1
|
Saribas AS, Bellizzi A, Wollebo HS, Beer T, Tang HY, Safak M. Human neurotropic polyomavirus, JC virus, late coding region encodes a novel nuclear protein, ORF4, which targets the promyelocytic leukemia nuclear bodies (PML-NBs) and modulates their reorganization. Virology 2023; 587:109866. [PMID: 37741199 PMCID: PMC10602023 DOI: 10.1016/j.virol.2023.109866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 09/25/2023]
Abstract
We previously reported the discovery and characterization of two novel proteins (ORF1 and ORF2) generated by the alternative splicing of the JC virus (JCV) late coding region. Here, we report the discovery and partial characterization of three additional novel ORFs from the same coding region, ORF3, ORF4 and ORF5, which potentially encode 70, 173 and 265 amino acid long proteins respectively. While ORF3 protein exhibits a uniform distribution pattern throughout the cells, we were unable to detect ORF5 expression. Surprisingly, ORF4 protein was determined to be the only JCV protein specifically targeting the promyelocytic leukemia nuclear bodies (PML-NBs) and inducing their reorganization in nucleus. Although ORF4 protein has a modest effect on JCV replication, it is implicated to play major roles during the JCV life cycle, perhaps by regulating the antiviral response of PML-NBs against JCV infections and thus facilitating the progression of the JCV-induced disease in infected individuals.
Collapse
Affiliation(s)
- A Sami Saribas
- Department of Microbiology, Immunology, and Inflammation, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Anna Bellizzi
- Department of Microbiology, Immunology, and Inflammation, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Hassen S Wollebo
- Department of Microbiology, Immunology, and Inflammation, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Thomas Beer
- The Wistar Institute Proteomics and Metabolomics Facility Room 252, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Hsin-Yao Tang
- The Wistar Institute Proteomics and Metabolomics Facility Room 252, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Mahmut Safak
- Department of Microbiology, Immunology, and Inflammation, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
2
|
Xu Y, Hou G, Liu Q, Zhang Q, Li C, Hu L, Chen X, Chen R, Ding C, Li D, Li J. Helicase-independent function of RIG-I against murine gammaherpesvirus 68 via blocking the nuclear translocation of viral proteins. Int J Biol Macromol 2023; 250:126527. [PMID: 37633553 DOI: 10.1016/j.ijbiomac.2023.126527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Innate immunity is the first line of defense against viral pathogens. Retinoic Acid-Inducible Gene 1 (RIG-I) is a pattern recognition receptor that recognizes virus-associated double-stranded RNA and initiates the interferon responses. Besides signal transduction, RIG-I exerts direct antiviral functions to displace viral proteins on dsRNA via its Helicase activity. Nevertheless, this effector-like activity of RIG-I against herpesviruses remains largely unexplored. It has been previously reported that herpesviruses deamidate RIG-I, resulting in the abolishment of its Helicase activity and signal transduction. In this study, we discovered that RIG-I possessed signaling-independent antiviral activities against murine gamma herpesviruses 68 (γHV68, murid herpesvirus 4). Importantly, a Helicase-dead mutant of RIG-I (K270A) demonstrated comparable inhibition on herpesviruses lytic replication, indicating that this antiviral activity is Helicase-independent. Mechanistically, RIG-I bound the Replication and Transcription Activator (RTA) and diminished its nuclear localization to repress viral transcription. We further demonstrated that RIG-I blocked the nuclear translocation of ORF21 (Thymidine Kinase), ORF75c (vGAT), both of which form a nuclear complex with RTA and RNA polymerase II (Pol II) to facilitate viral transcription. Moreover, RIG-I retained ORF59 (DNA processivity factor) in the cytoplasm to repress viral DNA replication. Altogether, we illuminated a previously unidentified, Helicase-independent effector-like function of RIG-I against γHV68, representing an exquisite host strategy to counteract viral manipulations on innate immune signaling. IMPORTANCE: Retinoic acid-inducible gene I (RIG-I), a member of DExD/H box RNA helicase family, functions as a key pattern recognition receptor (PRR) responsible for the detection of intracellular double-stranded RNA (dsRNA) from virus-infected cells and induction of type I interferon (IFN) responses. Nevertheless, our understanding of the helicase-independent effector-like activity of RIG-I against virus infection, especially herpesvirus infection, remains largely unknown. Herein, by deploying murine gamma herpesviruses 68 (γHV68) as a model system, we demonstrated that RIG-I possessed an interferon and helicase-independent antiviral activity against γHV68 via blocking the nuclear trafficking of viral proteins, which concomitantly repressed the viral early transcription and genome replication thereof. Our work illuminates a previously unidentified antiviral strategy of RIG-I against herpesvirus infection.
Collapse
Affiliation(s)
- Yang Xu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Guoli Hou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qizhi Liu
- Department of Surgery, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Qiushi Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chun Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Liang Hu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoying Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Rui Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chengming Ding
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Deliang Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Junhua Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Yiu SPT, Guo R, Zerbe C, Weekes MP, Gewurz BE. Epstein-Barr virus BNRF1 destabilizes SMC5/6 cohesin complexes to evade its restriction of replication compartments. Cell Rep 2022; 38:110411. [PMID: 35263599 PMCID: PMC8981113 DOI: 10.1016/j.celrep.2022.110411] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/29/2021] [Accepted: 01/28/2022] [Indexed: 11/11/2022] Open
Abstract
Epstein-Barr virus (EBV) persistently infects people worldwide. Delivery of ∼170-kb EBV genomes to nuclei and use of nuclear membrane-less replication compartments (RCs) for their lytic cycle amplification necessitate evasion of intrinsic antiviral responses. Proteomics analysis indicates that, upon B cell infection or lytic reactivation, EBV depletes the cohesin SMC5/6, which has major roles in chromosome maintenance and DNA damage repair. The major tegument protein BNRF1 targets SMC5/6 complexes by a ubiquitin proteasome pathway dependent on calpain proteolysis and Cullin-7. In the absence of BNRF1, SMC5/6 associates with R-loop structures, including at the viral lytic origin of replication, and interferes with RC formation and encapsidation. CRISPR analysis identifies RC restriction roles of SMC5/6 components involved in DNA entrapment and SUMOylation. Our study highlights SMC5/6 as an intrinsic immune sensor and restriction factor for a human herpesvirus RC and has implications for the pathogenesis of EBV-associated cancers.
Collapse
Affiliation(s)
- Stephanie Pei Tung Yiu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Harvard Graduate Program in Virology, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Cassie Zerbe
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Harvard Graduate Program in Virology, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Wang Y, Tibbetts SA, Krug LT. Conquering the Host: Determinants of Pathogenesis Learned from Murine Gammaherpesvirus 68. Annu Rev Virol 2021; 8:349-371. [PMID: 34586873 PMCID: PMC9153731 DOI: 10.1146/annurev-virology-011921-082615] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Gammaherpesviruses are an important class of oncogenic pathogens that are exquisitely evolved to their respective hosts. As such, the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi sarcoma herpesvirus (KSHV) do not naturally infect nonhuman primates or rodents. There is a clear need to fully explore mechanisms of gammaherpesvirus pathogenesis, host control, and immune evasion in the host. A gammaherpesvirus pathogen isolated from murid rodents was first reported in 1980; 40 years later, murine gammaherpesvirus 68 (MHV68, MuHV-4, γHV68) infection of laboratory mice is a well-established pathogenesis system recognized for its utility in applying state-of-the-art approaches to investigate virus-host interactions ranging from the whole host to the individual cell. Here, we highlight recent advancements in our understanding of the processes by which MHV68 colonizes the host and drives disease. Lessons that inform KSHV and EBV pathogenesis and provide future avenues for novel interventions against infection and virus-associated cancers are emphasized.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA;
| |
Collapse
|
5
|
Abstract
Tripartite motif (TRIM) proteins have been found in a variety of physiological processes; however, the role of TRIM proteins in host defense to viral infection is emerging in recent years. TRIM proteins have been shown to restrict viruses at various stages of viral life cycle through common and distinct mechanisms. TRIM proteins restrict viral infection by directly interacting with viral proteins. Furthermore, TRIM proteins regulate innate immunity and adaptive immunity to impede viral infection. To subvert host defense, viruses also evolve a new evasion strategy by targeting TRIM proteins. In this review, we highlight recent advances which deepen our understanding of the role of TRIM proteins in host defense and the diverse antiviral mechanisms of TRIM proteins.
Collapse
Affiliation(s)
- Girish Patil
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Shitao Li
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| |
Collapse
|
6
|
Kaur M, Kumar D, Butty V, Singh S, Esteban A, Fink GR, Ploegh HL, Sehrawat S. Galectin-3 Regulates γ-Herpesvirus Specific CD8 T Cell Immunity. iScience 2018; 9:101-119. [PMID: 30388704 PMCID: PMC6214866 DOI: 10.1016/j.isci.2018.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/17/2018] [Accepted: 10/10/2018] [Indexed: 02/02/2023] Open
Abstract
To gain insights into the molecular mechanisms and pathways involved in the activation of γ-herpesvirus (MHV68)-specific T cell receptor transnuclear (TN) CD8+ T cells, we performed a comprehensive transcriptomic analysis. Upon viral infection, we observed differential expression of several thousand transcripts encompassing various networks and pathways in activated TN cells compared with their naive counterparts. Activated cells highly upregulated galectin-3. We therefore explored the role of galectin-3 in influencing anti-MHV68 immunity. Galectin-3 was recruited at the immunological synapse during activation of CD8+ T cells and helped constrain their activation. The localization of galectin-3 to immune synapse was evident during the activation of both naive and memory CD8+ T cells. Galectin-3 knockout mice mounted a stronger MHV68-specific CD8+ T cell response to the majority of viral epitopes and led to better viral control. Targeting intracellular galectin-3 in CD8+ T cells may therefore serve to enhance response to efficiently control infections.
