1
|
Ohlopkova OV, Goncharov AE, Aslanov BI, Fadeev AV, Davidyuk YN, Moshkin AD, Stolbunova KA, Stepanyuk MA, Sobolev IA, Tyumentseva MA, Tyumentsev AI, Shestopalov AM, Akimkin VG. First detection of influenza A virus subtypes H1N1 and H3N8 in the Antarctic region: King George Island, 2023. Vopr Virusol 2024; 69:377-389. [PMID: 39361931 DOI: 10.36233/0507-4088-257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Indexed: 10/05/2024]
Abstract
RELEVANCE Influenza A virus is characterized by a segmented single-stranded RNA genome. Such organization of the virus genome determines the possibility of reassortment, which can lead to the emergence of new virus variants. The main natural reservoir of most influenza A virus subtypes are wild waterfowl. Seasonal migrations gather waterfowl from all major migration routes to nesting areas near the northern and southern polar circles. This makes intercontinental spread of influenza A viruses possible. Objective ‒ to conduct molecular genetic monitoring and study the phylogenetic relationships of influenza A virus variants circulating in Antarctica in 2023. MATERIALS AND METHODS We studied 84 samples of biological material obtained from birds and marine mammals in April‒May 2023 in coastal areas of Antarctica. For 3 samples, sequencing was performed on the Miseq, Illumina platform and phylogenetic analysis of the obtained nucleotide sequences of the influenza A virus genomes was performed. RESULTS The circulation of avian influenza virus in the Antarctic region was confirmed. Heterogeneity of the pool of circulating variants of the influenza A virus (H3N8, H1N1) was revealed. Full-length genomes of the avian influenza virus were sequenced and posted in the GISAID database (EPI_ISL_19032103, 19174530, 19174467). CONCLUSION The study of the genetic diversity of influenza A viruses circulating in the polar regions of the Earth and the identification of the conditions for the emergence of new genetic variants is a relevant task for the development of measures to prevent biological threats.
Collapse
Affiliation(s)
- O V Ohlopkova
- Central Research Institute of Epidemiology, Rospotrebnadzor
- Federal Research Center for Fundamental and Translational Medicine
| | - A E Goncharov
- Institute of Experimental Medicine
- Northwestern State Medical University named after I.I. Mechnikov
| | - B I Aslanov
- Northwestern State Medical University named after I.I. Mechnikov
| | - A V Fadeev
- A.A. Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation
| | - Y N Davidyuk
- Federal State Educational Institution of Higher Education «Kazan (Volga Region) Federal University»
| | - A D Moshkin
- Federal Research Center for Fundamental and Translational Medicine
| | - K A Stolbunova
- Federal Research Center for Fundamental and Translational Medicine
| | - M A Stepanyuk
- Federal Research Center for Fundamental and Translational Medicine
| | - I A Sobolev
- Federal Research Center for Fundamental and Translational Medicine
| | | | - A I Tyumentsev
- Central Research Institute of Epidemiology, Rospotrebnadzor
| | - A M Shestopalov
- Federal Research Center for Fundamental and Translational Medicine
| | - V G Akimkin
- Central Research Institute of Epidemiology, Rospotrebnadzor
| |
Collapse
|
2
|
Mihiretu BD, Usui T, Kiyama M, Soda K, Yamaguchi T. Novel Genotype of HA Clade 2.3.4.4b H5N8 Subtype High Pathogenicity Avian Influenza Virus Emerged at a Wintering Site of Migratory Birds in Japan, 2021/22 Winter. Pathogens 2024; 13:380. [PMID: 38787232 PMCID: PMC11124138 DOI: 10.3390/pathogens13050380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Surveillance of avian influenza virus (AIV) was conducted in the 2021-2022 winter season at a wintering site of migratory Anatidae in Japan. An H5N8 subtype high pathogenicity AIV (HPAIV) with a unique gene constellation and four low pathogenicity AIVs (LPAIVs) were isolated from environmental samples. The genetic origin of the HPAIV (NK1201) was determined with whole-genome sequencing and phylogenetic analyses. Six of NK1201's eight genes were closely related to HA clade 2.3.4.4b H5N8 subtype HPAIVs, belonging to the G2a group, which was responsible for outbreaks in poultry farms in November 2021 in Japan. However, the remaining two genes, PB1 and NP, most closely matched those of the LPAIVs H7N7 and H1N8, which were isolated at the same place in the same 2021-2022 winter. No virus of the NK1201 genotype had been detected prior to the 2021-2022 winter, indicating that it emerged via genetic reassortment among HPAIV and LPAIVs, which were prevalent at the same wintering site. In addition, experimental infection in chickens indicated that NK1201 had slightly different infectivity compared to the reported infectivity of the representative G2a group H5N8 HPAIV, suggesting that the PB1 and NP genes derived from LPAIVs might have affected the pathogenicity of the virus in chickens. Our results directly demonstrate the emergence of a novel genotype of H5N8 HPAIV through gene reassortment at a wintering site. Analyses of AIVs at wintering sites can help to identify the emergence of novel HPAIVs, which pose risks to poultry, livestock, and humans.
Collapse
Affiliation(s)
- Berihun Dires Mihiretu
- Joint Graduate School of Veterinary Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan; (B.D.M.); (K.S.); (T.Y.)
| | - Tatsufumi Usui
- Joint Graduate School of Veterinary Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan; (B.D.M.); (K.S.); (T.Y.)
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Masahiro Kiyama
- Natural Green Resources Division, Department of the Environment and Consumer Affairs, Tottori Prefecture, 1-220 Higashi-machi, Tottori 680-8570, Japan
| | - Kosuke Soda
- Joint Graduate School of Veterinary Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan; (B.D.M.); (K.S.); (T.Y.)
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Tsuyoshi Yamaguchi
- Joint Graduate School of Veterinary Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan; (B.D.M.); (K.S.); (T.Y.)
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| |
Collapse
|
3
|
Carnegie L, Raghwani J, Fournié G, Hill SC. Phylodynamic approaches to studying avian influenza virus. Avian Pathol 2023; 52:289-308. [PMID: 37565466 DOI: 10.1080/03079457.2023.2236568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
Avian influenza viruses can cause severe disease in domestic and wild birds and are a pandemic threat. Phylodynamics is the study of how epidemiological, evolutionary, and immunological processes can interact to shape viral phylogenies. This review summarizes how phylodynamic methods have and could contribute to the study of avian influenza viruses. Specifically, we assess how phylodynamics can be used to examine viral spread within and between wild or domestic bird populations at various geographical scales, identify factors associated with virus dispersal, and determine the order and timing of virus lineage movement between geographic regions or poultry production systems. We discuss factors that can complicate the interpretation of phylodynamic results and identify how future methodological developments could contribute to improved control of the virus.
