1
|
Aljedani SS, Liban TJ, Tran K, Phad G, Singh S, Dubrovskaya V, Pushparaj P, Martinez-Murillo P, Rodarte J, Mileant A, Mangala Prasad V, Kinzelman R, O’Dell S, Mascola JR, Lee KK, Karlsson Hedestam GB, Wyatt RT, Pancera M. Structurally related but genetically unrelated antibody lineages converge on an immunodominant HIV-1 Env neutralizing determinant following trimer immunization. PLoS Pathog 2021; 17:e1009543. [PMID: 34559844 PMCID: PMC8494329 DOI: 10.1371/journal.ppat.1009543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/06/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022] Open
Abstract
Understanding the molecular mechanisms by which antibodies target and neutralize the HIV-1 envelope glycoprotein (Env) is critical in guiding immunogen design and vaccine development aimed at eliciting cross-reactive neutralizing antibodies (NAbs). Here, we analyzed monoclonal antibodies (mAbs) isolated from non-human primates (NHPs) immunized with variants of a native flexibly linked (NFL) HIV-1 Env stabilized trimer derived from the tier 2 clade C 16055 strain. The antibodies displayed neutralizing activity against the autologous virus with potencies ranging from 0.005 to 3.68 μg/ml (IC50). Structural characterization using negative-stain EM and X-ray crystallography identified the variable region 2 (V2) of the 16055 NFL trimer to be the common epitope for these antibodies. The crystal structures revealed that the V2 segment adopts a β-hairpin motif identical to that observed in the 16055 NFL crystal structure. These results depict how vaccine-induced antibodies derived from different clonal lineages penetrate through the glycan shield to recognize a hypervariable region within V2 (residues 184-186) that is unique to the 16055 strain. They also provide potential explanations for the potent autologous neutralization of these antibodies, confirming the immunodominance of this site and revealing that multiple angles of approach are permissible for affinity/avidity that results in potent neutralizing capacity. The structural analysis reveals that the most negatively charged paratope correlated with the potency of the mAbs. The atomic level information is of interest to both define the means of autologous neutralization elicited by different tier 2-based immunogens and facilitate trimer redesign to better target more conserved regions of V2 to potentially elicit cross-neutralizing HIV-1 antibodies.
Collapse
Affiliation(s)
- Safia S. Aljedani
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
| | - Tyler J. Liban
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
| | - Karen Tran
- The Scripps Research Institute, IAVI Neutralizing Antibody Center, La Jolla, California, United States of America
| | - Ganesh Phad
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Suruchi Singh
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
| | - Viktoriya Dubrovskaya
- The Scripps Research Institute, IAVI Neutralizing Antibody Center, La Jolla, California, United States of America
| | - Pradeepa Pushparaj
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Paola Martinez-Murillo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Justas Rodarte
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
| | - Alex Mileant
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Rachel Kinzelman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Sijy O’Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, United States of America
| | | | - Richard T. Wyatt
- The Scripps Research Institute, IAVI Neutralizing Antibody Center, La Jolla, California, United States of America
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Marie Pancera
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
2
|
del Moral-Sánchez I, Sliepen K. Strategies for inducing effective neutralizing antibody responses against HIV-1. Expert Rev Vaccines 2019; 18:1127-1143. [PMID: 31791150 PMCID: PMC6961309 DOI: 10.1080/14760584.2019.1690458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Despite intensive research efforts, there is still no effective prophylactic vaccine available against HIV-1. Currently, substantial efforts are devoted to the development of vaccines aimed at inducing broadly neutralizing antibodies (bNAbs), which are capable of neutralizing most HIV-1 strains. All bNAbs target the HIV-1 envelope glycoprotein (Env), but Env immunizations usually only induce neutralizing antibodies (NAbs) against the sequence-matched virus and not against other strains.Areas covered: We describe the different strategies that have been explored to improve the breadth and potency of anti-HIV-1 NAb responses. The discussed strategies include the application of engineered Env immunogens, optimization of (bNAb) epitopes, different cocktail and sequential vaccination strategies, nanoparticles and nucleic acid-based vaccines.Expert opinion: A combination of the strategies described in this review and future approaches are probably needed to develop an effective HIV-1 vaccine that can induce broad, potent and long-lasting NAb responses.
Collapse
Affiliation(s)
- Iván del Moral-Sánchez
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,CONTACT Kwinten Sliepen Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
HIV-1 Vaccines Based on Antibody Identification, B Cell Ontogeny, and Epitope Structure. Immunity 2018; 48:855-871. [DOI: 10.1016/j.immuni.2018.04.029] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
|
4
|
Behrens AJ, Kumar A, Medina-Ramirez M, Cupo A, Marshall K, Cruz Portillo VM, Harvey DJ, Ozorowski G, Zitzmann N, Wilson IA, Ward AB, Struwe WB, Moore JP, Sanders RW, Crispin M. Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages. J Proteome Res 2018; 17:987-999. [PMID: 29420040 DOI: 10.1021/acs.jproteome.7b00639] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Broadly neutralizing antibodies (bNAbs) that target the trimeric HIV-1 envelope glycoprotein spike (Env) are tools that can guide the design of recombinant Env proteins intended to engage the predicted human germline precursors of bNAbs (gl-bNAbs). The protein components of gl-bNAb epitopes are often masked by glycans, while mature bNAbs can evolve to accommodate or bypass these shielding glycans. The design of germline-targeting Env immunogens therefore includes the targeted deletion of specific glycan sites. However, the processing of glycans on Env trimers can be influenced by the density with which they are packed together, a highly relevant point given the essential contributions under-processed glycans make to multiple bNAb epitopes. We sought to determine the impact of the removal of 15 potential N-glycan sites (5 per protomer) from the germline-targeting soluble trimer, BG505 SOSIP.v4.1-GT1, using quantitative, site-specific N-glycan mass spectrometry analysis. We find that, compared with SOSIP.664, there was little overall change in the glycan profile but only subtle increases in the extent of processing at sites immediately adjacent to where glycans had been deleted. We conclude that multiple glycans can be deleted from BG505 SOSIP trimers without perturbing the overall integrity of the glycan shield.
