1
|
Vigil K, Wu H, Aw TG. A systematic review on global zoonotic virus-associated mortality events in marine mammals. One Health 2024; 19:100872. [PMID: 39206255 PMCID: PMC11357810 DOI: 10.1016/j.onehlt.2024.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Marine mammals play a critical role as sentinels for tracking the spread of zoonotic diseases, with viruses being the primary causative factor behind infectious disease induced mortality events. A systematic review was conducted to document marine mammal mortality events attributed to zoonotic viral infections in published literature across the globe. This rigorous search strategy yielded 2883 studies with 88 meeting inclusion criteria. The studies spanned from 1989 to 2023, with a peak in publications observed in 2020. Most of the included studies were retrospective, providing valuable insights into historical trends. The United States (U.S.) reported the highest number of mortality events followed by Spain, Italy, Brazil and the United Kingdom. Harbor seals were the most impacted species, particularly in regions like Anholt, Denmark and the New England Coast, U.S. Analysis revealed six main viruses responsible for mortality events, with Morbillivirus causing the highest proportion of deaths. Notably, the occurrence of these viral events varied geographically, with distinct patterns observed in different regions. Immunohistochemistry emerged as the most employed detection method. This study underscores the importance of global surveillance efforts in understanding and mitigating the impact of viral infections on marine mammal populations, thereby emphasizing the necessity of collaborative One Health approaches to address emerging threats at the human-animal-environment interface. Additionally, the potential transfer of zoonotic viruses to aquatic organisms used in food production, such as fish and shellfish, highlights the broader implications for food safety, food security and public health.
Collapse
Affiliation(s)
- Katie Vigil
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Huiyun Wu
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
2
|
Fukuhara H, Yumoto K, Sako M, Kajikawa M, Ose T, Kawamura M, Yoda M, Chen S, Ito Y, Takeda S, Mwaba M, Wang J, Hashiguchi T, Kamishikiryo J, Maita N, Kitatsuji C, Takeda M, Kuroki K, Maenaka K. Glycan-shielded homodimer structure and dynamical features of the canine distemper virus hemagglutinin relevant for viral entry and efficient vaccination. eLife 2024; 12:RP88929. [PMID: 39046448 PMCID: PMC11268888 DOI: 10.7554/elife.88929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Canine distemper virus (CDV) belongs to morbillivirus, including measles virus (MeV) and rinderpest virus, which causes serious immunological and neurological disorders in carnivores, including dogs and rhesus monkeys, as recently reported, but their vaccines are highly effective. The attachment glycoprotein hemagglutinin (CDV-H) at the CDV surface utilizes signaling lymphocyte activation molecule (SLAM) and Nectin-4 (also called poliovirus-receptor-like-4; PVRL4) as entry receptors. Although fusion models have been proposed, the molecular mechanism of morbillivirus fusion entry is poorly understood. Here, we determined the crystal structure of the globular head domain of CDV-H vaccine strain at 3.2 Å resolution, revealing that CDV-H exhibits a highly tilted homodimeric form with a six-bladed β-propeller fold. While the predicted Nectin-4-binding site is well conserved with that of MeV-H, that of SLAM is similar but partially different, which is expected to contribute to host specificity. Five N-linked sugars covered a broad area of the CDV-H surface to expose receptor-binding sites only, supporting the effective production of neutralizing antibodies. These features are common to MeV-H, although the glycosylation sites are completely different. Furthermore, real-time observation using high-speed atomic force microscopy revealed highly mobile features of the CDV-H dimeric head via the connector region. These results suggest that sugar-shielded tilted homodimeric structure and dynamic conformational changes are common characteristics of morbilliviruses and ensure effective fusion entry and vaccination.
Collapse
Affiliation(s)
- Hideo Fukuhara
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
- Division of Pathogen Structure, Research Center for Zoonosis Control, Hokkaido UniversitySapporoJapan
| | - Kohei Yumoto
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Miyuki Sako
- Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Mizuho Kajikawa
- Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Toyoyuki Ose
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Mihiro Kawamura
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Mei Yoda
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Surui Chen
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Yuri Ito
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Shin Takeda
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Mwila Mwaba
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Jiaqi Wang
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Takao Hashiguchi
- Department of Virology, Faculty of Medicine, Kyushu UniversityFukuokaJapan
| | - Jun Kamishikiryo
- Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Nobuo Maita
- Institute for Enzyme Research, University of TokushimaTokushimaJapan
| | - Chihiro Kitatsuji
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Makoto Takeda
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of TokyoTokyoJapan
| | - Kimiko Kuroki
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
- Division of Pathogen Structure, Research Center for Zoonosis Control, Hokkaido UniversitySapporoJapan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido UniversitySapporoJapan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido UniversitySapporoJapan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencySaitamaJapan
| |
Collapse
|
3
|
dos Santos CP, Telles JTG, de Freitas Guimarães G, Gil LHVG, Vieira AM, Junior JWP, Calzavara-Silva CE, de Cássia CarvalhoMaia R. Epitope mapping and a candidate vaccine design from canine distemper virus. Open Vet J 2024; 14:1019-1028. [PMID: 38808294 PMCID: PMC11128641 DOI: 10.5455/ovj.2024.v14.i4.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/11/2024] [Indexed: 05/30/2024] Open
Abstract
Background Canine distemper (CD) is a worldwide spread disease that has been described in 12 families of mammals, especially in the Carnivora order, being better studied in domestic canines where vaccination represents the best means of control. CD is controlled by vaccination, but many cases of the disease still occur in vaccinated animals. Aim The aim of this work was to study antigen-specific epitopes that can subsidize the development of a new vaccine approach. Methods Mapping of T cell reactive epitopes for CD virus (CDV) was carried out through enzyme-linked immunospot assays using 119 overlapped synthetic peptides from the viral hemagglutinin protein, grouped in 22 pools forming a matrix to test the immune response of 32 animals. Results Evaluations using the criteria established to identify reactive pools, demonstrated that 26 animals presented at least one reactive pool, that one pool was not reactive to any animal, and six pools were the most frequent among the reactive peptides. The crisscrossing of the most reactive pools in the matrix revealed nine peptides considered potential candidate epitopes for T cell stimulation against the CDV and those were used to design an in-silico protein, containing also predicted epitopes for B cell stimulation, and further analyzed using immune epitope databases to ensure protein quality and stability. Conclusion The final in silico optimized protein presents characteristics that qualify it to be used to develop a new prototype epitope-based anti-CDV vaccine.
Collapse
Affiliation(s)
| | | | | | | | - Amanda Mota Vieira
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, Brazil
| | | | | | | |
Collapse
|
4
|
Srikrishna D. Pentagon Found Daily, Metagenomic Detection of Novel Bioaerosol Threats to Be Cost-Prohibitive: Can Virtualization and AI Make It Cost-Effective? Health Secur 2024; 22:108-129. [PMID: 38625036 DOI: 10.1089/hs.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
In 2022, the Pentagon Force Protection Agency found threat agnostic detection of novel bioaerosol threats to be "not feasible for daily operations" due to the cost of reagents used for metagenomics, cost of sequencing instruments, and cost of labor for subject matter experts to analyze bioinformatics. Similar operational difficulties might extend to many of the 280,000 buildings (totaling 2.3 billion square feet) at 5,000 secure US Department of Defense military sites, 250 Navy ships, as well as many civilian buildings. These economic barriers can still be addressed in a threat agnostic manner by dynamically pooling samples from dry filter units, called spike-triggered virtualization, whereby pooling and sequencing depth are automatically modulated based on novel biothreats in the sequencing output. By running at a high average pooling factor, the daily and annual cost per dry filter unit can be reduced by 10 to 100 times depending on the chosen trigger thresholds. Artificial intelligence can further enhance the sensitivity of spike-triggered virtualization. The risk of infection during the 12- to 24-hour window between a bioaerosol incident and its detection remains, but in some cases it can be reduced by 80% or more with high-speed indoor air cleaning exceeding 12 air changes per hour, which is similar to the rate of air cleaning in passenger airplanes in flight. That level of air changes per hour or higher is likely to be cost-prohibitive using central heating ventilation and air conditioning systems, but it can be achieved economically by using portable air filtration in rooms with typical ceiling heights (less than 10 feet) for a cost of approximately $0.50 to $1 per square foot for do-it-yourself units and $2 to $5 per square foot for high-efficiency particulate air filters.
Collapse
|
5
|
Stelitano D, La Frazia S, Ambrosino A, Zannella C, Tay D, Iovane V, Montagnaro S, De Filippis A, Santoro MG, Porotto M, Galdiero M. Antiviral activity of nitazoxanide against Morbillivirus infections. J Virus Erad 2023; 9:100353. [PMID: 38028567 PMCID: PMC10679774 DOI: 10.1016/j.jve.2023.100353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
The measles virus (MeV) and canine distemper virus (CDV) belong to the genus Morbillivirus of the Paramyxoviridae family. They are enveloped viruses harboring a non-segmented negative-sense RNA. Morbilliviruses are extremely contagious and transmitted through infectious aerosol droplets. Both MeV and CDV may cause respiratory infections and fatal encephalitis, although a high incidence of brain infections is unique to CDV. Despite the availability of a safe and effective vaccine against these viruses, in recent years we are witnessing a strong resurgence of Morbillivirus infection. Measles still kills more than 100,000 people each year, and CDV causes widespread outbreaks, especially among wild animals, including non-human primates. No drugs are currently approved for MeV and CDV. Therefore, the identification of effective antiviral agents represents an unmet medical need. Here, we have investigated the potential antiviral properties of nitazoxanide (NTZ) against MeV and CDV. Antiviral activity was explored with live virus and cell-based assays. NTZ is a thiazolide that is approved by the FDA as an antiprotozoal agent for the treatment of Giardia intestinalis and Cryptosporidium parvum. Further, nitazoxanide and its metabolite tizoxanide have recently emerged as broad-spectrum antiviral agents. We found that NTZ blocks the MeV and CDV replication, acting at the post-entry level. Moreover, we showed that NTZ affects the function of the viral fusion protein (F), impairing viral spread. Our results indicate that NTZ should be further explored as a therapeutic option in measles and canine distemper virus treatment.