Collapse
Affiliation(s)
- L Carnegie
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - J Raghwani
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - G Fournié
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint Genes Champanelle, France
| | - S C Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| |
Collapse
|
4
|
Rasmussen EA, Czaja A, Cuthbert FJ, Tan GS, Lemey P, Nelson MI, Culhane MR. Influenza A viruses in gulls in landfills and freshwater habitats in Minnesota, United States. Front Genet 2023; 14:1172048. [PMID: 37229191 PMCID: PMC10203411 DOI: 10.3389/fgene.2023.1172048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/10/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: The unpredictable evolution of avian influenza viruses (AIVs) presents an ongoing threat to agricultural production and public and wildlife health. Severe outbreaks of highly pathogenic H5N1 viruses in US poultry and wild birds since 2022 highlight the urgent need to understand the changing ecology of AIV. Surveillance of gulls in marine coastal environments has intensified in recent years to learn how their long-range pelagic movements potentially facilitate inter-hemispheric AIV movements. In contrast, little is known about inland gulls and their role in AIV spillover, maintenance, and long-range dissemination. Methods: To address this gap, we conducted active AIV surveillance in ring-billed gulls (Larus delawarensis) and Franklin's gulls (Leucophaeus pipixcan) in Minnesota's natural freshwater lakes during the summer breeding season and in landfills during fall migration (1,686 samples). Results: Whole-genome AIV sequences obtained from 40 individuals revealed three-lineage reassortants with a mix of genome segments from the avian Americas lineage, avian Eurasian lineage, and a global "Gull" lineage that diverged more than 50 years ago from the rest of the AIV global gene pool. No poultry viruses contained gull-adapted H13, NP, or NS genes, pointing to limited spillover. Geolocators traced gull migration routes across multiple North American flyways, explaining how inland gulls imported diverse AIV lineages from distant locations. Migration patterns were highly varied and deviated far from assumed "textbook" routes. Discussion: Viruses circulating in Minnesota gulls during the summer breeding season in freshwater environments reappeared in autumn landfills, evidence of AIV persistence in gulls between seasons and transmission between habitats. Going forward, wider adoption of technological advances in animal tracking devices and genetic sequencing is needed to expand AIV surveillance in understudied hosts and habitats.
Collapse
Affiliation(s)
- Elizabeth A. Rasmussen
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Agata Czaja
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Francesca J. Cuthbert
- Department of Fisheries, Wildlife and Conservation Biology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Gene S. Tan
- J. Craig Venter Institute, La Jolla, Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Martha I. Nelson
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Marie R. Culhane
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
5
|
Prosser DJ, Chen J, Ahlstrom CA, Reeves AB, Poulson RL, Sullivan JD, McAuley D, Callahan CR, McGowan PC, Bahl J, Stallknecht DE, Ramey AM. Maintenance and dissemination of avian-origin influenza A virus within the northern Atlantic Flyway of North America. PLoS Pathog 2022; 18:e1010605. [PMID: 35666770 PMCID: PMC9203021 DOI: 10.1371/journal.ppat.1010605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/16/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
Wild waterbirds, the natural reservoirs for avian influenza viruses, undergo migratory movements each year, connecting breeding and wintering grounds within broad corridors known as flyways. In a continental or global view, the study of virus movements within and across flyways is important to understanding virus diversity, evolution, and movement. From 2015 to 2017, we sampled waterfowl from breeding (Maine) and wintering (Maryland) areas within the Atlantic Flyway (AF) along the east coast of North America to investigate the spatio-temporal trends in persistence and spread of influenza A viruses (IAV). We isolated 109 IAVs from 1,821 cloacal / oropharyngeal samples targeting mallards (Anas platyrhynchos) and American black ducks (Anas rubripes), two species having ecological and conservation importance in the flyway that are also host reservoirs of IAV. Isolates with >99% nucleotide similarity at all gene segments were found between eight pairs of birds in the northern site across years, indicating some degree of stability among genome constellations and the possibility of environmental persistence. No movement of whole genome constellations were identified between the two parts of the flyway, however, virus gene flow between the northern and southern study locations was evident. Examination of banding records indicate direct migratory waterfowl movements between the two locations within an annual season, providing a mechanism for the inferred viral gene flow. Bayesian phylogenetic analyses provided evidence for virus dissemination from other North American wild birds to AF dabbling ducks (Anatinae), shorebirds (Charidriformes), and poultry (Galliformes). Evidence was found for virus dissemination from shorebirds to gulls (Laridae), and dabbling ducks to shorebirds and poultry. The findings from this study contribute to the understanding of IAV ecology in waterfowl within the AF.
Collapse
Affiliation(s)
- Diann J. Prosser
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, United States of America
| | - Jiani Chen
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, Department of Epidemiology and Biostatistics, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Christina A. Ahlstrom
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
| | - Andrew B. Reeves
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Jeffery D. Sullivan
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, United States of America
| | - Daniel McAuley
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, United States of America
| | - Carl R. Callahan
- U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, Maryland, United States of America
| | - Peter C. McGowan
- U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, Maryland, United States of America
| | - Justin Bahl
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, Department of Epidemiology and Biostatistics, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Andrew M. Ramey
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
| |
Collapse
|
6
|
McBride DS, Lauterbach SE, Li YT, Smith GJD, Killian ML, Nolting JM, Su YCF, Bowman AS. Genomic Evidence for Sequestration of Influenza A Virus Lineages in Sea Duck Host Species. Viruses 2021; 13:v13020172. [PMID: 33498851 PMCID: PMC7911388 DOI: 10.3390/v13020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/29/2022] Open
Abstract
Wild birds are considered the natural reservoir of influenza A viruses (IAVs) making them critical for IAV surveillance efforts. While sea ducks have played a role in novel IAV emergence events that threatened food security and public health, very few surveillance samples have been collected from sea duck hosts. From 2014–2018, we conducted surveillance focused in the Mississippi flyway, USA at locations where sea duck harvest has been relatively successful compared to our other sampling locations. Our surveillance yielded 1662 samples from sea ducks, from which we recovered 77 IAV isolates. Our analyses identified persistence of sea duck specific IAV lineages across multiple years. We also recovered sea duck origin IAVs containing an H4 gene highly divergent from the majority of North American H4-HA with clade node age of over 65 years. Identification of IAVs with long branch lengths is indicative of substantial genomic change consistent with persistence without detection by surveillance efforts. Sea ducks play a role in the movement and long-term persistence of IAVs and are likely harboring more undetected IAV diversity. Sea ducks should be a point of emphasis for future North American wild bird IAV surveillance efforts.
Collapse
Affiliation(s)
- Dillon S. McBride
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (D.S.M.); (S.E.L.); (J.M.N.)
| | - Sarah E. Lauterbach
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (D.S.M.); (S.E.L.); (J.M.N.)
| | - Yao-Tsun Li
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (Y.-T.L.); (G.J.D.S.); (Y.C.F.S.)
| | - Gavin J. D. Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (Y.-T.L.); (G.J.D.S.); (Y.C.F.S.)
| | - Mary Lea Killian
- Diagnostic Virology Laboratory, National Veterinary Services Laboratories, APHIS, USDA, 1920 Dayton Avenue, Ames, IA 50010, USA;
| | - Jacqueline M. Nolting
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (D.S.M.); (S.E.L.); (J.M.N.)
| | - Yvonne C. F. Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (Y.-T.L.); (G.J.D.S.); (Y.C.F.S.)
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (D.S.M.); (S.E.L.); (J.M.N.)
