1
|
Bębnowska D, Hrynkiewicz R, Wiśniewska K, Żabińska M, Rintz E, Pierzynowska K, Niedźwiedzka-Rystwej P. Apoptosis activation during Lagovirus europaeus/GI.2 infection in rabbits. Front Microbiol 2024; 14:1308018. [PMID: 38333074 PMCID: PMC10851742 DOI: 10.3389/fmicb.2023.1308018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024] Open
Abstract
Rabbit Haemorrhagic Disease (RHD) is a severe disease caused by Lagovirus europaeus/GI.1 and GI.2. Immunological processes such as apoptosis are important factors involved in the pathogenesis of Rabbit Haemorrhagic Disease (RHD). The process of programmed cell death has been quite well characterized in infection with GI.1 strains, but apoptosis in infection with GI.2 strains has not been widely studied. This is particularly important as several studies have shown that significant differences in the host immune response are observed during infection with different strains of Lagovirus europaeus. In this study, we analyzed the gene expression, protein levels and activity of key apoptotic cell death factors in the spleen, kidney, lung, and heart of rabbits. As a result, we showed that there is a significant increase in caspase-3, Bax, Bcl2 and Bax/Bcl2 mRNA gene expression ratio in organs of infected animals. Our results show also increased levels of cleaved caspase-3, caspase-6 and PARP. Moreover, significant activity of caspase-3 was also detected. Our results indicate that caspase-3, caspase-6 and genes coding Bcl2 family proteins play a key role in the apoptotic response in Lagovirus europaeus/GI.2 infection in organs that are not the target of virus replication.
Collapse
Affiliation(s)
| | | | - Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
2
|
Bębnowska D, Hrynkiewicz R, Rzeszotek S, Freus M, Poniewierska-Baran A, Niedźwiedzka-Rystwej P. Apoptotic Cell Death in an Animal Model of Virus-Induced Acute Liver Failure-Observations during Lagovirus europaeus/GI.2 Infection. Int J Mol Sci 2024; 25:798. [PMID: 38255873 PMCID: PMC10815770 DOI: 10.3390/ijms25020798] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
Lagovirus europaeus/GI.2 causes severe and highly fatal Rabbit Hemorrhagic Disease (RHD). Because of its characteristics, this infection is used as an animal model for acute liver failure (ALF). Apoptosis is one of the key processes underlying ALF and has been described as one of the mechanisms of RHD pathogenesis. Apoptotic cell death has been quite well characterized in infection with different variants of GI.1 strains, but so far, the GI.2 genotype has not been widely studied. In this study, we performed an evaluation of apoptotic cell death in hepatocytes of rabbits infected with Lagovirus europaeus/GI.2. We analyzed the expression of genes involved in apoptotic cell death by real-time PCR and performed immunohistochemical (IHC) assays. We showed a significant increase in the expression of caspase-3 and the proapoptotic Bax and anti-apoptotic Bcl-2 in infected animals. In addition, we recorded increased Bax/Bcl-2 ratios. IHC analyses showed the presence of morphological signs of apoptosis in the hepatocytes of infected rabbits. Our results indicate that caspase-3 and proteins from the Bcl-2 families play a key role in apoptosis induced by Lagovirus europaeus/GI.2 infection.
Collapse
Affiliation(s)
- Dominika Bębnowska
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (A.P.-B.)
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (A.P.-B.)
| | - Sylwia Rzeszotek
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (S.R.); (M.F.)
| | - Marika Freus
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (S.R.); (M.F.)
| | - Agata Poniewierska-Baran
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (A.P.-B.)
| | | |
Collapse
|
3
|
Crosstalk between apoptosis and cytotoxic lymphocytes (CTLs) in the course of Lagovirus europaeus GI.1a infection in rabbits. J Vet Res 2023; 67:41-47. [PMID: 37008759 PMCID: PMC10062044 DOI: 10.2478/jvetres-2023-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Abstract
Introduction
Lagovirus europaeus is a single-stranded RNA virus causing an acute fatal disease in wild and domestic rabbits around the world. Studies have shown that the pivotal process impacting the immune response against the disease is apoptosis, registered mainly in hepatocytes and in peripheral blood, together with an increased number of cytotoxic lymphocytes (CTLs). It is known that cytotoxic lymphocytes can induce target cells to undergo apoptosis on the pseudoreceptor pathway, such apoptosis having been found in several acute and chronic viral infections. The study aimed to assess the crosstalk between the apoptosis of peripheral blood lymphocytes and CD8+ T lymphocytes (as CTLs) in rabbits infected with 6 Lagovirus europaeus GI.1a viruses.
Material and Methods
Sixty rabbits of Polish hybrid breed comprising both sexes and weighing 3.2–4.2 kg were the experimental group, and an identical group was the control. Each of the six GI.1a Lagovirus europaeus viruses was inoculated into ten experimental rabbits. Control rabbits received glycerol as a placebo. Flow cytometric analysis was performed on blood from the study and control group animals for peripheral blood lymphocyte apoptosis and CTL percentage determination.
Results
The activation of apoptosis in peripheral blood lymphocytes was recorded from 4 h post inoculation (p.i.) up to 36 h p.i. The percentage of CTLs in the total blood pool decreased from 8 to 36 h p.i. A negative correlation between apoptosis of lymphocytes and the number of CTLs was proven.
Conclusion
This may be the first evidence of virus-induced CTL apoptosis in Lagovirus europaeus GI.1a infection.
Collapse
|
4
|
O'Toole AD, Mohamed FM, Zhang J, Brown CC. Early pathogenesis in rabbit hemorrhagic disease virus 2. Microb Pathog 2022; 173:105814. [DOI: 10.1016/j.micpath.2022.105814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
|
5
|
Hefler J, Marfil-Garza BA, Pawlick RL, Freed DH, Karvellas CJ, Bigam DL, Shapiro AMJ. Preclinical models of acute liver failure: a comprehensive review. PeerJ 2021; 9:e12579. [PMID: 34966588 PMCID: PMC8667744 DOI: 10.7717/peerj.12579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Acute liver failure is marked by the rapid deterioration of liver function in a previously well patient over period of days to weeks. Though relatively rare, it is associated with high morbidity and mortality. This makes it a challenging disease to study clinically, necessitating reliance on preclinical models as means to explore pathophysiology and novel therapies. Preclinical models of acute liver failure are artificial by nature, and generally fall into one of three categories: surgical, pharmacologic or immunogenic. This article reviews preclinical models of acute liver failure and considers their relevance in modeling clinical disease.