Collapse
Affiliation(s)
- Debora Stelitano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th st, 10032, New York, NY, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th st, 10032, New York, NY, USA
| | - Simone La Frazia
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Daniel Tay
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th st, 10032, New York, NY, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th st, 10032, New York, NY, USA
| | - Valentina Iovane
- Department of Agriculture Sciences, University of Naples “Federico II”, Via Università, 100-Portici, 80055, Naples, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, via Federico Delpino 1, 80137, Naples, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Maria Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
- Institute of Translational Pharmacology, CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Matteo Porotto
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th st, 10032, New York, NY, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th st, 10032, New York, NY, USA
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
- Virology and Microbiology Unit, University Hospital “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| |
Collapse
|
6
|
Vigil K, Aw TG. Comparison of de novo assembly using long-read shotgun metagenomic sequencing of viruses in fecal and serum samples from marine mammals. Front Microbiol 2023; 14:1248323. [PMID: 37808316 PMCID: PMC10556685 DOI: 10.3389/fmicb.2023.1248323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Viral diseases of marine mammals are difficult to study, and this has led to a limited knowledge on emerging known and unknown viruses which are ongoing threats to animal health. Viruses are the leading cause of infectious disease-induced mass mortality events among marine mammals. Methods In this study, we performed viral metagenomics in stool and serum samples from California sea lions (Zalophus californianus) and bottlenose dolphins (Tursiops truncates) using long-read nanopore sequencing. Two widely used long-read de novo assemblers, Canu and Metaflye, were evaluated to assemble viral metagenomic sequencing reads from marine mammals. Results Both Metaflye and Canu assembled similar viral contigs of vertebrates, such as Parvoviridae, and Poxviridae. Metaflye assembled viral contigs that aligned with one viral family that was not reproduced by Canu, while Canu assembled viral contigs that aligned with seven viral families that was not reproduced by Metaflye. Only Canu assembled viral contigs from dolphin and sea lion fecal samples that matched both protein and nucleotide RefSeq viral databases using BLASTx and BLASTn for Anelloviridae, Parvoviridae and Circoviridae families. Viral contigs assembled with Canu aligned with torque teno viruses and anelloviruses from vertebrate hosts. Viruses associated with invertebrate hosts including densoviruses, Ambidensovirus, and various Circoviridae isolates were also aligned. Some of the invertebrate and vertebrate viruses reported here are known to potentially cause mortality events and/or disease in different seals, sea stars, fish, and bivalve species. Discussion Canu performed better by producing the most viral contigs as compared to Metaflye with assemblies aligning to both protein and nucleotide databases. This study suggests that marine mammals can be used as important sentinels to surveil marine viruses that can potentially cause diseases in vertebrate and invertebrate hosts.
Collapse
Affiliation(s)
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| |
Collapse
|
7
|
Libbey JE, Fujinami RS. Morbillivirus: A highly adaptable viral genus. Heliyon 2023; 9:e18095. [PMID: 37483821 PMCID: PMC10362132 DOI: 10.1016/j.heliyon.2023.e18095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Over the course of human history, numerous diseases have been caused by the transmission of viruses from an animal reservoir into the human population. The viruses of the genus Morbillivirus are human and animal pathogens that emerged from a primordial ancestor a millennia ago and have been transmitting to new hosts, adapting, and evolving ever since. Through interaction with susceptible individuals, as yet undiscovered morbilliviruses or existing morbilliviruses in animal hosts could cause future zoonotic diseases in humans.
Collapse
|
8
|
Haas GD, Lee B. Paramyxoviruses from bats: changes in receptor specificity and their role in host adaptation. Curr Opin Virol 2023; 58:101292. [PMID: 36508860 PMCID: PMC9974588 DOI: 10.1016/j.coviro.2022.101292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
Global metagenomic surveys have revealed that bats host a diverse array of paramyxoviruses, including species from at least five major genera. An essential determinant of successful spillover is the entry of a virus into a new host. We evaluate the role of receptor usage in the zoonotic potential of bat-borne henipaviruses, morbilliviruses, pararubulaviruses, orthorubulaviruses, and jeilongviruses; successful spillover into humans depends upon compatibility of a respective viral attachment protein with its cognate receptor. We also emphasize the importance of postentry restrictions in preventing spillover. Metagenomics and characterization of newly identified paramyxoviruses have greatly improved our understanding of spillover determinants, allowing for better forecasts of which bat-borne viruses may pose the greatest risk for cross-species transmission into humans.
Collapse
Affiliation(s)
- Griffin D Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.
| |
Collapse
|
9
|
Canine Distemper Virus in Endangered Species: Species Jump, Clinical Variations, and Vaccination. Pathogens 2022; 12:pathogens12010057. [PMID: 36678405 PMCID: PMC9862170 DOI: 10.3390/pathogens12010057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Canine morbillivirus (Canine distemper virus, CDV) is the cause of distemper in a large number of different species, some of which are endangered. The clinical outcome associated with infection is variable and based on many factors, including the host species, the immune response of the individual animal to the infection, and variation in virus tropism and virulence. Unfortunately, the viral characteristics associated with virulence versus attenuation are not fully characterized, nor are the specific mutations that allow this virus to easily move and adapt from one species to another. Due to its wide host range, this virus is difficult to manage in ecosystems that are home to endangered species. Vaccination of the domestic dog, historically considered the reservoir species for this virus, at dog-wildlife interfaces has failed to control virus spread. CDV appears to be maintained by a metareservoir rather than a single species, requiring the need to vaccinate the wildlife species at risk. This is controversial, and there is a lack of a safe, effective vaccine for nondomestic species. This review focuses on topics that are paramount to protecting endangered species from a stochastic event, such as a CDV outbreak, that could lead to extinction.
Collapse
|
10
|
Du X, Goffin E, Gillard L, Machiels B, Gillet L. A Single Oral Immunization with Replication-Competent Adenovirus-Vectored Vaccine Induces a Neutralizing Antibody Response in Mice against Canine Distemper Virus. Viruses 2022; 14:1847. [PMID: 36146652 PMCID: PMC9501072 DOI: 10.3390/v14091847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Canine Distemper Virus (CDV) is a fatal and highly contagious pathogen of multiple carnivores. While injectable vaccines are very effective in protecting domestic animals, their use in the wild is unrealistic. Alternative vaccines are therefore needed. Adenovirus (AdV) vectors are popular vaccine vectors due to their capacity to elicit potent humoral and cellular immune responses against the antigens they carry. In parallel, vaccines based on live human AdV-4 and -7 have been used in U.S. army for several decades as replicative oral vaccines against respiratory infection with the same viruses. Based on these observations, the use of oral administration of replication competent AdV-vectored vaccines has emerged as a promising tool especially for wildlife vaccination. Developing this type of vaccine is not easy, however, given the high host specificity of AdVs and their very low replication in non-target species. To overcome this problem, the feasibility of this approach was tested using mouse adenovirus 1 (MAV-1) in mice as vaccine vectors. First, different vaccine vectors expressing the entire or part H or F proteins of CDV were constructed. These different strains were then used as oral vaccines in BALB/c mice and the immune response to CDV was evaluated. Only the strain expressing the full length CDV H protein generated a detectable and neutralizing immune response to CDV. Secondly, using this strain, we were able to show that although this type of vaccine is sensitive to pre-existing immunity to the vector, a second oral administration of the same vaccine is able to boost the immune response against CDV. Overall, this study demonstrates the feasibility of using replicating AdVs as oral vaccine vectors to immunize against CDV in wildlife carnivores.
Collapse
Affiliation(s)
| | | | | | | | - Laurent Gillet
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, 4000 Liège, Belgium
| |
Collapse
|
11
|
Silva MDLE, Silva GEB, Borin-Crivellenti S, Alvarenga AWO, Aldrovani M, Braz LADN, Aoki C, Santana AE, Pennacchi CS, Crivellenti LZ. Renal Abnormalities Caused by Canine Distemper Virus Infection in Terminal Patients. Front Vet Sci 2022; 9:822525. [PMID: 35350433 PMCID: PMC8957885 DOI: 10.3389/fvets.2022.822525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to analyze the glomerular and tubular alterations in dogs with terminal distemper through light microscopy, immunofluorescence, and electron microscopy. Thirteen animals with a molecular diagnosis of distemper and neurological signs were selected. As a control group, 10 clinically healthy animals with no manifestations or signs of disease and with negative tests for Ehrlichia sp., Anaplasma sp., and Babesia sp. were included in this study. Renal tissue was evaluated by light microscopy, topochemistry for DNA/chromatin, and video image analysis to detect the nuclear phenotypes of the renal tubular epithelial cells (RTECs), immunofluorescence, and transmission electron microscopy. Results showed that dogs with distemper exhibited anemia, hypergammaglobulinemia, and proteinuria. Creatinine in the distemper group was lower compared to the control group (p = 0.0026), but there was no significant difference in relation to urea (p = 0.9876). Although this alteration may be due to the smaller muscle mass observed in animals with distemper, it probably is not of clinical importance. Glomerular and tubular lesions were confirmed by light microscopy in 84.6% of these animals. Additional findings in the animals with distemper included deposition of different classes of immunoglobulins, particularly IgM in 92.3% of the cases, fibrinogen deposition in 69.2% of the cases as assessed by immunofluorescence, alterations in the nuclear phenotypes of the RTEC characterized by condensation of chromatin, loss of DNA and reduction in the nuclear shape, and the presence of subendothelial and mesangial electron-dense deposits. These findings confirm the existence of renal alterations related to terminal distemper.
Collapse
Affiliation(s)
- Mayra de Lima e Silva
- Animal Science Graduate Program, Veterinary Teaching Hospital of Universidade de Franca, São Paulo, Brazil
| | | | - Sofia Borin-Crivellenti
- Graduate Program in Veterinary Science (PPGCV), College of Veterinary Medicine (FAMEV), Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | - Marcela Aldrovani
- Animal Science Graduate Program, Veterinary Teaching Hospital of Universidade de Franca, São Paulo, Brazil
| | - Larissa Ayane do Nascimento Braz
- Department of Clinical and Veterinary Surgery, School of Agricultural and Veterinary Sciences, Universidade Estadual Paulista (UNESP/FCAV), Jaboticabal, Brazil
| | - Caroline Aoki
- Department of Clinical and Veterinary Surgery, School of Agricultural and Veterinary Sciences, Universidade Estadual Paulista (UNESP/FCAV), Jaboticabal, Brazil
| | - Aureo Evangelista Santana
- Department of Clinical and Veterinary Surgery, School of Agricultural and Veterinary Sciences, Universidade Estadual Paulista (UNESP/FCAV), Jaboticabal, Brazil
| | - Caio Santos Pennacchi
- Graduate Program in Veterinary Science (PPGCV), College of Veterinary Medicine (FAMEV), Universidade Federal de Uberlândia, Uberlândia, Brazil
- *Correspondence: Caio Santos Pennacchi
| | - Leandro Zuccolotto Crivellenti
- Graduate Program in Veterinary Science (PPGCV), College of Veterinary Medicine (FAMEV), Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
12
|
Zinzula L, Mazzariol S, Di Guardo G. Molecular signatures in cetacean morbillivirus and host species proteomes: Unveiling the evolutionary dynamics of an enigmatic pathogen? Microbiol Immunol 2021; 66:52-58. [PMID: 34779039 DOI: 10.1111/1348-0421.12949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 02/01/2023]
Abstract
Cetacean morbillivirus (CeMV) infects marine mammals often causing a fatal respiratory and neurological disease. Recently, CeMV has expanded its geographic and host species range, with cases being reported worldwide among dolphins, whales, seals, and other aquatic mammalian species, and therefore has emerged as the most threatening nonanthropogenic factor affecting marine mammal's health and conservation. Extensive research efforts have aimed to understand CeMV epidemiology and ecology, however, the molecular mechanisms underlying its transmission and pathogenesis are still poorly understood. In particular, the field suffers from a knowledge gap on the structural and functional properties of CeMV proteins and their host interactors. Nevertheless, the body of scientific literature produced in recent years has inaugurated new investigational trends, driving future directions in CeMV molecular research. In this mini-review, the most recent literature has been summarized in the context of such research trends, and categorized into four priority research topics, such as (1) the interaction between CeMV glycoprotein and its host cell receptors across several species; (2) the CeMV molecular determinants responsible for different disease phenotype; (3) the host molecular determinants responsible for differential susceptibility to CeMV infection; (4) the CeMV molecular determinants responsible for difference virulence among circulating CeMV strains. Arguably, these are the most urgent topics that need to be investigated and that most promisingly will help to shed light on the details of CeMV evolutionary dynamics in the immediate future.
