1
|
Ali SI, Salama A. Natural Immunomodulatory Agents as a Complementary Therapy for Poxviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:337-354. [PMID: 38801589 DOI: 10.1007/978-3-031-57165-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviruses target innate immunity mediators such as tumor necrosis factors, interleukins, interferons, complement, and chemokines. It also targets adaptive immunity such as CD4+ T cells, CD4+ T cells, and B cells. Emerging of the recent epidemic of monkeypox virus (MPXV), a zoonotic disease native to Central and Western Africa, besides the lack of permitted treatments for poxviruses infections, encouraged researchers to identify effective inhibitors to help in preventing and treating poxviruses infections. Natural bioactive components, particularly polyphenolics, are promising for creating powerful antioxidants, anti-inflammatory, immune-stimulating, and antiviral agents. As a result, they are potentially effective therapies for preventing and treating viral diseases, such as infections caused by poxviruses including the recent pandemic MPXV. Polyphenolics: rosmarinic acid, caffeic acid, resveratrol, quercitrin, myricitrin, gingerol, gallotannin, and propolis-benzofuran A, as well as isoquinoline alkaloids: galanthamine and thalimonine represent prospective antiviral agents against MPXV, they can inhibit MPXV and other poxviruses via targeting different viral elements including DNA Topoisomerase I (TOP1), Thymidine Kinase (TK), serine/threonine protein kinase (Ser/Thr kinase), and protein A48R. The bioactive extracts of different traditional plants including Guiera senegalensis, Larrea tridentata, Sarracenia purpurea, Kalanchoe pinnata (Lam.) Pers., Zingiber officinale Roscoe, Quercus infectoria, Rhus chinensis, Prunella vulgaris L., Salvia rosmarinus, and Origanum vulgare also can inhibit the growth of different poxviruses including MPXV, vaccinia virus (VACV), variola virus, buffalopox virus, fowlpox virus, and cowpox virus. There is an urgent need for additional molecular studies to identify and confirm the anti-poxviruses properties of various natural bioactive components, especially those that showed potent antiviral activity against other viruses.
Collapse
Affiliation(s)
- Sami I Ali
- Plant Biochemistry Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt.
| | - Abeer Salama
- Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt
| |
Collapse
|
2
|
Wang B, Cao B, Bei ZC, Xu L, Zhang D, Zhao L, Song Y, Wang H. Disulfide-incorporated lipid prodrugs of cidofovir: Synthesis, antiviral activity, and release mechanism. Eur J Med Chem 2023; 258:115601. [PMID: 37390509 PMCID: PMC10290961 DOI: 10.1016/j.ejmech.2023.115601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
The double-stranded DNA (dsDNA) viruses represented by adenovirus and monkeypox virus, have attracted widespread attention due to their high infectivity. In 2022, the global outbreak of mpox (or monkeypox) has led to the declaration of a Public Health Emergency of International Concern. However, to date therapeutics approved for dsDNA virus infections remain limited and there are still no available treatments for some of these diseases. The development of new therapies for treating dsDNA infection is in urgent need. In this study, we designed and synthesized a series of novel disulfide-incorporated lipid conjugates of cidofovir (CDV) as potential candidates against dsDNA viruses including vaccinia virus (VACV) and adenovirus (AdV) 5. The structure-activity relationship analyses revealed that the optimum linker moiety was C2H4 and the optimum aliphatic chain length was 18 or 20 atoms. Among the synthesized conjugates, 1c exhibited more potency against VACV (IC50 = 0.0960 μM in Vero cells; IC50 = 0.0790 μM in A549 cells) and AdV5 (IC50 = 0.1572 μM in A549 cells) than brincidofovir (BCV). The transmission electron microscopy (TEM) images revealed that the conjugates could form micelles in phosphate buffer. The stability studies in the GSH environment demonstrated that the formation of micelles in phosphate buffer might protect the disulfide bond from glutathione (GSH) reduction. The dominant means of the synthetic conjugates to liberate the parent drug CDV was by enzymatic hydrolysis. Furthermore, the synthetic conjugates remained sufficiently stable in simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and pooled human plasma, which indicated the possibility for oral administration. These results indicated 1c may be a broad-spectrum antiviral candidate against dsDNA viruses with potential oral administration. Moreover, modification of the aliphatic chain attached to the nucleoside phosphonate group was involved as an efficient prodrug strategy for the development of potent antiviral candidates.