- Correspondence: ; Tel.: +1-(614)-292-6923; Fax: +1-(614)-292-4142
| |
Collapse
|
7
|
Trovão NS, Nolting JM, Slemons RD, Nelson MI, Bowman AS. The Evolutionary Dynamics of Influenza A Viruses Circulating in Mallards in Duck Hunting Preserves in Maryland, USA. Microorganisms 2020; 9:microorganisms9010040. [PMID: 33375548 PMCID: PMC7823399 DOI: 10.3390/microorganisms9010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Duck hunting preserves (DHP) have resident populations of farm-raised mallard ducks, which create potential foci for the evolution of novel influenza A viruses (IAVs). Through an eleven-year (2003–2013) IAV surveillance project in seven DHPs in Maryland, USA, we frequently identified IAVs in the resident, free-flying mallard ducks (5.8% of cloacal samples were IAV-positive). The IAV population had high genetic diversity, including 12 HA subtypes and 9 NA subtypes. By sequencing the complete genomes of 290 viruses, we determined that genetically diverse IAVs were introduced annually into DHP ducks, predominantly from wild birds in the Anatidae family that inhabit the Atlantic and Mississippi flyways. The relatively low viral gene flow observed out of DHPs suggests that raised mallards do not sustain long-term viral persistence nor do they serve as important sources of new viruses in wild birds. Overall, our findings indicate that DHPs offer reliable samples of the diversity of IAV subtypes, and could serve as regional sentinel sites that mimic the viral diversity found in local wild duck populations, which would provide a cost-efficient strategy for long-term IAV monitoring. Such monitoring could allow for early identification and characterization of viruses that threaten bird species of high economic and environmental interest.
Collapse
Affiliation(s)
- Nídia S. Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20814, USA; (N.S.T.); (M.I.N.)
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jacqueline M. Nolting
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA; (J.M.N.); (R.D.S.)
| | - Richard D. Slemons
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA; (J.M.N.); (R.D.S.)
| | - Martha I. Nelson
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20814, USA; (N.S.T.); (M.I.N.)
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA; (J.M.N.); (R.D.S.)
- Correspondence:
| |
Collapse
|
8
|
Lauterbach SE, McBride DS, Shirkey BT, Nolting JM, Bowman AS. Year‑Round Influenza A Virus Surveillance in Mallards ( Anas platyrhynchos) Reveals Genetic Persistence During the Under‑Sampled Spring Season. Viruses 2020; 12:E632. [PMID: 32545281 PMCID: PMC7354581 DOI: 10.3390/v12060632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022] Open
Abstract
Active influenza A virus (IAV) surveillance in wild waterfowl in the United States has revolved around convenience-based sampling methods, resulting in gaps in surveillance during the spring season. We conducted active IAV surveillance in mallards continuously from July 2017 to July 2019 in the coastal marshes of Lake Erie near Port Clinton, Ohio. We aimed to understand ecological and evolutionary dynamics of IAV across multiple seasons, including the under‑sampled spring season. We collected 2096 cloacal swabs and estimated a 6.1% (95% confidence interval (CI): 0.050-0.071) prevalence during the study period. Prevalence was lowest during spring (1.0%, 95% CI: 0.004-0.015). Time‑stamped phylogenetic analyses revealed local persistence of genetic lineages of multiple gene segments. The PA segment consists of a lineage detected in multiple seasons with a time to most recent common ancestor of 2.48 years (95% highest posterior density: 2.16-2.74). Analysis of the H3 and H6 segments showed close relation between IAVs detected in spring and the following autumn migration. Though the mechanisms behind viral persistence in a single location are not well understood, we provide evidence that viruses can persist across several seasons. Current surveillance methods should be evaluated to ensure they are capturing the breadth of genetic diversity of IAV in waterfowl and prepare for IAV outbreaks in both animals and humans.
Collapse
Affiliation(s)
- Sarah E. Lauterbach
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.E.L.); (D.S.M.); (J.M.N.)
| | - Dillon S. McBride
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.E.L.); (D.S.M.); (J.M.N.)
| | | | - Jacqueline M. Nolting
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.E.L.); (D.S.M.); (J.M.N.)
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.E.L.); (D.S.M.); (J.M.N.)
| |
Collapse
|
9
|
Subtype Diversity of Influenza A Virus in North American Waterfowl: a Multidecade Study. J Virol 2020; 94:JVI.02022-19. [PMID: 32188732 DOI: 10.1128/jvi.02022-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/02/2020] [Indexed: 01/20/2023] Open
Abstract
The discovery in 1976 of waterfowl as the primary reservoir of influenza A viruses (IAVs) has since spurred decades of waterfowl surveillance efforts by researchers dedicated to understanding the ecology of IAV and its subsequent threat to human and animal health. Here, we employed a multidecade, continental-scale approach of surveillance data to understand trends of seasonal IAV subtype diversity. Between 1976 and 2015, IAVs were detected in 8,427 (10.8%) of 77,969 samples from migratory waterfowl throughout the Central and Mississippi Migratory Flyways in the United States and Canada. A total of 96 hemagglutinin (HA)/neuraminidase (NA) subtype combinations were isolated, which included most HA (H1 to H14) and all 9 NA subtypes. We observed an annual trend of high influenza prevalence, involving a few dominant subtypes, on northern breeding grounds during summer with progressively lowered influenza prevalence, comprised of a highly diverse profile of subtypes, as waterfowl migrate toward southern wintering grounds. Isolates recovered during winter had the highest proportion of mixed and rare HA/NA combinations, indicating increased opportunity for reassortment of IAVs. In addition, 70% of H5 and 49% of H7 IAV isolates were recovered from samples collected during fall and spring, respectively; these are subtypes that can have significant implications for public health and agriculture sectors. Annual cyclical dominance of subtypes on northern breeding grounds is revealed through the longitudinal nature of this study. Our novel findings exhibit the unrealized potential for discovery using existing IAV surveillance data.IMPORTANCE Wild aquatic birds are the primary natural reservoir of influenza A viruses (IAVs) and are therefore responsible for the dispersal and maintenance of IAVs representing a broad range of antigenic and genetic diversity. The aims of IAV surveillance in waterfowl not only relate to understanding the risk of spillover risk to humans, but also to improving our understanding of basic questions related to IAV evolution and ecology. By evaluating several decades of surveillance data from wild aquatic birds sampled along North American migratory flyways, we discovered an annual trend of increasing subtype diversity during southbound migration, peaking on southern wintering grounds. Winter sampling revealed the highest proportion of mixed and rare infections that suggest higher opportunity for spillover. These findings allow improvements to surveillance efforts to robustly capture IAV diversity that will be used for vaccine development and cultivate a more thorough understanding of IAV evolution and persistence mechanisms.