Collapse
Affiliation(s)
- Luca Zinzula
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro (Padova), Italy
| | | |
Collapse
|
13
|
Computational Analysis Reveals a Critical Point Mutation in the N-Terminal Region of the Signaling Lymphocytic Activation Molecule Responsible for the Cross-Species Infection with Canine Distemper Virus. Molecules 2021; 26:molecules26051262. [PMID: 33652764 PMCID: PMC7956568 DOI: 10.3390/molecules26051262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Infection of hosts by morbilliviruses is facilitated by the interaction between viral hemagglutinin (H-protein) and the signaling lymphocytic activation molecule (SLAM). Recently, the functional importance of the n-terminal region of human SLAM as a measles virus receptor was demonstrated. However, the functional roles of this region in the infection process by other morbilliviruses and host range determination remain unknown, partly because this region is highly flexible, which has hampered accurate structure determination of this region by X-ray crystallography. In this study, we analyzed the interaction between the H-protein from canine distemper virus (CDV-H) and SLAMs by a computational chemistry approach. Molecular dynamics simulations and fragment molecular orbital analysis demonstrated that the unique His28 in the N-terminal region of SLAM from Macaca is a key determinant that enables the formation of a stable interaction with CDV-H, providing a basis for CDV infection in Macaca. The computational chemistry approach presented should enable the determination of molecular interactions involving regions of proteins that are difficult to predict from crystal structures because of their high flexibility.
Collapse
|
14
|
Wang Y, Chen J, Hu B, Gong C, Shi N, Liu M, Yan X, Bai X, Zhao J. Mink SLAM V-Region V74I Substitutions Contribute to the Formation of Syncytia Induced by Canine Distemper Virus. Front Vet Sci 2021; 7:570283. [PMID: 33585591 PMCID: PMC7874165 DOI: 10.3389/fvets.2020.570283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 12/18/2020] [Indexed: 11/20/2022] Open
Abstract
The Signal lymphatic activation molecule (SLAM, also known as CD150) as the cellular receptor of canine distemper virus (CDV) plays an important role in the virus-host interaction. However, it is still unknown whether amino acid differences in the SLAM variable (V) region affect the formation of syncytia. Here, using raccoon dog SLAM (rSLAM) and mink SLAM (mSLAM), we performed SLAM-V homologous modeling, site-directed mutagenesis, and surface expression analysis, as well as a cell fusion assay, to study the interaction between SLAM and CDV. More specifically, our investigation focused on two amino acid residues (74 and 129) of SLAM, previously predicted to play a relevant role in receptor-ligand interaction. Our results indicated that only residues at position 60, 74, and 129 were different between rSLAM and mSLAM among the 29 amino acids that might interact with CDV H, and residues 74 and 129 were located in the interface region interacting with CDV H. The amino acid substitution at the positions of 74 have a significant effect on the expression of mSLAM. The SLAM-V74I mutation in mink significantly improved the cell fusion efficiency of CDV. In contrast, the SLAM-I74V mutation in the raccoon dog significantly decreased cell fusion efficiency. We conclude that residue 74 of SLAM plays an important role during the the formation of syncytia. Only when implementing CDV infection analysis, the rSLAM-Q129R can significantly decreased the mean number of syncytia, but the mSLAM-R129Q can't. Additionally, residue 60 show variability between rSLAM and mSLAM. We believe that our study makes a significant contribution to the literature because we provide molecular data, partially accounting for the differences in host membrane and virus interaction laying the foundation for further molecular work.
Collapse
Affiliation(s)
- Yawen Wang
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), Changchun, China.,Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jie Chen
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), Changchun, China
| | - Bo Hu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), Changchun, China
| | - Chengyan Gong
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), Changchun, China
| | - Ning Shi
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), Changchun, China
| | - Mengjia Liu
- Dongying Customs District, People's Republic of China, Dongying, China
| | - Xijun Yan
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), Changchun, China
| | - Xue Bai
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), Changchun, China
| | - Jianjun Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
15
|
de Carvalho OV, Rebouças Santos M, Lopes Rangel Fietto J, Pires Moraes M, de Almeida MR, Costa Bressan G, José Pena L, Silva-Júnior A. Multi-targeted gene silencing strategies inhibit replication of Canine morbillivirus. BMC Vet Res 2020; 16:448. [PMID: 33213424 PMCID: PMC7676405 DOI: 10.1186/s12917-020-02671-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Canine morbilivirus (canine distemper virus, CDV) is a highly contagious pathogen associated with high morbidity and mortality in susceptible carnivores. Although there are CDV vaccines available, the disease poses a huge threat to dogs and wildlife hosts due to vaccine failures and lack of effective treatment. Thus, the development of therapeutics is an urgent need to achieve rapid outbreak control and reduce mortality in target species. Gene silencing by RNA interference has emerged as a promising therapeutic approach against different human and animal viruses. In this study, plasmid-based short hairpin RNAs (shRNAs) against three different regions in either CDV nucleoprotein (N), or large polymerase (L) genes and recombinant adenovirus-expressing N-specific multi-shRNAs were generated. Viral cytopathic effect, virus titration, plaque-forming unit reduction, and real-time quantitative RT-PCR analysis were used to check the efficiency of constructs against CDV. RESULTS In CDV-infected VerodogSLAM cells, shRNA-expressing plasmids targeting the N gene markedly inhibited the CDV replication in a dose-dependent manner, with viral genomes and titers being decreased by over 99%. Transfection of plasmid-based shRNAs against the L gene displayed weaker inhibition of viral RNA level and virus yield as compared to CDV N shRNAs. A combination of shRNAs targeting three sites in the N gene considerably reduced CDV RNA and viral titers, but their effect was not synergistic. Recombinant adenovirus-expressing multiple shRNAs against CDV N gene achieved a highly efficient knockdown of CDV N mRNAs and successful inhibition of CDV replication. CONCLUSIONS We found that this strategy had strong silencing effects on CDV replication in vitro. Our findings indicate that the delivery of shRNAs using plasmid or adenovirus vectors potently inhibits CDV replication and provides a basis for the development of therapeutic strategies for clinical trials.
Collapse
Affiliation(s)
- Otávio Valério de Carvalho
- Laboratory of Immunobiological and Animal Virology, Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
- Department of Virology and Experimental Therapy, Oswaldo Cruz Foundation (FIOCRUZ), Aggeu Magalhães Research Center, Av. Moraes Rego, s/n, Campus UFPE, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Marcus Rebouças Santos
- Laboratory of Immunobiological and Animal Virology, Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Juliana Lopes Rangel Fietto
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Mauro Pires Moraes
- Laboratory of Immunobiological and Animal Virology, Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Márcia Rogéria de Almeida
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Gustavo Costa Bressan
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Lindomar José Pena
- Department of Virology and Experimental Therapy, Oswaldo Cruz Foundation (FIOCRUZ), Aggeu Magalhães Research Center, Av. Moraes Rego, s/n, Campus UFPE, Cidade Universitária, Recife, PE, 50670-420, Brazil.
| | - Abelardo Silva-Júnior
- Department of Virology and Experimental Therapy, Oswaldo Cruz Foundation (FIOCRUZ), Aggeu Magalhães Research Center, Av. Moraes Rego, s/n, Campus UFPE, Cidade Universitária, Recife, PE, 50670-420, Brazil.
| |
Collapse
|
16
|
Seki F, Yamamoto Y, Fukuhara H, Ohishi K, Maruyama T, Maenaka K, Tokiwa H, Takeda M. Measles Virus Hemagglutinin Protein Establishes a Specific Interaction With the Extreme N-Terminal Region of Human Signaling Lymphocytic Activation Molecule to Enhance Infection. Front Microbiol 2020; 11:1830. [PMID: 32922371 PMCID: PMC7457132 DOI: 10.3389/fmicb.2020.01830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/13/2020] [Indexed: 11/26/2022] Open
Abstract
Measles virus (MV) is a human pathogen that is classified in the genus Morbillivirus in the family Paramyxoviridae together with several non-human animal morbilliviruses. They cause severe systemic infections by using signaling lymphocytic activation molecule (SLAM) and poliovirus receptor-like 4 expressed on immune and epithelial cells, respectively, as receptors. The viral hemagglutinin (H) protein is responsible for the receptor-binding. Previously determined structures of MV-H and SLAM complexes revealed a major binding interface between the SLAM V domain and MV-H with four binding components (sites 1–4) in the interface. We studied the MV-H and human SLAM (hSLAM) complex structure in further detail by in silico analyses and determined missing regions or residues in the previously determined complex structures. These analyses showed that, in addition to sites 1–4, MV-H establishes a unique interaction with the extreme N-terminal region (ExNTR) of hSLAM. The first principles calculation-based fragment molecular orbital computation method revealed that methionine at position 29 (hSLAM-Met29) is the key residue for the interaction. hSLAM-Met29 was predicted to establish a CH-π interaction with phenylalanine at position 549 of MV-H (MVH-Phe549). A cell-cell fusion assay showed that the hSLAM-Met29 and MVH-Phe549 interaction is important for hSLAM-dependent MV membrane fusion. Furthermore, Jurkat cell lines expressing hSLAM with or without Met29 and recombinant MV possessing the H protein with or without Phe549 showed that the hSLAM-Met29 and MVH-Phe549 interaction enhanced hSLAM-dependent MV infection by ~10-fold. We speculate that in the evolutionary history of morbilliviruses, this interaction may have contributed to MV adaptation to humans because this interaction is unique for MV and only MV uses hSLAM efficiently among morbilliviruses.
Collapse
Affiliation(s)
- Fumio Seki
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuta Yamamoto
- Department of Chemistry, Rikkyo University, Tokyo, Japan
| | - Hideo Fukuhara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kazue Ohishi
- Faculty of Engineering, Tokyo Polytechnic University, Atsugi, Japan
| | | | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroaki Tokiwa
- Department of Chemistry, Rikkyo University, Tokyo, Japan
| | - Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
17
|
Abstract
Humans are infected with paramyxoviruses of different genera early in life, which induce cytotoxic T cells that may recognize conserved epitopes. This raises the question of whether cross-reactive T cells induced by antecedent paramyxovirus infections provide partial protection against highly lethal zoonotic Nipah virus infections. By characterizing a measles virus-specific but paramyxovirus cross-reactive human T cell clone, we discovered a highly conserved HLA-B*1501-restricted T cell epitope in the fusion protein. Using peptides, tetramers, and single cell sorting, we isolated a parainfluenza virus-specific T cell clone from a healthy adult and showed that both clones cleared Nipah virus-infected cells. We identified multiple conserved hot spots in paramyxovirus proteomes that contain other potentially cross-reactive epitopes. Our data suggest that, depending on HLA haplotype and history of paramyxovirus exposures, humans may have cross-reactive T cells that provide protection against Nipah virus. The effect of preferential boosting of these cross-reactive epitopes needs to be further studied in light of paramyxovirus vaccination studies.IMPORTANCE Humans encounter multiple paramyxoviruses early in life. This study shows that infection with common paramyxoviruses can induce T cells cross-reactive with the highly pathogenic Nipah virus. This demonstrates that the combination of paramyxovirus infection history and HLA haplotype affects immunity to phylogenetically related zoonotic paramyxoviruses.