Collapse
Affiliation(s)
- Joshua Hefler
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Braulio A Marfil-Garza
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,National Institutes of Medical Sciences & Nutrition Salvador Zubiran, Mexico City, Mexico.,CHRISTUS-LatAm Hub Excellence & Innovation Center, Monterrey, Mexico
| | - Rena L Pawlick
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Darren H Freed
- Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Constantine J Karvellas
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Critical Care Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - David L Bigam
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - A M James Shapiro
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
New insights into IL-6 family cytokines in metabolism, hepatology and gastroenterology. Nat Rev Gastroenterol Hepatol 2021; 18:787-803. [PMID: 34211157 DOI: 10.1038/s41575-021-00473-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
IL-6 family cytokines are defined by the common use of the signal-transducing receptor chain glycoprotein 130 (gp130). Increasing evidence indicates that these cytokines are essential in the regulation of metabolic homeostasis as well as in the pathophysiology of multiple gastrointestinal and liver disorders, thus making them attractive therapeutic targets. Over the past few years, therapies modulating gp130 signalling have grown exponentially in several clinical settings including obesity, cancer and inflammatory bowel disease. A newly engineered gp130 cytokine, IC7Fc, has shown promising preclinical results for the treatment of type 2 diabetes, obesity and liver steatosis. Moreover, drugs that modulate gp130 signalling have shown promise in refractory inflammatory bowel disease in clinical trials. A deeper understanding of the main roles of the IL-6 family of cytokines during homeostatic and pathological conditions, their signalling pathways, sources of production and target cells will be crucial to the development of improved treatments. Here, we review the current state of the role of these cytokines in hepatology and gastroenterology and discuss the progress achieved in translating therapeutics targeting gp130 signalling into clinical practice.
Collapse
|
7
|
Reactivity of selected markers of innate and adaptive immunity in rabbits experimentally infected with antigenic variants of RHD (Lagovirus europaeus/GI.1a). Vet Res Commun 2021; 46:233-242. [PMID: 34713305 PMCID: PMC8791865 DOI: 10.1007/s11259-021-09851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/15/2021] [Indexed: 11/05/2022]
Abstract
Lagovirus europaeus/GI.1 causes a fatal viral condition in rabbits characterized by acute viral hepatitis and disseminated intravascular coagulation. Due to rapid viral and environmental changes variants (Lagovirus europaeus/GI.1a and GI.2) have appeared and few immunological studies were performed. The aim of the study was to determine innate and adaptive immunity parameters in rabbits infected with six Lagovirus europeus/GI.1a viruses. To achieve the goal several methods were used, i.e. cytometry, microscopy, biochemical and cytochemical tests, spectrophotometry. The results show that three immunotypes exists among the studied strains and they differ in innate (mainly) and adaptive immunity, partly depending on hemagglutination. The peak of changes is 24 h post infection in phagocytosis markers of polymorphonuclear cells and CD8+ T cells. Lagovirus europaeus/GI.1a strains differ from Lagovirus europaeus/GI.1 in terms of immunological response based on our previous work concerning the same parameters in immunological response against this disease.
Collapse
|
8
|
Abstract
Viral diseases, whether of animals or humans, are normally considered as problems to be managed. However, in Australia, two viruses have been used as landscape-scale therapeutics to control European rabbits (Oryctolagus cuniculus), the preeminent invasive vertebrate pest species. Rabbits have caused major environmental and agricultural losses and contributed to extinction of native species. It was not until the introduction of Myxoma virus that effective control of this pest was obtained at a continental scale. Subsequent coevolution of rabbit and virus saw a gradual reduction in the effectiveness of biological control that was partially ameliorated by the introduction of the European rabbit flea to act as an additional vector for the virus. In 1995, a completely different virus, Rabbit hemorrhagic disease virus (RHDV), escaped from testing and spread through the Australian rabbit population and again significantly reduced rabbit numbers and environmental impacts. The evolutionary pressures on this virus appear to be producing quite different outcomes to those that occurred with myxoma virus and the emergence and invasion of a novel genotype of RHDV in 2014 have further augmented control. Molecular studies on myxoma virus have demonstrated multiple proteins that manipulate the host innate and adaptive immune response; however the molecular basis of virus attenuation and reversion to virulence are not yet understood.
Collapse
|
9
|
Müller C, Hrynkiewicz R, Bębnowska D, Maldonado J, Baratelli M, Köllner B, Niedźwiedzka-Rystwej P. Immunity against Lagovirus europaeus and the Impact of the Immunological Studies on Vaccination. Vaccines (Basel) 2021; 9:vaccines9030255. [PMID: 33805607 PMCID: PMC8002203 DOI: 10.3390/vaccines9030255] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
In the early 1980s, a highly contagious viral hemorrhagic fever in rabbits (Oryctolagus cuniculus) emerged, causing a very high rate of mortality in these animals. Since the initial occurrence of the rabbit hemorrhagic disease virus (RHDV), several hundred million rabbits have died after infection. The emergence of genetically-different virus variants (RHDV GI.1 and GI.2) indicated the very high variability of RHDV. Moreover, with these variants, the host range broadened to hare species (Lepus). The circulation of RHDV genotypes displays different virulences and a limited induction of cross-protective immunity. Interestingly, juvenile rabbits (<9 weeks of age) with an immature immune system display a general resistance to RHDV GI.1, and a limited resistance to RHDV GI.2 strains, whereas less than 3% of adult rabbits survive an infection by either RHDV GI.1. or GI.2. Several not-yet fully understood phenomena characterize the RHD. A very low infection dose followed by an extremely rapid viral replication could be simplified to the induction of a disseminated intravascular coagulopathy (DIC), a severe loss of lymphocytes—especially T-cells—and death within 36 to 72 h post infection. On the other hand, in animals surviving the infection or after vaccination, very high titers of RHDV-neutralizing antibodies were induced. Several studies have been conducted in order to deepen the knowledge about the virus’ genetics, epidemiology, RHDV-induced pathology, and the anti-RHDV immune responses of rabbits in order to understand the phenomenon of the juvenile resistance to this virus. Moreover, several approaches have been used to produce efficient vaccines in order to prevent an infection with RHDV. In this review, we discuss the current knowledge about anti-RHDV resistance and immunity, RHDV vaccination, and the further need to establish rationally-based RHDV vaccines.
Collapse
Affiliation(s)
- Claudia Müller
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany;
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (D.B.)
| | - Dominika Bębnowska
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (D.B.)
| | | | | | - Bernd Köllner
- Institute of Immunology, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany
- Correspondence: (B.K.); (P.N.-R.)
| | - Paulina Niedźwiedzka-Rystwej
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (D.B.)