Collapse
|
10
|
Nolting JM, Lauterbach SE, Slemons RD, Bowman AS. Identifying Gaps in Wild Waterfowl Influenza A Surveillance in Ohio, United States. Avian Dis 2020; 63:145-148. [PMID: 31131571 DOI: 10.1637/11852-042018-reg.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 11/05/2022]
Abstract
The Mississippi Flyway is of utmost importance in monitoring influenza A viral diversity in the natural reservoir, as it is used by approximately 40% of North American migratory waterfowl. In 2008, influenza A virus (IAV) surveillance was initiated in eight states within the flyway during annual southern migration, to gain better insight into the natural history of influenza A viruses in the natural reservoir. More than 45,000 samples have been collected and tested, resulting in hundreds of diverse influenza A viral isolates, but seasonal sampling may not be the best strategy to gain insight into the natural history of IAV. To investigate the progress of this sampling strategy toward understanding the ecology of IAV in wild waterfowl, data from mallard ducks (Anas platyrhynchos) sampled nearly year-round in Ohio were examined. Overall, 3,645 samples were collected from mallards in Ohio from 2008 to 2016, with IAV being recovered from 13.6% of all samples collected. However, when data from each month are examined individually, it becomes apparent that the aggregated summary may be providing a misleading view of IAV in Ohio mallards. For instance, in August the frequency of viral recovery is 29.8%, with isolates representing at least 47 hemagglutinin/ neuraminidase (HA/NA) combinations. In November, during the height of southern migration, IAV isolation drops to 6.2%, with only 25 HA/NA combinations being represented. Our biased sampling towards convenience and high IAV recovery has created gaps in the data set, which prohibit a full understanding of the IAV ecology in this waterfowl population.
Collapse
Affiliation(s)
- Jacqueline M Nolting
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio 43210,
| | - Sarah E Lauterbach
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Richard D Slemons
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Andrew S Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
11
|
La Sala LF, Burgos JM, Blanco DE, Stevens KB, Fernández AR, Capobianco G, Tohmé F, Pérez AM. Spatial modelling for low pathogenicity avian influenza virus at the interface of wild birds and backyard poultry. Transbound Emerg Dis 2019; 66:1493-1505. [PMID: 30698918 DOI: 10.1111/tbed.13136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 11/28/2022]
Abstract
Low pathogenicity avian influenza virus (LPAIV) is endemic in wild birds and poultry in Argentina, and active surveillance has been in place to prevent any eventual virus mutation into a highly pathogenic avian influenza virus (HPAIV), which is exotic in this country. Risk mapping can contribute effectively to disease surveillance and control systems, but it has proven a very challenging task in the absence of disease data. We used a combination of expert opinion elicitation, multicriteria decision analysis (MCDA) and ecological niche modelling (ENM) to identify the most suitable areas for the occurrence of LPAIV at the interface between backyard domestic poultry and wild birds in Argentina. This was achieved by calculating a spatially explicit risk index. As evidenced by the validation and sensitivity analyses, our model was successful in identifying high-risk areas for LPAIV occurrence. Also, we show that the risk for virus occurrence is significantly higher in areas closer to commercial poultry farms. Although the active surveillance systems have been successful in detecting LPAIV-positive backyard farms and wild birds in Argentina, our predictions suggest that surveillance efforts in those compartments could be improved by including high-risk areas identified by our model. Our research provides a tool to guide surveillance activities in the future, and presents a mixed methodological approach which could be implemented in areas where the disease is exotic or rare and a knowledge-driven modelling method is necessary.
Collapse
Affiliation(s)
- Luciano F La Sala
- Instituto de Ciencias Biológicas y Biomédicas del Sur (CONICET - Universidad Nacional del Sur), Bahía Blanca, Argentina
| | - Julián M Burgos
- Marine and Freshwater Research Institute, Reykjavík, Iceland
| | - Daniel E Blanco
- Wetlands International/Fundación Humedales, Buenos Aires, Argentina
| | - Kim B Stevens
- Veterinary Epidemiology and Public Health Group, Department of Veterinary Clinical Sciences, Royal Veterinary College, London, UK
| | - Andrea R Fernández
- Departamento de Ciencias de la Administración, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Guillermo Capobianco
- Instituto de Matemática de Bahía Blanca (CONICET - Universidad Nacional del Sur), Bahía Blanca, Argentina.,Departamento de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Fernando Tohmé
- Instituto de Matemática de Bahía Blanca (CONICET - Universidad Nacional del Sur), Bahía Blanca, Argentina
| | - Andrés M Pérez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
12
|
Genetic Evidence Supports Sporadic and Independent Introductions of Subtype H5 Low-Pathogenic Avian Influenza A Viruses from Wild Birds to Domestic Poultry in North America. J Virol 2018; 92:JVI.00913-18. [PMID: 30045988 DOI: 10.1128/jvi.00913-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/04/2018] [Indexed: 11/20/2022] Open
Abstract
Wild-bird origin influenza A viruses (IAVs or avian influenza) have led to sporadic outbreaks among domestic poultry in the United States and Canada, resulting in economic losses through the implementation of costly containment practices and destruction of birds. We used evolutionary analyses of virus sequence data to determine that 78 H5 low-pathogenic avian influenza viruses (LPAIVs) isolated from domestic poultry in the United States and Canada during 2001 to 2017 resulted from 18 independent virus introductions from wild birds. Within the wild-bird reservoir, the hemagglutinin gene segments of H5 LPAIVs exist primarily as two cocirculating genetic sublineages, and our findings suggest that the H5 gene segments flow within each migratory bird flyway and among adjacent flyways, with limited exchange between the nonadjacent Atlantic and Pacific Flyways. Phylogeographic analyses provided evidence that IAVs from dabbling ducks and swans/geese contributed to the emergence of viruses among domestic poultry. H5 LPAIVs isolated from commercial farm poultry (i.e., turkey) that were descended from a single introduction typically remained a single genotype, whereas those from live-bird markets sometimes led to multiple genotypes, reflecting the potential for reassortment with other IAVs circulating within live-bird markets. H5 LPAIVs introduced from wild birds to domestic poultry represent economic threats to the U.S. poultry industry, and our data suggest that such introductions have been sporadic, controlled effectively through production monitoring and a stamping-out policy, and are, therefore, unlikely to result in sustained detections in commercial poultry operations.IMPORTANCE Integration of viral genome sequencing into influenza surveillance for wild birds and domestic poultry can elucidate evolutionary pathways of economically costly poultry pathogens. Evolutionary analyses of H5 LPAIVs detected in domestic poultry in the United States and Canada during 2001 to 2017 suggest that these viruses originated from repeated introductions of IAVs from wild birds, followed by various degrees of reassortment. Reassortment was observed where biosecurity was low and where opportunities for more than one virus to circulate existed (e.g., congregations of birds from different premises, such as live-bird markets). None of the H5 lineages identified were maintained for the long term in domestic poultry, suggesting that management strategies have been effective in minimizing the impacts of virus introductions on U.S. poultry production.
Collapse
|
13
|
Xiao Y, Nolting JM, Sheng ZM, Bristol T, Qi L, Bowman AS, Taubenberger JK. Design and validation of a universal influenza virus enrichment probe set and its utility in deep sequence analysis of primary cloacal swab surveillance samples of wild birds. Virology 2018; 524:182-191. [PMID: 30212665 DOI: 10.1016/j.virol.2018.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 11/25/2022]
Abstract
Influenza virus infections in humans and animals are major public health concerns. In the current study, a set of universal influenza enrichment probes was developed to increase the sensitivity of sequence-based virus detection and characterization for all influenza viruses. This universal influenza enrichment probe set contains 46,953 120nt RNA biotin-labeled probes designed based on all available influenza viral sequences and it can be used to enrich for influenza sequences without prior knowledge of type or subtype. Marked enrichment was demonstrated in influenza A/H1N1, influenza B, and H1-to-H16 hemagglutinin plasmids spiked into human DNA and in cultured influenza A/H2N1 virus. Furthermore, enrichment effects and mixed influenza A virus infections were revealed in wild bird cloacal swab samples. Therefore, this universal influenza virus enrichment probe system can capture and enrich influenza viral sequences selectively and effectively in different samples, especially ones with degraded RNA or containing low amount of influenza RNA.