Collapse
Affiliation(s)
- Manpreet Kaur
- Indian Institute of Science Education and Research Mohali, Sector 81 SAS Nagar, PO Manauli, Mohali, Knowledge City 140306, Punjab, India
| | - Dhaneshwar Kumar
- Indian Institute of Science Education and Research Mohali, Sector 81 SAS Nagar, PO Manauli, Mohali, Knowledge City 140306, Punjab, India
| | - Vincent Butty
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge 02142 MA, USA
| | - Sudhakar Singh
- Indian Institute of Science Education and Research Mohali, Sector 81 SAS Nagar, PO Manauli, Mohali, Knowledge City 140306, Punjab, India
| | - Alexandre Esteban
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge 02142 MA, USA
| | - Gerald R Fink
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge 02142 MA, USA
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge 02142 MA, USA.
| | - Sharvan Sehrawat
- Indian Institute of Science Education and Research Mohali, Sector 81 SAS Nagar, PO Manauli, Mohali, Knowledge City 140306, Punjab, India.
| |
Collapse
|
7
|
Van Skike ND, Minkah NK, Hogan CH, Wu G, Benziger PT, Oldenburg DG, Kara M, Kim-Holzapfel DM, White DW, Tibbetts SA, French JB, Krug LT. Viral FGARAT ORF75A promotes early events in lytic infection and gammaherpesvirus pathogenesis in mice. PLoS Pathog 2018; 14:e1006843. [PMID: 29390024 PMCID: PMC5811070 DOI: 10.1371/journal.ppat.1006843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 02/13/2018] [Accepted: 12/27/2017] [Indexed: 12/19/2022] Open
Abstract
Gammaherpesviruses encode proteins with homology to the cellular purine metabolic enzyme formyl-glycinamide-phosphoribosyl-amidotransferase (FGARAT), but the role of these viral FGARATs (vFGARATs) in the pathogenesis of a natural host has not been investigated. We report a novel role for the ORF75A vFGARAT of murine gammaherpesvirus 68 (MHV68) in infectious virion production and colonization of mice. MHV68 mutants with premature stop codons in orf75A exhibited a log reduction in acute replication in the lungs after intranasal infection, which preceded a defect in colonization of multiple host reservoirs including the mediastinal lymph nodes, peripheral blood mononuclear cells, and the spleen. Intraperitoneal infection rescued splenic latency, but not reactivation. The 75A.stop virus also exhibited defective replication in primary fibroblast and macrophage cells. Viruses produced in the absence of ORF75A were characterized by an increase in the ratio of particles to PFU. In the next round of infection this led to the alteration of early events in lytic replication including the deposition of the ORF75C tegument protein, the accelerated kinetics of viral gene expression, and induction of TNFα release and cell death. Infecting cells to deliver equivalent genomes revealed that ORF75A was required for initiating early events in infection. In contrast with the numerous phenotypes observed in the absence of ORF75A, ORF75B was dispensable for replication and pathogenesis. These studies reveal that murine rhadinovirus vFGARAT family members ORF75A and ORF75C have evolved to perform divergent functions that promote replication and colonization of the host. Gammaherpesviruses are infectious agents that cause cancer. The study of viral genes unique to this subfamily may offer insight into the strategies that these viruses use to persist in the host and drive disease. The vFGARATs are a family of viral proteins found only in gammaherpesviruses, and are critical for replication in cell culture. Here we report that a rhadinovirus of rodents requires a previously uncharacterized vFGARAT family member, ORF75A, to support viral growth and persistence in mice. In addition, viruses lacking ORF75A are defective in the production of infectious viral particles. Thus, duplications and functional divergence of the various vFGARATs in the rhadinovirus lineage have likely been driven by selective pressures to disseminate within and colonize the host. Identification of the shared host processes that are targeted by the diverse family of vFGARATs may reveal novel targets for therapeutic agents to prevent life-long infections by these oncogenic viruses.
Collapse
Affiliation(s)
- Nick D. Van Skike
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nana K. Minkah
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Chad H. Hogan
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- Graduate Program of Genetics, Stony Brook University, Stony Brook, New York, United States of America
| | - Gary Wu
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Peter T. Benziger
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | | | - Mehmet Kara
- Department of Molecular Genetics and Microbiology and UF Shands Cancer Center, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Deborah M. Kim-Holzapfel
- Departments of Chemistry and of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Douglas W. White
- Gundersen Health System, La Crosse, Wisconsin, United States of America
| | - Scott A. Tibbetts
- Department of Molecular Genetics and Microbiology and UF Shands Cancer Center, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Jarrod B. French
- Departments of Chemistry and of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Laurie T. Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
Type I Interferon Signaling to Dendritic Cells Limits Murid Herpesvirus 4 Spread from the Olfactory Epithelium. J Virol 2017; 91:JVI.00951-17. [PMID: 28904198 DOI: 10.1128/jvi.00951-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/08/2017] [Indexed: 12/23/2022] Open
Abstract
Murid herpesvirus 4 (MuHV-4) is a B cell-tropic gammaherpesvirus that can be studied in vivo Despite viral evasion, type I interferons (IFN-I) limit its spread. After MuHV-4 inoculation into footpads, IFN-I protect lymph node subcapsular sinus macrophages (SSM) against productive infection; after peritoneal inoculation, they protect splenic marginal zone macrophages, and they limit MuHV-4 replication in the lungs. While invasive infections can be used to test specific aspects of host colonization, it is also important to understand natural infection. MuHV-4 taken up spontaneously by alert mice enters them via olfactory neurons. We determined how IFN-I act in this context. Blocking IFN-I signaling did not increase neuronal infection but allowed the virus to spread to the adjacent respiratory epithelium. In lymph nodes, a complete IFN-I signaling block increased MuHV-4 lytic infection in SSM and increased the number of dendritic cells (DC) expressing viral green fluorescent protein (GFP) independently of lytic infection. A CD11c+ cell-directed signaling block increased infection of DC only. However, this was sufficient to increase downstream infection, consistent with DC providing the main viral route to B cells. The capacity of IFN-I to limit DC infection indicated that viral IFN-I evasion was only partly effective. Therefore, DC are a possible target for IFN-I-based interventions to reduce host colonization.IMPORTANCE Human gammaherpesviruses infect B cells and cause B cell cancers. Interventions to block virus binding to B cells have not stopped their infection. Therefore, we must identify other control points that are relevant to natural infection. Human infections are difficult to analyze. However, gammaherpesviruses colonize all mammals. A related gammaherpesvirus of mice reaches B cells not directly but via infected dendritic cells. We show that type I interferons, an important general antiviral defense, limit gammaherpesvirus B cell infection by acting on dendritic cells. Therefore, dendritic cell infection is a potential point of interferon-based therapeutic intervention.
Collapse
|
9
|
Gammaherpesviral Tegument Proteins, PML-Nuclear Bodies and the Ubiquitin-Proteasome System. Viruses 2017; 9:v9100308. [PMID: 29065450 PMCID: PMC5691659 DOI: 10.3390/v9100308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
Gammaherpesviruses like Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) subvert the ubiquitin proteasome system for their own benefit in order to facilitate viral gene expression and replication. In particular, viral tegument proteins that share sequence homology to the formylglycineamide ribonucleotide amidotransferase (FGARAT, or PFAS), an enzyme in the cellular purine biosynthesis, are important for disrupting the intrinsic antiviral response associated with Promyelocytic Leukemia (PML) protein-associated nuclear bodies (PML-NBs) by proteasome-dependent and independent mechanisms. In addition, all herpesviruses encode for a potent ubiquitin protease that can efficiently remove ubiquitin chains from proteins and thereby interfere with several different cellular pathways. In this review, we discuss mechanisms and functional consequences of virus-induced ubiquitination and deubiquitination for early events in gammaherpesviral infection.
Collapse
|
10
|
Type I Interferons and NK Cells Restrict Gammaherpesvirus Lymph Node Infection. J Virol 2016; 90:9046-57. [PMID: 27466430 DOI: 10.1128/jvi.01108-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Gammaherpesviruses establish persistent, systemic infections and cause cancers. Murid herpesvirus 4 (MuHV-4) provides a unique window into the early events of host colonization. It spreads via lymph nodes. While dendritic cells (DC) pass MuHV-4 to lymph node B cells, subcapsular sinus macrophages (SSM), which capture virions from the afferent lymph, restrict its spread. Understanding how this restriction works offers potential clues to a more comprehensive defense. Type I interferon (IFN-I) blocked SSM lytic infection and reduced lytic cycle-independent viral reporter gene expression. Plasmacytoid DC were not required, but neither were SSM the only source of IFN-I, as IFN-I blockade increased infection in both intact and SSM-depleted mice. NK cells restricted lytic SSM infection independently of IFN-I, and SSM-derived virions spread to the spleen only when both IFN-I responses and NK cells were lacking. Thus, multiple innate defenses allowed SSM to adsorb virions from the afferent lymph with relative impunity. Enhancing IFN-I and NK cell recruitment could potentially also restrict DC infection and thus improve infection control. IMPORTANCE Human gammaherpesviruses cause cancers by infecting B cells. However, vaccines designed to block virus binding to B cells have not stopped infection. Using a related gammaherpesvirus of mice, we have shown that B cells are infected not via cell-free virus but via infected myeloid cells. This suggests a different strategy to stop B cell infection: stop virus production by myeloid cells. Not all myeloid infection is productive. We show that subcapsular sinus macrophages, which do not pass infection to B cells, restrict gammaherpesvirus production by recruiting type I interferons and natural killer cells. Therefore, a vaccine that speeds the recruitment of these defenses might stop B cell infection.