Collapse
Affiliation(s)
- Baogang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Binwang Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhu-Chun Bei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Likun Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Dongna Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Liangliang Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yabin Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Hongquan Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
3
|
Wang J, Shahed-Ai-Mahmud M, Chen A, Li K, Tan H, Joyce R. An Overview of Antivirals against Monkeypox Virus and Other Orthopoxviruses. J Med Chem 2023; 66:4468-4490. [PMID: 36961984 DOI: 10.1021/acs.jmedchem.3c00069] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The current monkeypox outbreaks during the COVID-19 pandemic have reignited interest in orthopoxvirus antivirals. Monkeypox belongs to the Orthopoxvirus genus of the Poxviridae family, which also includes the variola virus, vaccinia virus, and cowpox virus. Two orally bioavailable drugs, tecovirimat and brincidofovir, have been approved for treating smallpox infections. Given their human safety profiles and in vivo antiviral efficacy in animal models, both drugs have also been recommended to treat monkeypox infection. To facilitate the development of additional orthopoxvirus antivirals, we summarize the antiviral activity, mechanism of action, and mechanism of resistance of orthopoxvirus antivirals. This perspective covers both direct-acting and host-targeting antivirals with an emphasis on drug candidates showing in vivo antiviral efficacy in animal models. We hope to speed the orthopoxvirus antiviral drug discovery by providing medicinal chemists with insights into prioritizing proper drug targets and hits for further development.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Md Shahed-Ai-Mahmud
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Angelo Chen
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ryan Joyce
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
4
|
Khani E, Afsharirad B, Entezari-Maleki T. Monkeypox treatment: Current evidence and future perspectives. J Med Virol 2023; 95:e28229. [PMID: 36253931 DOI: 10.1002/jmv.28229] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 01/11/2023]
Abstract
As of September 11, 2022, 57 669 reports of monkeypox infection raised global concern. Previous vaccinia virus vaccination can protect from monkeypox. However, after smallpox eradication, immunization against that was stopped. Indeed, therapeutic options following the disease onset are of great value. This study aimed to review the available evidence on virology and treatment approaches for monkeypox and provide guidance for patient care and future studies. Since no randomized clinical trials were ever performed, we reviewed monkeypox animal model studies and clinical trials on the safety and pharmacokinetics of available medications. Brincidofovir and tecovirimat were the most studied medications that got approval for smallpox treatment according to the Animal Rule. Due to the conserved virology among Orthopoxviruses, available medications might also be effective against monkeypox. However, tecovirimat has the strongest evidence to be effective and safe for monkeypox treatment, and if there is a choice between the two drugs, tecovirimat has shown more promise so far. The risk of resistance should be considered in patients who failed to respond to tecovirimat. Hence, the target-based design of novel antivirals will enhance the availability and spectrum of effective anti-Orthopoxvirus agents.
Collapse
Affiliation(s)
- Elnaz Khani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bentelhoda Afsharirad
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Brown LE, Seitz S, Kondas AV, Marcyk PT, Filone CM, Hossain MM, Schaus SE, Olson VA, Connor JH. Identification of Small Molecules with Improved Potency against Orthopoxviruses from Vaccinia to Smallpox. Antimicrob Agents Chemother 2022; 66:e0084122. [PMID: 36222522 PMCID: PMC9664851 DOI: 10.1128/aac.00841-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
The genus Orthopoxvirus contains several human pathogens, including vaccinia, monkeypox, cowpox, and variola virus, the causative agent of smallpox. Although there are a few effective vaccines, widespread prophylactic vaccination has ceased and is unlikely to resume, making therapeutics increasingly important to treat poxvirus disease. Here, we described efforts to improve the potency of the anti-poxvirus small molecule CMLDBU6128. This class of small molecules, referred to as pyridopyrimidinones (PDPMs), showed a wide range of biological activities. Through the synthesis and testing of several exploratory chemical libraries based on this molecule, we identified several compounds that had increased potency from the micromolar into the nanomolar range. Two compounds, designated (12) and (16), showed inhibitory concentrations of 326 nM and 101 nM, respectively, which was more than a 10-fold increase in potency to CMLDBU6128 with an inhibitory concentration of around 6 μM. We also expanded our investigation of the breadth of action of these molecules and showed that they can inhibit the replication of variola virus, a related orthopoxvirus. Together, these findings highlighted the promise of this new class of antipoxviral agents as broad-spectrum small molecules with significant potential to be developed as antiviral therapy. This would add a small molecule option for therapy of spreading diseases, including monkeypox and cowpox viruses, that would also be expected to have efficacy against smallpox.