Collapse
Affiliation(s)
- Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Abhinav Kumar
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Max Medina-Ramirez
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam , 1105 AZ Amsterdam, The Netherlands
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York , New York, New York 10021, United States
| | - Kevin Marshall
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York , New York, New York 10021, United States
| | - Victor M Cruz Portillo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York , New York, New York 10021, United States
| | - David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and CAVD, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and CAVD, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute , La Jolla, California 92037, United States.,Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and CAVD, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York , New York, New York 10021, United States
| | - Rogier W Sanders
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam , 1105 AZ Amsterdam, The Netherlands.,Department of Microbiology and Immunology, Weill Cornell Medical College, New York , New York, New York 10021, United States
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom.,Centre for Biological Sciences and Institute for Life Sciences, University of Southampton , Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
5
|
Chen J, Wang B, Wu Y. Structural Characterization and Function Prediction of Immunoglobulin-like Fold in Cell Adhesion and Cell Signaling. J Chem Inf Model 2018; 58:532-542. [PMID: 29356528 DOI: 10.1021/acs.jcim.7b00580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Domains that belong to an immunoglobulin (Ig) fold are extremely abundant in cell surface receptors, which play significant roles in cell-cell adhesion and signaling. Although the structures of domains in an Ig fold share common topology of β-barrels, functions of receptors in adhesion and signaling are regulated by the very heterogeneous binding between these domains. Additionally, only a small number of domains are directly involved in the binding between two multidomain receptors. It is challenging and time consuming to experimentally detect the binding partners of a given receptor and further determine which specific domains in this receptor are responsible for binding. Therefore, current knowledge in the binding mechanism of Ig-fold domains and their impacts on cell adhesion and signaling is very limited. A bioinformatics study can shed light on this topic from a systematic point of view. However, there is so far no computational analysis on the structural and functional characteristics of the entire Ig fold. We constructed nonredundant structural data sets for all domains in Ig fold, depending on their functions in cell adhesion and signaling. We found that data sets of domains in adhesion receptors show different binding preference from domains in signaling receptors. Using structural alignment, we further built a common structural template for each group of a domain data set. By mapping the protein-protein binding interface of each domain in a group onto the surface of its structural template, we found binding interfaces are highly overlapped within each specific group. These overlapped interfaces, we called consensus binding interfaces, are distinguishable among different data sets of domains. Finally, the residue compositions on the consensus interfaces were used as indicators for multiple machine learning algorithms to predict if they can form homotypic interactions with each other. The overall performance of the cross-validation tests shows that our prediction accuracies ranged between 0.6 and 0.8.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Systems and Computational Biology, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Bo Wang
- Department of Systems and Computational Biology, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
6
|
Clarridge KE, Blazkova J, Einkauf K, Petrone M, Refsland EW, Justement JS, Shi V, Huiting ED, Seamon CA, Lee GQ, Yu XG, Moir S, Sneller MC, Lichterfeld M, Chun TW. Effect of analytical treatment interruption and reinitiation of antiretroviral therapy on HIV reservoirs and immunologic parameters in infected individuals. PLoS Pathog 2018; 14:e1006792. [PMID: 29324842 PMCID: PMC5764487 DOI: 10.1371/journal.ppat.1006792] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/06/2017] [Indexed: 01/08/2023] Open
Abstract
Therapeutic strategies aimed at achieving antiretroviral therapy (ART)-free HIV remission in infected individuals are under active investigation. Considering the vast majority of HIV-infected individuals experience plasma viral rebound upon cessation of therapy, clinical trials evaluating the efficacy of curative strategies would likely require inclusion of ART interruption. However, it is unclear what impact short-term analytical treatment interruption (ATI) and subsequent reinitiation of ART have on immunologic and virologic parameters of HIV-infected individuals. Here, we show a significant increase of HIV burden in the CD4+ T cells of infected individuals during ATI that was correlated with the level of plasma viral rebound. However, the size of the HIV reservoirs as well as immune parameters, including markers of exhaustion and activation, returned to pre-ATI levels 6–12 months after the study participants resumed ART. Of note, the proportions of near full-length, genome-intact and structurally defective HIV proviral DNA sequences were similar prior to ATI and following reinitiation of ART. In addition, there was no evidence of emergence of antiretroviral drug resistance mutations within intact HIV proviral DNA sequences following reinitiation of ART. These data demonstrate that short-term ATI does not necessarily lead to expansion of the persistent HIV reservoir nor irreparable damages to the immune system in the peripheral blood, warranting the inclusion of ATI in future clinical trials evaluating curative strategies. While we have made considerable advancements in the treatment of HIV, most infected individuals require life-long treatment to suppress plasma viremia, underscoring the need for the development of additional therapeutic strategies that would allow durable virologic remission in the absence of antiretroviral therapy (ART). While a definitive cure has not yet been identified, the field is moving in a promising direction, and with continued efforts we may arrive at a clinically acceptable alternative to ART. Clinical validation of new treatment options likely requires patients to stop therapy while monitoring for viral rebound, but the effect of treatment interruption and its precise impact on immunologic and virologic parameters in HIV-infected individuals has not been fully delineated. In this work, we measured a significant increase of HIV burden in the CD4+ T cells of infected individuals who underwent ATI with subsequent plasma viral rebound. However, the size of the HIV reservoirs as well as immune parameters returned to pre-ATI levels 6–12 months after the participants resumed ART. These data suggest ATI does not lead to expansion of the persistent HIV reservoir nor irreversible damages to the immune system in the peripheral blood.