- Correspondence: (B.K.); (P.N.-R.)
| |
Collapse
|
10
|
Hukowska-Szematowicz B, Maciejak-Jastrzębska A, Blatkiewicz M, Maciak K, Góra M, Janiszewska J, Burzyńska B. Changes in MicroRNA Expression during Rabbit Hemorrhagic Disease Virus (RHDV) Infection. Viruses 2020; 12:v12090965. [PMID: 32878241 PMCID: PMC7552042 DOI: 10.3390/v12090965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 01/25/2023] Open
Abstract
Current knowledge on the role of microRNAs (miRNAs) in rabbit hemorrhagic disease virus (RHDV) infection and the pathogenesis of rabbit hemorrhagic disease (RHD) is still limited. RHDV replicates in the liver, causing hepatic necrosis and liver failure. MiRNAs are a class of short RNA molecules, and their expression profiles vary over the course of diseases, both in the tissue environment and in the bloodstream. This paper evaluates the expression of miRNAs in the liver tissue (ocu-miR-122-5p, ocu-miR-155-5p, and ocu-miR-16b-5p) and serum (ocu-miR-122-5p) of rabbits experimentally infected with RHDV. The expression levels of ocu-miR-122-5p, ocu-miR-155-5p, and ocu-miR-16b-5p in liver tissue were determined using reverse transcription quantitative real-time PCR (RT-qPCR), and the expression level of circulating ocu-miR-122-5p was established using droplet digital PCR (ddPCR). The expression levels of ocu-miR-155-5p and ocu-miR-16b-5p were significantly higher in the infected rabbits compared to the healthy rabbits (a fold-change of 5.8 and 2.5, respectively). The expression of ocu-miR-122-5p was not significantly different in the liver tissue from the infected rabbits compared to the healthy rabbits (p = 0.990), while the absolute expression level of the circulating ocu-miR-122-5p was significantly higher in the infected rabbits than in the healthy rabbits (p < 0.0001). Furthermore, a functional analysis showed that ocu-miR-155-5p, ocu-miR-16b-5p, and ocu-miR-122-5p can regulate the expression of genes involved in processes correlated with acute liver failure (ALF) in rabbits. Search tool for the retrieval of interacting genes/proteins (STRING) analysis showed that the potential target genes of the three selected miRNAs may interact with each other in different pathways. The results indicate the roles of these miRNAs in RHDV infection and over the course of RHD and may reflect hepatic inflammation and impairment/dysfunction in RHD.
Collapse
Affiliation(s)
- Beata Hukowska-Szematowicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
- Correspondence: ; Tel.: +48-914441592
| | - Agata Maciejak-Jastrzębska
- Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | | | - Karolina Maciak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (K.M.); (M.G.); (B.B.)
| | - Monika Góra
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (K.M.); (M.G.); (B.B.)
| | - Joanna Janiszewska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland;
| | - Beata Burzyńska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (K.M.); (M.G.); (B.B.)
| |
Collapse
|
11
|
Crespo I, Fernández-Palanca P, San-Miguel B, Álvarez M, González-Gallego J, Tuñón MJ. Melatonin modulates mitophagy, innate immunity and circadian clocks in a model of viral-induced fulminant hepatic failure. J Cell Mol Med 2020; 24:7625-7636. [PMID: 32468679 PMCID: PMC7339179 DOI: 10.1111/jcmm.15398] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
The haemorrhagic disease virus (RHDV) is a non‐cultivable virus that promotes in rabbits an acute disease which accomplishes many characteristics of an animal model of fulminant hepatic failure (FHF). Beneficial effects of melatonin have been reported in RHDV‐infected rabbits. This study investigated whether protection against viral‐derived liver injury by melatonin is associated with modulation of mitophagy, innate immunity and clock signalling. Rabbits were experimentally infected with 2 × 104 haemagglutination units of a RHDV isolate and killed at 18, 24 and 30 hours after infection (hpi). Melatonin (20 mg/kg body weight ip) was administered at 0, 12 and 24 hpi. RHDV infection induced mitophagy, with the presence of a high number of mitophagosomes in hepatocytes and increased expression of mitophagy genes. Greater expression of main innate immune intermediaries and inflammasome components was also found in livers with RHDV‐induced FHF. Both mitophagy and innate immunity activation was significantly hindered by melatonin. FHF induction also elicited an early dysregulation in clock signalling, and melatonin was able to prevent such circadian disruption. Our study discloses novel molecular routes contributing to RHDV‐induced damage progression and supports the potential of melatonin as a promising therapeutic option in human FHF.
Collapse
Affiliation(s)
- Irene Crespo
- Institute of Biomedicine (IBIOMED), University of León, León, Spain.,Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | | | | | | | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - María Jesús Tuñón
- Institute of Biomedicine (IBIOMED), University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| |
Collapse
|
12
|
Sánchez-Garrido AI, Prieto-Vicente V, Blanco-Gozalo V, Arévalo M, Quiros Y, López-Montañés D, López-Hernández FJ, Rodríguez-Pérez A, López-Novoa JM. Preventive Effect of Cardiotrophin-1 Administration before DSS-Induced Ulcerative Colitis in Mice. J Clin Med 2019; 8:jcm8122086. [PMID: 31805674 PMCID: PMC6947259 DOI: 10.3390/jcm8122086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/23/2022] Open
Abstract
Ulcerative colitis is a relatively frequent, chronic disease that impacts significantly the patient's quality of life. Although many therapeutic options are available, additional approaches are needed because many patients either do not respond to current therapies or show significant side effects. Cardiotrophin-1 (CT-1) is a cytokine with potent cytoprotective, anti-inflammatory, and antiapoptotic properties. The purpose of this study was to assess if the administration of CT-1 could reduce colon damage in mice with experimental colitis was induced with 5% dextran sulfate sodium (DSS) in the drinking water. Half of the mice received an i.v. dose of CT-1 (200 µg/kg) 2 h before and 2 and 4 days after DSS administration. Animals were followed during 7 days after DSS administration. The severity of colitis was measured by standard scores. Colon damage was assessed by histology and immunohistochemistry. Inflammatory mediators were measured by Western blot and PCR. CT-1 administration to DSS-treated mice ameliorated both the clinical course (disease activity index), histological damage, inflammation (colon expression of TNF-α, IL-17, IL-10, INF IFN-γ, and iNOS), and apoptosis. Our results suggest that CT-1 administration before induction of colitis improves the clinical course, tissue damage, and inflammation in DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Ana I. Sánchez-Garrido
- Department of Gastroenterology, University Hospital of Salamanca, 37007 Salamanca, Spain; (A.I.S.-G.); (V.P.-V.); (A.R.-P.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain.; (M.A.); (D.L.-M.); (F.J.L.-H.)
| | - Vanessa Prieto-Vicente
- Department of Gastroenterology, University Hospital of Salamanca, 37007 Salamanca, Spain; (A.I.S.-G.); (V.P.-V.); (A.R.-P.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain.; (M.A.); (D.L.-M.); (F.J.L.-H.)
| | - Víctor Blanco-Gozalo
- Bio-inRen S.L. Faculty of Medicine, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (V.B.-G.); (Y.Q.)
| | - Miguel Arévalo
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain.; (M.A.); (D.L.-M.); (F.J.L.-H.)
- Department of Human Anatomy and Histology, University of Salamanca, 37007 Salamanca, Spain
| | - Yaremi Quiros
- Bio-inRen S.L. Faculty of Medicine, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (V.B.-G.); (Y.Q.)
| | - Daniel López-Montañés
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain.; (M.A.); (D.L.-M.); (F.J.L.-H.)
- Bio-inRen S.L. Faculty of Medicine, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (V.B.-G.); (Y.Q.)
| | - Francisco J. López-Hernández
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain.; (M.A.); (D.L.-M.); (F.J.L.-H.)