Collapse
Affiliation(s)
- Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, NIH/NIAID, 33 North Drive MSC 3203, Bethesda, MD 20892-3203, USA.
| | - Jacqueline M Nolting
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - Zong-Mei Sheng
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, NIH/NIAID, 33 North Drive MSC 3203, Bethesda, MD 20892-3203, USA
| | - Tyler Bristol
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, NIH/NIAID, 33 North Drive MSC 3203, Bethesda, MD 20892-3203, USA
| | - Li Qi
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, NIH/NIAID, 33 North Drive MSC 3203, Bethesda, MD 20892-3203, USA
| | - Andrew S Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, NIH/NIAID, 33 North Drive MSC 3203, Bethesda, MD 20892-3203, USA
| |
Collapse
|
14
|
Avian Influenza Viruses in Wild Birds: Virus Evolution in a Multihost Ecosystem. J Virol 2018; 92:JVI.00433-18. [PMID: 29769347 PMCID: PMC6052287 DOI: 10.1128/jvi.00433-18] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/12/2018] [Indexed: 01/17/2023] Open
Abstract
Wild ducks and gulls are the major reservoirs for avian influenza A viruses (AIVs). The mechanisms that drive AIV evolution are complex at sites where various duck and gull species from multiple flyways breed, winter, or stage. The Republic of Georgia is located at the intersection of three migratory flyways: the Central Asian flyway, the East Africa/West Asia flyway, and the Black Sea/Mediterranean flyway. For six complete study years (2010 to 2016), we collected AIV samples from various duck and gull species that breed, migrate, and overwinter in Georgia. We found a substantial subtype diversity of viruses that varied in prevalence from year to year. Low-pathogenic AIV (LPAIV) subtypes included H1N1, H2N3, H2N5, H2N7, H3N8, H4N2, H6N2, H7N3, H7N7, H9N1, H9N3, H10N4, H10N7, H11N1, H13N2, H13N6, H13N8, and H16N3, and two highly pathogenic AIVs (HPAIVs) belonging to clade 2.3.4.4, H5N5 and H5N8, were found. Whole-genome phylogenetic trees showed significant host species lineage restriction for nearly all gene segments and significant differences in observed reassortment rates, as defined by quantification of phylogenetic incongruence, and in nucleotide sequence diversity for LPAIVs among different host species. Hemagglutinin clade 2.3.4.4 H5N8 viruses, which circulated in Eurasia during 2014 and 2015, did not reassort, but analysis after their subsequent dissemination during 2016 and 2017 revealed reassortment in all gene segments except NP and NS. Some virus lineages appeared to be unrelated to AIVs in wild bird populations in other regions, with maintenance of local AIVs in Georgia, whereas other lineages showed considerable genetic interrelationships with viruses circulating in other parts of Eurasia and Africa, despite relative undersampling in the area. IMPORTANCE Waterbirds (e.g., gulls and ducks) are natural reservoirs of avian influenza viruses (AIVs) and have been shown to mediate the dispersal of AIVs at intercontinental scales during seasonal migration. The segmented genome of influenza viruses enables viral RNA from different lineages to mix or reassort when two viruses infect the same host. Such reassortant viruses have been identified in most major human influenza pandemics and several poultry outbreaks. Despite their importance, we have only recently begun to understand AIV evolution and reassortment in their natural host reservoirs. This comprehensive study illustrates AIV evolutionary dynamics within a multihost ecosystem at a stopover site where three major migratory flyways intersect. Our analysis of this ecosystem over a 6-year period provides a snapshot of how these viruses are linked to global AIV populations. Understanding the evolution of AIVs in the natural host is imperative to mitigating both the risk of incursion into domestic poultry and the potential risk to mammalian hosts, including humans.
Collapse
|
15
|
Houston DD, Azeem S, Lundy CW, Sato Y, Guo B, Blanchong JA, Gauger PC, Marks DR, Yoon KJ, Adelman JS. Evaluating the role of wild songbirds or rodents in spreading avian influenza virus across an agricultural landscape. PeerJ 2017; 5:e4060. [PMID: 29255648 PMCID: PMC5732541 DOI: 10.7717/peerj.4060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/28/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Avian influenza virus (AIV) infections occur naturally in wild bird populations and can cross the wildlife-domestic animal interface, often with devastating impacts on commercial poultry. Migratory waterfowl and shorebirds are natural AIV reservoirs and can carry the virus along migratory pathways, often without exhibiting clinical signs. However, these species rarely inhabit poultry farms, so transmission into domestic birds likely occurs through other means. In many cases, human activities are thought to spread the virus into domestic populations. Consequently, biosecurity measures have been implemented to limit human-facilitated outbreaks. The 2015 avian influenza outbreak in the United States, which occurred among poultry operations with strict biosecurity controls, suggests that alternative routes of virus infiltration may exist, including bridge hosts: wild animals that transfer virus from areas of high waterfowl and shorebird densities. METHODS Here, we examined small, wild birds (songbirds, woodpeckers, etc.) and mammals in Iowa, one of the regions hit hardest by the 2015 avian influenza epizootic, to determine whether these animals carry AIV. To assess whether influenza A virus was present in other species in Iowa during our sampling period, we also present results from surveillance of waterfowl by the Iowa Department of Natural Resources and Unites Stated Department of Agriculture. RESULTS Capturing animals at wetlands and near poultry facilities, we swabbed 449 individuals, internally and externally, for the presence of influenza A virus and no samples tested positive by qPCR. Similarly, serology from 402 animals showed no antibodies against influenza A. Although several species were captured at both wetland and poultry sites, the overall community structure of wild species differed significantly between these types of sites. In contrast, 83 out of 527 sampled waterfowl tested positive for influenza A via qPCR. DISCUSSION These results suggest that even though influenza A viruses were present on the Iowa landscape at the time of our sampling, small, wild birds and rodents were unlikely to be frequent bridge hosts.