Collapse
Affiliation(s)
- Katherine E. Clarridge
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Jana Blazkova
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Kevin Einkauf
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Mary Petrone
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Eric W. Refsland
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - J. Shawn Justement
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Victoria Shi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Erin D. Huiting
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Catherine A. Seamon
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, United States of America
| | - Guinevere Q. Lee
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Xu G. Yu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Michael C. Sneller
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
7
|
Emerging viral diseases from a vaccinology perspective: preparing for the next pandemic. Nat Immunol 2017; 19:20-28. [PMID: 29199281 PMCID: PMC7097586 DOI: 10.1038/s41590-017-0007-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/30/2017] [Indexed: 12/30/2022]
Abstract
Emerging infectious diseases will continue to threaten public health and are sustained by global commerce, travel and disruption of ecological systems. Most pandemic threats are caused by viruses from either zoonotic sources or vector-borne sources. Developing better ways to anticipate and manage the ongoing microbial challenge will be critical for achieving the United Nations Sustainable Development Goals and, conversely, each such goal will affect the ability to control infectious diseases. Here we discuss how technology can be applied effectively to better prepare for and respond to new viral diseases with a focus on new paradigms for vaccine development. Emerging viral diseases present a huge and increasingly important global threat to public health systems. Graham and Sullivan discuss the challenges presented by emerging viral diseases and discuss how innovations in technology and policy can address this threat.
Collapse
|
8
|
Wang H, Chen X, Wang D, Yao C, Wang Q, Xie J, Shi X, Xiang Y, Liu W, Zhang L. Epitope-focused immunogens against the CD4-binding site of HIV-1 envelope protein induce neutralizing antibodies against auto- and heterologous viruses. J Biol Chem 2017; 293:830-846. [PMID: 29187598 DOI: 10.1074/jbc.m117.816447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/20/2017] [Indexed: 11/06/2022] Open
Abstract
Recent discoveries of broadly neutralizing antibodies (bnAbs) in HIV-1-infected individuals have led to the identification of several major "vulnerable sites" on the HIV-1 envelope (Env) glycoprotein. These sites have provided precise targets for HIV-1 vaccine development, but identifying and utilizing many of these targets remain technically challenging. Using a yeast surface display-based approach, we sought to identify epitope-focused antigenic domains (EADs) containing one of the "vulnerable sites," the CD4-binding site (CD4bs), through screening and selection of a combinatorial antigen library of the HIV-1 envelope glycoprotein with the CD4bs bnAb VRC01. We isolated multiple EADs and found that their trimeric forms have biochemical and structural features that preferentially bind and activate B cells that express VRC01 in vitro More importantly, these EADs could induce detectable levels of neutralizing antibodies against genetically related autologous and heterologous subtype B viruses in guinea pigs. Our results demonstrate that an epitope-focused approach involving a screen of a combinatorial antigen library is feasible. The EADs identified here represent a promising collection of possible targets in the rational design of HIV-1 vaccines and lay the foundation for harnessing the specific antigenicity of CD4bs for protective immunogenicity in vivo.
Collapse
Affiliation(s)
- Hua Wang
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Xiangjun Chen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, and
| | - Dianhong Wang
- Beijing Advanced Innovation Center for Structural Biology, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chen Yao
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Qian Wang
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Jiayu Xie
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Xuanling Shi
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Ye Xiang
- Beijing Advanced Innovation Center for Structural Biology, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, and
| | - Linqi Zhang
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine,
| |
Collapse
|
9
|
Medina-Ramírez M, Garces F, Escolano A, Skog P, de Taeye SW, Del Moral-Sanchez I, McGuire AT, Yasmeen A, Behrens AJ, Ozorowski G, van den Kerkhof TLGM, Freund NT, Dosenovic P, Hua Y, Gitlin AD, Cupo A, van der Woude P, Golabek M, Sliepen K, Blane T, Kootstra N, van Breemen MJ, Pritchard LK, Stanfield RL, Crispin M, Ward AB, Stamatatos L, Klasse PJ, Moore JP, Nemazee D, Nussenzweig MC, Wilson IA, Sanders RW. Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody precursors in vivo. J Exp Med 2017; 214:2573-2590. [PMID: 28847869 PMCID: PMC5584115 DOI: 10.1084/jem.20161160] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 03/17/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022] Open
Abstract
Induction of broadly neutralizing antibodies (bNAbs) to HIV would be a major advance toward an effective vaccine. A critical step in this process is the activation of naive B cells expressing bNAb precursors. Medina-Ramírez et al. developed a BG505 SOSIP.v4.1-GT1 trimer that activates bNAb precursors in vitro and in vivo. Induction of broadly neutralizing antibodies (bNAbs) by HIV-1 envelope glycoprotein immunogens would be a major advance toward an effective vaccine. A critical step in this process is the activation of naive B cells expressing germline (gl) antibody precursors that have the potential to evolve into bNAbs. Here, we reengineered the BG505 SOSIP.664 glycoprotein to engage gl precursors of bNAbs that target either the trimer apex or the CD4-binding site. The resulting BG505 SOSIP.v4.1-GT1 trimer binds multiple bNAb gl precursors in vitro. Immunization experiments in knock-in mice expressing gl-VRC01 or gl-PGT121 show that this trimer activates B cells in vivo, resulting in the secretion of specific antibodies into the sera. A crystal structure of the gl-targeting trimer at 3.2-Å resolution in complex with neutralizing antibodies 35O22 and 9H+109L reveals a native-like conformation and the successful incorporation of design features associated with binding of multiple gl-bNAb precursors.
Collapse
Affiliation(s)
- Max Medina-Ramírez
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Fernando Garces
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA
| | - Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Patrick Skog
- Department of Immunology and Microbiology, Scripps CHAVI-ID, The Scripps Research Institute, La Jolla, CA
| | - Steven W de Taeye
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Ivan Del Moral-Sanchez
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY
| | - Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, England, UK
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA
| | - Tom L G M van den Kerkhof
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Natalia T Freund
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Pia Dosenovic
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA
| | - Yuanzi Hua
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA
| | - Alexander D Gitlin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY
| | - Patricia van der Woude
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Michael Golabek
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY
| | - Kwinten Sliepen
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Tanya Blane
- Department of Immunology and Microbiology, Scripps CHAVI-ID, The Scripps Research Institute, La Jolla, CA
| | - Neeltje Kootstra
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Mariëlle J van Breemen
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Laura K Pritchard
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, England, UK
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, England, UK
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA
| | | | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY
| | - David Nemazee
- Department of Immunology and Microbiology, Scripps CHAVI-ID, The Scripps Research Institute, La Jolla, CA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY.,Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands .,Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY
| |
Collapse
|
10
|
Hu D, Bowder D, Wei W, Thompson J, Wilson MA, Xiang SH. Tryptophan 375 stabilizes the outer-domain core of gp120 for HIV vaccine immunogen design. Vaccine 2017; 35:3067-3075. [PMID: 28461065 PMCID: PMC5440730 DOI: 10.1016/j.vaccine.2017.04.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 01/29/2023]
Abstract
VRC01 epitope focused structure-based immunogen design. Gp120 outer-domain core was further stabilized by 375 tryptophan substitution. Epitope specific antibodies were predominately induced through guinea pig immunizations.