Collapse
|
11
|
Crow MS, Lum KK, Sheng X, Song B, Cristea IM. Diverse mechanisms evolved by DNA viruses to inhibit early host defenses. Crit Rev Biochem Mol Biol 2016; 51:452-481. [PMID: 27650455 PMCID: PMC5285405 DOI: 10.1080/10409238.2016.1226250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In mammalian cells, early defenses against infection by pathogens are mounted through a complex network of signaling pathways shepherded by immune-modulatory pattern-recognition receptors. As obligate parasites, the survival of viruses is dependent on the evolutionary acquisition of mechanisms that tactfully dismantle and subvert the cellular intrinsic and innate immune responses. Here, we review the diverse mechanisms by which viruses that accommodate DNA genomes are able to circumvent activation of cellular immunity. We start by discussing viral manipulation of host defense protein levels by either transcriptional regulation or protein degradation. We next review viral strategies used to repurpose or inhibit these cellular immune factors by molecular hijacking or by regulating their post-translational modification status. Additionally, we explore the infection-induced temporal modulation of apoptosis to facilitate viral replication and spread. Lastly, the co-evolution of viruses with their hosts is highlighted by the acquisition of elegant mechanisms for suppressing host defenses via viral mimicry of host factors. In closing, we present a perspective on how characterizing these viral evasion tactics both broadens the understanding of virus-host interactions and reveals essential functions of the immune system at the molecular level. This knowledge is critical in understanding the sources of viral pathogenesis, as well as for the design of antiviral therapeutics and autoimmunity treatments.
Collapse
Affiliation(s)
- Marni S. Crow
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Krystal K. Lum
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Xinlei Sheng
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Bokai Song
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| |
Collapse
|
12
|
Abstract
Research in the last 2 decades has demonstrated that a specific organelle of the cell nucleus, termed PML nuclear body (PML-NB) or nuclear domain 10 (ND10), is frequently modified during viral infection. This correlates with antagonization of a direct repressive function of individual PML-NB components, such as the PML, hDaxx, Sp100, or ATRX protein, that are able to act as cellular restriction factors. Recent studies now reveal an emerging role of PML-NBs as coregulatory structures of both type I and type II interferon responses. This emphasizes that targeting of PML-NBs by viral regulatory proteins has evolved as a strategy to compromise intrinsic antiviral defense and innate immune responses.
Collapse
|
13
|
Tan CSE, Lawler C, May JS, Belz GT, Stevenson PG. Type I Interferons Direct Gammaherpesvirus Host Colonization. PLoS Pathog 2016; 12:e1005654. [PMID: 27223694 PMCID: PMC4880296 DOI: 10.1371/journal.ppat.1005654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/02/2016] [Indexed: 12/24/2022] Open
Abstract
Gamma-herpesviruses colonise lymphocytes. Murid Herpesvirus-4 (MuHV-4) infects B cells via epithelial to myeloid to lymphoid transfer. This indirect route entails exposure to host defences, and type I interferons (IFN-I) limit infection while viral evasion promotes it. To understand how IFN-I and its evasion both control infection outcomes, we used Mx1-cre mice to tag floxed viral genomes in IFN-I responding cells. Epithelial-derived MuHV-4 showed low IFN-I exposure, and neither disrupting viral evasion nor blocking IFN-I signalling markedly affected acute viral replication in the lungs. Maximising IFN-I induction with poly(I:C) increased virus tagging in lung macrophages, but the tagged virus spread poorly. Lymphoid-derived MuHV-4 showed contrastingly high IFN-I exposure. This occurred mainly in B cells. IFN-I induction increased tagging without reducing viral loads; disrupting viral evasion caused marked attenuation; and blocking IFN-I signalling opened up new lytic spread between macrophages. Thus, the impact of IFN-I on viral replication was strongly cell type-dependent: epithelial infection induced little response; IFN-I largely suppressed macrophage infection; and viral evasion allowed passage through B cells despite IFN-I responses. As a result, IFN-I and its evasion promoted a switch in infection from acutely lytic in myeloid cells to chronically latent in B cells. Murine cytomegalovirus also showed a capacity to pass through IFN-I-responding cells, arguing that this is a core feature of herpesvirus host colonization.
Collapse
Affiliation(s)
- Cindy S. E. Tan
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
| | - Clara Lawler
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
| | - Janet S. May
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Gabrielle T. Belz
- Molecular Immunology, Walter and Eliza Hall Institute, Parkville, Melbourne, Australia
| | - Philip G. Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
- * E-mail:
| |
Collapse
|
14
|
Abstract
Protein deamidation has been considered a nonenzymatic process associated with protein functional decay or "aging." Recent studies implicate protein deamidation in regulating signal transduction in fundamental biological processes, such as innate immune responses. Work investigating gammaherpesviruses and bacterial pathogens indicates that microbial pathogens deploy deamidases or enzyme-deficient homologues (pseudoenzymes) to induce deamidation of key signaling components and evade host immune responses. Here, we review studies on protein deamidation in innate immune signaling and present several imminent questions concerning the roles of protein deamidation in infection and immunity.
Collapse
|
15
|
Identification of Viral and Host Proteins That Interact with Murine Gammaherpesvirus 68 Latency-Associated Nuclear Antigen during Lytic Replication: a Role for Hsc70 in Viral Replication. J Virol 2015; 90:1397-413. [PMID: 26581985 DOI: 10.1128/jvi.02022-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/10/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Latency-associated nuclear antigen (LANA) is a conserved, multifunctional protein encoded by members of the rhadinovirus subfamily of gammaherpesviruses, including Kaposi sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68). We previously demonstrated that MHV68 LANA (mLANA) is required for efficient lytic replication. However, mechanisms by which mLANA facilitates viral replication, including interactions with cellular and viral proteins, are not known. Thus, we performed a mass spectrometry-based interaction screen that defined an mLANA protein-protein interaction network for lytic viral replication consisting of 15 viral proteins and 191 cellular proteins, including 19 interactions previously reported in KSHV LANA interaction studies. We also employed a stable-isotope labeling technique to illuminate high-priority mLANA-interacting host proteins. Among the top prioritized mLANA-binding proteins was a cellular chaperone, heat shock cognate protein 70 (Hsc70). We independently validated the mLANA-Hsc70 interaction through coimmunoprecipitation and in vitro glutathione S-transferase (GST) pulldown assays. Immunofluorescence and cellular fractionation analyses comparing wild-type (WT) to mLANA-null MHV68 infections demonstrated mLANA-dependent recruitment of Hsc70 to nuclei of productively infected cells. Pharmacologic inhibition and small hairpin RNA (shRNA)-mediated knockdown of Hsc70 impaired MHV68 lytic replication, which functionally correlated with impaired viral protein expression, reduced viral DNA replication, and failure to form viral replication complexes. Replication of mLANA-null MHV68 was less affected than that of WT virus by Hsc70 inhibition, which strongly suggests that Hsc70 function in MHV68 lytic replication is at least partially mediated by its interaction with mLANA. Together these experiments identify proteins engaged by mLANA during the MHV68 lytic replication cycle and define a previously unknown role for Hsc70 in facilitating MHV68 lytic replication. IMPORTANCE Latency-associated nuclear antigen (LANA) is a conserved gamma-2-herpesvirus protein important for latency maintenance and pathogenesis. For MHV68, this includes regulating lytic replication and reactivation. While previous studies of KSHV LANA defined interactions with host cell proteins that impact latency, interactions that facilitate productive viral replication are not known. Thus, we performed a differential proteomics analysis to identify and prioritize cellular and viral proteins that interact with the MHV68 LANA homolog during lytic infection. Among the proteins identified was heat shock cognate protein 70 (Hsc70), which we determined is recruited to host cell nuclei in an mLANA-dependent process. Moreover, Hsc70 facilitates MHV68 protein expression and DNA replication, thus contributing to efficient MHV68 lytic replication. These experiments expand the known LANA-binding proteins to include MHV68 lytic replication and demonstrate a previously unappreciated role for Hsc70 in regulating viral replication.
Collapse
|
16
|
Wimmer P, Schreiner S. Viral Mimicry to Usurp Ubiquitin and SUMO Host Pathways. Viruses 2015; 7:4854-72. [PMID: 26343706 PMCID: PMC4584293 DOI: 10.3390/v7092849] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/16/2015] [Accepted: 08/20/2015] [Indexed: 12/15/2022] Open
Abstract
Posttranslational modifications (PTMs) of proteins include enzymatic changes by covalent addition of cellular regulatory determinants such as ubiquitin (Ub) and small ubiquitin-like modifier (SUMO) moieties. These modifications are widely used by eukaryotic cells to control the functional repertoire of proteins. Over the last decade, it became apparent that the repertoire of ubiquitiylation and SUMOylation regulating various biological functions is not restricted to eukaryotic cells, but is also a feature of human virus families, used to extensively exploit complex host-cell networks and homeostasis. Intriguingly, besides binding to host SUMO/Ub control proteins and interfering with the respective enzymatic cascade, many viral proteins mimic key regulatory factors to usurp this host machinery and promote efficient viral outcomes. Advanced detection methods and functional studies of ubiquitiylation and SUMOylation during virus-host interplay have revealed that human viruses have evolved a large arsenal of strategies to exploit these specific PTM processes. In this review, we highlight the known viral analogs orchestrating ubiquitin and SUMO conjugation events to subvert and utilize basic enzymatic pathways.
Collapse
Affiliation(s)
- Peter Wimmer
- Novartis Pharma Germany, Roonstrasse 25, 90429 Nürnberg, Germany.
| | - Sabrina Schreiner
- Institute of Virology, Technische Universität München, Trogerstrasse 30, 81675 München, Germany.
- Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg/München, Germany.
| |
Collapse
|
17
|
Tsai K, Messick TE, Lieberman PM. Disruption of host antiviral resistances by gammaherpesvirus tegument proteins with homology to the FGARAT purine biosynthesis enzyme. Curr Opin Virol 2015; 14:30-40. [PMID: 26256000 DOI: 10.1016/j.coviro.2015.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/08/2015] [Accepted: 07/20/2015] [Indexed: 11/17/2022]
Abstract
All known gammaherpesviruses encode at least one conserved tegument protein that contains sequence homology to the cellular purine biosynthesis enzyme: phosphoribosylformylglycineamide amidotransferase (FGARAT, or PFAS). While no enzymatic activity have been found on these viral FGARAT-homology proteins (vFGARAT), they are important for disarming host intrinsic antiviral machinery. Most vFGARAT proteins disrupt the intrinsic antiviral response-associated cellular subnuclear structure: ProMyelocytic Leukemia (PML) associated nuclear body (PML-NB). vFGARATs from different viruses target different components of PML-NB to prevent cellular repression of viral infection. In addition, vFGARATs of rhadinoviruses were recently found to oligomerize with the cellular FGARAT to deamidate RIG-I and repress inflammatory cytokine production. In this review we discuss the diverse mechanisms of antiviral response disruption by gammaherpesvirus vFGARATs and the significance of the enzyme homology domain.
Collapse
Affiliation(s)
- Kevin Tsai
- The Wistar Institute, Philadelphia, PA 19104, United States; Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Troy E Messick
- The Wistar Institute, Philadelphia, PA 19104, United States
| | | |
Collapse
|
18
|
Humphreys AF, Tan J, Peng R, Benton SM, Qin X, Worley KC, Mikulski RL, Chow DC, Palzkill TG, Ling PD. Generation and characterization of antibodies against Asian elephant (Elephas maximus) IgG, IgM, and IgA. PLoS One 2015; 10:e0116318. [PMID: 25658336 PMCID: PMC4320114 DOI: 10.1371/journal.pone.0116318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/08/2014] [Indexed: 12/01/2022] Open
Abstract
Asian elephant (Elephas maximus) immunity is poorly characterized and understood. This gap in knowledge is particularly concerning as Asian elephants are an endangered species threatened by a newly discovered herpesvirus known as elephant endotheliotropic herpesvirus (EEHV), which is the leading cause of death for captive Asian elephants born after 1980 in North America. While reliable diagnostic assays have been developed to detect EEHV DNA, serological assays to evaluate elephant anti-EEHV antibody responses are lacking and will be needed for surveillance and epidemiological studies and also for evaluating potential treatments or vaccines against lethal EEHV infection. Previous studies have shown that Asian elephants produce IgG in serum, but they failed to detect IgM and IgA, further hampering development of informative serological assays for this species. To begin to address this issue, we determined the constant region genomic sequence of Asian elephant IgM and obtained some limited protein sequence information for putative serum IgA. The information was used to generate or identify specific commercial antisera reactive against IgM and IgA isotypes. In addition, we generated a monoclonal antibody against Asian elephant IgG. These three reagents were used to demonstrate that all three immunoglobulin isotypes are found in Asian elephant serum and milk and to detect antibody responses following tetanus toxoid booster vaccination or antibodies against a putative EEHV structural protein. The results indicate that these new reagents will be useful for developing sensitive and specific assays to detect and characterize elephant antibody responses for any pathogen or vaccine, including EEHV.
Collapse
Affiliation(s)
- Alan F. Humphreys
- Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Tan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - RongSheng Peng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan M. Benton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiang Qin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kim C. Worley
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rose L. Mikulski
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dar-Chone Chow
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Timothy G. Palzkill
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul D. Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Abstract
EBV latent infection is characterized by a highly restricted pattern of viral gene expression. EBV can establish latent infections in multiple different tissue types with remarkable variation and plasticity in viral transcription and replication. During latency, the viral genome persists as a multi-copy episome, a non-integrated-closed circular DNA with nucleosome structure similar to cellular chromosomes. Chromatin assembly and histone modifications contribute to the regulation of viral gene expression, DNA replication, and episome persistence during latency. This review focuses on how EBV latency is regulated by chromatin and its associated processes.
Collapse
|
20
|
Viral reprogramming of the Daxx histone H3.3 chaperone during early Epstein-Barr virus infection. J Virol 2014; 88:14350-63. [PMID: 25275136 DOI: 10.1128/jvi.01895-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Host chromatin assembly can function as a barrier to viral infection. Epstein-Barr virus (EBV) establishes latent infection as chromatin-assembled episomes in which all but a few viral genes are transcriptionally silent. The factors that control chromatin assembly and guide transcription regulation during the establishment of latency are not well understood. Here, we demonstrate that the EBV tegument protein BNRF1 binds the histone H3.3 chaperone Daxx to modulate histone mobility and chromatin assembly on the EBV genome during the early stages of primary infection. We demonstrate that BNRF1 substitutes for the repressive cochaperone ATRX to form a ternary complex of BNRF1-Daxx-H3.3-H4, using coimmunoprecipitation and size-exclusion chromatography with highly purified components. FRAP (fluorescence recovery after photobleaching) assays were used to demonstrate that BNRF1 promotes global mobilization of cellular histone H3.3. Mutation of putative nucleotide binding motifs on BNRF1 attenuates the displacement of ATRX from Daxx. We also show by immunofluorescence combined with fluorescence in situ hybridization that BNRF1 is important for the dissociation of ATRX and Daxx from nuclear bodies during de novo infection of primary B lymphocytes. Virion-delivered BNRF1 suppresses Daxx-ATRX-mediated H3.3 loading on viral chromatin as measured by chromatin immunoprecipitation assays and enhances viral gene expression during early infection. We propose that EBV tegument protein BNRF1 replaces ATRX to reprogram Daxx-mediated H3.3 loading, in turn generating chromatin suitable for latent gene expression. IMPORTANCE Epstein-Barr Virus (EBV) is a human herpesvirus that efficiently establishes latent infection in primary B lymphocytes. Cellular chromatin assembly plays an important role in regulating the establishment of EBV latency. We show that the EBV tegument protein BNRF1 functions to regulate chromatin assembly on the viral genome during early infection. BNRF1 alters the host cellular chromatin assembly to prevent antiviral repressive chromatin and establish chromatin structure permissive for viral gene expression and the establishment of latent infection.
Collapse
|
21
|
Maturation and vesicle-mediated egress of primate gammaherpesvirus rhesus monkey rhadinovirus require inner tegument protein ORF52. J Virol 2014; 88:9111-28. [PMID: 24899183 DOI: 10.1128/jvi.01502-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The tegument layer of herpesviruses comprises a collection of proteins that is unique to each viral species. In rhesus monkey rhadinovirus (RRV), a close relative of the human oncogenic pathogen Kaposi's sarcoma-associated herpesvirus, ORF52 is a highly abundant tegument protein tightly associated with the capsid. We now report that ORF52 knockdown during RRV infection of rhesus fibroblasts led to a greater than 300-fold reduction in the viral titer by 48 h but had little effect on the number of released particles and caused only modest reductions in the levels of intracellular viral genomic DNA and no appreciable change in viral DNA packaging into capsids. These data suggested that the lack of ORF52 resulted in the production and release of defective particles. In support of this interpretation, transmission electron microscopy (TEM) revealed that without ORF52, capsid-like particles accumulated in the cytoplasm and were unable to enter egress vesicles, where final tegumentation and envelopment normally occur. TEM also demonstrated defective particles in the medium that closely resembled the accumulating intracellular particles, having neither a full tegument nor an envelope. The disruption in tegument formation from ORF52 suppression, therefore, prevented the incorporation of ORF45, restricting its subcellular localization to the nucleus and appearing, by confocal microscopy, to inhibit particle transport toward the periphery. Ectopic expression of small interfering RNA (siRNA)-resistant ORF52 was able to partially rescue all of these phenotypic changes. In sum, our results indicate that efficient egress of maturing virions and, in agreement with studies on murine gammaherpesvirus 68 (MHV-68), complete tegumentation and secondary envelopment are dependent on intact ORF52. IMPORTANCE The tegument, or middle layer, of herpesviruses comprises both viral and cellular proteins that play key roles in the viral life cycle. A subset of these proteins is present only within members of one of the three subfamilies (alphaherpesviruses, betaherpesviruses, or gammaherpesviruses) of Herpesviridae. In this report, we show that the gammaherpesvirus-specific tegument protein ORF52 is critical for maturation of RRV, the closest relative of Kaposi's sarcoma-associated herpesvirus (KSHV) (a human cancer-causing pathogen) that has undergone this type of analysis. Without ORF52, the nascent subviral particles are essentially stuck in maturation limbo, unable to acquire the tegument or outer (envelope) layers. This greatly attenuates infectivity. Our data, together with earlier work on a murine homolog, as well as a more distantly related human homolog, provide a more complete understanding of how early protein interactions involving virus-encoded tegument proteins are critical for virus assembly and are also, therefore, potentially attractive therapeutic targets.
Collapse
|
22
|
Minkah N, Chavez K, Shah P, Maccarthy T, Chen H, Landau N, Krug LT. Host restriction of murine gammaherpesvirus 68 replication by human APOBEC3 cytidine deaminases but not murine APOBEC3. Virology 2014; 454-455:215-26. [PMID: 24725948 PMCID: PMC4036618 DOI: 10.1016/j.virol.2014.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/27/2013] [Accepted: 02/20/2014] [Indexed: 11/28/2022]
Abstract
Humans encode seven APOBEC3 (A3A-A3H) cytidine deaminase proteins that differ in their expression profiles, preferred nucleotide recognition sequence and capacity for restriction of RNA and DNA viruses. We identified APOBEC3 hotspots in numerous herpesvirus genomes. To determine the impact of host APOBEC3 on herpesvirus biology in vivo, we examined whether murine APOBEC3 (mA3) restricts murine gammaherpesvirus 68 (MHV68). Viral replication was impaired by several human APOBEC3 proteins, but not mA3, upon transfection of the viral genome. The restriction was abrogated upon mutation of the A3A and A3B active sites. Interestingly, virus restriction by A3A, A3B, A3C, and A3DE was lost if the infectious DNA was delivered by the virion. MHV68 pathogenesis, including lung replication and splenic latency, was not altered in mice lacking mA3. We infer that mA3 does not restrict wild type MHV68 and restriction by human A3s may be limited in the herpesvirus replication process.