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
| | - Antonio Rodríguez-Pérez
- Department of Gastroenterology, University Hospital of Salamanca, 37007 Salamanca, Spain; (A.I.S.-G.); (V.P.-V.); (A.R.-P.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain.; (M.A.); (D.L.-M.); (F.J.L.-H.)
| | - José M. López-Novoa
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain.; (M.A.); (D.L.-M.); (F.J.L.-H.)
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-923294500; Fax: +34-923294669
| |
Collapse
|
13
|
Chen M, Liu X, Hu B, Fan Z, Song Y, Wei H, Qiu R, Xu W, Zhu W, Wang F. Rabbit Hemorrhagic Disease Virus Non-structural Protein 6 Induces Apoptosis in Rabbit Kidney Cells. Front Microbiol 2019; 9:3308. [PMID: 30687286 PMCID: PMC6333657 DOI: 10.3389/fmicb.2018.03308] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/19/2018] [Indexed: 01/18/2023] Open
Abstract
Rabbit hemorrhagic disease (RHD) is a highly contagious disease caused by rabbit hemorrhagic disease virus (RHDV). Previous research has shown that RHDV induces apoptosis in numerous cell types, although the molecular mechanisms underlying the apoptosis induced by RHDV are not well understood. One possible factor is non-structural protein 6 (NSP6), a 3C-like protease that plays an important role in processing viral polyprotein precursors into mature non-structural proteins. To fully establish a role for NSP6, the present study examined the effects of ectopic expression of the protein in rabbit (RK13) and human (HeLa and HepG2) cells. We found that NSP6 suppressed cell viability and promoted apoptosis in all three cell types in a dose-dependent manner. We also identified increased caspase-3, -8, and -9 activities in RK13 cell, and an increased Bax to Bcl2 mRNA ratio. Mechanistically, the ability of NSP6 to induce apoptosis was impaired by mutation of the catalytic His27 residue. Our study has shown that RHDV NSP6 can induce apoptosis in host cells and is likely an important contributor to RHDV-induced apoptosis and pathogenesis.
Collapse
Affiliation(s)
- Mengmeng Chen
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xing Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bo Hu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhiyu Fan
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanhua Song
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Houjun Wei
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rulong Qiu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Weizhong Xu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Weifeng Zhu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fang Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
14
|
Neave MJ, Hall RN, Huang N, McColl KA, Kerr P, Hoehn M, Taylor J, Strive T. Robust Innate Immunity of Young Rabbits Mediates Resistance to Rabbit Hemorrhagic Disease Caused by Lagovirus Europaeus GI.1 But Not GI.2. Viruses 2018; 10:E512. [PMID: 30235853 PMCID: PMC6163550 DOI: 10.3390/v10090512] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 01/07/2023] Open
Abstract
The rabbit caliciviruses Lagovirus europaeus GI.1 and GI.2 both cause acute necrotizing hepatitis in European rabbits (Oryctolagus cuniculus). Whilst GI.2 is highly virulent in both young and adult rabbits, rabbits younger than eight weeks of age are highly resistant to disease caused by GI.1, although they are still permissive to infection and viral replication. To investigate the underlying mechanism(s) of this age related resistance to GI.1, we compared liver transcriptomes of young rabbits infected with GI.1 to those of adult rabbits infected with GI.1 and young rabbits infected with GI.2. Our data suggest that kittens have constitutively heightened innate immune responses compared to adult rabbits, particularly associated with increased expression of major histocompatibility class II molecules and activity of natural killer cells, macrophages, and cholangiocytes. This enables them to respond more rapidly to GI.1 infection than adult rabbits and thus limit virus-induced pathology. In contrast, these responses were not fully developed during GI.2 infection. We speculate that the observed downregulation of multiple genes associated with innate immunity in kittens during GI.2 infection may be due to virally-mediated immunomodulation, permitting fatal disease to develop. Our study provides insight into the fundamental host⁻pathogen interactions responsible for the differences in age-related susceptibility, which likely plays a critical role in defining the success of GI.2 in outcompeting GI.1 in the field.
Collapse
Affiliation(s)
- Matthew J Neave
- CSIRO Australian Animal Health Laboratory, Geelong, VIC 3220, Australia.
| | - Robyn N Hall
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia.
| | - Nina Huang
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia.
| | - Kenneth A McColl
- CSIRO Australian Animal Health Laboratory, Geelong, VIC 3220, Australia.
| | - Peter Kerr
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia.
| | - Marion Hoehn
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia.
| | | | - Tanja Strive
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia.
| |
Collapse
|
15
|
Cardiotrophin-1 attenuates experimental colitis in mice. Clin Sci (Lond) 2018; 132:985-1001. [PMID: 29572384 DOI: 10.1042/cs20171513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
Abstract
Cardiotrophin-1 (CT-1) holds potent anti-inflammatory, cytoprotective, and anti-apoptotic effects in the liver, kidneys, and heart. In the present study, the role of endogenous CT-1 and the effect of exogenous CT-1 were evaluated in experimental ulcerative colitis. Colitis was induced in CT-1 knockout and wild-type (WT) mice by administration of dextran sulphate sodium (DSS) in the drinking water during 7 days. CT-1 knockout mice showed higher colon damage and disease severity than WT mice. In addition, CT-1 (200 µg/kg/day, iv) or vehicle (as control) was administered during 3 days to WT, colitic mice, starting on day 4 after initiation of DSS. Disease activity index (DAI), inflammatory markers (tumor necrosis factor α (TNF-α), INFγ, IL-17, IL-10, inducible nitric oxide synthase (iNOS)), colon damage, apoptosis (cleaved caspase 3), nuclear factor κB (NFκB) and STAT-3 activation, and bacterial translocation were measured. Compared with mice treated with DSS, mice also treated with exogenous CT-1 showed lower colon damage, DAI, plasma levels of TNFα, colon expression of TNF-α, INFγ, IL-17, iNOS and cleaved caspase 3, higher NFκB and signal transducer and activator of transcription 3 (STAT3) pathways activation, and absence of bacterial translocation. We conclude that endogenous CT-1 plays a role in the defense and repair response of the colon against ulcerative lesions through an anti-inflammatory and anti-apoptotic effect. Supplementation with exogenous CT-1 ameliorates disease symptoms, which opens a potentially new therapeutic strategy for ulcerative colitis.