Collapse
Affiliation(s)
- Derek D. Houston
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, United States of America
- Department of Natural and Environmental Sciences, Western State Colorado University, Gunnison, CO, United States of America
| | - Shahan Azeem
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States of America
| | - Coady W. Lundy
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, United States of America
- Animal and Plant Health Inspection Service, Wildlife Services, United States Department of Agriculture, Urbandale, IA, United States of America
| | - Yuko Sato
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States of America
| | - Baoqing Guo
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States of America
| | - Julie A. Blanchong
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, United States of America
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States of America
| | - David R. Marks
- Animal and Plant Health Inspection Service, Wildlife Services, United States Department of Agriculture, Urbandale, IA, United States of America
| | - Kyoung-Jin Yoon
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States of America
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States of America
| | - James S. Adelman
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
16
|
Wells SJ, Kromm MM, VanBeusekom ET, Sorley EJ, Sundaram ME, VanderWaal K, Bowers JWJ, Papinaho PA, Osterholm MT, Bender J. Epidemiologic Investigation of Highly Pathogenic H5N2 Avian Influenza Among Upper Midwest U.S. Turkey Farms, 2015. Avian Dis 2017; 61:198-204. [PMID: 28665726 DOI: 10.1637/11543-112816-reg.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In 2015, an outbreak of H5N2 highly pathogenic avian influenza (HPAI) occurred in the United States, severely impacting the turkey industry in the upper midwestern United States. Industry, government, and academic partners worked together to conduct a case-control investigation of the outbreak on turkey farms in the Upper Midwest. Case farms were confirmed to have HPAI-infected flocks, and control farms were farms with noninfected turkey flocks at a similar stage of production. Both case and control farms were affiliated with a large integrated turkey company. A questionnaire administered to farm managers and supervisors assessed farm biosecurity, litter handling, dead bird disposal, farm visitor and worker practices, and presence of wild birds on operations during the 2 wk prior to HPAI confirmation on case premises and the corresponding time frame for control premises. Sixty-three farms, including 37 case farms and 26 control farms were included in the analysis. We identified several factors significantly associated with the odds of H5N2 case farm status and that may have contributed to H5N2 transmission to and from operations. Factors associated with increased risk included close proximity to other turkey operations, soil disruption (e.g., tilling) in a nearby field within 14 days prior to the outbreak, and rendering of dead birds. Observation of wild mammals near turkey barns was associated with reduced risk. When analyses focused on farms identified with H5N2 infection before April 22 (Period 1), associations with H5N2-positive farm status included soil disruption in a nearby field within 14 days prior to the outbreak and a high level of visitor biosecurity. High level of worker biosecurity had a protective effect. During the study period after April 22 (Period 2), factors associated with HPAI-positive farm status included nonasphalt roads leading to the farm and use of a vehicle wash station or spray area. Presence of wild birds near dead bird disposal areas was associated with reduced risk. Study results indicated that the initial introduction and spread of H5N2 virus likely occurred by both environmental and between-farm pathways. Transmission dynamics appeared to change with progression of the outbreak. Despite enhanced biosecurity protocols, H5N2 transmission continued, highlighting the need to review geographic/topologic factors such as farm proximity and potential dust or air transmission associated with soil disruption. It is likely that biosecurity improvements will reduce the extent and speed of spread of future outbreaks, but our results suggest that environmental factors may also play a significant role in farms becoming infected with HPAI.
Collapse
Affiliation(s)
- S J Wells
- A Center for Animal Health and Food Safety, University of Minnesota, 1354 Eckles Avenue, St. Paul, MN 55108.,B Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, Falcon Heights, MN 55108
| | - M M Kromm
- C Jennie-O Turkey Store, Willmar, MN 56201
| | | | - E J Sorley
- D Center for Infectious Disease Research and Policy, 420 Delaware Street S.E., Minneapolis, MN 55414
| | - M E Sundaram
- D Center for Infectious Disease Research and Policy, 420 Delaware Street S.E., Minneapolis, MN 55414
| | - K VanderWaal
- B Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, Falcon Heights, MN 55108
| | | | | | - M T Osterholm
- D Center for Infectious Disease Research and Policy, 420 Delaware Street S.E., Minneapolis, MN 55414.,E Department of Environmental Health, University of Minnesota School of Public Health, 420 Delaware Street S.E., Minneapolis, MN 55414
| | - J Bender
- A Center for Animal Health and Food Safety, University of Minnesota, 1354 Eckles Avenue, St. Paul, MN 55108.,B Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, Falcon Heights, MN 55108
| |
Collapse
|
17
|
Grigar MK, Cummings KJ, Rankin SC. Prevalence of Salmonella among waterfowl along the Texas Gulf coast. Zoonoses Public Health 2017; 64:689-692. [PMID: 28722329 DOI: 10.1111/zph.12380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 11/30/2022]
Abstract
Migratory waterfowl may play a role in the ecology and transmission of zoonotic pathogens, given their ability to travel long distances and their use of varied habitats. Our objectives were to estimate the prevalence of Salmonella among waterfowl along the Texas Gulf coast and to characterize the isolates. Faecal samples were collected from hunter-harvested waterfowl at four wildlife management areas from September through November, 2016. Standard bacteriologic culture methods were used to isolate Salmonella from samples, and isolates were characterized by serotyping and anti-microbial susceptibility testing. The apparent prevalence of faecal Salmonella shedding was 0.5% (2/375). Serotypes identified were Thompson and Braenderup, and both isolates were susceptible to all anti-microbial agents tested. Although faecal contamination of agricultural fields or surface waters could serve as a potential source of zoonotic Salmonella transmission, waterfowl along the Gulf coast during the fall hunting season appear to pose minimal risk.
Collapse
Affiliation(s)
- M K Grigar
- Texas A&M University, College Station, TX, USA
| | - K J Cummings
- Texas A&M University, College Station, TX, USA.,Cornell University, Ithaca, NY, USA
| | - S C Rankin
- University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Fourment M, Darling AE, Holmes EC. The impact of migratory flyways on the spread of avian influenza virus in North America. BMC Evol Biol 2017; 17:118. [PMID: 28545432 PMCID: PMC5445350 DOI: 10.1186/s12862-017-0965-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/11/2017] [Indexed: 11/16/2022] Open
Abstract
Background Wild birds are the major reservoir hosts for influenza A viruses (AIVs) and have been implicated in the emergence of pandemic events in livestock and human populations. Understanding how AIVs spread within and across continents is therefore critical to the development of successful strategies to manage and reduce the impact of influenza outbreaks. In North America many bird species undergo seasonal migratory movements along a North-South axis, thereby providing opportunities for viruses to spread over long distances. However, the role played by such avian flyways in shaping the genetic structure of AIV populations remains uncertain. Results To assess the relative contribution of bird migration along flyways to the genetic structure of AIV we performed a large-scale phylogeographic study of viruses sampled in the USA and Canada, involving the analysis of 3805 to 4505 sequences from 36 to 38 geographic localities depending on the gene segment data set. To assist in this we developed a maximum likelihood-based genetic algorithm to explore a wide range of complex spatial models, depicting a more complete picture of the migration network than determined previously. Conclusions Based on phylogenies estimated from nucleotide sequence data sets, our results show that AIV migration rates are significantly higher within than between flyways, indicating that the migratory patterns of birds play a key role in viral dispersal. These findings provide valuable insights into the evolution, maintenance and transmission of AIVs, in turn allowing the development of improved programs for surveillance and risk assessment.
