium ions by Cryo-EM single particle analysis, which achieved 6.4 Å and 8 Å resolutions respectively. Our results showed that chelation of the calcium ions under EDTA-pH7 resulted in reduced interaction between the subunits near the center of the asymmetric unit but not overall size change of the viral particles, which indicated that the role of the calcium ions in CarMV was not predominantly for the structural preservation. Part of the genomic RNA closest to the capsid was found to be located near the center of the asymmetric unit, which might result from the interaction between genomic RNA and Lys194 residues. Together with the electrostatic potential analysis on the inner surface of the asymmetric unit, the reduced interaction near the center of the asymmetric unit under EDTA-pH7 suggested that the genome release of CarMV might be realized through the center of the asymmetric unit.
Collapse
|
18
|
Abstract
Orsay, the first virus discovered to naturally infect Caenorhabditis elegans or any nematode, has a bipartite, positive-sense RNA genome. Sequence analyses show that Orsay is related to nodaviruses, but molecular characterizations of Orsay reveal several unique features, such as the expression of a capsid-δ fusion protein and the use of an ATG-independent mechanism for translation initiation. Here we report the crystal structure of an Orsay virus-like particle assembled from recombinant capsid protein (CP). Orsay capsid has a T = 3 icosahedral symmetry with 60 trimeric surface spikes. Each CP can be divided into three regions: an N-terminal arm that forms an extended protein interaction network at the capsid interior, an S domain with a jelly-roll, β-barrel fold forming the continuous capsid, and a P domain that forms surface spike projections. The structure of the Orsay S domain is best aligned to T = 3 plant RNA viruses but exhibits substantial differences compared with the insect-infecting alphanodaviruses, which also lack the P domain in their CPs. The Orsay P domain is remotely related to the P1 domain in calicivirus and hepatitis E virus, suggesting a possible evolutionary relationship. Removing the N-terminal arm produced a slightly expanded capsid with fewer nucleic acids packaged, suggesting that the arm is important for capsid stability and genome packaging. Because C. elegans-Orsay serves as a highly tractable model for studying viral pathogenesis, our results should provide a valuable structural framework for further studies of Orsay replication and infection.
Collapse
|
19
|
Abstract
To improve the nuclear-targeted delivery of non-viral vectors, extensive effort has been carried out on the development of smart vectors which could overcome multiple barriers. The nuclear envelope presents a major barrier to transgene delivery. Viruses are capable of crossing the nuclear envelope to efficiently deliver their genome into the nucleus through the specialized protein components. However, non-viral vectors are preferred over viral ones because of the safety concerns associated with the latter. Non-viral delivery systems have been designed to include various types of components to enable nuclear translocation at the periphery of the nucleus. This review summarizes the progress of research regarding nuclear transport mechanisms. "Smart" non-viral vectors that have been modified by peptides and other small molecules are able to facilitate the nuclear translocation and enhance the efficacy of gene expression. The resulting technology may also enhance delivery of other macromolecules to the nucleus.
Collapse
Affiliation(s)
- Jing Yao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA and
| | | | | | | |
Collapse
|
20
|
Abstract
This is a personal history of my structural studies of icosahedral viruses that evolved from crystallographic studies, to hybrid methods with electron cryo-microscopy and image reconstruction (cryoEM) and then developed further by incorporating a variety of physical methods to augment the high resolution crystallographic studies. It is not meant to be comprehensive, even for my own work, but hopefully provides some perspective on the growth of our understanding of these remarkable biologic assemblies. The goal is to provide a historical perspective for those new to the field and to emphasize the limitations of any one method, even those that provide atomic resolution information about viruses.
Collapse
Affiliation(s)
- John E Johnson
- Department of Molecular Biology, MB31, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
21
|
Hardy JG. Metallosupramolecular grid complexes: towards nanostructured materials with high-tech applications. Chem Soc Rev 2013; 42:7881-99. [DOI: 10.1039/c3cs60061k] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Speir JA, Johnson JE. Nucleic acid packaging in viruses. Curr Opin Struct Biol 2012; 22:65-71. [PMID: 22277169 DOI: 10.1016/j.sbi.2011.11.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 10/14/2022]
Abstract
We review recent literature describing protein nucleic acid interactions and nucleic acid organization in viruses. The nature of the viral genome determines its overall organization and its interactions with the capsid protein. Genomes composed of single strand (ss) RNA and DNA are highly flexible and, in some cases, adapt to the symmetry of the particle-forming protein to show repeated, sequence independent, nucleoprotein interactions. Genomes composed of double-stranded (ds) DNA do not interact strongly with the container due to their intrinsic stiffness, but form well-organized layers in virions. Assembly of virions with ssDNA and ssRNA genomes usually occurs through a cooperative condensation of the protein and genome, while dsDNA viruses usually pump the genome into a preformed capsid with a strong, virally encoded, molecular motor complex. We present data that suggest the packing density of ss genomes and ds genomes are comparable, but the latter exhibit far higher pressures due to their stiffness.
Collapse
Affiliation(s)
- Jeffrey A Speir
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | | |
Collapse
|