Collapse
|
18
|
Takeda M, Seki F, Yamamoto Y, Nao N, Tokiwa H. Animal morbilliviruses and their cross-species transmission potential. Curr Opin Virol 2020; 41:38-45. [PMID: 32344228 DOI: 10.1016/j.coviro.2020.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/01/2023]
Abstract
Like measles virus (MV), whose primary hosts are humans, non-human animal morbilliviruses use SLAM (signaling lymphocytic activation molecule) and PVRL4 (nectin-4) expressed on immune and epithelial cells, respectively, as receptors. PVRL4's amino acid sequence is highly conserved across species, while that of SLAM varies significantly. However, non-host animal SLAMs often function as receptors for different morbilliviruses. Uniquely, human SLAM is somewhat specific for MV, but canine distemper virus, which shows the widest host range among morbilliviruses, readily gains the ability to use human SLAM. The host range for morbilliviruses is also modulated by their ability to counteract the host's innate immunity, but the risk of cross-species transmission of non-human animal morbilliviruses to humans could occur if MV is successfully eradicated.
Collapse
Affiliation(s)
- Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan.
| | - Fumio Seki
- Department of Virology 3, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan
| | - Yuta Yamamoto
- Department of Chemistry, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan
| | - Naganori Nao
- Department of Virology 3, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan
| | - Hiroaki Tokiwa
- Department of Chemistry, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
19
|
Rahman AU, Dhama K, Ali Q, Hussain I, Oneeb M, Chaudhary U, Wensman JJ, Shabbir MZ. Peste des petits ruminants in large ruminants, camels and unusual hosts. Vet Q 2020; 40:35-42. [PMID: 31917649 PMCID: PMC7034435 DOI: 10.1080/01652176.2020.1714096] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Since its first report in 1942, peste-des-petits-ruminants virus (PPRV) has caused several epidemics in a wide range of susceptible hosts around the world. In the last 30 years, the evidence of natural and experimental infections and virus isolation were reported from novel but unusual hosts such as camel, cattle, buffalo, dogs, Asiatic lion and pigs. In addition, PPRV in a potential vector, biting midges (Culicoides imicola), has been reported. Either presented as clinical and/or subclinical infections, the presence of the virus in an extended range of susceptible hosts highlights the cross-species transmission and supports the hypothesis of an endemic circulation of PPRV among susceptible hosts. However, the potential role of large ruminants, camels and unusual hosts for PPRV epidemiology is still obscure. Therefore, there is a need for molecular and epidemiological investigations of the disease among usual and unusual hosts to achieve the goals of disease control and eradication programmes initiated by national and international organisations, such as the FAO and OIE. This review is the first to summarise the scattered data on PPR in large ruminants, camels and unusual hosts to obtain the global scientific communities' attention for further research on epidemiological aspects, not only in its native hosts, but also in large ruminants, camels and other unusual hosts.
Collapse
Affiliation(s)
- Aziz-Ul- Rahman
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izzatnagar, India
| | - Qasim Ali
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Irshad Hussain
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Oneeb
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Umar Chaudhary
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Jonas Johansson Wensman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | |
Collapse
|
20
|
Ng WM, Stelfox AJ, Bowden TA. Unraveling virus relationships by structure-based phylogenetic classification. Virus Evol 2020; 6:veaa003. [PMID: 32064119 PMCID: PMC7015158 DOI: 10.1093/ve/veaa003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Delineation of the intricacies of protein function from macromolecular structure constitutes a continual obstacle in the study of cell and pathogen biology. Structure-based phylogenetic analysis has emerged as a powerful tool for addressing this challenge, allowing the detection and quantification of conserved architectural properties between proteins, including those with low or no detectable sequence homology. With a focus on viral protein structure, we highlight how a number of investigations have utilized this powerful method to infer common functionality and ancestry.
Collapse
Affiliation(s)
- Weng M Ng
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Alice J Stelfox
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
21
|
Phylodynamic analysis of two amino acid substitutions in the hemagglutinin protein of canine distemper virus strains detected in fur-bearing animals in China. Virus Genes 2019; 56:58-66. [PMID: 31802380 DOI: 10.1007/s11262-019-01720-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/29/2019] [Indexed: 02/05/2023]
Abstract
Canine distemper virus (CDV) causes a highly contagious disease in a wide range of carnivores. The hemagglutinin (H) protein of viruses shows the highest variability and plays an important role in modulation of viral antigenicity, virulence, and receptor recognition. Since 2012, canine distemper (CD) outbreaks in fur-bearing animals (minks, foxes, raccoon dogs) caused by CDV variants with I542N and Y549H substitutions in the H protein have been frequently reported in China. To characterize the molecular evolutionary dynamics and epidemiological dynamics of CDV, 235 H gene sequences of CDV wild-type strains collected from 22 countries between 1975 and 2015, including 44 strains predominant in fur-bearing animals in China, were analyzed. The phylogenetic relationships and evolutionary rates of the CDV strains were determined by Bayesian phylogenetics. The CDV strains clustered into distinct geographic genotypes, irrespective of the species of isolation. All the variant strains formed a distinct monophyletic cluster and belonged to the F sub-genotype within the Asia-1 genotype-currently the predominant sub-genotype in fur-bearing animals in China. Evolutionary analysis suggested that the variant strains originated in 2006. Furthermore, the selection pressure analysis revealed that the Y549H substitution was under positive selection pressure for adaptation toward the fur-bearing animals. The residue at position 549 also showed structural interaction with the V domain of the mink signaling lymphocyte-activation molecule (SLAM) receptor based on the homology modeling of the H-SLAM complex. Our results suggested that the Y549H substitution contributed to the molecular adaptation of CDV variants in the fur-bearing animals during the viral evolutionary phase in China.
Collapse
|
22
|
Kennedy JM, Earle JP, Omar S, Abdullah H, Nielsen O, Roelke-Parker ME, Cosby SL. Canine and Phocine Distemper Viruses: Global Spread and Genetic Basis of Jumping Species Barriers. Viruses 2019; 11:E944. [PMID: 31615092 PMCID: PMC6833027 DOI: 10.3390/v11100944] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Canine distemper virus (CDV) and phocine distemper (PDV) are closely-related members of the Paramyxoviridae family, genus morbillivirus, in the order Mononegavirales. CDV has a broad host range among carnivores. PDV is thought to be derived from CDV through contact between terrestrial carnivores and seals. PDV has caused extensive mortality in Atlantic seals and other marine mammals, and more recently has spread to the North Pacific Ocean. CDV also infects marine carnivores, and there is evidence of morbillivirus infection of seals and other species in Antarctica. Recently, CDV has spread to felines and other wildlife species in the Serengeti and South Africa. Some CDV vaccines may also have caused wildlife disease. Changes in the virus haemagglutinin (H) protein, particularly the signaling lymphocyte activation molecule (SLAM) receptor binding site, correlate with adaptation to non-canine hosts. Differences in the phosphoprotein (P) gene sequences between disease and non-disease causing CDV strains may relate to pathogenicity in domestic dogs and wildlife. Of most concern are reports of CDV infection and disease in non-human primates raising the possibility of zoonosis. In this article we review the global occurrence of CDV and PDV, and present both historical and genetic information relating to these viruses crossing species barriers.
Collapse
Affiliation(s)
- Judith M. Kennedy
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
| | - J.A. Philip Earle
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
| | - Shadia Omar
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
| | - Hani’ah Abdullah
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
| | - Ole Nielsen
- Department of Fisheries and Oceans Canada, Winnipeg, Manitoba R3T 2N6, Canada;
| | | | - S. Louise Cosby
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
- Virology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
| |
Collapse
|
23
|
Quintero-Gil C, Rendon-Marin S, Martinez-Gutierrez M, Ruiz-Saenz J. Origin of Canine Distemper Virus: Consolidating Evidence to Understand Potential Zoonoses. Front Microbiol 2019; 10:1982. [PMID: 31555226 PMCID: PMC6722215 DOI: 10.3389/fmicb.2019.01982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/12/2019] [Indexed: 11/15/2022] Open
Affiliation(s)
- Carolina Quintero-Gil
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Santiago Rendon-Marin
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia.,Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia.,Asociación Colombiana de Virología, Bogotá, Colombia
| |
Collapse
|
24
|
Host Cellular Receptors for the Peste des Petits Ruminant Virus. Viruses 2019; 11:v11080729. [PMID: 31398809 PMCID: PMC6723671 DOI: 10.3390/v11080729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Peste des Petits Ruminant (PPR) is an important transboundary, OIE-listed contagious viral disease of primarily sheep and goats caused by the PPR virus (PPRV), which belongs to the genus Morbillivirus of the family Paramyxoviridae. The mortality rate is 90–100%, and the morbidity rate may reach up to 100%. PPR is considered economically important as it decreases the production and productivity of livestock. In many endemic poor countries, it has remained an obstacle to the development of sustainable agriculture. Hence, proper control measures have become a necessity to prevent its rapid spread across the world. For this, detailed information on the pathogenesis of the virus and the virus host interaction through cellular receptors needs to be understood clearly. Presently, two cellular receptors; signaling lymphocyte activation molecule (SLAM) and Nectin-4 are known for PPRV. However, extensive information on virus interactions with these receptors and their impact on host immune response is still required. Hence, a thorough understanding of PPRV receptors and the mechanism involved in the induction of immunosuppression is crucial for controlling PPR. In this review, we discuss PPRV cellular receptors, viral host interaction with cellular receptors, and immunosuppression induced by the virus with reference to other Morbilliviruses.
Collapse
|
25
|
Muñoz-Alía MA, Russell SJ. Probing Morbillivirus Antisera Neutralization Using Functional Chimerism between Measles Virus and Canine Distemper Virus Envelope Glycoproteins. Viruses 2019; 11:E688. [PMID: 31357579 PMCID: PMC6722617 DOI: 10.3390/v11080688] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Measles virus (MeV) is monotypic. Live virus challenge provokes a broadly protective humoral immune response that neutralizes all known measles genotypes. The two surface glycoproteins, H and F, mediate virus attachment and entry, respectively, and neutralizing antibodies to H are considered the main correlate of protection. Herein, we made improvements to the MeV reverse genetics system and generated a panel of recombinant MeVs in which the globular head domain or stalk region of the H glycoprotein or the entire F protein, or both, were substituted with the corresponding protein domains from canine distemper virus (CDV), a closely related morbillivirus that resists neutralization by measles-immune sera. The viruses were tested for sensitivity to human or guinea pig neutralizing anti-MeV antisera and to ferret anti-CDV antisera. Virus neutralization was mediated by antibodies to both H and F proteins, with H being immunodominant in the case of MeV and F being so in the case of CDV. Additionally, the globular head domains of both MeV and CDV H proteins were immunodominant over their stalk regions. These data shed further light on the factors constraining the evolution of new morbillivirus serotypes.
Collapse
Affiliation(s)
| | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
26
|
Ohishi K, Maruyama T, Seki F, Takeda M. Marine Morbilliviruses: Diversity and Interaction with Signaling Lymphocyte Activation Molecules. Viruses 2019; 11:E606. [PMID: 31277275 PMCID: PMC6669707 DOI: 10.3390/v11070606] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 01/08/2023] Open
Abstract
Epidemiological reports of phocine distemper virus (PDV) and cetacean morbillivirus (CeMV) have accumulated since their discovery nearly 30 years ago. In this review, we focus on the interaction between these marine morbilliviruses and their major cellular receptor, the signaling lymphocyte activation molecule (SLAM). The three-dimensional crystal structure and homology models of SLAMs have demonstrated that 35 residues are important for binding to the morbillivirus hemagglutinin (H) protein and contribute to viral tropism. These 35 residues are essentially conserved among pinnipeds and highly conserved among the Caniformia, suggesting that PDV can infect these animals, but are less conserved among cetaceans. Because CeMV can infect various cetacean species, including toothed and baleen whales, the CeMV-H protein is postulated to have broader specificity to accommodate more divergent SLAM interfaces and may enable the virus to infect seals. In silico analysis of viral H protein and SLAM indicates that each residue of the H protein interacts with multiple residues of SLAM and vice versa. The integration of epidemiological, virological, structural, and computational studies should provide deeper insight into host specificity and switching of marine morbilliviruses.