The outer-domain core of gp120 may serve as a better HIV vaccine immunogen than the full-length gp120 because of its greater stability and immunogenicity. In our previous report, we introduced two disulfide bonds to the outer-domain core of gp120 to fix its conformation into a CD4-bound state, which resulted in a significant increase in its immunogenicity when compared to the wild-type outer-domain core. In this report, to further improve the immunogenicity of the outer-domain core based immunogen, we have introduced a Tryptophan residue at gp120 amino acid sequence position 375 (375S/W). Our data from immunized guinea pigs indeed shows a striking increase in the immune response due to this stabilized core outer-domain. Therefore, we conclude that the addition of 375W to the outer-domain core of gp120 further stabilizes the structure of immunogen and increases the immunogenicity.
Collapse
Affiliation(s)
- Duoyi Hu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Dane Bowder
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Wenzhong Wei
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Jesse Thompson
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Mark A Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Shi-Hua Xiang
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States.
| |
Collapse
|
11
|
Shahzad-Ul-Hussan S, Sastry M, Lemmin T, Soto C, Loesgen S, Scott DA, Davison JR, Lohith K, O'Connor R, Kwong PD, Bewley CA. Insights from NMR Spectroscopy into the Conformational Properties of Man-9 and Its Recognition by Two HIV Binding Proteins. Chembiochem 2017; 18:764-771. [PMID: 28166380 PMCID: PMC5557091 DOI: 10.1002/cbic.201600665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Indexed: 12/12/2022]
Abstract
Man9 GlcNAc2 (Man-9) present at the surface of HIV makes up the binding sites of several HIV-neutralizing agents and the mammalian lectin DC-SIGN, which is involved in cellular immunity and trans-infections. We describe the conformational properties of Man-9 in its free state and when bound by the HIV entry-inhibitor protein microvirin (MVN), and define the minimum epitopes of both MVN and DC-SIGN by using NMR spectroscopy. To facilitate the implementation of 3D 13 C-edited spectra to deconvolute spectral overlap and to determine the solution structure of Man-9, we developed a robust expression system for the production of 13 C,15 N-labeled glycans in mammalian cells. The studies reveal that Man-9 interacts with HIV-binding proteins through distinct epitopes and adopts diverse conformations in the bound state. In combination with molecular dynamics simulations we observed receptor-bound conformations to be sampled by Man-9 in the free state, thus suggesting a conformational selection mechanism for diverse recognition.
Collapse
Affiliation(s)
- Syed Shahzad-Ul-Hussan
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
- Present address: Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Mallika Sastry
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Thomas Lemmin
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
- Structural Bioinformatics Core Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Cinque Soto
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
- Structural Bioinformatics Core Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Sandra Loesgen
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Danielle A Scott
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Jack R Davison
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Katheryn Lohith
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Robert O'Connor
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Peter D Kwong
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
- Structural Bioinformatics Core Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
12
|
Behrens AJ, Seabright GE, Crispin M. Targeting Glycans of HIV Envelope Glycoproteins for Vaccine Design. CHEMICAL BIOLOGY OF GLYCOPROTEINS 2017. [DOI: 10.1039/9781782623823-00300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of the envelope spike of the human immunodeficiency virus (HIV) is covered with a dense array of glycans, which is sufficient to impede the host antibody response while maintaining a window for receptor recognition. The glycan density significantly exceeds that typically observed on self glycoproteins and is sufficiently high to disrupt the maturation process of glycans, from oligomannose- to complex-type glycosylation, that normally occurs during glycoprotein transit through the secretory system. It is notable that this generates a degree of homogeneity not seen in the highly mutated protein moiety. The conserved, close glycan packing and divergences from default glycan processing give a window for immune recognition. Encouragingly, in a subset of individuals, broadly neutralizing antibodies (bNAbs) have been isolated that recognize these features and are protective in passive-transfer models. Here, we review the recent advances in our understanding of the glycan shield of HIV and outline the strategies that are being pursued to elicit glycan-binding bNAbs by vaccination.
Collapse
Affiliation(s)
- Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Gemma E. Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| |
Collapse
|
13
|
Tolbert WD, Gohain N, Veillette M, Chapleau JP, Orlandi C, Visciano ML, Ebadi M, DeVico AL, Fouts TR, Finzi A, Lewis GK, Pazgier M. Paring Down HIV Env: Design and Crystal Structure of a Stabilized Inner Domain of HIV-1 gp120 Displaying a Major ADCC Target of the A32 Region. Structure 2016; 24:697-709. [PMID: 27041594 PMCID: PMC4856543 DOI: 10.1016/j.str.2016.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/09/2016] [Accepted: 03/04/2016] [Indexed: 11/17/2022]
Abstract
Evidence supports a role of antibody-dependent cellular cytotoxicity (ADCC) toward transitional epitopes in the first and second constant (C1-C2) regions of gp120 (A32-like epitopes) in preventing HIV-1 infection and in vaccine-induced protection. Here, we describe the first successful attempt at isolating the inner domain (ID) of gp120 as an independent molecule that encapsulates the A32-like region within a minimal structural unit of the HIV-1 Env. Through structure-based design, we developed ID2, which consists of the ID expressed independently of the outer domain and stabilized in the CD4-bound conformation by an inter-layer disulfide bond. ID2 expresses C1-C2 epitopes in the context of CD4-triggered full-length gp120 but without any known neutralizing epitope present. Thus, ID2 represents a novel probe for the analysis and/or selective induction of antibody responses to the A32 epitope region. We also present the crystal structure of ID2 complexed with mAb A32, which defines its epitope.