Collapse
|
16
|
Esteves PJ, Abrantes J, Baldauf HM, BenMohamed L, Chen Y, Christensen N, González-Gallego J, Giacani L, Hu J, Kaplan G, Keppler OT, Knight KL, Kong XP, Lanning DK, Le Pendu J, de Matos AL, Liu J, Liu S, Lopes AM, Lu S, Lukehart S, Manabe YC, Neves F, McFadden G, Pan R, Peng X, de Sousa-Pereira P, Pinheiro A, Rahman M, Ruvoën-Clouet N, Subbian S, Tuñón MJ, van der Loo W, Vaine M, Via LE, Wang S, Mage R. The wide utility of rabbits as models of human diseases. Exp Mol Med 2018; 50:1-10. [PMID: 29789565 PMCID: PMC5964082 DOI: 10.1038/s12276-018-0094-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 12/11/2022] Open
Abstract
Studies using the European rabbit Oryctolagus cuniculus contributed to elucidating numerous fundamental aspects of antibody structure and diversification mechanisms and continue to be valuable for the development and testing of therapeutic humanized polyclonal and monoclonal antibodies. Additionally, during the last two decades, the use of the European rabbit as an animal model has been increasingly extended to many human diseases. This review documents the continuing wide utility of the rabbit as a reliable disease model for development of therapeutics and vaccines and studies of the cellular and molecular mechanisms underlying many human diseases. Examples include syphilis, tuberculosis, HIV-AIDS, acute hepatic failure and diseases caused by noroviruses, ocular herpes, and papillomaviruses. The use of rabbits for vaccine development studies, which began with Louis Pasteur’s rabies vaccine in 1881, continues today with targets that include the potentially blinding HSV-1 virus infection and HIV-AIDS. Additionally, two highly fatal viral diseases, rabbit hemorrhagic disease and myxomatosis, affect the European rabbit and provide unique models to understand co-evolution between a vertebrate host and viral pathogens. Rabbits offer a powerful complement to rodents as a model for studying human immunology, disease pathology, and responses to infectious disease. A review from Pedro Esteves at the University of Porto, Portugal, Rose Mage of the National Institute of Allergy and Infectious Disease, Bethesda, USA and colleagues highlights some of the areas of research where rabbits offer an edge over rats and mice. Rabbits have a particularly sophisticated adaptive immune system, which could provide useful insights into human biology and produce valuable research and clinical reagents. They are also excellent models for studying - infectious diseases such as syphilis and tuberculosis, which produce pathology that closely resembles that of human patients. Rabbit-specific infections such as myxomatosis are giving researchers insights into how pathogens and hosts can shape each other’s evolution.
Collapse
Affiliation(s)
- Pedro J Esteves
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal. .,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal. .,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU), Gandra, Portugal.
| | - Joana Abrantes
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Hanna-Mari Baldauf
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, 81377, Munich, Germany
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA, 92697, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA.,Institute for Immunology, University of California, Irvine School of Irvine, School of Medicine, Irvine, CA, 92697, USA
| | - Yuxing Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Neil Christensen
- Departments of Pathology, Microbiology and Immunology, and Comparative Medicine, Penn State University, Hershey, PA, USA
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of León, 24071, León, Spain
| | - Lorenzo Giacani
- Departments of Medicine and Global Health, University of Washington, Seattle, USA
| | - Jiafen Hu
- Departments of Pathology, Microbiology and Immunology, and Comparative Medicine, Penn State University, Hershey, PA, USA
| | - Gilla Kaplan
- Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, 81377, Munich, Germany
| | - Katherine L Knight
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY10016, USA
| | - Dennis K Lanning
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Jacques Le Pendu
- CRCINA, Inserm, Université d'Angers, Université de Nantes, Nantes, France
| | - Ana Lemos de Matos
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ, 85287-5401, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, 72205, USA
| | - Shuying Liu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Ana M Lopes
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Sheila Lukehart
- Departments of Medicine and Global Health, University of Washington, Seattle, USA
| | - Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabiana Neves
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Grant McFadden
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ, 85287-5401, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY10016, USA
| | - Xuwen Peng
- Departments of Pathology, Microbiology and Immunology, and Comparative Medicine, Penn State University, Hershey, PA, USA
| | - Patricia de Sousa-Pereira
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.,Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, 81377, Munich, Germany
| | - Ana Pinheiro
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Masmudur Rahman
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ, 85287-5401, USA
| | | | - Selvakumar Subbian
- The Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers Biomedical and Health Sciences (RBHS), Rutgers University, Newark, NJ, USA
| | - Maria Jesús Tuñón
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of León, 24071, León, Spain
| | - Wessel van der Loo
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Michael Vaine
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Laura E Via
- Tubercolosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Institute of Infectious Disease and Molecular Medicine, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Rose Mage
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Trzeciak-Ryczek A, Tokarz-Deptuła B, Deptuła W. Expression of IL-1Ra, IL-6, IL-8, IL-18, TNF-α and IFN-γ genes in peripheral blood leukocytes of rabbits infected with RHDV (Rabbit Haemorrhagic Disease Virus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:310-315. [PMID: 28689774 DOI: 10.1016/j.dci.2017.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Rabbit haemorrhagic disease virus (RHDV) induces a highly contagious and extremely lethal disease that fulfils many requirements of an animal model of fulminant hepatic failure (FHF); however, the pathogenesis of RHD has still not been fully elucidated. Cytokines play an important role in regulation of the immune response and pathogenesis of many diseases, including those caused by viral infections. Furthermore, recent studies indicate a role of the immune response, especially peripheral blood leukocytes (PBL), in the pathogenesis of RHD. Thus, in the present study we investigated the expression of IL-1Ra, IL-6, IL-8, IL-18, TNF-α and IFN-γ genes in PBL of RHDV-infected rabbits. We also compared the expression of genes encoding these cytokines in rabbits with different course of RHDV infection (in animals that died 36 h post infection or survived even over 60 h after infection). The study revealed increased expression of genes encoding pro-inflammatory cytokines: IL-6, IL-8, TNF-α, IFN-γ in PBL of RHDV-infected rabbits. Moreover, the level of cytokine gene expression depended on the course of RHD. Hence, the results obtained indicate the potential role of these cytokines in RHDV infection and their influence on the survival time of infected rabbits.
Collapse
Affiliation(s)
- Alicja Trzeciak-Ryczek
- Department of Immunology, Faculty of Biology, University of Szczecin, Szczecin, Poland; Molecular Biology and Biotechnology Center, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Beata Tokarz-Deptuła
- Department of Immunology, Faculty of Biology, University of Szczecin, Szczecin, Poland; Molecular Biology and Biotechnology Center, Faculty of Biology, University of Szczecin, Szczecin, Poland.
| | - Wiesław Deptuła
- Department of Microbiology, Faculty of Biology, University of Szczecin, Szczecin, Poland; Molecular Biology and Biotechnology Center, Faculty of Biology, University of Szczecin, Szczecin, Poland
| |
Collapse
|
18
|
Liu X, Hu B, Wang F, Song Y, Fan Z, Wei H, Qiu R, Xu W. Molecular cloning of the rabbit interleukin 6 promoter: Functional characterization of rabbit hemorrhagic disease virus response elements in RK-13 cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:280-288. [PMID: 27492646 DOI: 10.1016/j.dci.2016.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Infection with rabbit hemorrhagic disease virus (RHDV) can cause acute liver failure (ALF), leading to severe mortality in rabbits. Inflammatory response, especially the expression of inflammatory cytokines such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6, may play major roles in mediating and amplifying the ALF. Among these cytokines, IL-6 is a multifunctional cytokine with a central role in various physiological inflammatory and immunological processes. In this study, we found that RHDV infection significantly upregulated IL-6 gene expression in vivo. Next, the rabbit IL-6 promoter was cloned and analyzed. Transfection of full-length RHDV cDNA in RK-13 cells upregulated the activity of the IL-6 promoter. A series of 5' deletion constructs demonstrated that AP-1 (activator protein 1), NF-IL6 (nuclear factor interleukin-6), and NF-κB (nuclear factor kappa B) elements were critical for RHDV-induced IL-6 transcription. Besides, the CREB (cAMP-response element binding protein) element may also play an accessory effect on RHDV-induced IL-6 transcription. Collectively, the results elucidate the mechanism of IL-6 induction, and enrich the RHDV pathogenesis in rabbit.