Collapse
Affiliation(s)
- Kazue Ohishi
- Faculty of Engineering, Tokyo Polytechnic University, 1583, Iiyama, Atsugi, Kanagawa 243-0297, Japan.
| | - Tadashi Maruyama
- School of Marine Biosciences, Kitasato University, 1-15-1, Kitazato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Fumio Seki
- Department of Virology III, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| |
Collapse
|
27
|
Duque-Valencia J, Sarute N, Olarte-Castillo XA, Ruíz-Sáenz J. Evolution and Interspecies Transmission of Canine Distemper Virus-An Outlook of the Diverse Evolutionary Landscapes of a Multi-Host Virus. Viruses 2019; 11:v11070582. [PMID: 31247987 PMCID: PMC6669529 DOI: 10.3390/v11070582] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/13/2019] [Accepted: 05/18/2019] [Indexed: 12/17/2022] Open
Abstract
Canine distemper virus (CDV) is a worldwide distributed virus which belongs to the genus Morbillivirus within the Paramyxoviridae family. CDV spreads through the lymphatic, epithelial, and nervous systems of domestic dogs and wildlife, in at least six orders and over 20 families of mammals. Due to the high morbidity and mortality rates and broad host range, understanding the epidemiology of CDV is not only important for its control in domestic animals, but also for the development of reliable wildlife conservation strategies. The present review aims to give an outlook of the multiple evolutionary landscapes and factors involved in the transmission of CDV by including epidemiological data from multiple species in urban, wild and peri-urban settings, not only in domestic animal populations but at the wildlife interface. It is clear that different epidemiological scenarios can lead to the presence of CDV in wildlife even in the absence of infection in domestic populations, highlighting the role of CDV in different domestic or wild species without clinical signs of disease mainly acting as reservoirs (peridomestic and mesocarnivores) that are often found in peridomestic habits triggering CDV epidemics. Another scenario is driven by mutations, which generate genetic variation on which random drift and natural selection can act, shaping the genetic structure of CDV populations leading to some fitness compensations between hosts and driving the evolution of specialist and generalist traits in CDV populations. In this scenario, the highly variable protein hemagglutinin (H) determines the cellular and host tropism by binding to signaling lymphocytic activation molecule (SLAM) and nectin-4 receptors of the host; however, the multiple evolutionary events that may have facilitated CDV adaptation to different hosts must be evaluated by complete genome sequencing. This review is focused on the study of CDV interspecies transmission by examining molecular and epidemiological reports based on sequences of the hemagglutinin gene and the growing body of studies of the complete genome; emphasizing the importance of long-term multidisciplinary research that tracks CDV in the presence or absence of clinical signs in wild species, and helping to implement strategies to mitigate the infection. Integrated research incorporating the experience of wildlife managers, behavioral and conservation biologists, veterinarians, virologists, and immunologists (among other scientific areas) and the inclusion of several wild and domestic species is essential for understanding the intricate epidemiological dynamics of CDV in its multiple host infections.
Collapse
Affiliation(s)
- July Duque-Valencia
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, sede Medellín 050012, Colombia
| | - Nicolás Sarute
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la Republica, Montevideo 11200, Uruguay
- Department of Microbiology and Immunology, UIC College of Medicine, Chicago, IL 60612, USA
| | - Ximena A Olarte-Castillo
- Facultad de Ciencias Exactas, Naturales y Agropecuarias. Universidad de Santander (UDES), sede Bucaramanga 680002, Colombia
| | - Julián Ruíz-Sáenz
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, sede Medellín 050012, Colombia.
| |
Collapse
|
28
|
Cetacean morbillivirus: A Land-to-Sea Journey and Back? Virol Sin 2019; 34:240-242. [PMID: 31093883 DOI: 10.1007/s12250-019-00128-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
|
29
|
Christe KL, Salyards GW, Houghton SD, Ardeshir A, Yee JL. Modified Dose Efficacy Trial of a Canine Distemper-Measles Vaccine for Use in Rhesus Macaques ( Macaca mulatta). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2019; 58:397-405. [PMID: 30922419 PMCID: PMC6526495 DOI: 10.30802/aalas-jaalas-18-000091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/26/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022]
Abstract
Measles virus causes a highly infectious disease in NHP. Clinical signs range from asymptomatic to fatal, although measles virus is most well-known for its characteristic generalized maculopapular rash. Along with appropriate quarantine practices, restricted human access, and appropriate personal protective equipment, vaccines are used to combat the risk of infection. The canine distemper-measles vaccine (CDMV), administered at the manufacturer's standard dose (1.0 mL IM), has been shown to be effective against clinical measles disease in rhesus macaques (Macaca mulatta). The goal of the current study was to test whether doses smaller than the manufacturer's recommended dose stimulated adequate antibody production to protect against infection. We hypothesized that either 0.25 or 0.5 mL IM of CDMV would stimulate antibody production comparable to the manufacturer's recommended dose. We found that the 0.25-mL dose was less effective at inducing antibodies than either the standard (1.0 mL) or 0.5-mL dose, which both yielded similar titers. The primary implication of this study informs balancing resource allocation and providing efficacious immunity. By using half the manufacturer-recommended dose, the 50% cost reduction may provide sufficient monetary incentive to implement, maintain, or modify measles vaccination programs at NHP facilities.
Collapse
Affiliation(s)
- Kari L Christe
- California National Primate Research Center, University of California, Davis, Davis, California; Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California;,
| | - Gregory W Salyards
- California National Primate Research Center, University of California, Davis, Davis, California
| | - Serena D Houghton
- Pathogen Assay Laboratory, California National Primate Research Center, University of California, Davis, Davis, California
| | - Amir Ardeshir
- California National Primate Research Center, University of California, Davis, Davis, California
| | - JoAnn L Yee
- Pathogen Assay Laboratory, California National Primate Research Center, University of California, Davis, Davis, California
| |
Collapse
|
30
|
Chen C, Zhou M, Yan XG, Chen YX, Cui M, Chen HC, Fu ZF, Zhao L. A recombinant canine distemper virus expressing interleukin-7 enhances humoral immunity. J Gen Virol 2019; 100:602-615. [DOI: 10.1099/jgv.0.001247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Chen Chen
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
- 2Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agriculture University, Wuhan, PR China
- 3College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Ming Zhou
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
- 2Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agriculture University, Wuhan, PR China
- 3College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Xiao-geng Yan
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
- 2Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agriculture University, Wuhan, PR China
- 3College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Yi-xi Chen
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
- 2Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agriculture University, Wuhan, PR China
- 3College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Min Cui
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
- 2Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agriculture University, Wuhan, PR China
- 3College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Huan-chun Chen
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
- 2Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agriculture University, Wuhan, PR China
- 3College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Zhen-fang Fu
- 4Department of Pathology, University of Georgia, Athens, GA, USA
- 3College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
- 2Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agriculture University, Wuhan, PR China
| | - Ling Zhao
- 3College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
- 2Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agriculture University, Wuhan, PR China
| |
Collapse
|
31
|
Uhl EW, Kelderhouse C, Buikstra J, Blick JP, Bolon B, Hogan RJ. New world origin of canine distemper: Interdisciplinary insights. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2019; 24:266-278. [PMID: 30743216 DOI: 10.1016/j.ijpp.2018.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/29/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE Canine distemper virus (CDV), human measles virus (HMV), and rinderpest virus (RPV) of cattle are morbilliviruses that have caused devastating outbreaks for centuries. This paper seeks to reconstruct the evolutionary history of CDV. MATERIALS AND METHODS An interdisciplinary approach is adopted, synthesizing paleopathological analysis of 96 Pre-Columbian dogs (750-1470 CE) from the Weyanoke Old Town, Virginia site, with historical reports, molecular analysis and morbilliviral epidemiology. RESULTS Both measles (c.900CE) and rinderpest (c. 376 BCE) were first reported in Eurasia, while canine distemper was initially described in South America much later (1735 CE); there are no paleopathological indications of CDV in Weyanoke Old Town dogs. Molecularly, CDV is closely related to HMV, while viral codon usage indicates CDV may have previously infected humans; South American measles epidemics occurred prior to the emergence of canine distemper and would have facilitated HMV transmission and adaptation to dogs. CONCLUSIONS The measles epidemics that decimated indigenous South American populations in the 1500-1700 s likely facilitated the establishment of CDV as a canine pathogen, which eventually spread to Europe and beyond. SIGNIFICANCE Understanding the historical and environmental conditions that have driven morbilliviral evolution provides important insights into potential future threats of animal/human cross-species infections. LIMITATIONS Interpreting historical disease descriptions is difficult and the archaeological specimens are limited. Molecular sequence data and codon usage analyses rely on modern viruses. SUGGESTIONS FOR FURTHER RESEARCH Interdisciplinary approaches are increasingly needed to understand diseases of the past and present, as critical information and knowledge is scattered in different disciplines.
Collapse
Affiliation(s)
- Elizabeth W Uhl
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602-7388, USA.
| | - Charles Kelderhouse
- Augusta University/University of Georgia Medical Partnership, Athens, GA, 30602-7388, USA.
| | - Jane Buikstra
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287-2402, USA.
| | - Jeffrey P Blick
- Department of Government and Sociology, Georgia College and State University, Milledgeville, GA 31061-0490, USA
| | - Brad Bolon
- Department of Government and Sociology, Georgia College and State University, Milledgeville, GA 31061-0490, USA.
| | - Robert J Hogan
- Department of Veterinary Biosciences and Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602-7388, USA.
| |
Collapse
|
32
|
Histopathological Characteristics and Expression of CDV-NP Antigen in the Brain of Serologically Positive Spontaneously Infected Red Foxes ( Vulpes Vulpes) In Western Serbia. ACTA VET-BEOGRAD 2019. [DOI: 10.2478/acve-2018-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Canine distemper virus (CDV) is a worldwide distributed RNA virus that can cause severe disease in carnivore and non-carnivore species. Red foxes are highly susceptible and may act as a reservoir of the virus. As in other wild species, distemper in red foxes can manifest as acute, systemic and chronic nervous form. In the present study, we detected antibodies against CDV among red foxes in Western Serbia, and analyzed histopathologically and immunohistochemically for CDV nuclear protein antigen (CDV-NP) brain samples derived from seropositive animals. Seroprevalence of CDV antibodies was 36.8%. Histopathological changes included gliosis, neuronal degeneration, satellitosis, mononuclear inflammation, demyelination and presence of inclusion bodies. Immunostaining showed a diffuse presence of CDV-NP antigen, mainly in the cytoplasm of astrocytes and neurons. Results of this work contribute to the opinion that red foxes act as a potential reservoir of CDV and underline the importance of routine vaccination of dogs that could come in close contact with these animals. Potential active surveillance program would give a better insight in the degree of CDV infection in wildlife.