Collapse
Affiliation(s)
- Lauren E. Brown
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Scott Seitz
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Ashley V. Kondas
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul T. Marcyk
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Claire Marie Filone
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Mohammad M. Hossain
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Scott E. Schaus
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Victoria A. Olson
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John H. Connor
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Cao S, Realegeno S, Pant A, Satheshkumar PS, Yang Z. Suppression of Poxvirus Replication by Resveratrol. Front Microbiol 2017; 8:2196. [PMID: 29204136 PMCID: PMC5698801 DOI: 10.3389/fmicb.2017.02196] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/26/2017] [Indexed: 01/08/2023] Open
Abstract
Poxviruses continue to cause serious diseases even after eradication of the historically deadly infectious human disease, smallpox. Poxviruses are currently being developed as vaccine vectors and cancer therapeutic agents. Resveratrol is a natural polyphenol stilbenoid found in plants that has been shown to inhibit or enhance replication of a number of viruses, but the effect of resveratrol on poxvirus replication is unknown. In the present study, we found that resveratrol dramatically suppressed the replication of vaccinia virus (VACV), the prototypic member of poxviruses, in various cell types. Resveratrol also significantly reduced the replication of monkeypox virus, a zoonotic virus that is endemic in Western and Central Africa and causes human mortality. The inhibitory effect of resveratrol on poxviruses is independent of VACV N1 protein, a potential resveratrol binding target. Further experiments demonstrated that resveratrol had little effect on VACV early gene expression, while it suppressed VACV DNA synthesis, and subsequently post-replicative gene expression.
Collapse
Affiliation(s)
- Shuai Cao
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Susan Realegeno
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Anil Pant
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Panayampalli S. Satheshkumar
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Zhilong Yang
- Division of Biology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
7
|
Olson VA, Shchelkunov SN. Are We Prepared in Case of a Possible Smallpox-Like Disease Emergence? Viruses 2017; 9:E242. [PMID: 32962316 PMCID: PMC5618008 DOI: 10.3390/v9090242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022] Open
Abstract
Smallpox was the first human disease to be eradicated, through a concerted vaccination campaign led by the World Health Organization. Since its eradication, routine vaccination against smallpox has ceased, leaving the world population susceptible to disease caused by orthopoxviruses. In recent decades, reports of human disease from zoonotic orthopoxviruses have increased. Furthermore, multiple reports of newly identified poxviruses capable of causing human disease have occurred. These facts raise concerns regarding both the opportunity for these zoonotic orthopoxviruses to evolve and become a more severe public health issue, as well as the risk of Variola virus (the causative agent of smallpox) to be utilized as a bioterrorist weapon. The eradication of smallpox occurred prior to the development of the majority of modern virological and molecular biological techniques. Therefore, there is a considerable amount that is not understood regarding how this solely human pathogen interacts with its host. This paper briefly recounts the history and current status of diagnostic tools, vaccines, and anti-viral therapeutics for treatment of smallpox disease. The authors discuss the importance of further research to prepare the global community should a smallpox-like virus emerge.
Collapse
Affiliation(s)
- Victoria A. Olson
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Sergei N. Shchelkunov
- Department of Genomic Research and Development of DNA Diagnostics of Poxviruses, State Research Center of Virology and Biotechnology VECTOR, Koltsovo, 630559 Novosibirsk Region, Russia
- Department of Molecular Biology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Abstract
The development of resistance to existing antimicrobials has created a threat to human health that is not being addressed through our current drug pipeline. Limitations with the use of commercial vendor libraries and natural products have created a need for new types of small molecules to be screened in antimicrobial assays. Diversity oriented synthesis (DOS) is a strategy for the efficient generation of compound collections with a high degree of structural diversity. Diversity-oriented synthesis molecules occupy the middle ground of both complexity and efficiency of synthesis between natural products and commercial libraries. In this review we focus upon the use of diversity-oriented synthesis compound collections for the discovery of new antimicrobial agents.