Collapse
Affiliation(s)
- Xing Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Bo Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Fang Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China.
| | - Yanhua Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Zhiyu Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Houjun Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Rulong Qiu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Weizhong Xu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| |
Collapse
|
19
|
Crespo I, San-Miguel B, Sánchez DI, González-Fernández B, Álvarez M, González-Gallego J, Tuñón MJ. Melatonin inhibits the sphingosine kinase 1/sphingosine-1-phosphate signaling pathway in rabbits with fulminant hepatitis of viral origin. J Pineal Res 2016; 61:168-76. [PMID: 27101794 DOI: 10.1111/jpi.12335] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/19/2016] [Indexed: 01/08/2023]
Abstract
The sphingosine kinase (SphK)1/sphingosine-1-phosphate (S1P) pathway is involved in multiple biological processes, including liver diseases. This study investigate whether modulation of the SphK1/S1P system associates to the beneficial effects of melatonin in an animal model of acute liver failure (ALF) induced by the rabbit hemorrhagic disease virus (RHDV). Rabbits were experimentally infected with 2 × 10(4) hemagglutination units of a RHDV isolate and received 20 mg/kg of melatonin at 0, 12, and 24 hr postinfection. Liver mRNA levels, protein concentration, and immunohistochemical labeling for SphK1 increased in RHDV-infected rabbits. S1P production and protein expression of the S1PR1 receptor were significantly elevated following RHDV infection. These effects were significantly reduced by melatonin. Rabbits also exhibited increased expression of toll-like receptor (TLR)4, tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, nuclear factor-kappa B (NF-κB) p50 and p65 subunits, and phosphorylated inhibitor of kappa B (IκB)α. Melatonin administration significantly inhibited those changes and induced a decreased immunoreactivity for RHDV viral VP60 antigen in the liver. Results obtained indicate that the SphK1/S1P system activates in parallel to viral replication and the inflammatory process induced by the virus. Inhibition of the lipid signaling pathway by the indole reveals novel molecular pathways that may account for the protective effect of melatonin in this animal model of ALF, and supports the potential of melatonin as an antiviral agent.
Collapse
Affiliation(s)
- Irene Crespo
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Beatriz San-Miguel
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Diana I Sánchez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | | | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - María J Tuñón
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| |
Collapse
|
20
|
Trzeciak-Ryczek A, Tokarz-Deptuła B, Deptuła W. Expression of IL-1β, IL-2, IL-10, TNF-β and GM-CSF in peripheral blood leukocytes of rabbits experimentally infected with rabbit haemorrhagic disease virus. Vet Microbiol 2016; 186:71-81. [PMID: 27016760 DOI: 10.1016/j.vetmic.2016.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 02/12/2016] [Accepted: 02/23/2016] [Indexed: 12/29/2022]
Abstract
Rabbit haemorrhagic disease (RHD) is a highly morbid and mortal viral infection of European rabbits. This disease is one of the main causes of death in wild rabbits, and results in large economic losses in farms of rabbits worldwide. Although the first outbreak of this disease was noted in 1984, the pathogenesis of RHD and mechanisms of RHDV (rabbit haemorrhagic disease virus) pathogenecity have still not been fully elucidated. Recent studies indicate a role of the immune response, especially peripheral blood leukocytes (PBL), in the pathogenesis of this disease. Thus, in the present study we investigated the expression of IL-1β, IL-2, IL-10, TNF-β and GM-CSF genes in PBL of RHDV-infected rabbits. We also compared the expression of genes encoding these cytokines in rabbits with different course of RHDV infection (in animals that died 36h postinfection or survived until 60th h after infection). The study revealed that three (IL-10, TNF-β and GM-CSF) out of five investigated genes encoding cytokines showed increased expression in PBL of RHDV-infected rabbits, and the level of expression depended on the course of RHD. The results indicate the potential role of these cytokines in RHDV infection and their influence on the survival time of infected rabbits.
Collapse
Affiliation(s)
- Alicja Trzeciak-Ryczek
- Department of Immunology, Faculty of Biology, University of Szczecin, Poland; Molecular Biology and Biotechnology Center, Faculty of Biology, University of Szczecin, Poland.
| | - Beata Tokarz-Deptuła
- Department of Immunology, Faculty of Biology, University of Szczecin, Poland; Molecular Biology and Biotechnology Center, Faculty of Biology, University of Szczecin, Poland
| | - Wiesław Deptuła
- Department of Microbiology, Faculty of Biology, University of Szczecin, Poland; Molecular Biology and Biotechnology Center, Faculty of Biology, University of Szczecin, Poland
| |
Collapse
|
21
|
López-Yoldi M, Moreno-Aliaga MJ, Bustos M. Cardiotrophin-1: A multifaceted cytokine. Cytokine Growth Factor Rev 2015; 26:523-32. [PMID: 26188636 DOI: 10.1016/j.cytogfr.2015.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
Cardiotrophin-1 (CT-1) is a member of the gp130 family of cytokines that have pleiotropic functions on different tissues and cell types. Although many effects of CT-1 have been described on the heart, there is an extensive research showing important protective effects in other organs such as liver, kidney or nervous system. Recently, several studies have pointed out that CT-1 might also play a key role in the regulation of body weight and intermediate metabolism. This paper will review many aspects of CT-1 physiological role in several organs and discuss data for consideration in therapeutic approaches.