Collapse
|
33
|
Structure-Guided Identification of a Nonhuman Morbillivirus with Zoonotic Potential. J Virol 2018; 92:JVI.01248-18. [PMID: 30232185 PMCID: PMC6232486 DOI: 10.1128/jvi.01248-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Morbilliviruses infect a broad range of mammalian hosts, including ruminants, carnivores, and humans. The recent eradication of rinderpest virus (RPV) and the active campaigns for eradication of the human-specific measles virus (MeV) have raised significant concerns that the remaining morbilliviruses may emerge in so-called vacated ecological niches. Seeking to assess the zoonotic potential of nonhuman morbilliviruses within human populations, we found that peste des petits ruminants virus (PPRV)-the small-ruminant morbillivirus-is restricted at the point of entry into human cells due to deficient interactions with human SLAMF1-the immune cell receptor for morbilliviruses. Using a structure-guided approach, we characterized a single amino acid change, mapping to the receptor-binding domain in the PPRV hemagglutinin (H) protein, which overcomes this restriction. The same mutation allowed escape from some cross-protective, human patient, anti-MeV antibodies, raising concerns that PPRV is a pathogen with zoonotic potential. Analysis of natural variation within human and ovine SLAMF1 also identified polymorphisms that could correlate with disease resistance. Finally, the mechanistic nature of the PPRV restriction was also investigated, identifying charge incompatibility and steric hindrance between PPRV H and human SLAMF1 proteins. Importantly, this research was performed entirely using surrogate virus entry assays, negating the requirement for in situ derivation of a human-tropic PPRV and illustrating alternative strategies for identifying gain-of-function mutations in viral pathogens.IMPORTANCE A significant proportion of viral pandemics occur following zoonotic transmission events, where animal-associated viruses jump species into human populations. In order to provide forewarnings of the emergence of these viruses, it is necessary to develop a better understanding of what determines virus host range, often at the genetic and structural levels. In this study, we demonstrated that the small-ruminant morbillivirus, a close relative of measles, is unable to use human receptors to enter cells; however, a change of a single amino acid in the virus is sufficient to overcome this restriction. This information will be important for monitoring this virus's evolution in the field. Of note, this study was undertaken in vitro, without generation of a fully infectious virus with this phenotype.
Collapse
|
34
|
De Luca E, Crisi PE, Di Domenico M, Malatesta D, Vincifori G, Di Tommaso M, Di Guardo G, Di Francesco G, Petrini A, Savini G, Boari A, Lorusso A. A real-time RT-PCR assay for molecular identification and quantitation of feline morbillivirus RNA from biological specimens. J Virol Methods 2018; 258:24-28. [PMID: 29730392 DOI: 10.1016/j.jviromet.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/09/2018] [Accepted: 05/02/2018] [Indexed: 01/03/2023]
Abstract
The aim of this study was to develop a real-time RT-PCR to detect and quantitate feline morbillivirus (FeMV) RNA in biological samples. Primers and probe were targeted on a conserved region of FeMV P/V/C gene. To validate the assay with field samples, a total number of specimens of cats have been recruited including 264 urine and blood samples and compared with a generic RT-PCR targeting the L protein encoding gene of morbilliviruses. In addition, 385 tissue samples from 35 carcasses of cats have been also employed. RNA titres were low in all tested samples. Results also indicated the absence of cross-reaction with related morbilliviruses and existing pathogens of cats. In tissues with low levels of FeMV RNA, the presence of viral antigen was also evidenced by immunohistochemistry targeting the N viral protein. This newly described assay allows for a rapid, accurate and reliable quantitative detection of FeMV RNA that can be applied for diagnostics and research studies.
Collapse
Affiliation(s)
- Eliana De Luca
- Faculty of Veterinary Medicine, University of Teramo, Italy; Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | | | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Daniela Malatesta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Giacomo Vincifori
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | | | | | | | - Antonio Petrini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Andrea Boari
- Faculty of Veterinary Medicine, University of Teramo, Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy.
| |
Collapse
|
35
|
Anis E, Holford AL, Galyon GD, Wilkes RP. Antigenic analysis of genetic variants of Canine distemper virus. Vet Microbiol 2018; 219:154-160. [PMID: 29778189 DOI: 10.1016/j.vetmic.2018.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 11/17/2022]
Abstract
Canine distemper virus (CDV) is an RNA virus of the genus Morbillivirus within the family Paramyxoviridae. CDV produces multi-systemic disease in dogs and other terrestrial carnivores. With the development of modified live vaccines in the 1950s and 1960s, the disease, with a few exceptions, has been successfully controlled. However, recently the cases of CDV in vaccinated dogs have been increasing throughout the world, including the United States. There are many reasons that can lead to vaccine failure, including antigenic differences between the vaccine strains and the currently circulating wild-type strains. Currently, there are at least three genetically different CDV lineages circulating in the US. Therefore, in this study, we evaluated various wild-type CDV and vaccine isolates to determine if the genetic differences observed among various strains result in significant antigenic differences based on changes to the neutralizing epitopes. The results of a cross-neutralization assay revealed that there are antigenic differences among the tested CDV wild-type isolates as well as between the tested isolates and the vaccine strains currently used in the US. Therefore, these results suggest the need to develop an updated CDV vaccine.
Collapse
Affiliation(s)
- Eman Anis
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, 43 Brighton Rd, Tifton, GA, 31793, USA; The Department of Virology, Faculty of Veterinary Medicine, University of Sadat, Sadat City, Egypt.
| | - Amy L Holford
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, 2407 River Drive, Knoxville, TN, 37996, USA.
| | - Gina D Galyon
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, 2407 River Drive, Knoxville, TN, 37996, USA.
| | - Rebecca P Wilkes
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, 43 Brighton Rd, Tifton, GA, 31793, USA.
| |
Collapse
|
36
|
Maganga GD, Labouba I, Ngoubangoye B, Nkili-Meyong AA, Obame Ondo D, Leroy EM, Berthet N. Molecular characterization of complete genome of a canine distemper virus associated with fatal infection in dogs in Gabon, Central Africa. Virus Res 2018; 247:21-25. [DOI: 10.1016/j.virusres.2018.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/22/2017] [Accepted: 01/24/2018] [Indexed: 10/18/2022]
|
37
|
Pan Z, Liu J, Ma J, Jin Q, Yao H, Osterrieder N. The recombinant EHV-1 vector producing CDV hemagglutinin as potential vaccine against canine distemper. Microb Pathog 2017; 111:388-394. [DOI: 10.1016/j.micpath.2017.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
|
38
|
Thibault PA, Watkinson RE, Moreira-Soto A, Drexler JF, Lee B. Zoonotic Potential of Emerging Paramyxoviruses: Knowns and Unknowns. Adv Virus Res 2017; 98:1-55. [PMID: 28433050 PMCID: PMC5894875 DOI: 10.1016/bs.aivir.2016.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The risk of spillover of enzootic paramyxoviruses and the susceptibility of recipient human and domestic animal populations are defined by a broad collection of ecological and molecular factors that interact in ways that are not yet fully understood. Nipah and Hendra viruses were the first highly lethal zoonotic paramyxoviruses discovered in modern times, but other paramyxoviruses from multiple genera are present in bats and other reservoirs that have unknown potential to spillover into humans. We outline our current understanding of paramyxovirus reservoir hosts and the ecological factors that may drive spillover, and we explore the molecular barriers to spillover that emergent paramyxoviruses may encounter. By outlining what is known about enzootic paramyxovirus receptor usage, mechanisms of innate immune evasion, and other host-specific interactions, we highlight the breadth of unexplored avenues that may be important in understanding paramyxovirus emergence.
Collapse
Affiliation(s)
| | - Ruth E Watkinson
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Jan F Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
39
|
Lin LT, Richardson CD. The Host Cell Receptors for Measles Virus and Their Interaction with the Viral Hemagglutinin (H) Protein. Viruses 2016; 8:v8090250. [PMID: 27657109 PMCID: PMC5035964 DOI: 10.3390/v8090250] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022] Open
Abstract
The hemagglutinin (H) protein of measles virus (MeV) interacts with a cellular receptor which constitutes the initial stage of infection. Binding of H to this host cell receptor subsequently triggers the F protein to activate fusion between virus and host plasma membranes. The search for MeV receptors began with vaccine/laboratory virus strains and evolved to more relevant receptors used by wild-type MeV. Vaccine or laboratory strains of measles virus have been adapted to grow in common cell lines such as Vero and HeLa cells, and were found to use membrane cofactor protein (CD46) as a receptor. CD46 is a regulator that normally prevents cells from complement-mediated self-destruction, and is found on the surface of all human cells, with the exception of erythrocytes. Mutations in the H protein, which occur during adaptation and allow the virus to use CD46 as a receptor, have been identified. Wild-type isolates of measles virus cannot use the CD46 receptor. However, both vaccine/laboratory and wild-type strains can use an immune cell receptor called signaling lymphocyte activation molecule family member 1 (SLAMF1; also called CD150) and a recently discovered epithelial receptor known as Nectin-4. SLAMF1 is found on activated B, T, dendritic, and monocyte cells, and is the initial target for infections by measles virus. Nectin-4 is an adherens junction protein found at the basal surfaces of many polarized epithelial cells, including those of the airways. It is also over-expressed on the apical and basal surfaces of many adenocarcinomas, and is a cancer marker for metastasis and tumor survival. Nectin-4 is a secondary exit receptor which allows measles virus to replicate and amplify in the airways, where the virus is expelled from the body in aerosol droplets. The amino acid residues of H protein that are involved in binding to each of the receptors have been identified through X-ray crystallography and site-specific mutagenesis. Recombinant measles “blind” to each of these receptors have been constructed, allowing the virus to selectively infect receptor specific cell lines. Finally, the observations that SLAMF1 is found on lymphomas and that Nectin-4 is expressed on the cell surfaces of many adenocarcinomas highlight the potential of measles virus for oncolytic therapy. Although CD46 is also upregulated on many tumors, it is less useful as a target for cancer therapy, since normal human cells express this protein on their surfaces.
Collapse
Affiliation(s)
- Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Christopher D Richardson
- Department of Microbiology and Immunology, Dalhousie University, 5850 College St., Halifax, NS B3H 4R2, Canada.
- Department of Pediatrics and Canadian Center for Vaccinology, Izaak Walton Killam Health Centre, Halifax, NS B3K 6R8, Canada.
| |
Collapse
|
40
|
Martinez-Gutierrez M, Ruiz-Saenz J. Diversity of susceptible hosts in canine distemper virus infection: a systematic review and data synthesis. BMC Vet Res 2016; 12:78. [PMID: 27170307 PMCID: PMC4865023 DOI: 10.1186/s12917-016-0702-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Canine distemper virus (CDV) is the etiological agent of one of the most infectious diseases of domestic dogs, also known as a highly prevalent viral infectious disease of carnivores and posing a conservation threat to endangered species around the world. To get a better panorama of CDV infection in different Orders, a retrospective and documental systematic review of the role of CDV in different non-dog hosts was conducted. The bibliographical data were collected from MedLine/PubMed and Scopus databases. Data related to Order, Family, Genus and Species of the infected animals, the presence or absence of clinical signs, mortality, serological, molecular or antigenic confirmation of CDV infection, geographic location, were collected and summarized. RESULTS Two hundred seventeen scientific articles were considered eligible which includes reports of serological evaluation, and antigenic or genomic confirmation of CDV infection in non-dog hosts. CDV infects naturally and experimentally different members of the Orders Carnivora (in 12 Families), Rodentia (four Families), Primates (two Families), Artiodactyla (three Families) and Proboscidea (one Family). The Order Carnivora (excluding domestic dogs) accounts for the vast majority (87.5%) of the records. Clinical disease associated with CDV infection was reported in 51.8% of the records and serological evidence of CDV infection in apparently healthy animals was found in 49.5% of the records. High mortality rate was showed in some of the recorded infections in Orders different to Carnivora. In non-dog hosts, CDV has been reported all continents with the exception of Australasia and in 43 different countries. CONCLUSIONS The results of this systematic review demonstrate that CDV is able to infect a very wide range of host species from many different Orders and emphasizes the potential threat of infection for endangered wild species as well as raising concerns about potential zoonotic threats following the cessation of large-scale measles vaccination campaigns in the human population.