Collapse
Affiliation(s)
- William D Tolbert
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Neelakshi Gohain
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Maxime Veillette
- Centre de Recherche du CHUM, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jean-Philippe Chapleau
- Centre de Recherche du CHUM, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Chiara Orlandi
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Maria L Visciano
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Maryam Ebadi
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Anthony L DeVico
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Andrés Finzi
- Centre de Recherche du CHUM, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H2X 0A9, Canada
| | - George K Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marzena Pazgier
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
14
|
Sliepen K, Sanders RW. HIV-1 envelope glycoprotein immunogens to induce broadly neutralizing antibodies. Expert Rev Vaccines 2016; 15:349-65. [PMID: 26654478 DOI: 10.1586/14760584.2016.1129905] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The long pursuit for a vaccine against human immunodeficiency virus 1 (HIV-1) has recently been boosted by a number of exciting developments. An HIV-1 subunit vaccine ideally should elicit potent broadly neutralizing antibodies (bNAbs), but raising bNAbs by vaccination has proved extremely difficult because of the characteristics of the HIV-1 envelope glycoprotein complex (Env). However, the isolation of bNAbs from HIV-1-infected patients demonstrates that the human humoral immune system is capable of making such antibodies. Therefore, a focus of HIV-1 vaccinology is the elicitation of bNAbs by engineered immunogens and by using vaccination strategies aimed at mimicking the bNAb maturation pathways in HIV-infected patients. Important clues can also be taken from the successful subunit vaccines against hepatitis B virus and human papillomavirus. Here, we review the different types of HIV-1 immunogens and vaccination strategies that are being explored in the search for an HIV-1 vaccine that induces bNAbs.
Collapse
Affiliation(s)
- Kwinten Sliepen
- a Department of Medical Microbiology, Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands
| | - Rogier W Sanders
- a Department of Medical Microbiology, Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands.,b Department of Microbiology and Immunology , Weill Medical College of Cornell University , New York , NY , USA
| |
Collapse
|
15
|
Kanekiyo M, Bu W, Joyce MG, Meng G, Whittle JRR, Baxa U, Yamamoto T, Narpala S, Todd JP, Rao SS, McDermott AB, Koup RA, Rossmann MG, Mascola JR, Graham BS, Cohen JI, Nabel GJ. Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site. Cell 2015; 162:1090-100. [PMID: 26279189 PMCID: PMC4757492 DOI: 10.1016/j.cell.2015.07.043] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/21/2015] [Accepted: 06/18/2015] [Indexed: 11/19/2022]
Abstract
Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses.
Collapse
Affiliation(s)
- Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Bu
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Geng Meng
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - James R R Whittle
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Takuya Yamamoto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Srinivas S Rao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Gary J Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Doria-Rose NA, Joyce MG. Strategies to guide the antibody affinity maturation process. Curr Opin Virol 2015; 11:137-47. [PMID: 25913818 DOI: 10.1016/j.coviro.2015.04.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/02/2015] [Accepted: 04/06/2015] [Indexed: 11/16/2022]
Abstract
Antibodies with protective activity are critical for vaccine efficacy. Affinity maturation increases antibody activity through multiple rounds of somatic hypermutation and selection in the germinal center. Identification of HIV-1 specific and influenza-specific antibody developmental pathways, as well as characterization of B cell and virus co-evolution in patients, has informed our understanding of antibody development. In order to counteract HIV-1 and influenza viral diversity, broadly neutralizing antibodies precisely target specific sites of vulnerability and require high levels of affinity maturation. We present immunization strategies that attempt to recapitulate these natural processes and guide the affinity maturation process.
Collapse
Affiliation(s)
- Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Wu X, Zhang Z, Schramm CA, Joyce MG, Kwon YD, Zhou T, Sheng Z, Zhang B, O'Dell S, McKee K, Georgiev IS, Chuang GY, Longo NS, Lynch RM, Saunders KO, Soto C, Srivatsan S, Yang Y, Bailer RT, Louder MK, Mullikin JC, Connors M, Kwong PD, Mascola JR, Shapiro L. Maturation and Diversity of the VRC01-Antibody Lineage over 15 Years of Chronic HIV-1 Infection. Cell 2015; 161:470-485. [PMID: 25865483 DOI: 10.1016/j.cell.2015.03.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/01/2014] [Accepted: 02/09/2015] [Indexed: 11/29/2022]
Abstract
HIV-1-neutralizing antibodies develop in most HIV-1-infected individuals, although highly effective antibodies are generally observed only after years of chronic infection. Here, we characterize the rate of maturation and extent of diversity for the lineage that produced the broadly neutralizing antibody VRC01 through longitudinal sampling of peripheral B cell transcripts over 15 years and co-crystal structures of lineage members. Next-generation sequencing identified VRC01-lineage transcripts, which encompassed diverse antibodies organized into distinct phylogenetic clades. Prevalent clades maintained characteristic features of antigen recognition, though each evolved binding loops and disulfides that formed distinct recognition surfaces. Over the course of the study period, VRC01-lineage clades showed continuous evolution, with rates of ∼2 substitutions per 100 nucleotides per year, comparable to that of HIV-1 evolution. This high rate of antibody evolution provides a mechanism by which antibody lineages can achieve extraordinary diversity and, over years of chronic infection, develop effective HIV-1 neutralization.