Collapse
Affiliation(s)
- Miguel López-Yoldi
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Centre for Nutrition Research, University of Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Matilde Bustos
- Area of Hepatology and Gene Therapy, CIMA (Center for Applied Medical Research) University of Navarra, Pamplona, Spain.
| |
Collapse
|
22
|
A real time Taqman RT-PCR for the detection of rabbit hemorrhagic disease virus 2 (RHDV2). J Virol Methods 2015; 219:90-95. [DOI: 10.1016/j.jviromet.2015.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/06/2015] [Accepted: 03/18/2015] [Indexed: 11/23/2022]
|
23
|
Nistal-Villán E, Rodríguez-García E, Di Scala M, Ferrero-Laborda R, Olagüe C, Vales Á, Carte-Abad B, Crespo I, García-Sastre A, Prieto J, Larrea E, González-Aseguinolaza G. A RIG-I 2CARD-MAVS200 Chimeric Protein Reconstitutes IFN-β Induction and Antiviral Response in Models Deficient in Type I IFN Response. J Innate Immun 2015; 7:466-81. [PMID: 25966783 PMCID: PMC4553127 DOI: 10.1159/000375262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 01/12/2023] Open
Abstract
RIG-I-like receptors (RLRs) are cellular sensor proteins that detect certain RNA species produced during viral infections. RLRs activate a signaling cascade that results in the production of IFN-β as well as several other cytokines with antiviral and proinflammatory activities. We explored the potential of different constructs based on RLRs to induce the IFN-β pathway and create an antiviral state in type I IFN-unresponsive models. A chimeric construct composed of RIG-I 2CARD and the first 200 amino acids of MAVS (2CARD-MAVS200) showed an enhanced ability to induce IFN-β when compared to other stimulatory constructs. Furthermore, this human chimeric construct showed a superior ability to activate IFN-β expression in cells from various species. This construct was found to overcome the restrictions of blocking IFN-β induction or signaling by a number of viral IFN-antagonist proteins. Additionally, the antiviral activity of this chimera was demonstrated in influenza virus and HBV infection mouse models using adeno-associated virus (AAV) vectors as a delivery vehicle. We propose that AAV vectors expressing 2CARD-MAVS200 chimeric protein can reconstitute IFN-β induction and recover a partial antiviral state in different models that do not respond to recombinant IFN-β treatment.
Collapse
Affiliation(s)
- Estanislao Nistal-Villán
- Centro de Investigación Médica Aplicada, Gene Therapy and Regulation of Gene Expression Program, University of León, Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, University of León, Pamplona, Spain
| | - Estefanía Rodríguez-García
- Centro de Investigación Médica Aplicada, Gene Therapy and Regulation of Gene Expression Program, University of León, Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, University of León, Pamplona, Spain
| | - Marianna Di Scala
- Centro de Investigación Médica Aplicada, Gene Therapy and Regulation of Gene Expression Program, University of León, Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, University of León, Pamplona, Spain
| | - Roberto Ferrero-Laborda
- Centro de Investigación Médica Aplicada, Gene Therapy and Regulation of Gene Expression Program, University of León, Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, University of León, Pamplona, Spain
| | - Cristina Olagüe
- Centro de Investigación Médica Aplicada, Gene Therapy and Regulation of Gene Expression Program, University of León, Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, University of León, Pamplona, Spain
| | - África Vales
- Centro de Investigación Médica Aplicada, Gene Therapy and Regulation of Gene Expression Program, University of León, Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, University of León, Pamplona, Spain
| | - Beatriz Carte-Abad
- Centro de Investigación Médica Aplicada, Gene Therapy and Regulation of Gene Expression Program, University of León, Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, University of León, Pamplona, Spain
| | - Irene Crespo
- Institute of Biomedicine (IBIOMED), CIBERehd, University of León, León, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, New York, N.Y., USA
- Global Health and Emerging Pathogens Institute, New York, N.Y., USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, N.Y., USA
| | - Jesús Prieto
- Centro de Investigación Médica Aplicada, Gene Therapy and Regulation of Gene Expression Program, University of León, Pamplona, Spain
- Clínica Universidad de Navarra, CIBERehd, University of León, Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, University of León, Pamplona, Spain
| | - Esther Larrea
- Centro de Investigación Médica Aplicada, Gene Therapy and Regulation of Gene Expression Program, University of León, Pamplona, Spain
- Instituto de Salud Tropical, University of Navarra, Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, University of León, Pamplona, Spain
| | - Gloria González-Aseguinolaza
- Centro de Investigación Médica Aplicada, Gene Therapy and Regulation of Gene Expression Program, University of León, Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, University of León, Pamplona, Spain
| |
Collapse
|
24
|
Tuñón MJ, San-Miguel B, Crespo I, Laliena A, Vallejo D, Álvarez M, Prieto J, González-Gallego J. Melatonin treatment reduces endoplasmic reticulum stress and modulates the unfolded protein response in rabbits with lethal fulminant hepatitis of viral origin. J Pineal Res 2013; 55:221-8. [PMID: 23679826 DOI: 10.1111/jpi.12063] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/26/2013] [Indexed: 12/15/2022]
Abstract
Hepatocyte apoptosis plays an important role in the development of fulminant hepatic failure (FHF). The objective of this study was to investigate whether endoplasmic reticulum (ER) stress and unfolded protein response (UPR) inhibition is an underlying mechanism of melatonin anti-apoptotic effects in an animal model of FHF of viral origin induced by the rabbit hemorrhagic disease virus (RHDV). Rabbits were experimentally infected with 2 × 10(4) hemagglutination units of a RHDV isolate and received melatonin at two concentrations of 10 mg/kg and 20 mg/kg at 0 hr, 12 hr and 24 hr postinfection. RHDV infection induced increased expression of CCAAT/enhancer-binding protein homologous protein (CHOP), immunoglobulin heavy chain binding protein (BiP/GRP78), glucose-regulated protein 94 (GRP94), phospho-c-Jun N-terminal kinase (JNK) and caspase-12. These effects were attenuated by melatonin. Double immunofluorescence staining showed colocalization of CHOP and cleaved caspase-3 in liver sections of RHDV-infected rabbits, while immunostaining decreased markedly with melatonin treatment. RHDV infection resulted in significant increases in the mRNA levels of activating transcription factor 6 (ATF6), ATF4, inositol-requiring enzyme 1 (IRE1), spliced X-box binding protein-1 (XBP1s) and tumor necrosis factor receptor-associated factor 2 (TRAF2). Melatonin attenuated the extent of the changes. Data obtained provide evidence that in rabbits with experimental infection by RHDV, reduction in apoptotic liver damage by melatonin is associated with attenuation of ER stress through a modulation of the three arms of UPR signaling and further support a potential hepatoprotective role of melatonin in FHF.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Apoptosis
- Caliciviridae Infections/drug therapy
- Caliciviridae Infections/genetics
- Caliciviridae Infections/metabolism
- Caliciviridae Infections/pathology
- Disease Models, Animal
- Endoplasmic Reticulum Stress/drug effects
- Hemorrhagic Disease Virus, Rabbit/metabolism
- Hepatitis, Viral, Animal/drug therapy
- Hepatitis, Viral, Animal/metabolism
- Hepatitis, Viral, Animal/pathology
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Hepatocytes/virology
- Liver Failure, Acute/drug therapy
- Liver Failure, Acute/metabolism
- Liver Failure, Acute/pathology
- Liver Failure, Acute/virology
- Male
- Melatonin/pharmacology
- Rabbits
- Signal Transduction
- Unfolded Protein Response/drug effects
Collapse
Affiliation(s)
- María J Tuñón
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Strazzabosco M. EASL recognition awardee 2013: Professor Jesus Prieto. J Hepatol 2013; 59:408-10. [PMID: 23764136 DOI: 10.1016/j.jhep.2013.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/05/2013] [Indexed: 12/04/2022]
|
26
|
Abstract
Viral diseases of rabbits have been used historically to study oncogenesis (e.g. rabbit fibroma virus, cottontail rabbit papillomavirus) and biologically to control feral rabbit populations (e.g. myxoma virus). However, clinicians seeing pet rabbits in North America infrequently encounter viral diseases although myxomatosis may be seen occasionally. The situation is different in Europe and Australia, where myxomatosis and rabbit hemorrhagic disease are endemic. Advances in epidemiology and virology have led to detection of other lapine viruses that are now recognized as agents of emerging infectious diseases. Rabbit caliciviruses, related to rabbit hemorrhagic disease, are generally avirulent, but lethal variants are being identified in Europe and North America. Enteric viruses including lapine rotavirus, rabbit enteric coronavirus and rabbit astrovirus are being acknowledged as contributors to the multifactorial enteritis complex of juvenile rabbits. Three avirulent leporid herpesviruses are found in domestic rabbits. A fourth highly pathogenic virus designated leporid herpesvirus 4 has been described in Canada and Alaska. This review considers viruses affecting rabbits by their clinical significance. Viruses of major and minor clinical significance are described, and viruses of laboratory significance are mentioned.