Collapse
|
9
|
Filone CM, Dower K, Cowley GS, Hensley LE, Connor JH. Probing the virus host interaction in high containment: an approach using pooled short hairpin RNA. Assay Drug Dev Technol 2015; 13:34-43. [PMID: 25646658 DOI: 10.1089/adt.2014.613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The study of viruses in high containment offers unique challenges for technology-intense approaches. These approaches include high-throughput screening for small-molecule antivirals and genetic perturbation-based screens for host factors required for viral replication. Here, we describe the use of whole-genome scale pooled short hairpin RNA (shRNA) libraries to screen for host factors necessary for viral infection at BSL2, and the transition of this technique into the BSL4 environment. Pooled screening provides a unique way to circumvent many of the technological challenges associated with other high-throughput screening approaches in high containment. Our pooled screening approach identified host factors involved in the replication of orthopoxviruses (Vaccinia and Monkeypox) and filoviruses (Ebola and Marburg) under conditions that enable straightforward screen-to-follow-up approaches.
Collapse
Affiliation(s)
- Claire Marie Filone
- 1 National Emerging Infectious Diseases Laboratory, Boston University School of Medicine , Boston, Massachusetts
| | | | | | | | | |
Collapse
|
10
|
Rozelle DK, Filone CM, Dower K, Connor JH. Vaccinia reporter viruses for quantifying viral function at all stages of gene expression. J Vis Exp 2014:51522. [PMID: 24894622 PMCID: PMC4188345 DOI: 10.3791/51522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Poxviruses are a family of double stranded DNA viruses that include active human pathogens such as monkeypox, molluscum contagiousum, and Contagalo virus. The family also includes the smallpox virus, Variola. Due to the complexity of poxvirus replication, many questions still remain regarding their gene expression strategy. In this article we describe the conceptualization and usage of recombinant vaccinia viruses that enable real-time measurement of single and multiple stages of viral gene expression in a high-throughput format. This is enabled through the use of spectrally distinct fluorescent proteins as reporters for each of three stages of viral replication. These viruses provide a high signal-to-noise ratio while retaining stage specific expression patterns, enabling plate-based assays and microscopic observations of virus propagation and replication. These tools have uses for antiviral discovery, studies of the virus-host interaction, and evolutionary biology.
Collapse
Affiliation(s)
- Daniel K Rozelle
- Department of Microbiology, Boston University School of Medicine
| | | | - Ken Dower
- Department of Microbiology, Boston University School of Medicine
| | - John H Connor
- Department of Microbiology, Boston University School of Medicine;
| |
Collapse
|
11
|
Activation of stress response pathways promotes formation of antiviral granules and restricts virus replication. Mol Cell Biol 2014; 34:2003-16. [PMID: 24662051 DOI: 10.1128/mcb.01630-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The formation of protein-RNA granules is a part of both natural cellular function (P-bodies and nuclear HNRNPs) and the response to cellular stress (stress granules and ND10 bodies). To better understand the role of stress-induced granules in viral infection, we have studied the ability of cells to restrict poxvirus replication through the formation of antiviral granules (AVGs). Of cells infected with a wild-type poxvirus, a small number spontaneously formed AVGs. In these AVG-positive cells, viral gene expression was inhibited. The addition of compounds that altered RNA helicase activity, induced oxidative stress, or stimulated translation initiation factor phosphorylation significantly increased the number of AVG-positive cells. When AVGs formed, both viral translation and titers were decreased even when host translation persisted. Treatment with the antiviral compound isatin β-thiosemicarbazone (IBT), a compound that was used to treat smallpox infections, induced AVGs, suggesting a role for these structures in the pharmacological inhibition of poxvirus replication. These findings provide evidence that AVGs are an innate host response that can be exogenously stimulated to combat virus infection. Since small molecules are able to stimulate AVG formation, it is a potential target for new antiviral development.