Collapse
Affiliation(s)
- Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales GRICA, Universidad Cooperativa de Colombia, Calle 30A # 33-51, Bucaramanga, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales GRICA, Universidad Cooperativa de Colombia, Calle 30A # 33-51, Bucaramanga, Colombia.
| |
Collapse
|
41
|
Gordon CH, Banyard AC, Hussein A, Laurenson MK, Malcolm JR, Marino J, Regassa F, Stewart AME, Fooks AR, Sillero-Zubiri C. Canine distemper in endangered Ethiopian wolves. Emerg Infect Dis 2016; 21:824-32. [PMID: 25898177 PMCID: PMC4412237 DOI: 10.3201/eid2105.141920] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Investigation into mortalities within endangered species can direct conservation efforts. The Ethiopian wolf (Canis simensis) is the world’s rarest canid; ≈500 wolves remain. The largest population is found within the Bale Mountains National Park (BMNP) in southeastern Ethiopia, where conservation efforts have demonstrated the negative effect of rabies virus on wolf populations. We describe previously unreported infections with canine distemper virus (CDV) among these wolves during 2005–2006 and 2010. Death rates ranged from 43% to 68% in affected subpopulations and were higher for subadult than adult wolves (83%–87% vs. 34%–39%). The 2010 CDV outbreak started 20 months after a rabies outbreak, before the population had fully recovered, and led to the eradication of several focal packs in BMNP’s Web Valley. The combined effect of rabies and CDV increases the chance of pack extinction, exacerbating the typically slow recovery of wolf populations, and represents a key extinction threat to populations of this highly endangered carnivore.
Collapse
|
42
|
Logan N, McMonagle E, Drew AA, Takahashi E, McDonald M, Baron MD, Gilbert M, Cleaveland S, Haydon DT, Hosie MJ, Willett BJ. Efficient generation of vesicular stomatitis virus (VSV)-pseudotypes bearing morbilliviral glycoproteins and their use in quantifying virus neutralising antibodies. Vaccine 2015; 34:814-22. [PMID: 26706278 PMCID: PMC4742518 DOI: 10.1016/j.vaccine.2015.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/20/2015] [Accepted: 12/06/2015] [Indexed: 12/18/2022]
Abstract
Morbillivirus neutralising antibodies are traditionally measured using either plaque reduction neutralisation tests (PRNTs) or live virus microneutralisation tests (micro-NTs). While both test formats provide a reliable assessment of the strength and specificity of the humoral response, they are restricted by the limited number of viral strains that can be studied and often present significant biological safety concerns to the operator. In this study, we describe the adaptation of a replication-defective vesicular stomatitis virus (VSVΔG) based pseudotyping system for the measurement of morbillivirus neutralising antibodies. By expressing the haemagglutinin (H) and fusion (F) proteins of canine distemper virus (CDV) on VSVΔG pseudotypes bearing a luciferase marker gene, neutralising antibody titres could be measured rapidly and with high sensitivity. Further, by exchanging the glycoprotein expression construct, responses against distinct viral strains or species may be measured. Using this technique, we demonstrate cross neutralisation between CDV and peste des petits ruminants virus (PPRV). As an example of the value of the technique, we demonstrate that UK dogs vary in the breadth of immunity induced by CDV vaccination; in some dogs the neutralising response is CDV-specific while, in others, the neutralising response extends to the ruminant morbillivirus PPRV. This technique will facilitate a comprehensive comparison of cross-neutralisation to be conducted across the morbilliviruses.
Collapse
Affiliation(s)
- Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| | - Elizabeth McMonagle
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| | - Angharad A Drew
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| | - Emi Takahashi
- Royal Veterinary College, University of London, London NW1 0TU, United Kingdom.
| | - Michael McDonald
- Veterinary Diagnostic Services, University of Glasgow, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| | - Michael D Baron
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, United Kingdom.
| | - Martin Gilbert
- Wildlife Conservation Society, Bronx, NY, USA; Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - Sarah Cleaveland
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - Daniel T Haydon
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - Margaret J Hosie
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| | - Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| |
Collapse
|
43
|
Beineke A, Baumgärtner W, Wohlsein P. Cross-species transmission of canine distemper virus-an update. One Health 2015; 1:49-59. [PMID: 28616465 PMCID: PMC5462633 DOI: 10.1016/j.onehlt.2015.09.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 01/13/2023] Open
Abstract
Canine distemper virus (CDV) is a pantropic morbillivirus with a worldwide distribution, which causes fatal disease in dogs. Affected animals develop dyspnea, diarrhea, neurological signs and profound immunosuppression. Systemic CDV infection, resembling distemper in domestic dogs, can be found also in wild canids (e.g. wolves, foxes), procyonids (e.g. raccoons, kinkajous), ailurids (e.g. red pandas), ursids (e.g. black bears, giant pandas), mustelids (e.g. ferrets, minks), viverrids (e.g. civets, genets), hyaenids (e.g. spotted hyenas), and large felids (e.g. lions, tigers). Furthermore, besides infection with the closely related phocine distemper virus, seals can become infected by CDV. In some CDV outbreaks including the mass mortalities among Baikal and Caspian seals and large felids in the Serengeti Park, terrestrial carnivores including dogs and wolves have been suspected as vectors for the infectious agent. In addition, lethal infections have been described in non-carnivore species such as peccaries and non-human primates demonstrating the remarkable ability of the pathogen to cross species barriers. Mutations affecting the CDV H protein required for virus attachment to host-cell receptors are associated with virulence and disease emergence in novel host species. The broad and expanding host range of CDV and its maintenance within wildlife reservoir hosts considerably hampers disease eradication.
Collapse
Affiliation(s)
- Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hanover, Germany
- Center for Systems Neuroscience, Hanover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hanover, Germany
- Center for Systems Neuroscience, Hanover, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hanover, Germany
| |
Collapse
|
44
|
Abstract
Feline morbillivirus (FmoPV) is an emerging virus in cats, which is associated with tubulointerstitial nephritis. To study the in vitro host range of FmoPV, we inoculated FmoPV strain SS1 to 32 cell lines originated from 13 species and cultured for 2 weeks, followed by RNA extraction and reverse-transcription-polymerase chain reaction for FmoPV detection. As a result, only cell lines derived from cats and African green monkeys were susceptible to FmoPV. FmoPV infects diverse feline cell lines: epithelial, fibroblastic, lymphoid and glial cells. These results indicate that the receptor (s) for FmoPV are ubiquitously expressed in cats. No infectivity of FmoPV was observed in human cell lines, which suggests least threatening of cross-species transmission of FmoPV from cats to humans.
Collapse
Affiliation(s)
- Shoichi Sakaguchi
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyu-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
45
|
Zhang X, Wallace OL, Domi A, Wright KJ, Driscoll J, Anzala O, Sanders EJ, Kamali A, Karita E, Allen S, Fast P, Gilmour J, Price MA, Parks CL. Canine distemper virus neutralization activity is low in human serum and it is sensitive to an amino acid substitution in the hemagglutinin protein. Virology 2015; 482:218-24. [PMID: 25880113 DOI: 10.1016/j.virol.2015.03.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/04/2015] [Accepted: 03/17/2015] [Indexed: 02/02/2023]
Abstract
Serum was analyzed from 146 healthy adult volunteers in eastern Africa to evaluate measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb) prevalence and potency. MV plaque reduction neutralization test (PRNT) results indicated that all sera were positive for MV nAbs. Furthermore, the 50% neutralizing dose (ND50) for the majority of sera corresponded to antibody titers induced by MV vaccination. CDV nAbs titers were low and generally were detected in sera with high MV nAb titers. A mutant CDV was generated that was less sensitive to neutralization by human serum. The mutant virus genome had 10 nucleotide substitutions, which coded for single amino acid substitutions in the fusion (F) and hemagglutinin (H) glycoproteins and two substitutions in the large polymerase (L) protein. The H substitution occurred in a conserved region involved in receptor interactions among morbilliviruses, implying that this region is a target for cross-reactive neutralizing antibodies.
Collapse
Affiliation(s)
- Xinsheng Zhang
- AIDS Vaccine Design and Development Laboratory, International AIDS Vaccine Initiative (IAVI), Brooklyn, NY, USA; Molecular and Cellular Biology Program, State University of New York, Brooklyn, NY, USA.
| | - Olivia L Wallace
- AIDS Vaccine Design and Development Laboratory, International AIDS Vaccine Initiative (IAVI), Brooklyn, NY, USA
| | - Arban Domi
- AIDS Vaccine Design and Development Laboratory, International AIDS Vaccine Initiative (IAVI), Brooklyn, NY, USA
| | - Kevin J Wright
- AIDS Vaccine Design and Development Laboratory, International AIDS Vaccine Initiative (IAVI), Brooklyn, NY, USA
| | - Jonathan Driscoll
- AIDS Vaccine Design and Development Laboratory, International AIDS Vaccine Initiative (IAVI), Brooklyn, NY, USA
| | - Omu Anzala
- Kenya AIDS Vaccine Initiative (KAVI)-Institute of Clinical Research, Nairobi, Kenya
| | - Eduard J Sanders
- Centre for Geographic Medicine Research, Kenya Medical Research Institute (KEMRI), Kilifi, Kenya & Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Headington, UK
| | - Anatoli Kamali
- MRC/UVRI Uganda Virus Research Unit on AIDS, Masaka and Entebbe, Uganda
| | | | - Susan Allen
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Pat Fast
- Department of Medical Affairs, International AIDS Vaccine Initiative, NY, NY, USA
| | - Jill Gilmour
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, UK
| | - Matt A Price
- Department of Medical Affairs, International AIDS Vaccine Initiative, NY, NY, USA; Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA, USA
| | - Christopher L Parks
- AIDS Vaccine Design and Development Laboratory, International AIDS Vaccine Initiative (IAVI), Brooklyn, NY, USA; Molecular and Cellular Biology Program, State University of New York, Brooklyn, NY, USA
| |
Collapse
|
46
|
Esumi M, Ishibashi M, Yamaguchi H, Nakajima S, Tai Y, Kikuta S, Sugitani M, Takayama T, Tahara M, Takeda M, Wakita T. Transmembrane serine protease TMPRSS2 activates hepatitis C virus infection. Hepatology 2015; 61:437-46. [PMID: 25203900 PMCID: PMC7165505 DOI: 10.1002/hep.27426] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/30/2014] [Indexed: 12/26/2022]
Abstract
UNLABELLED The human liver reacts to hepatitis C virus (HCV) with a balanced response consisting of host anti- and proviral activities. To explore these subtle host responses, we used oligonucleotide microarrays to investigate the differential gene expression between two groups of liver samples with high and low HCV loads (>100-fold difference). We identified and validated 26 genes that were up-regulated in livers with high HCV loads, including transmembrane protease serine 2 (TMPRSS2). Trypsin inhibitors inhibited the infection of Huh7-25-CD81 cells with cell-culture-derived HCV (HCVcc) of Japanese fulminant hepatitis 1 isolate at the postbinding and entry step, and trypsin enhanced HCVcc infection at an early stage of infection. Several major transmembrane serine proteases, in particular, furin and hepsin, were detected in Huh7-25-CD81 cells, but TMPRSS2 was not. Huh7-25-CD81 cell clones stably expressing TMPRSS2- WT (wild type) and inactive TMPRSS2-mutant genes showed positive and negative enhancement of their susceptibility to HCVcc infection, respectively. The enhanced susceptibility of TMPRSS2-WT Huh7-25-CD81 cells was confirmed by knockdown of TMPRSS2 using small interfering RNA. The cell-surface protease activity of TMPRSS2-WT cells was markedly active in the cleavage of QAR and QGR, corresponding to amino acid residues at P3 to P1. CONCLUSION The cell-surface activity of a trypsin-like serine protease, such as TMPRSS2, activates HCV infection at the postbinding and entry stage. Host transmembrane serine proteases may be involved in the sensitivity, persistence, and pathogenesis of HCV infection and be possible targets for antiviral therapy.