Collapse
Affiliation(s)
- Nana Minkah
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kevin Chavez
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Parth Shah
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Thomas Maccarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hui Chen
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA; Infectious Disease Laboratory, Salk Institute, La Jolla, CA 92037, USA
| | - Nathaniel Landau
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA; Infectious Disease Laboratory, Salk Institute, La Jolla, CA 92037, USA
| | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
23
|
Full F, Jungnickl D, Reuter N, Bogner E, Brulois K, Scholz B, Stürzl M, Myoung J, Jung JU, Stamminger T, Ensser A. Kaposi's sarcoma associated herpesvirus tegument protein ORF75 is essential for viral lytic replication and plays a critical role in the antagonization of ND10-instituted intrinsic immunity. PLoS Pathog 2014; 10:e1003863. [PMID: 24453968 PMCID: PMC3894210 DOI: 10.1371/journal.ppat.1003863] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/18/2013] [Indexed: 01/08/2023] Open
Abstract
Nuclear domain 10 (ND10) components are restriction factors that inhibit herpesviral replication. Effector proteins of different herpesviruses can antagonize this restriction by a variety of strategies, including degradation or relocalization of ND10 proteins. We investigated the interplay of Kaposi's Sarcoma-Associated Herpesvirus (KSHV) infection and cellular defense by nuclear domain 10 (ND10) components. Knock-down experiments in primary human cells show that KSHV-infection is restricted by the ND10 components PML and Sp100, but not by ATRX. After KSHV infection, ATRX is efficiently depleted and Daxx is dispersed from ND10, indicating that these two ND10 components can be antagonized by KSHV. We then identified the ORF75 tegument protein of KSHV as the viral factor that induces the disappearance of ATRX and relocalization of Daxx. ORF75 belongs to a viral protein family (viral FGARATs) that has homologous proteins in all gamma-herpesviruses. Isolated expression of ORF75 in primary cells induces a relocalization of PML and dispersal of Sp100, indicating that this viral effector protein is able to influence multiple ND10 components. Moreover, by constructing a KSHV mutant harboring a stop codon at the beginning of ORF75, we could demonstrate that ORF75 is absolutely essential for viral replication and the initiation of viral immediate-early gene expression. Using recombinant viruses either carrying Flag- or YFP-tagged variants of ORF75, we could further corroborate the role of ORF75 in the antagonization of ND10-mediated intrinsic immunity, and show that it is independent of the PML antagonist vIRF3. Members of the viral FGARAT family target different ND10 components, suggesting that the ND10 targets of viral FGARAT proteins have diversified during evolution. We assume that overcoming ND10 intrinsic defense constitutes a critical event in the replication of all herpesviruses; on the other hand, restriction of herpesviral replication by ND10 components may also promote latency as the default outcome of infection.
Collapse
Affiliation(s)
- Florian Full
- Institute for Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Doris Jungnickl
- Institute for Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nina Reuter
- Institute for Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elke Bogner
- Institut für Medizinische Virologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kevin Brulois
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Brigitte Scholz
- Institute for Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jinjong Myoung
- Novartis Institutes for Biomedical Research, Emeryville, California, United States of America
| | - Jae U. Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Armin Ensser
- Institute for Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
24
|
Abernathy E, Clyde K, Yeasmin R, Krug LT, Burlingame A, Coscoy L, Glaunsinger B. Gammaherpesviral gene expression and virion composition are broadly controlled by accelerated mRNA degradation. PLoS Pathog 2014; 10:e1003882. [PMID: 24453974 PMCID: PMC3894220 DOI: 10.1371/journal.ppat.1003882] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/26/2013] [Indexed: 11/19/2022] Open
Abstract
Lytic gammaherpesvirus infection restricts host gene expression by promoting widespread degradation of cytoplasmic mRNA through the activity of the viral endonuclease SOX. Though generally assumed to be selective for cellular transcripts, the extent to which SOX impacts viral mRNA stability has remained unknown. We addressed this issue using the model murine gammaherpesvirus MHV68 and, unexpectedly, found that all stages of viral gene expression are controlled through mRNA degradation. Using both comprehensive RNA expression profiling and half-life studies we reveal that the levels of the majority of viral mRNAs but not noncoding RNAs are tempered by MHV68 SOX (muSOX) activity. The targeting of viral mRNA by muSOX is functionally significant, as it impacts intracellular viral protein abundance and progeny virion composition. In the absence of muSOX-imposed gene expression control the viral particles display increased cell surface binding and entry as well as enhanced immediate early gene expression. These phenotypes culminate in a viral replication defect in multiple cell types as well as in vivo, highlighting the importance of maintaining the appropriate balance of viral RNA during gammaherpesviral infection. This is the first example of a virus that fails to broadly discriminate between cellular and viral transcripts during host shutoff and instead uses the targeting of viral messages to fine-tune overall gene expression. Many viruses restrict host gene expression during infection, presumably to provide a competitive expression advantage to viral transcripts. Not surprisingly, viruses that induce this ‘host shutoff’ phenotype therefore generally possess mechanisms to selectively spare viral genes. Gammaherpesviruses promote host shutoff by inducing widespread mRNA degradation, a process initiated by the viral SOX nuclease. However, the effect of SOX on viral mRNA during infection was unknown. Here, we reveal that during infection with the murine gammaherpesvirus MHV68, the majority of viral transcripts of all kinetic classes are broadly down regulated through the activity of the MHV68 SOX protein (muSOX). We further demonstrate that in the absence of muSOX-induced control of viral mRNA abundance, viral protein levels increase, thereby affecting the composition of progeny viral particles. Altered virion composition directly impacts early events such as entry and induction of lytic gene expression in subsequent rounds of replication. Furthermore, decreasing both virus and host gene expression via global mRNA degradation is critical for viral replication in a cell type specific manner both in vitro and in vivo. This is the first example of a eukaryotic virus whose host shutoff mechanism similarly tempers viral gene expression, and highlights the degree to which gammaherpesviral gene expression must be fine tuned to ensure replicative success.
Collapse
Affiliation(s)
- Emma Abernathy
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California, United States of America
| | - Karen Clyde
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California, United States of America
| | - Rukhsana Yeasmin
- Department of Computer Science, Stony Brook University, Stony Brook, New York, United States of America
| | - Laurie T. Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Al Burlingame
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, United States of America
| | - Laurent Coscoy
- Department of Cell and Molecular Biology, University of California at Berkeley, Berkeley, California, United States of America
| | - Britt Glaunsinger
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California, United States of America
- Department of Cell and Molecular Biology, University of California at Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Abstract
The ORF75c tegument protein of murine gammaherpesvirus 68 (MHV68) promotes the degradation of the antiviral promyelocytic leukemia (PML) protein. Surprisingly, MHV68 expressing a degradation-deficient ORF75c replicated in cell culture and in mice similar to the wild-type virus. However, in cells infected with this mutant virus, PML formed novel track-like structures that are induced by ORF61, the viral ribonucleotide reductase large subunit. These findings may explain why ORF75c mutant viruses unable to degrade PML had no demonstrable phenotype after infection.
Collapse
|
26
|
Abstract
The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) establish long-term latent infections associated with diverse human cancers. Viral oncogenesis depends on the ability of the latent viral genome to persist in host nuclei as episomes that express a restricted yet dynamic pattern of viral genes. Multiple epigenetic events control viral episome generation and maintenance. This Review highlights some of the recent findings on the role of chromatin assembly, histone and DNA modifications, and higher-order chromosome structures that enable gammaherpesviruses to establish stable latent infections that mediate viral pathogenesis.
Collapse
|
27
|
Stahl JA, Chavan SS, Sifford JM, MacLeod V, Voth DE, Edmondson RD, Forrest JC. Phosphoproteomic analyses reveal signaling pathways that facilitate lytic gammaherpesvirus replication. PLoS Pathog 2013; 9:e1003583. [PMID: 24068923 PMCID: PMC3777873 DOI: 10.1371/journal.ppat.1003583] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 07/15/2013] [Indexed: 12/27/2022] Open
Abstract
Lytic gammaherpesvirus (GHV) replication facilitates the establishment of lifelong latent infection, which places the infected host at risk for numerous cancers. As obligate intracellular parasites, GHVs must control and usurp cellular signaling pathways in order to successfully replicate, disseminate to stable latency reservoirs in the host, and prevent immune-mediated clearance. To facilitate a systems-level understanding of phosphorylation-dependent signaling events directed by GHVs during lytic replication, we utilized label-free quantitative mass spectrometry to interrogate the lytic replication cycle of murine gammaherpesvirus-68 (MHV68). Compared to controls, MHV68 infection regulated by 2-fold or greater ca. 86% of identified phosphopeptides - a regulatory scale not previously observed in phosphoproteomic evaluations of discrete signal-inducing stimuli. Network analyses demonstrated that the infection-associated induction or repression of specific cellular proteins globally altered the flow of information through the host phosphoprotein network, yielding major changes to functional protein clusters and ontologically associated proteins. A series of orthogonal bioinformatics analyses revealed that MAPK and CDK-related signaling events were overrepresented in the infection-associated phosphoproteome and identified 155 host proteins, such as the transcription factor c-Jun, as putative downstream targets. Importantly, functional tests of bioinformatics-based predictions confirmed ERK1/2 and CDK1/2 as kinases that facilitate MHV68 replication and also demonstrated the importance of c-Jun. Finally, a transposon-mutant virus screen identified the MHV68 cyclin D ortholog as a viral protein that contributes to the prominent MAPK/CDK signature of the infection-associated phosphoproteome. Together, these analyses enhance an understanding of how GHVs reorganize and usurp intracellular signaling networks to facilitate infection and replication.