Collapse
Affiliation(s)
- Xueling Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY 10016, USA
| | - Zhenhai Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics and Department of Systems Biology, Columbia University, New York, NY 10032, USA; State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chaim A Schramm
- Department of Biochemistry and Molecular Biophysics and Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics and Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy S Longo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca M Lynch
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin O Saunders
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cinque Soto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sanjay Srivatsan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | -
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James C Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics and Department of Systems Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
18
|
Computational tools for epitope vaccine design and evaluation. Curr Opin Virol 2015; 11:103-12. [PMID: 25837467 DOI: 10.1016/j.coviro.2015.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
Rational approaches will be required to develop universal vaccines for viral pathogens such as human immunodeficiency virus, hepatitis C virus, and influenza, for which empirical approaches have failed. The main objective of a rational vaccine strategy is to design novel immunogens that are capable of inducing long-term protective immunity. In practice, this requires structure-based engineering of the target neutralizing epitopes and a quantitative readout of vaccine-induced immune responses. Therefore, computational tools that can facilitate these two areas have played increasingly important roles in rational vaccine design in recent years. Here we review the computational techniques developed for protein structure prediction and antibody repertoire analysis, and demonstrate how they can be applied to the design and evaluation of epitope vaccines.
Collapse
|
19
|
Bruun TH, Mühlbauer K, Benen T, Kliche A, Wagner R. A mammalian cell based FACS-panning platform for the selection of HIV-1 envelopes for vaccine development. PLoS One 2014; 9:e109196. [PMID: 25279768 PMCID: PMC4184847 DOI: 10.1371/journal.pone.0109196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/09/2014] [Indexed: 11/27/2022] Open
Abstract
An increasing number of broadly neutralizing monoclonal antibodies (bnMAb) against the HIV-1 envelope (Env) protein has been discovered recently. Despite this progress, vaccination efforts with the aim to re-elicit bnMAbs that provide protective immunity have failed so far. Herein, we describe the development of a mammalian cell based FACS-panning method in which bnMAbs are used as tools to select surface-exposed envelope variants according to their binding affinity. For that purpose, an HIV-1 derived lentiviral vector was developed to infect HEK293T cells at low multiplicity of infection (MOI) in order to link Env phenotype and genotype. For proof of principle, a gp145 Env model-library was established in which the complete V3 domain was substituted by five strain specific V3 loop sequences with known binding affinities to nMAb 447-52D, respectively. Env genes were recovered from selected cells by PCR, subcloned into a lentiviral vector (i) to determine and quantify the enrichment nMAb binders and (ii) to generate a new batch of transduction competent particles. After 2 selection cycles the Env variant with highest affinity was enriched 20-fold and represented 80% of the remaining Env population. Exploiting the recently described bnMAbs, this procedure might prove useful in selecting Env proteins from large Env libraries with the potential to elicit bnMAbs when used as vaccine candidates.
Collapse
Affiliation(s)
- Tim-Henrik Bruun
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Bavaria, Germany
| | - Katharina Mühlbauer
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Bavaria, Germany
| | - Thomas Benen
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Bavaria, Germany
| | - Alexander Kliche
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Bavaria, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Bavaria, Germany
- * E-mail:
| |
Collapse
|
20
|
Fincke A, Winter J, Bunte T, Olbrich C. Thermally induced degradation pathways of three different antibody-based drug development candidates. Eur J Pharm Sci 2014; 62:148-60. [DOI: 10.1016/j.ejps.2014.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/14/2014] [Accepted: 05/06/2014] [Indexed: 12/27/2022]
|
21
|
Qin Y, Banasik M, Kim S, Penn-Nicholson A, Habte HH, LaBranche C, Montefiori DC, Wang C, Cho MW. Eliciting neutralizing antibodies with gp120 outer domain constructs based on M-group consensus sequence. Virology 2014; 462-463:363-76. [PMID: 25046154 DOI: 10.1016/j.virol.2014.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 05/25/2014] [Accepted: 06/04/2014] [Indexed: 12/14/2022]
Abstract
One strategy being evaluated for HIV-1 vaccine development is focusing immune responses towards neutralizing epitopes on the gp120 outer domain (OD) by removing the immunodominant, but non-neutralizing, inner domain. Previous OD constructs have not elicited strong neutralizing antibodies (nAbs). We constructed two immunogens, a monomeric gp120-OD and a trimeric gp120-OD×3, based on an M group consensus sequence (MCON6). Their biochemical and immunological properties were compared with intact gp120. Results indicated better preservation of critical neutralizing epitopes on gp120-OD×3. In contrast to previous studies, our immunogens induced potent, cross-reactive nAbs in rabbits. Although nAbs primarily targeted Tier 1 viruses, they exhibited significant breadth. Epitope mapping analyses indicated that nAbs primarily targeted conserved V3 loop elements. Although the potency and breadth of nAbs were similar for all three immunogens, nAb induction kinetics indicated that gp120-OD×3 was superior to gp120-OD, suggesting that gp120-OD×3 is a promising prototype for further gp120 OD-based immunogen development.
Collapse
Affiliation(s)
- Yali Qin
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States; Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, United States
| | - Marisa Banasik
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States; Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, United States
| | - SoonJeung Kim
- Case Western Reserve University, Department of Physiology and Biophysics, School of Medicine, Cleveland, Ohio 44106, United States
| | - Adam Penn-Nicholson
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Habtom H Habte
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States; Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, United States
| | - Celia LaBranche
- Department of Surgery, Duke University, Durham, NC 27710, United States
| | | | - Chong Wang
- Department of Statistics, Iowa State University, Ames, IA 50011, United States; Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, United States
| | - Michael W Cho
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States; Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The HIV-1 site of binding for the CD4 receptor has long attracted attention as a potential supersite of vulnerability to antibody-mediated neutralization. We review recent findings related to effective CD4-binding site antibodies isolated from HIV-1-infected individuals and discuss implications for immunogen design. RECENT FINDINGS Highly effective CD4-binding site antibodies such as antibody VRC01 have the ability to neutralize over 90% of circulating HIV-1 strains. Sequence and structural analysis of these antibodies from over half a dozen HIV-1-infected donors reveals remarkable similarity in their ontogenies and their modes of recognition, all of which involve mimicry of CD4 receptor by antibody-heavy chain. Meanwhile, other effective CD4-binding site neutralizers such as antibody CH103 have been shown to utilize a different mode of recognition, with next-generation sequencing of both virus and antibody suggesting co-evolution to drive the development of antibody-neutralization breadth. SUMMARY The nexus of information concerning the CD4-binding site and its recognition by human antibodies capable of effective neutralization has expanded remarkably in the last few years. Although barriers are substantial, new insights from donor-serum responses, atomic-level structures of antibody-Env complexes, and next-generation sequencing of B-cell transcripts are invigorating vaccine-design efforts to elicit effective CD4-binding site antibodies.