Collapse
|
12
|
Filone CM, Caballero IS, Dower K, Mendillo ML, Cowley GS, Santagata S, Rozelle DK, Yen J, Rubins KH, Hacohen N, Root DE, Hensley LE, Connor J. The master regulator of the cellular stress response (HSF1) is critical for orthopoxvirus infection. PLoS Pathog 2014; 10:e1003904. [PMID: 24516381 PMCID: PMC3916389 DOI: 10.1371/journal.ppat.1003904] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/12/2013] [Indexed: 12/17/2022] Open
Abstract
The genus Orthopoxviridae contains a diverse group of human pathogens including monkeypox, smallpox and vaccinia. These viruses are presumed to be less dependent on host functions than other DNA viruses because they have large genomes and replicate in the cytoplasm, but a detailed understanding of the host factors required by orthopoxviruses is lacking. To address this topic, we performed an unbiased, genome-wide pooled RNAi screen targeting over 17,000 human genes to identify the host factors that support orthopoxvirus infection. We used secondary and tertiary assays to validate our screen results. One of the strongest hits was heat shock factor 1 (HSF1), the ancient master regulator of the cytoprotective heat-shock response. In investigating the behavior of HSF1 during vaccinia infection, we found that HSF1 was phosphorylated, translocated to the nucleus, and increased transcription of HSF1 target genes. Activation of HSF1 was supportive for virus replication, as RNAi knockdown and HSF1 small molecule inhibition prevented orthopoxvirus infection. Consistent with its role as a transcriptional activator, inhibition of several HSF1 targets also blocked vaccinia virus replication. These data show that orthopoxviruses co-opt host transcriptional responses for their own benefit, thereby effectively extending their functional genome to include genes residing within the host DNA. The dependence on HSF1 and its chaperone network offers multiple opportunities for antiviral drug development.
Collapse
Affiliation(s)
- Claire Marie Filone
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, Maryland, United States of America
- * E-mail:
| | - Ignacio S. Caballero
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ken Dower
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Marc L. Mendillo
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Glenn S. Cowley
- The Broad Institute, Cambridge Massachusetts, United States of America
| | - Sandro Santagata
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Daniel K. Rozelle
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Judy Yen
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Kathleen H. Rubins
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Nir Hacohen
- The Broad Institute, Cambridge Massachusetts, United States of America
| | - David E. Root
- The Broad Institute, Cambridge Massachusetts, United States of America
| | - Lisa E. Hensley
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, Maryland, United States of America
| | - John Connor
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Filone CM, Connor JH. Approaches for antiviral probe development: new libraries, new mechanisms. Future Virol 2013. [DOI: 10.2217/fvl.13.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Claire Marie Filone
- Boston University School of Medicine, Department of Microbiology, 72 East Concord St, Boston, MA 02118, USA
| | - John H Connor
- Boston University School of Medicine, Department of Microbiology, 72 East Concord St, Boston, MA 02118, USA
| |
Collapse
|
14
|
Prichard MN, Kern ER. Orthopoxvirus targets for the development of new antiviral agents. Antiviral Res 2012; 94:111-25. [PMID: 22406470 PMCID: PMC3773844 DOI: 10.1016/j.antiviral.2012.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/10/2012] [Accepted: 02/21/2012] [Indexed: 12/29/2022]
Abstract
Investments in the development of new drugs for orthopoxvirus infections have fostered new avenues of research, provided an improved understanding of orthopoxvirus biology and yielded new therapies that are currently progressing through clinical trials. These broad-based efforts have also resulted in the identification of new inhibitors of orthopoxvirus replication that target many different stages of viral replication cycle. This review will discuss progress in the development of new anti-poxvirus drugs and the identification of new molecular targets that can be exploited for the development of new inhibitors. The prototype of the orthopoxvirus group is vaccinia virus and its replication cycle will be discussed in detail noting specific viral functions and their associated gene products that have the potential to serve as new targets for drug development. Progress that has been achieved in recent years should yield new drugs for the treatment of these infections and might also reveal new approaches for antiviral drug development with other viruses.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35233-1711, United States.
| | | |
Collapse
|