Collapse
Affiliation(s)
- James A. Stahl
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Shweta S. Chavan
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- UALR/UAMS Joint Program in Bioinformatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jeffrey M. Sifford
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Veronica MacLeod
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Daniel E. Voth
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Ricky D. Edmondson
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - J. Craig Forrest
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Promyelocytic leukemia protein modulates establishment and maintenance of latent gammaherpesvirus infection in peritoneal cells. J Virol 2013; 87:12151-7. [PMID: 23986598 DOI: 10.1128/jvi.01696-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Promyelocytic leukemia protein (PML) is an essential organizer of PML nuclear bodies (NBs), which carry out a variety of activities, including antiviral functions. Herpesviruses from all subfamilies encode proteins that counteract PML NB-mediated antiviral defenses by multiple mechanisms. However, because of the species specificity of herpesviruses, only a limited number of in vivo studies have been undertaken to investigate the effect of PML or PML NBs on herpesvirus infection. To address this central issue in herpesvirus biology, we studied the course of infection in wild-type and PML⁻/⁻ mice using murine gammaherpesvirus 68 (MHV68), which encodes a tegument protein that induces PML degradation. While acute infection in PML⁻/⁻ mice progressed similarly to that in wild-type mice, the lytic reactivation frequency was higher in peritoneal exudate cells, due to both an increase of MHV68 genome-positive cells and greater reactivation efficiency. We also detected a higher frequency of persistent infection in PML⁻/⁻ peritoneal cells. These findings suggest that the PML protein can repress the establishment or maintenance of gammaherpesvirus latency in vivo. Further use of the PML⁻/⁻ mouse model should aid in dissecting the molecular mechanisms that underlie the role of PML in gammaherpesvirus latency and may yield clues for how PML modulates herpesvirus latency in general.
Collapse
|
29
|
Cell-based screening assay for antiviral compounds targeting the ability of herpesvirus posttranscriptional regulatory proteins to stabilize viral mRNAs. J Virol 2013; 87:10742-51. [PMID: 23903829 DOI: 10.1128/jvi.01644-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Each human herpesvirus expresses a multifunctional regulatory protein that is essential for lytic viral replication. A cell-based assay targeting the function of these proteins was developed based on the finding that Epstein-Barr virus (EBV) SM and Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 stabilize specific target mRNAs. Both proteins facilitate the accumulation of lytic transcripts by incompletely characterized posttranscriptional mechanisms. SM and ORF57 exhibit target gene specificity and enhance the accumulation of certain EBV and KSHV mRNAs that are poorly expressed in their absence. Conversely, SM- and ORF57-independent viral and cellular transcripts accumulate efficiently, and their expression does not respond to SM or ORF57. Fusion of an ORF57-responsive transcript to ORF57-independent transcripts demonstrated that ORF57 dependence is cis-dominant. EBV SM also enhanced the accumulation of such fused mRNA transcripts. These data suggest that the coding regions of specific viral transcripts confer instability even when fused to heterologous genes. The findings were used to develop a reporter assay that measures EBV SM function in rescuing the expression of poorly expressed transcripts by posttranscriptional mechanisms. The assay represents a method for the screening of small interfering RNAs (siRNAs) and compounds to investigate the mechanism of action of SM and its homologs and potentially to aid in the discovery of novel antiviral agents.
Collapse
|
30
|
Abstract
PML nuclear bodies and their associated functions are part of an intrinsic cellular mechanism aimed at maintaining transcriptional control over viral gene expression and preventing replication of invading viruses. To overcome these barriers, many viruses express early nonstructural, multifunctional proteins to support the viral replication cycle or modulate host immune responses. Virion proteins constituting the invading particle are traditionally investigated for their role in transport during entry or egress and in the assembly of new virions. The additional functions of virion proteins have largely been ignored, in contrast to those of their nonstructural counterparts. A number of recent reports suggest that several virion proteins may also play vital roles in gene activation processes, in particular by counteracting intrinsic immune mechanisms mediated by the PML nuclear body-associated cellular factors Daxx, ATRX, and Sp100. These virion proteins share several features with their more potent nonstructural counterparts, and they may serve to bridge the gap in the early phase of an infection until immediate early viral gene expression is established. In this review, we discuss how virion proteins are an integral part of gene regulation among several viral families and to what extent structural proteins of incoming virions may contribute to species barrier, latency, and oncogenesis.
Collapse
|
31
|
Sewatanon J, Ling PD. Murine gammaherpesvirus 68 ORF75c contains ubiquitin E3 ligase activity and requires PML SUMOylation but not other known cellular PML regulators, CK2 and E6AP, to mediate PML degradation. Virology 2013; 440:140-9. [PMID: 23541081 PMCID: PMC4012299 DOI: 10.1016/j.virol.2013.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/12/2012] [Accepted: 02/15/2013] [Indexed: 01/30/2023]
Abstract
All gammaherpsviruses encode at least one gene related to the cellular formylglycinamide ribonucleotide amidotransferase (FGARAT) enzyme but their biological roles are relatively unknown. The murine gammaherpesvirus 68 (MHV68) vFGARAT, ORF75c, mediates a proteasome-dependent degradation of the antiviral promyelocytic leukemia (PML) protein by an unknown mechanism, which is addressed in this study. We found that ORF75c interacts weakly with PML and SUMO-modified forms of PML are important for its degradation by ORF75c. ORF75c-mediated PML degradation was not dependent on two known cellular regulators of PML stability, Casein kinase II (CK2) and human papilloma virus E6-associated protein (E6AP). Finally, ORF75c had self-ubiquitination activity in vitro and its expression increased levels of ubiquitinated PML in transfected cells. Taken together, the evidence accumulated in this study provides new insights into the function of a vFGARAT and is consistent with a model in which ORF75c could mediate direct ubiquitination of PML resulting in its degradation by the proteasome.
Collapse
Affiliation(s)
- Jaturong Sewatanon
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA 77030
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand 10700
| | - Paul D. Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA 77030
| |
Collapse
|
32
|
Everett RD, Boutell C, Hale BG. Interplay between viruses and host sumoylation pathways. Nat Rev Microbiol 2013; 11:400-11. [PMID: 23624814 DOI: 10.1038/nrmicro3015] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Post-translational modification by members of the small ubiquitin-like modifier (SUMO) family of proteins is important for the regulation of many cellular proteins and pathways. As obligate parasites, viruses must engage with the host cell throughout their replication cycles, and it is therefore unsurprising that there are many examples of interplay between viral proteins and the host sumoylation system. This article reviews recent advances in this field, summarizing information on sumoylated viral proteins, the varied ways in which viruses engage with SUMO-related pathways, and the consequences of these interactions for viral replication and engagement with innate and intrinsic immunity.
Collapse
Affiliation(s)
- Roger D Everett
- MRC-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, UK.
| | | | | |
Collapse
|
33
|
Glass M, Everett RD. Components of promyelocytic leukemia nuclear bodies (ND10) act cooperatively to repress herpesvirus infection. J Virol 2013; 87:2174-85. [PMID: 23221561 PMCID: PMC3571464 DOI: 10.1128/jvi.02950-12] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/28/2012] [Indexed: 01/12/2023] Open
Abstract
Upon the entry of the viral genome into the nucleus, herpes simplex virus type 1 (HSV-1) gene expression is rapidly repressed by constitutively expressed cellular proteins. This intrinsic antiviral defense is normally counteracted by ICP0, which allows virus infection to proceed efficiently. Replication of ICP0-null mutant HSV-1, however, is severely repressed by mechanisms that are conferred, at least in part, by nuclear domain 10 (ND10) components, including hDaxx, the promyelocytic leukemia (PML) protein, and Sp100. To investigate if these ND10 components repress viral gene expression in a cooperative manner, we simultaneously depleted host cells for hDaxx, PML, and Sp100 by multiple short hairpin RNA (shRNA) knockdown from a single lentivirus vector. We found that replication and gene expression of ICP0-null mutant HSV-1 were cooperatively repressed by hDaxx, PML, and Sp100 immediately upon infection, and all stages of virus replication were inhibited. Plaque-forming efficiency was enhanced at least 50-fold in the triple-depleted cells, a much larger increase than achieved by depletion of any single ND10 protein. Similar effects were also observed during infection of triple-depleted cells with human cytomegalovirus (HCMV). Moreover, using a cell culture model of quiescent infection, we found that triple depletion resulted in a much larger number of viral genomes escaping repression. However, triple depletion was unable to fully overcome the ICP0-null phenotype, implying the presence of additional repressive host factors, possibly components of the SUMO modification or DNA repair pathways. We conclude that several ND10 components cooperate in an additive manner to regulate HSV-1 and HCMV infection.
Collapse
Affiliation(s)
- Mandy Glass
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | | |
Collapse
|
34
|
Full F, Reuter N, Zielke K, Stamminger T, Ensser A. Herpesvirus saimiri antagonizes nuclear domain 10-instituted intrinsic immunity via an ORF3-mediated selective degradation of cellular protein Sp100. J Virol 2012; 86:3541-53. [PMID: 22278248 PMCID: PMC3302493 DOI: 10.1128/jvi.06992-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/09/2012] [Indexed: 01/28/2023] Open
Abstract
In recent studies, the nuclear domain 10 (ND10) components PML, Sp100, human Daxx (hDaxx), and ATRX were identified to be cellular restriction factors that are able to inhibit the replication of several herpesviruses. The antiviral function of ND10, however, is antagonized by viral effector proteins by a variety of strategies, including degradation of PML or relocalization of ND10 proteins. In this study, we analyzed the interplay between infection with herpesvirus saimiri (HVS), the prototypic rhadinovirus, and cellular defense by ND10. In contrast to other herpesviruses, we found that HVS specifically degraded the cellular ND10 component Sp100, whereas other factors like PML or hDaxx remained intact. We could further identify the ORF3 tegument protein of HVS, which shares homology with the cellular formylglycinamide ribotide amidotransferase (FGARAT) enzyme, to be the viral factor that induces the proteasomal degradation of Sp100. Interestingly, recent studies showed that the ORF3-homologous proteins ORF75c of murine gammaherpesvirus 68 and BNRF-1 of Epstein-Barr virus modulate the ND10 proteins PML and ATRX, respectively, suggesting that the ND10 targets of viral FGARAT-homologous proteins diversified during evolution. Furthermore, a virus with the ORF3 deletion was efficiently complemented in Sp100-depleted cells, indicating that Sp100 is able to inhibit HVS in the absence of antagonistic mechanisms. In contrast, we observed that PML, which was neither degraded nor redistributed after HVS infection, strongly restricted both wild-type HVS and virus with the ORF3 deletion. Thus, HVS may lack a factor that efficiently counteracts the repressive function of PML, which may foster latency as the outcome of infection.