Collapse
Affiliation(s)
- Mathieu Fourment
- ithree institute, University of Technology Sydney, Sydney, Australia. .,Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia.
| | - Aaron E Darling
- ithree institute, University of Technology Sydney, Sydney, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
19
|
Prosser DJ, Densmore CL, Hindman LJ, Iwanowicz DD, Ottinger CA, Iwanowicz LR, Driscoll CP, Nagel JL. Low Pathogenic Avian Influenza Viruses in Wild Migratory Waterfowl in a Region of High Poultry Production, Delmarva, Maryland. Avian Dis 2017; 61:128-134. [PMID: 28301229 DOI: 10.1637/11476-072616-resnote] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Migratory waterfowl are natural reservoirs for low pathogenic avian influenza viruses (AIVs) and may contribute to the long-distance dispersal of these pathogens as well as spillover into domestic bird populations. Surveillance for AIVs is critical to assessing risks for potential spread of these viruses among wild and domestic bird populations. The Delmarva Peninsula on the east coast of the United States is both a key convergence point for migratory Atlantic waterfowl populations and a region with high poultry production (>4,700 poultry meat facilities). Sampling of key migratory waterfowl species occurred at 20 locations throughout the Delmarva Peninsula in fall and winter of 2013-14. Samples were collected from 400 hunter-harvested or live-caught birds via cloacal and oropharyngeal swabs. Fourteen of the 400 (3.5%) birds sampled tested positive for the AIV matrix gene using real-time reverse transcriptase PCR, all from five dabbling duck species. Further characterization of the 14 viral isolates identified two hemagglutinin (H3 and H4) and four neuraminidase (N2, N6, N8, and N9) subtypes, which were consistent with isolates reported in the Influenza Research Database for this region. Three of 14 isolates contained multiple HA or NA subtypes. This study adds to the limited baseline information available for AIVs in migratory waterfowl populations on the Delmarva Peninsula, particularly prior to the highly pathogenic AIV A(H5N8) and A(H5N2) introductions to the United States in late 2014.
Collapse
Affiliation(s)
- Diann J Prosser
- A United States Geological Survey, Patuxent Wildlife Research Center, Beltsville Lab, c/o BARC East Building 308, 10300 Baltimore Avenue, Beltsville, Maryland 20705
| | - Christine L Densmore
- B United States Geological Survey, Leetown Science Center, Kearneysville, West Virginia 25430
| | - Larry J Hindman
- C Maryland Department of Natural Resources, Cambridge, Maryland 21613
| | - Deborah D Iwanowicz
- B United States Geological Survey, Leetown Science Center, Kearneysville, West Virginia 25430
| | - Chris A Ottinger
- B United States Geological Survey, Leetown Science Center, Kearneysville, West Virginia 25430
| | - Luke R Iwanowicz
- B United States Geological Survey, Leetown Science Center, Kearneysville, West Virginia 25430
| | - Cindy P Driscoll
- D Maryland Department of Natural Resources, Cooperative Oxford Laboratory, Oxford, Maryland 21654
| | - Jessica L Nagel
- A United States Geological Survey, Patuxent Wildlife Research Center, Beltsville Lab, c/o BARC East Building 308, 10300 Baltimore Avenue, Beltsville, Maryland 20705
| |
Collapse
|
20
|
Gonzalez-Reiche AS, Nelson MI, Angel M, Müller ML, Ortiz L, Dutta J, van Bakel H, Cordon-Rosales C, Perez DR. Evidence of Intercontinental Spread and Uncommon Variants of Low-Pathogenicity Avian Influenza Viruses in Ducks Overwintering in Guatemala. mSphere 2017; 2:e00362-16. [PMID: 28405632 PMCID: PMC5381266 DOI: 10.1128/msphere.00362-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/15/2017] [Indexed: 01/02/2023] Open
Abstract
Over a hundred species of aquatic birds overwinter in Central America's wetlands, providing opportunities for the transmission of influenza A viruses (IAVs). To date, limited IAV surveillance in Central America hinders our understanding of the evolution and ecology of IAVs in migratory hosts within the Western Hemisphere. To address this gap, we sequenced the genomes of 68 virus isolates obtained from ducks overwintering along Guatemala's Pacific Coast during 2010 to 2013. High genetic diversity was observed, including 9 hemagglutinin (HA) subtypes, 7 neuraminidase (NA) subtypes, and multiple avian IAV lineages that have been detected at low levels (<1%) in North America. An unusually large number of viruses with the rare H14 subtype were identified (n = 14) over two consecutive seasons, the highest number of H14 viruses ever reported in a single location, providing evidence for a possible H14 source population located outside routinely sampled regions of North America. Viruses from Guatemala were positioned within minor clades divergent from the main North American lineage on phylogenies inferred for the H3, H4, N2, N8, PA, NP, and NS segments. A time-scaled phylogeny indicates that a Eurasian virus PA segment introduced into the Americas in the early 2000s disseminated to Guatemala during ~2007.1 to 2010.4 (95% highest posterior density [HPD]). Overall, the diversity detected in Guatemala in overwintering ducks highlights the potential role of Central America in the evolution of diverse IAV lineages in the Americas, including divergent variants rarely detected in the United States, and the importance of increasing IAV surveillance throughout Central America. IMPORTANCE Recent outbreaks of highly pathogenic H7N3, H5Nx, and H7N8 avian influenza viruses in North America were introduced by migratory birds, underscoring the importance of understanding how wild birds contribute to the dissemination and evolution of IAVs in nature. At least four of the main IAV duck host species in North America migrate through or overwinter within a narrow strip of Central America, providing opportunities for diverse IAV lineages to mix and exchange gene segments. By obtaining whole-genome sequences of 68 IAV isolates collected from migratory waterfowl in Guatemala (2010 to 2013), the largest data set available from Central America to date, we detected extensive viral diversity, including gene variants rarely found in North America and gene segments of Eurasian origin. Our findings highlight the need for increased IAV surveillance across the geographical span of bird migration flyways, including Neotropical regions that have been vastly undersampled to date.
Collapse
Affiliation(s)
- Ana S. Gonzalez-Reiche
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Martha I. Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Mathew Angel
- Department of Veterinary Medicine, University of Maryland—College Park, College Park, Maryland, USA
| | - Maria L. Müller
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Lucia Ortiz
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Jayeeta Dutta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Celia Cordon-Rosales
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Daniel R. Perez
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Department of Veterinary Medicine, University of Maryland—College Park, College Park, Maryland, USA
| |
Collapse
|
21
|
Yao Y, Shao Z, He B, Yang W, Chen J, Zhang T, Chen X, Chen J. Characterization of a reassortant H11N9 subtype avian influenza virus isolated from bean goose along the East Asian-Australian flyway. Virus Genes 2016; 53:126-129. [PMID: 27730427 DOI: 10.1007/s11262-016-1401-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/06/2016] [Indexed: 01/26/2023]
Abstract
During the surveillance of avian influenza viruses in the Dongxi Lake wetland of Hubei in 2015-2016, an H11N9 avian influenza virus was isolated from a bean goose (Anser fabalis). Phylogenetic analysis showed that the HA gene of this isolate belongs to the North American lineage; however, the NA and the internal genes of the isolate were generated from the Eurasian lineage. This strain had reduced pathogenicity in mice and was capable of replication in the mouse lung without prior adaptation. This is the first report detecting H11N9 subtype influenza virus from migratory birds in central China. These findings highlight the transmission of avian influenza virus along the East Asian-Australian flyway and the need for continuing surveillance in central China.