Collapse
|
23
|
Flow cytometry reveals that H5N1 vaccination elicits cross-reactive stem-directed antibodies from multiple Ig heavy-chain lineages. J Virol 2014; 88:4047-57. [PMID: 24501410 DOI: 10.1128/jvi.03422-13] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED An understanding of the antigen-specific B-cell response to the influenza virus hemagglutinin (HA) is critical to the development of universal influenza vaccines, but it has not been possible to examine these cells directly because HA binds to sialic acid (SA) on most cell types. Here, we use structure-based modification of HA to isolate HA-specific B cells by flow cytometry and characterize the features of HA stem antibodies (Abs) required for their development. Incorporation of a previously described mutation (Y98F) to the receptor binding site (RBS) causes HA to bind only those B cells that express HA-specific Abs, but it does not bind nonspecifically to B cells, and this mutation has no effect on the binding of broadly neutralizing Abs to the RBS. To test the specificity of the Y98F mutation, we first demonstrated that previously described HA nanoparticles mediate hemagglutination and then determined that the Y98F mutation eliminates this activity. Cloning of immunoglobulin genes from HA-specific B cells isolated from a single human subject demonstrates that vaccination with H5N1 influenza virus can elicit B cells expressing stem monoclonal Abs (MAbs). Although these MAbs originated mostly from the IGHV1-69 germ line, a reasonable proportion derived from other genes. Analysis of stem Abs provides insight into the maturation pathways of IGVH1-69-derived stem Abs. Furthermore, this analysis shows that multiple non-IGHV1-69 stem Abs with a similar neutralizing breadth develop after vaccination in humans, suggesting that the HA stem response can be elicited in individuals with non-stem-reactive IGHV1-69 alleles. IMPORTANCE Universal influenza vaccines would improve immune protection against infection and facilitate vaccine manufacturing and distribution. Flu vaccines stimulate B cells in the blood to produce antibodies that neutralize the virus. These antibodies target a protein on the surface of the virus called HA. Flu vaccines must be reformulated annually, because these antibodies are mostly specific to the viral strains used in the vaccine. But humans can produce broadly neutralizing antibodies. We sought to isolate B cells whose genes encode influenza virus antibodies from a patient vaccinated for avian influenza. To do so, we modified HA so it would bind only the desired cells. Sequencing the antibody genes of cells marked by this probe proved that the patient produced broadly neutralizing antibodies in response to the vaccine. Many sequences obtained had not been observed before. There are more ways to generate broadly neutralizing antibodies for influenza virus than previously thought.
Collapse
|
24
|
Lyumkis D, Julien JP, de Val N, Cupo A, Potter CS, Klasse PJ, Burton DR, Sanders RW, Moore JP, Carragher B, Wilson IA, Ward AB. Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. Science 2013; 342:1484-90. [PMID: 24179160 PMCID: PMC3954647 DOI: 10.1126/science.1245627] [Citation(s) in RCA: 589] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The HIV-1 envelope glycoprotein (Env) trimer contains the receptor binding sites and membrane fusion machinery that introduce the viral genome into the host cell. As the only target for broadly neutralizing antibodies (bnAbs), Env is a focus for rational vaccine design. We present a cryo-electron microscopy reconstruction and structural model of a cleaved, soluble Env trimer (termed BG505 SOSIP.664 gp140) in complex with a CD4 binding site (CD4bs) bnAb, PGV04, at 5.8 angstrom resolution. The structure reveals the spatial arrangement of Env components, including the V1/V2, V3, HR1, and HR2 domains, as well as shielding glycans. The structure also provides insights into trimer assembly, gp120-gp41 interactions, and the CD4bs epitope cluster for bnAbs, which covers a more extensive area and defines a more complex site of vulnerability than previously described.
Collapse
Affiliation(s)
- Dmitry Lyumkis
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, California, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jean-Philippe Julien
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Albert Cupo
- Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Clinton S. Potter
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, California, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Per Johan Klasse
- Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Dennis R. Burton
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA
| | - Rogier W. Sanders
- Weill Medical College of Cornell University, New York, New York 10021, USA
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, Netherlands
| | - John P. Moore
- Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, California, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
25
|
Diverse recombinant HIV-1 Envs fail to activate B cells expressing the germline B cell receptors of the broadly neutralizing anti-HIV-1 antibodies PG9 and 447-52D. J Virol 2013; 88:2645-57. [PMID: 24352455 DOI: 10.1128/jvi.03228-13] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Broadly neutralizing antibodies (bNAbs) against HIV-1 are generated during HIV-1-infection but have not yet been elicited by immunization with recombinant forms of the viral envelope glycoprotein (Env; the target of anti-HIV-1 neutralizing antibodies). A particular type of bNAb targets the CD4-binding site (CD4-BS) region of Env. These antibodies are derived from a limited number of VH/VL genes and can bind to and neutralize diverse HIV-1 strains. Recent reports have demonstrated the limited potential of Env to activate B cells expressing the germline B cell receptor (BCR) forms of anti-CD4-BS bNAbs. A potential reason for the lack of elicitation of anti-CD4-BS bNAbs by Env immunogens is the absence of stimulation of naive B cells expressing the germline BCRs of such antibodies. Several bNAbs have been isolated from HIV-1-infected subjects that target other structurally conserved regions of Env. How frequently Env immunogens stimulate the germline BCRs that give rise to bNAbs that target Env regions other than the CD4-BS is not well understood. Here, we investigated the interactions between diverse Envs and the BCRs of known bNAbs targeting not only the CD4-BS but also conserved elements of the second and third variable Env regions. Our results indicate that Env is generally ineffective in engaging germline BCRs of bNAbs irrespective of their epitope target. Potentially, this is the result of viral evolutionary mechanisms adopted to escape broadly neutralizing antibody responses. Our results also suggest that a single Env capable of activating germline BCRs that target distinct Env epitopes will be very difficult to identify or to design. IMPORTANCE Broadly neutralizing antibodies against HIV-1 are thought to be an important component of the immune responses that a successful vaccine should elicit. Broadly neutralizing antibodies are generated by a subset of those infected by HIV-1, but so far, they have not been generated by immunization with recombinant Envelope (Env, the target of anti-HIV-1 neutralizing antibodies). Here, we provide evidence that the inability of Env to elicit the production of broadly neutralizing antibodies is due to the inability of diverse Envs to engage the germline B cell receptor forms of known broadly neutralizing antibodies.