Collapse
Affiliation(s)
- Florian Full
- Institut für Klinische und Molekulare Virologie, Universitätsklinikum, Friedrich Alexander Universität, Erlangen, Germany
| | | | | | | | | |
Collapse
|
35
|
Sathish N, Wang X, Yuan Y. Tegument Proteins of Kaposi's Sarcoma-Associated Herpesvirus and Related Gamma-Herpesviruses. Front Microbiol 2012; 3:98. [PMID: 22435068 PMCID: PMC3304090 DOI: 10.3389/fmicb.2012.00098] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 02/28/2012] [Indexed: 12/12/2022] Open
Abstract
A herpesvirus virion is composed of a viral genomic DNA-containing capsid surrounded by a viral envelope with glycoprotein spikes on its surface. Located between the capsid and the outer viral envelope is the virion tegument layer. Though the majority of the virion proteins are located in the tegument, this layer is less studied and was thought to be an amorphous structure. Over the last decade, a number of studies have indicated the presence of organized tegument structures across the spectrum of herpesviruses, implicating tegument components in critical steps governing the viral life cycle. In the case of Kaposi’s sarcoma-associated herpesvirus (KSHV), the etiological agent of Kaposi’s sarcoma, several functions exerted by tegument proteins at different stages of the viral life cycle, inclusive of primary de novo infection and virion assembly, have been identified over the last several years. In this review, KSHV tegument components are cataloged and the occurrence of organized tegument structures in KSHV, built through interactions amongst the different virion proteins, is discussed in depth. The significant functional roles of the KSHV tegument proteins at different stages of the viral life cycle are elaborated under separate headings. Definitive functional roles exerted by tegument proteins of related gamma-herpesviruses are also discussed. Since tegument proteins play key roles during viral assembly, viral entry, and represent an important interface for virus–host interactions, further research in this area should provide detailed insights into the functional capacity of the KSHV tegument, resulting in a better understanding of the viral life cycle.
Collapse
Affiliation(s)
- Narayanan Sathish
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal Bhopal, Madhya Pradesh, India
| | | | | |
Collapse
|
36
|
Tiled microarray identification of novel viral transcript structures and distinct transcriptional profiles during two modes of productive murine gammaherpesvirus 68 infection. J Virol 2012; 86:4340-57. [PMID: 22318145 DOI: 10.1128/jvi.05892-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We applied a custom tiled microarray to examine murine gammaherpesvirus 68 (MHV68) polyadenylated transcript expression in a time course of de novo infection of fibroblast cells and following phorbol ester-mediated reactivation from a latently infected B cell line. During de novo infection, all open reading frames (ORFs) were transcribed and clustered into four major temporal groups that were overlapping yet distinct from clusters based on the phorbol ester-stimulated B cell reactivation time course. High-density transcript analysis at 2-h intervals during de novo infection mapped gene boundaries with a 20-nucleotide resolution, including a previously undefined ORF73 transcript and the MHV68 ORF63 homolog of Kaposi's sarcoma-associated herpesvirus vNLRP1. ORF6 transcript initiation was mapped by tiled array and confirmed by 5' rapid amplification of cDNA ends. The ∼1.3-kb region upstream of ORF6 was responsive to lytic infection and MHV68 RTA, identifying a novel RTA-responsive promoter. Transcription in intergenic regions consistent with the previously defined expressed genomic regions was detected during both types of productive infection. We conclude that the MHV68 transcriptome is dynamic and distinct during de novo fibroblast infection and upon phorbol ester-stimulated B cell reactivation, highlighting the need to evaluate further transcript structure and the context-dependent molecular events that govern viral gene expression during chronic infection.
Collapse
|
37
|
Tsai K, Thikmyanova N, Wojcechowskyj JA, Delecluse HJ, Lieberman PM. EBV tegument protein BNRF1 disrupts DAXX-ATRX to activate viral early gene transcription. PLoS Pathog 2011; 7:e1002376. [PMID: 22102817 PMCID: PMC3213115 DOI: 10.1371/journal.ppat.1002376] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 09/28/2011] [Indexed: 12/12/2022] Open
Abstract
Productive infection by herpesviruses involve the disabling of host-cell intrinsic defenses by viral encoded tegument proteins. Epstein-Barr Virus (EBV) typically establishes a non-productive, latent infection and it remains unclear how it confronts the host-cell intrinsic defenses that restrict viral gene expression. Here, we show that the EBV major tegument protein BNRF1 targets host-cell intrinsic defense proteins and promotes viral early gene activation. Specifically, we demonstrate that BNRF1 interacts with the host nuclear protein Daxx at PML nuclear bodies (PML-NBs) and disrupts the formation of the Daxx-ATRX chromatin remodeling complex. We mapped the Daxx interaction domain on BNRF1, and show that this domain is important for supporting EBV primary infection. Through reverse transcription PCR and infection assays, we show that BNRF1 supports viral gene expression upon early infection, and that this function is dependent on the Daxx-interaction domain. Lastly, we show that knockdown of Daxx and ATRX induces reactivation of EBV from latently infected lymphoblastoid cell lines (LCLs), suggesting that Daxx and ATRX play a role in the regulation of viral chromatin. Taken together, our data demonstrate an important role of BNRF1 in supporting EBV early infection by interacting with Daxx and ATRX; and suggest that tegument disruption of PML-NB-associated antiviral resistances is a universal requirement for herpesvirus infection in the nucleus.
Collapse
Affiliation(s)
- Kevin Tsai
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Cell and Molecular Biology Program, The University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania, United States of America
| | | | - Jason A. Wojcechowskyj
- Cell and Molecular Biology Program, The University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania, United States of America
| | | | - Paul M. Lieberman
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
38
|
Lim JH, Liu Y, Reineke E, Kao HY. Mitogen-activated protein kinase extracellular signal-regulated kinase 2 phosphorylates and promotes Pin1 protein-dependent promyelocytic leukemia protein turnover. J Biol Chem 2011; 286:44403-11. [PMID: 22033920 DOI: 10.1074/jbc.m111.289512] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The promyelocytic leukemia (PML) protein is a tumor suppressor that has an important role in several cellular processes, including apoptosis, viral infection, DNA damage repair, cell cycle regulation, and senescence. PML is an essential component of sub-nuclear structures called PML nuclear bodies (NBs). Our laboratory has previously demonstrated that the peptidyl-prolyl cis-trans isomerase, Pin1, binds and targets PML for degradation in a phosphorylation-dependent manner. To further elucidate the mechanisms underlying Pin1-mediated PML degradation, we aimed to identify one or more factors that promote PML phosphorylation. Here we show that treatment with U0126, an inhibitor of the ERK2 upstream kinases MEK1/2, leads to an increase in PML protein accumulation and an inhibition of the interaction between Pin1 and PML in MDA-MB-231 breast cancer cells. Consistent with this observation, phosphorylated ERK2 partially co-localized with PML NBs. Although U0126 up-regulated exogenous wild-type PML levels, it did not have an effect on the steady-state level of a mutant form of PML that is defective in binding Pin1. In addition, exogenous wild-type, but not Pin1 binding-defective PML protein expression levels were decreased by overexpression of ERK2. In contrast, knockdown of ERK2 by siRNA resulted in an increase in PML protein levels and an increase in the formation of PML NBs. Using phospho-specific antibodies, we identified Ser-403 and Ser-505 as the ERK2 targets that promote Pin1-mediated PML degradation. Finally, we demonstrated that EGF induced activation of ERK and interaction between PML and phosphorylated ERK resulting in a decrease in PML protein levels. Taken together, our results support a model in which Pin1 promotes PML degradation in an ERK2-dependent manner.
Collapse
Affiliation(s)
- Jun Hee Lim
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4935, USA
| | | | | | | |
Collapse
|
39
|
Cosme-Cruz R, Martínez FP, Perez KJ, Tang Q. H2B homology region of major immediate-early protein 1 is essential for murine cytomegalovirus to disrupt nuclear domain 10, but is not important for viral replication in cell culture. J Gen Virol 2011; 92:2006-2019. [PMID: 21632568 DOI: 10.1099/vir.0.033225-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cytomegalovirus (CMV) major immediate-early protein 1 (IE1) has multiple functions and is important for efficient viral infection. As does its counterpart in human CMV, murine CMV (MCMV) IE1 also functions as a disruptor of mouse-cell nuclear domain 10 (ND10), where many different gene-regulation proteins congregate. It still remains unclear how MCMV IE1 disperses ND10 and whether this dispersion could have any effect on viral replication. MCMV IE1 is 595 aa long and has multiple functional domains that have not yet been fully analysed. In this study, we dissected the IE1 molecule by truncation and/or deletion and found that the H2B homology domain (amino acid sequence NDIFERI) is required for the dispersion of ND10 by IE1. Furthermore, we made additional deletions and point mutations and found that the minimal truncation in the H2B homology domain required for IE1 to lose the ability to disperse ND10 is just 3 aa (IFE). Surprisingly, the mutated IE1 still interacted with PML and co-localized with ND10 but failed to disperse ND10. This suggests that binding to ND10 key protein is essential to, but not sufficient for, the dispersal of ND10, and that some other unknown mechanism must be involved in this biological procedure. Finally, we generated MCMV with IFE-deleted IE1 (MCMVdlIFE) and its revertant (MCMVIFERQ). Although MCMVdlIFE lost the ability to disperse ND10, plaque assays and viral gene production assays showed that the deletion of IFE did not increase viral replication in cell culture. We conclude that the dispersion of ND10 appears not to be important for MCMV replication in a mouse-cell culture.