Collapse
Affiliation(s)
- Yanfeng Yao
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, 430208, Hubei, People's Republic of China
| | - Zhiyong Shao
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, 430208, Hubei, People's Republic of China
| | - Bin He
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, 430208, Hubei, People's Republic of China
| | - Wenhai Yang
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, 430208, Hubei, People's Republic of China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology Chinese Academy of Sciences, Hubei, People's Republic of China
| | - Tao Zhang
- Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science Tsinghua University, Beijing, People's Republic of China
| | - Xiabing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, 430208, Hubei, People's Republic of China
| | - Jie Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, 430208, Hubei, People's Republic of China.
| |
Collapse
|
22
|
The enigma of the apparent disappearance of Eurasian highly pathogenic H5 clade 2.3.4.4 influenza A viruses in North American waterfowl. Proc Natl Acad Sci U S A 2016; 113:9033-8. [PMID: 27457948 DOI: 10.1073/pnas.1608853113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the major unresolved questions in influenza A virus (IAV) ecology is exemplified by the apparent disappearance of highly pathogenic (HP) H5N1, H5N2, and H5N8 (H5Nx) viruses containing the Eurasian hemagglutinin 2.3.4.4 clade from wild bird populations in North America. The introduction of Eurasian lineage HP H5 clade 2.3.4.4 H5N8 IAV and subsequent reassortment with low-pathogenic H?N2 and H?N1 North American wild bird-origin IAVs in late 2014 resulted in widespread HP H5Nx IAV infections and outbreaks in poultry and wild birds across two-thirds of North America starting in November 2014 and continuing through June 2015. Although the stamping out strategies adopted by the poultry industry and animal health authorities in Canada and the United States-which included culling, quarantining, increased biosecurity, and abstention from vaccine use-were successful in eradicating the HP H5Nx viruses from poultry, these activities do not explain the apparent disappearance of these viruses from migratory waterfowl. Here we examine current and historical aquatic bird IAV surveillance and outbreaks of HP H5Nx in poultry in the United States and Canada, providing additional evidence of unresolved mechanisms that restrict the emergence and perpetuation of HP avian influenza viruses in these natural reservoirs.
Collapse
|
23
|
Nolting JM, Fries AC, Gates RJ, Bowman AS, Slemons RD. Influenza A Viruses from Overwintering and Spring-Migrating Waterfowl in the Lake Erie Basin, United States. Avian Dis 2016; 60:241-4. [PMID: 27309062 PMCID: PMC8650125 DOI: 10.1637/11138-050815-resnoter] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Influenza A virus (IAV) surveillance in migratory waterfowl in the United States has primarily occurred during late summer and the autumn southern migration. Data concerning the presence and ecology of IAVs in waterfowl during winter and spring seasons in the U.S. northern latitudes have been limited, mainly due to limited access to waterfowl for sampling. The southwestern Lake Erie Basin is an important stopover site for waterfowl during migration periods, and over the past 28 years, 8.72% of waterfowl sampled in this geographic location have been positive for IAV recovery during summer and autumn (June-December). To gain a better understanding of influenza A viral dynamics in waterfowl populations during winter and spring migration (February through April), cloacal swabs were collected from overwintering and spring-migrating waterfowl in Ohio and Michigan in 2006, 2007, 2013, and 2014. A total of 740 cloacal swabs were collected and tested using virus isolation in embryonating chicken eggs, resulting in the recovery of 33 (4.5%) IAV isolates. The influenza A isolates were recovered from eight waterfowl species in the order Anseriformes. Antigenically, the IAV isolates represent 15 distinct hemagglutinin (HA) and neuraminidase (NA) combinations, with seven (21%) of the isolates reported as mixed infections based on antigenic HA subtyping, NA subtyping, or both. This effort demonstrates the presence of antigenically diverse IAV in waterfowl during overwintering and spring migration at northern latitudes in the United States, thereby contributing to the understanding of the maintenance of diversity among waterfowl-origin IAVs.
Collapse
Affiliation(s)
- Jacqueline M. Nolting
- The Ohio State University, Department of Veterinary Preventive Medicine, 1920 Coffey Road, Columbus, OH 43210
| | - Anthony C. Fries
- The Ohio State University, Department of Veterinary Preventive Medicine, 1920 Coffey Road, Columbus, OH 43210
| | - Robert J. Gates
- The Ohio State University, School of Environmental & Natural Resources, Columbus, OH 43210
| | - Andrew S. Bowman
- The Ohio State University, Department of Veterinary Preventive Medicine, 1920 Coffey Road, Columbus, OH 43210
| | - Richard D. Slemons
- The Ohio State University, Department of Veterinary Preventive Medicine, 1920 Coffey Road, Columbus, OH 43210
| |
Collapse
|
24
|
Palya V, Kovács EW, Tatár-Kis T, Felföldi B, Homonnay ZG, Mató T, Sato T, Gardin Y. Recombinant Turkey Herpesvirus-AI Vaccine Virus Replication in Different Species of Waterfowl. Avian Dis 2016; 60:210-7. [DOI: 10.1637/11129-050715-reg] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Jeffrey Root J, Shriner SA, Ellis JW, VanDalen KK, Sullivan HJ, Franklin AB. When fur and feather occur together: interclass transmission of avian influenza A virus from mammals to birds through common resources. Sci Rep 2015; 5:14354. [PMID: 26400374 PMCID: PMC4585832 DOI: 10.1038/srep14354] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/21/2015] [Indexed: 01/20/2023] Open
Abstract
The potential role of wild mammals in avian influenza A virus (IAV) transmission cycles has received some attention in recent years and cases where birds have transmitted IAV to mammals have been documented. However, the contrasting cycle, wherein a mammal could transmit an avian IAV to birds, has been largely overlooked. We experimentally tested the abilities of two mammalian species to transmit avian IAV to mallards (Anas platyrhynchos) in simulated natural environments. Results suggested that striped skunks (Mephitis mephitis) can successfully transmit avian IAV to mallards through indirect contact with shared resources, as transmission was noted in 1 of 4 of the mallards tested. Cottontail rabbits (Sylvilagus sp.) exhibited a similar pattern, as one of five cottontail rabbits successfully transmitted IAV to a mallard, likely through environmental contamination. For each mammalian species tested, the mallards that became infected were those paired with the individual mammals with the lowest shedding levels but were anecdotally observed to be the most active animals. Mammals associated with and around poultry rearing facilities should be taken into consideration in biosecurity plans.
Collapse
Affiliation(s)
- J. Jeffrey Root
- United States Department of Agriculture, National Wildlife Research Center, Fort Collins, CO, USA
| | - Susan A. Shriner
- United States Department of Agriculture, National Wildlife Research Center, Fort Collins, CO, USA
| | - Jeremy W. Ellis
- United States Department of Agriculture, National Wildlife Research Center, Fort Collins, CO, USA
| | - Kaci K. VanDalen
- United States Department of Agriculture, National Wildlife Research Center, Fort Collins, CO, USA
| | - Heather J. Sullivan
- United States Department of Agriculture, National Wildlife Research Center, Fort Collins, CO, USA
| | - Alan B. Franklin
- United States Department of Agriculture, National Wildlife Research Center, Fort Collins, CO, USA
| |
Collapse
|