Collapse
Affiliation(s)
- Peter J. Kerr
- CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Thomas M. Donnelly
- The Kenneth S. Warren Institute, 712 Kitchawan Road, Ossining, NY 10562, USA
| |
Collapse
|
27
|
Hukowska-Szematowicz B, Tokarz-Deptuła B, Deptuła W. Analysis of genetic variability and phylogenetic analysis of selected Czech and French strains of rabbit haemorrhagic disease virus (RHDV). J Appl Genet 2013; 54:235-48. [PMID: 23436187 PMCID: PMC3620445 DOI: 10.1007/s13353-013-0140-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/10/2013] [Accepted: 01/28/2013] [Indexed: 11/16/2022]
Abstract
The objective of this study was to analyse the genetic variability and phylogenetic analysis of six strains of rabbit haemorrhagic disease virus (RHDV), including four Czech strains (CAMPV-351, CAMPV-561, CAMPV-562, CAMPV-558) and two French strains (Fr-1, Fr-2), on the basis of a fragment of the VP60 capsid structural protein-coding gene N-terminal region. The results of our own studies were compared to 26 RHDV strains obtained from GenBank. The analysis of the genetic variability of six RHDV strains indicated that the CAMPV-561 strain is the most genetically variable. Less variable were the Fr-1 and Fr-2 strains, while the least variable was CAMPV-351. In turn, the genetic distance among the six analysed strains and 26 strains obtained from GenBank was the greatest for CAMPV-351 and Whn/China [11.3 % according to the observed divergence (OD) method and 12.2 % according to the maximum likelihood (ML) method], while it was the lowest for CAMPV-351 and FRG (0.8 % in both the OD and ML methods). In turn, the scale of the genetic distances among the six analysed strains and five RHDVa strains (99-05, NY-01, Whn/China, Triptis, Iowa2000) ranged from 9.3–10.3 % in the OD method to 10.3–13.7 % in the ML method. The image of phylogenetic dependencies generated for the strains analysed and those obtained from GenBank revealed their distribution to be in five genetic groups (G1–G5), whereas the analysed strains were included in genetic groups 2 and 3.
Collapse
Affiliation(s)
- Beata Hukowska-Szematowicz
- Department of Immunology, Faculty of Biology, University of Szczecin, Felczaka 3c, 71-412, Szczecin, Poland.
| | | | | |
Collapse
|
28
|
Laliena A, San Miguel B, Crespo I, Alvarez M, González-Gallego J, Tuñón MJ. Melatonin attenuates inflammation and promotes regeneration in rabbits with fulminant hepatitis of viral origin. J Pineal Res 2012; 53:270-8. [PMID: 22506987 DOI: 10.1111/j.1600-079x.2012.00995.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The objective of the present study was to investigate the effect of melatonin on the liver inflammatory and regenerative response in an animal model of fulminant hepatic failure (FHF) of viral origin. Rabbits were experimentally infected with 2×10(4) hemagglutination units of a rabbit hemorrhagic disease virus (RHDV) isolate and received melatonin at two concentrations of 10 or 20mg/kg at 0, 12 and 24hr postinfection. RHDV infection induced an inflammatory response, with increased expression of toll-like receptor 4, high-mobility group box (HMGB)1, interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and C-reactive protein, and decreased expression of decay accelerating factor (DAF/CD55). These effects were significantly reduced by melatonin. Matrix metalloproteinase-9 expression was also lowered in melatonin-treated rabbits. RHDV infection inhibited the hepatic regenerative/proliferative response, with a reduced expression of hepatocyte growth factor (HGF), epidermal growth factor, platelet-derived growth factor (PDGF)-B and vascular endothelial growth factor and their receptors; these responses were prevented by melatonin administration. Melatonin treatment also resulted in reduced expression of phosphorylated Janus kinase and enhanced expression of extracellular mitogen-activated protein kinase (ERK) and signal transducer and activator of transcription (STAT) 3. Our findings show that anti-inflammatory effects and stimulation of regenerative mechanisms contribute to the beneficial effects of melatonin in rabbits with experimental infection by RHDV and support a potential hepatoprotective role of melatonin in FHF.
Collapse
|
29
|
Teixeira L, Marques RM, Aguas AP, Ferreira PG. Regulatory T cells are decreased in acute RHDV lethal infection of adult rabbits. Vet Immunol Immunopathol 2012; 148:343-7. [PMID: 22627193 DOI: 10.1016/j.vetimm.2012.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/16/2012] [Accepted: 05/02/2012] [Indexed: 12/19/2022]
Abstract
Rabbit hemorrhagic disease virus (RHDV) is the etiologic agent of rabbit hemorrhagic disease (RHD), an acute lethal infection that kills 90% of adult rabbits due to severe acute liver inflammation. Interestingly, young rabbits are naturally resistant to RHDV infection. Here, we have compared naturally occurring CD4(+)Foxp3(+) regulatory T cells (Tregs) between young and adult rabbits after infection by RHDV. The number and frequency of Tregs was decreased in the spleen of adult rabbits 24h after the RHDV infection; this was in contrast with the unchanged number and frequency of splenic Tregs found in young rabbits after the same infection. Also, serum levels of IL-10 and TGF-β were enhanced in the infected adult rabbits whereas no alteration was observed in infected young rabbits. However, this increase is accompanied by a burst of pro-inflammatory cytokines, but seems not able to prevent the death of the animals with severe acute liver inflammation in few days after infection. Since Tregs downregulate inflammation, we conclude that their decrease may contribute to the natural susceptibility of adult rabbits to RHDV infection.
Collapse
Affiliation(s)
- Luzia Teixeira
- Departamento de Anatomia, ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.
| | | | | | | |
Collapse
|