Collapse
Affiliation(s)
- Mariko Esumi
- Department of PathologyNihon University School of MedicineTokyoJapan
| | - Mariko Ishibashi
- Department of PathologyNihon University School of MedicineTokyoJapan
| | - Hiromi Yamaguchi
- Department of PathologyNihon University School of MedicineTokyoJapan,Department of Functional MorphologyNihon University School of MedicineTokyoJapan
| | - Satomi Nakajima
- Department of PathologyNihon University School of MedicineTokyoJapan
| | - Yuhi Tai
- Department of PathologyNihon University School of MedicineTokyoJapan
| | - Sachiko Kikuta
- Department of PathologyNihon University School of MedicineTokyoJapan
| | - Masahiko Sugitani
- Department of PathologyNihon University School of MedicineTokyoJapan
| | - Tadatoshi Takayama
- Department of Digestive SurgeryNihon University School of MedicineTokyoJapan
| | - Maino Tahara
- Department of Virology IIINational Institute of Infectious DiseasesTokyoJapan
| | - Makoto Takeda
- Department of Virology IIINational Institute of Infectious DiseasesTokyoJapan
| | - Takaji Wakita
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| |
Collapse
|
47
|
Park ES, Suzuki M, Kimura M, Maruyama K, Mizutani H, Saito R, Kubota N, Furuya T, Mizutani T, Imaoka K, Morikawa S. Identification of a natural recombination in the F and H genes of feline morbillivirus. Virology 2014; 468-470:524-531. [PMID: 25262470 DOI: 10.1016/j.virol.2014.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 07/31/2014] [Accepted: 09/04/2014] [Indexed: 01/11/2023]
Abstract
Feline morbillivirus (FmoPV) has recently been identified in Hong Kong and Japan. FmoPV is considered to belong to the genus Morbillivirus, in the family Paramyxoviridae. In this study, the complete nucleotide sequences of three strains of FmoPV detected in cats in Japan were determined. Among the six genes in FmoPV; N, P/V/C, M, F, H and L, the P gene showed the highest polymorphism in the nucleotide and putative amino acid sequences among the FmoPV strains. There was no geographical association in terms of the FmoPV phylogeny; however, from extensive phylogenetic and recombination analyses, we found that one Japanese FmoPV strain, MiJP003, was a probable recombinant between two virus strains in the independent lineages found in Japan and Hong Kong, respectively. The recombination was considered to have occurred within the F and H genes. Such recombination is thought to be involved in the evolution of FmoPV.
Collapse
Affiliation(s)
- Eun-Sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Michio Suzuki
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Masanobu Kimura
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Keiji Maruyama
- Tokyo Metropolitan Animal Care and Consultation Center Jounanjima Branch Office, Tokyo 143-0002, Japan
| | - Hiroshi Mizutani
- Tokyo Metropolitan Animal Care and Consultation Center Jounanjima Branch Office, Tokyo 143-0002, Japan
| | - Ryuichi Saito
- Tokyo Metropolitan Animal Care and Consultation Center Jounanjima Branch Office, Tokyo 143-0002, Japan
| | - Nami Kubota
- Tokyo Metropolitan Animal Care and Consultation Center Jounanjima Branch Office, Tokyo 143-0002, Japan
| | - Tetsuya Furuya
- Research and education center for prevention of global infectious diseases of animals, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Tetsuya Mizutani
- Research and education center for prevention of global infectious diseases of animals, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Koichi Imaoka
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| |
Collapse
|
48
|
Li W, Li T, Liu Y, Gao Y, Yang S, Feng N, Sun H, Wang S, Wang L, Bu Z, Xia X. Genetic characterization of an isolate of canine distemper virus from a Tibetan Mastiff in China. Virus Genes 2014; 49:45-57. [PMID: 24691820 PMCID: PMC7089258 DOI: 10.1007/s11262-014-1062-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/12/2014] [Indexed: 11/30/2022]
Abstract
Canine distemper (CD) is a highly contagious, often fatal, multisystemic, and incurable disease in dogs and other carnivores, which is caused by canine distemper virus (CDV). Although vaccines have been used as the principal means of controlling the disease, CD has been reported in vaccinated animals. The hemoagglutinin (H) protein is one of the most important antigens for inducing protective immunity against CD, and antigenic variation of recent CDV strains may explain vaccination failure. In this study, a new CDV isolate (TM-CC) was obtained from a Tibetan Mastiff that died of distemper, and its genome was characterized. Phylogenetic analysis of the H gene revealed that the CDV-TM-CC strain is unique among 20 other CDV strains and can be classified into the Asia-1 group with the Chinese strains, Hebei and HLJ1-06, and the Japanese strain, CYN07-hV. The H gene of CDV-TM-CC shows low identity (90.4 % nt and 88.9 % aa) with the H gene of the classical Onderstepoort vaccine strain, which may explain the inability of the Tibetan Mastiff to mount a protective immune response. We also performed a comprehensive phylogenetic analysis of the N, P, and F protein sequences, as well as potential N-glycosylation sites and cysteine residues. This analysis shows that an N-glycosylation site at aa 108-110 within the F protein of CDV-TM-CC is specific for the wild-type strains (5804P, A75/17, and 164071) and the Asia-1 group strains, and may be another important factor for the poor immune response. These results provide important information for the design of CD vaccines in the China region and elsewhere.
Collapse
Affiliation(s)
- Weike Li
- Wildlife Resources College, Northeast Forestry University, Harbin, 150040 China
| | - Tiansong Li
- College of Chemistry and Biology, Beidhua University, Jinlin, 132013 China
| | - Yuxiu Liu
- Institute of Military Veterinary, Academy of Military Medical Sciences, No. 666, Liuying Xilu, Jingyue Economic Development Zone, Changchun, 130122 China
| | - Yuwei Gao
- Institute of Military Veterinary, Academy of Military Medical Sciences, No. 666, Liuying Xilu, Jingyue Economic Development Zone, Changchun, 130122 China
| | - Songtao Yang
- Institute of Military Veterinary, Academy of Military Medical Sciences, No. 666, Liuying Xilu, Jingyue Economic Development Zone, Changchun, 130122 China
| | - Na Feng
- Institute of Military Veterinary, Academy of Military Medical Sciences, No. 666, Liuying Xilu, Jingyue Economic Development Zone, Changchun, 130122 China
| | - Heting Sun
- Wildlife Resources College, Northeast Forestry University, Harbin, 150040 China
| | - Shengle Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, No. 666, Liuying Xilu, Jingyue Economic Development Zone, Changchun, 130122 China
| | - Lei Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, No. 666, Liuying Xilu, Jingyue Economic Development Zone, Changchun, 130122 China
| | - Zhigao Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001 China
| | - Xianzhu Xia
- Institute of Military Veterinary, Academy of Military Medical Sciences, No. 666, Liuying Xilu, Jingyue Economic Development Zone, Changchun, 130122 China
| |
Collapse
|
49
|
Delpeut S, Noyce RS, Richardson CD. The tumor-associated marker, PVRL4 (nectin-4), is the epithelial receptor for morbilliviruses. Viruses 2014; 6:2268-86. [PMID: 24892636 PMCID: PMC4074928 DOI: 10.3390/v6062268] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 01/25/2023] Open
Abstract
PVRL4 (nectin-4) was recently identified as the epithelial receptor for members of the Morbillivirus genus, including measles virus, canine distemper virus and peste des petits ruminants virus. Here, we describe the role of PVRL4 in morbillivirus pathogenesis and its promising use in cancer therapies. This discovery establishes a new paradigm for the spread of virus from lymphocytes to airway epithelial cells and its subsequent release into the environment. Measles virus vaccine strains have emerged as a promising oncolytic platform for cancer therapy in the last ten years. Given that PVRL4 is a well-known tumor-associated marker for several adenocarcinoma (lung, breast and ovary), the measles virus could potentially be used to specifically target, infect and destroy cancers expressing PVRL4.
Collapse
Affiliation(s)
- Sebastien Delpeut
- The Department of Microbiology and Immunology, Dalhousie University, Halifax, B3H 1X5 NS, Canada.
| | - Ryan S Noyce
- The Department of Microbiology and Immunology, Dalhousie University, Halifax, B3H 1X5 NS, Canada.
| | - Christopher D Richardson
- The Department of Microbiology and Immunology, Dalhousie University, Halifax, B3H 1X5 NS, Canada.
| |
Collapse
|
50
|
Identification of amino acid substitutions with compensational effects in the attachment protein of canine distemper virus. J Virol 2014; 88:8057-64. [PMID: 24807725 DOI: 10.1128/jvi.00454-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hemagglutinin (H) gene of canine distemper virus (CDV) encodes the receptor-binding protein. This protein, together with the fusion (F) protein, is pivotal for infectivity since it contributes to the fusion of the viral envelope with the host cell membrane. Of the two receptors currently known for CDV (nectin-4 and the signaling lymphocyte activation molecule [SLAM]), SLAM is considered the most relevant for host susceptibility. To investigate how evolution might have impacted the host-CDV interaction, we examined the functional properties of a series of missense single nucleotide polymorphisms (SNPs) naturally accumulating within the H-gene sequences during the transition between two distinct but related strains. The two strains, a wild-type strain and a consensus strain, were part of a single continental outbreak in European wildlife and occurred in distinct geographical areas 2 years apart. The deduced amino acid sequence of the two H genes differed at 5 residues. A panel of mutants carrying all the combinations of the SNPs was obtained by site-directed mutagenesis. The selected mutant, wild type, and consensus H proteins were functionally evaluated according to their surface expression, SLAM binding, fusion protein interaction, and cell fusion efficiencies. The results highlight that the most detrimental functional effects are associated with specific sets of SNPs. Strikingly, an efficient compensational system driven by additional SNPs appears to come into play, virtually neutralizing the negative functional effects. This system seems to contribute to the maintenance of the tightly regulated function of the H-gene-encoded attachment protein. Importance: To investigate how evolution might have impacted the host-canine distemper virus (CDV) interaction, we examined the functional properties of naturally occurring single nucleotide polymorphisms (SNPs) in the hemagglutinin gene of two related but distinct strains of CDV. The hemagglutinin gene encodes the attachment protein, which is pivotal for infection. Our results show that few SNPs have a relevant detrimental impact and they generally appear in specific combinations (molecular signatures). These drastic negative changes are neutralized by compensatory mutations, which contribute to maintenance of an overall constant bioactivity of the attachment protein. This compensational mechanism might reflect the reaction of the CDV machinery to the changes occurring in the virus following antigenic variations critical for virulence.
Collapse
|