Collapse
|
26
|
Kwong PD, Mascola JR, Nabel GJ. Broadly neutralizing antibodies and the search for an HIV-1 vaccine: the end of the beginning. Nat Rev Immunol 2013; 13:693-701. [PMID: 23969737 DOI: 10.1038/nri3516] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The field of HIV-1 vaccine research has seen a renaissance with the identification of antibodies that neutralize most circulating HIV-1 strains. An understanding of the structural mode of target recognition that these antibodies use and the immune pathways that lead to their development is emerging. This knowledge has provided fundamental insights into the pathways that elicit broadly neutralizing antibodies and provides a foundation for active and passive immunization strategies to prevent HIV-1 infection.
Collapse
Affiliation(s)
- Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
27
|
The crystal structure of HIV CRF07 B'/C gp41 reveals a hyper-mutant site in the middle of HR2 heptad repeat. Virology 2013; 446:86-94. [PMID: 24074570 DOI: 10.1016/j.virol.2013.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/02/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
HIV CRF07 B'/C is a strain circulating mainly in northwest region of China. The gp41 region of CRF07 is derived from a clade C virus. In order to compare the difference of CRF07 gp41 with that of typical clade B virus, we solved the crystal structure of the core region of CRF07 gp41. Compared with clade B gp41, CRF07 gp41 evolved more basic and hydrophilic residues on its helix bundle surface. Based on sequence alignment, a hyper-mutant cluster located in the middle of HR2 heptads repeat was identified. The mutational study of these residues revealed that this site is important in HIV mediated cell-cell fusion and plays critical roles in conformational changes during viral invasion.
Collapse
|
28
|
Ho YS, Saksena NK. Glycosylation in HIV-1 envelope glycoprotein and its biological implications. Future Virol 2013. [DOI: 10.2217/fvl.13.64] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glycosylation of HIV-1 envelope proteins (Env gp120/gp41) plays a vital role in viral evasion from the host immune response, which occurs through the masking of key neutralization epitopes and the presentation of the Env glycosylation as ‘self’ to the host immune system. Env glycosylation is generally conserved, yet its continual evolution plays an important role in modulating viral infectivity and Env immunogenicity. Thus, it is believed that Env glycosylation, which is a vital part of the HIV-1 architecture, also controls intra- and inter-clade genetic variations. Discerning intra- and inter-clade glycosylation variations could therefore yield important information for understanding the molecular and biological differences between HIV clades and may assist in effectively designing Env-based immunogens and in clearly understanding HIV vaccines. This review provides an in-depth perspective of various aspects of Env glycosylation in the context of HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Yung Shwen Ho
- Computational Bioscience Research Center, Biological & Environmental Sciences & Engineering Division, King Abdullah University of Science & Technology, Thuwal 23955, Kingdom of Saudi Arabia
| | - Nitin K Saksena
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Instiute & Westmead Hospital, University of Sydney, Westmead, Sydney, NSW 2145, Australia
| |
Collapse
|
29
|
Abstract
The development of an effective vaccine has been hindered by the enormous diversity of human immunodeficiency virus-1 (HIV-1) and its ability to escape a myriad of host immune responses. In addition, conserved vulnerable regions on the HIV-1 envelope glycoprotein are often poorly immunogenic and elicit broadly neutralizing antibody responses (BNAbs) in a minority of HIV-1-infected individuals and only after several years of infection. All of the known BNAbs demonstrate high levels of somatic mutations and often display other unusual traits, such as a long heavy chain complementarity determining region 3 (CDRH3) and autoreactivity that can be limited by host tolerance controls. Nonetheless, the demonstration that HIV-1-infected individuals can make potent BNAbs is encouraging, and recent progress in isolating such antibodies and mapping their immune pathways of development is providing new strategies for vaccination.
Collapse
Affiliation(s)
- John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
30
|
Kulp DW, Schief WR. Advances in structure-based vaccine design. Curr Opin Virol 2013; 3:322-31. [PMID: 23806515 DOI: 10.1016/j.coviro.2013.05.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 01/02/2023]
Abstract
Despite the tremendous successes of current vaccines, infectious diseases still take a heavy toll on the global population, and that provides strong rationale for broadening our vaccine development repertoire. Structural vaccinology, in which protein structure information is utilized to design immunogens, has promise to provide new vaccines against traditionally difficult targets. Crystal structures of antigens containing one or more protection epitopes, especially when in complex with a protective antibody, are the launching point for immunogen design. Integrating structure and sequence information for families of broadly neutralizing antibodies (bNAbs) has recently enabled the creation of germline-targeting immunogens that bind and activate germline B-cells in order to initiate the elicitation of such antibodies. The contacts between antigen and neutralizing antibody define a structural epitope, and methods have been developed to transplant epitopes to scaffold proteins for structural stabilization, and to design minimized antigens that retain one or more key epitopes while eliminating other potentially distracting or unnecessary features. To develop vaccines that protect against antigenically variable pathogens, pioneering structure-based work demonstrated that multiple strain-specific epitopes could be engineered onto a single immunogen. We review these recent structural vaccinology efforts to engineer germline-targeting, epitope-specific, and/or broad coverage immunogens.
Collapse
Affiliation(s)
- Daniel W Kulp
- IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|