Collapse
Affiliation(s)
- Ruth Cosme-Cruz
- Department of Microbiology/RCMI Program, Ponce School of Medicine and Health Sciences, Ponce 00716, Puerto Rico
| | - Francisco Puerta Martínez
- Department of Microbiology/RCMI Program, Ponce School of Medicine and Health Sciences, Ponce 00716, Puerto Rico
| | - Kareni J Perez
- Department of Microbiology/RCMI Program, Ponce School of Medicine and Health Sciences, Ponce 00716, Puerto Rico
| | - Qiyi Tang
- Department of Microbiology/RCMI Program, Ponce School of Medicine and Health Sciences, Ponce 00716, Puerto Rico
| |
Collapse
|
40
|
Gaudreault N, Jones C. Regulation of promyelocytic leukemia (PML) protein levels and cell morphology by bovine herpesvirus 1 infected cell protein 0 (bICP0) and mutant bICP0 proteins that do not localize to the nucleus. Virus Res 2011; 156:17-24. [PMID: 21215282 DOI: 10.1016/j.virusres.2010.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/21/2010] [Accepted: 12/21/2010] [Indexed: 11/17/2022]
Abstract
BHV-1 is an important pathogen of cattle. The infected cell protein 0 (bICP0) encoded by BHV-1 is an important regulatory protein because it is constitutively expressed and can activate all viral promoters. The mechanism by which bICP0 activates viral promoters is not well understood because bICP0 does not appear to be a sequence specific binding protein. A C(3)HC(4) zinc RING (really interesting novel gene) motif at the N-terminus of bICP0 has E3 ubiquitin ligase activity, which is important for activating viral gene expression and inhibiting interferon dependent transcription. Like other alpha-herpesvirinae ICP0 homologues, bICP0 is associated with promyelocytic leukemia (PML) protein-containing nuclear domains. During productive infection of cultured cells, BHV-1 induces degradation of the PML protein, which correlates with efficient productive infection. In this study, we demonstrated that a plasmid expressing bICP0 reduces steady state levels of the PML protein, and the C(3)HC(4) zinc RING finger is important for PML degradation. Surprisingly, bICP0 mutants with an intact C(3)HC(4) zinc RING finger that lack a nuclear localization signal also reduces steady PML protein levels. In addition, mutant bICP0 proteins that primarily localize to the cytoplasm induced morphological changes in transfected cells. During productive infection, bICP0 was detected in the cytoplasm of low-passage bovine kidney, but not established bovine kidney cells. These studies demonstrated that bICP0, even when not able to efficiently localize to the nucleus, was able to induce degradation of the PML protein and alter the morphology of transfected cells.
Collapse
Affiliation(s)
- Natasha Gaudreault
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, United States
| | | |
Collapse
|
41
|
Cuchet D, Sykes A, Nicolas A, Orr A, Murray J, Sirma H, Heeren J, Bartelt A, Everett RD. PML isoforms I and II participate in PML-dependent restriction of HSV-1 replication. J Cell Sci 2010; 124:280-91. [PMID: 21172801 DOI: 10.1242/jcs.075390] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intrinsic antiviral resistance mediated by constitutively expressed cellular proteins is one arm of defence against virus infection. Promyelocytic leukaemia nuclear bodies (PML-NBs, also known as ND10) contribute to host restriction of herpes simplex virus type 1 (HSV-1) replication via mechanisms that are counteracted by viral regulatory protein ICP0. ND10 assembly is dependent on PML, which comprises several different isoforms, and depletion of all PML isoforms decreases cellular resistance to ICP0-null mutant HSV-1. We report that individual expression of PML isoforms I and II partially reverses the increase in ICP0-null mutant HSV-1 plaque formation that occurs in PML-depleted cells. This activity of PML isoform I is dependent on SUMO modification, its SUMO interaction motif (SIM), and each element of its TRIM domain. Detailed analysis revealed that the punctate foci formed by individual PML isoforms differ subtly from normal ND10 in terms of composition and/or Sp100 modification. Surprisingly, deletion of the SIM motif from PML isoform I resulted in increased colocalisation with other major ND10 components in cells lacking endogenous PML. Our observations suggest that complete functionality of PML is dependent on isoform-specific C-terminal sequences acting in concert.
Collapse
Affiliation(s)
- Delphine Cuchet
- MRC-University of Glasgow Centre for Virus Research, Church Street, Glasgow G11 5JR, Scotland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tavalai N, Stamminger T. Interplay between Herpesvirus Infection and Host Defense by PML Nuclear Bodies. Viruses 2009; 1:1240-64. [PMID: 21994592 PMCID: PMC3185544 DOI: 10.3390/v1031240] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/10/2009] [Accepted: 12/14/2009] [Indexed: 12/17/2022] Open
Abstract
In recent studies we and others have identified the cellular proteins PML, hDaxx, and Sp100, which form a subnuclear structure known as nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs), as host restriction factors that counteract herpesviral infections by inhibiting viral replication at different stages. The antiviral function of ND10, however, is antagonized by viral regulatory proteins (e.g., ICP0 of herpes simplex virus; IE1 of human cytomegalovirus) which induce either a modification or disruption of ND10. This review will summarize the current knowledge on how viral replication is inhibited by ND10 proteins. Furthermore, herpesviral strategies to defeat this host defense mechanism are discussed.
Collapse
Affiliation(s)
- Nina Tavalai
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany; E-Mail:
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany; E-Mail:
| |
Collapse
|
43
|
Open reading frame 33 of a gammaherpesvirus encodes a tegument protein essential for virion morphogenesis and egress. J Virol 2009; 83:10582-95. [PMID: 19656880 DOI: 10.1128/jvi.00497-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tegument is a unique structure of herpesvirus, which surrounds the capsid and interacts with the envelope. Morphogenesis of gammaherpesvirus is poorly understood due to lack of efficient lytic replication for Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8, which are etiologically associated with several types of human malignancies. Murine gammaherpesvirus 68 (MHV-68) is genetically related to the human gammaherpesviruses and presents an excellent model for studying de novo lytic replication of gammaherpesviruses. MHV-68 open reading frame 33 (ORF33) is conserved among Alpha-, Beta-, and Gammaherpesvirinae subfamilies. However, the specific role of ORF33 in gammaherpesvirus replication has not yet been characterized. We describe here that ORF33 is a true late gene and encodes a tegument protein. By constructing an ORF33-null MHV-68 mutant, we demonstrated that ORF33 is not required for viral DNA replication, early and late gene expression, viral DNA packaging or capsid assembly but is required for virion morphogenesis and egress. Although the ORF33-null virus was deficient in release of infectious virions, partially tegumented capsids produced by the ORF33-null mutant accumulated in the cytoplasm, containing conserved capsid proteins, ORF52 tegument protein, but virtually no ORF45 tegument protein and the 65-kDa glycoprotein B. Finally, we found that the defect of ORF33-null MHV-68 could be rescued by providing ORF33 in trans or in an ORF33-null revertant virus. Taken together, our results indicate that ORF33 is a tegument protein required for viral lytic replication and functions in virion morphogenesis and egress.
Collapse
|
44
|
Reineke EL, Kao HY. Targeting promyelocytic leukemia protein: a means to regulating PML nuclear bodies. Int J Biol Sci 2009; 5:366-76. [PMID: 19471587 PMCID: PMC2686094 DOI: 10.7150/ijbs.5.366] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/06/2009] [Indexed: 01/17/2023] Open
Abstract
The promyelocytic leukemia protein (PML) is involved in many cellular processes including cell cycle progression, DNA damage response, transcriptional regulation, viral infection, and apoptosis. These cellular activities often rely on the localization of PML to unique subnuclear structures known as PML nuclear bodies (NBs). More than 50 cellular proteins are known to traffic in and out of PML NBs, either transiently or constitutively. In order to understand the dynamics of these NBs, it is important to delineate the regulation of PML itself. PML is subject to extensive regulation at transcriptional, post-transcriptional, and post-translational levels. Many of these modes of regulation depend on the cellular context and the presence of extracellular signals. This review focuses on the current knowledge of regulation of PML under normal cellular conditions as well as the role for regulation of PML in viral infection and cancer.
Collapse
Affiliation(s)
- Erin L Reineke
- Department of Biochemistry, School of Medicine, Case Western Reserve University and the Comprehensive Cancer Center of CWRU, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
45
|
Tavalai N, Stamminger T. New insights into the role of the subnuclear structure ND10 for viral infection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2207-21. [PMID: 18775455 DOI: 10.1016/j.bbamcr.2008.08.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 12/12/2022]
Abstract
Nuclear domains 10 (ND10), alternatively termed PML nuclear bodies (PML-NBs) or PML oncogenic domains (PODs), have been discovered approximately 15 years ago as a nuclear substructure that is targeted by a variety of viruses belonging to different viral families. This review will summarize the most important structural and functional characteristics of ND10 and its major protein constituents followed by a discussion of the current view regarding the role of this subnuclear structure for various DNA and RNA viruses with an emphasis on herpesviruses. It is concluded that accumulating evidence argues for an involvement of ND10 in host antiviral defenses either via mediating an intrinsic immune response against specific viruses or via acting as a component of the cellular interferon pathway.
Collapse
Affiliation(s)
- Nina Tavalai
- Institute for Clinical and Molecular Virology, University Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| | | |
Collapse
|