1
|
Li Z, Zhang N, Zhang T, Wang Z, Li J, Wang M, Hu Z, Wang X. AcMNPV P74 is cleaved at R325 and R334 by proteinases of both OB and BBMV to expose a potential fusion peptide for oral infection. J Virol 2024; 98:e0023524. [PMID: 38775478 PMCID: PMC11237619 DOI: 10.1128/jvi.00235-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/27/2024] [Indexed: 06/14/2024] Open
Abstract
Baculoviruses enter insect midgut epithelial cells via a set of occlusion-derived virion (ODV) envelope proteins called per os infectivity factors (PIFs). P74 of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), which was the first identified PIF, is cleaved by an endogenous proteinase embedded within the occlusion body during per os infection, but the target site(s) and function of the cleavage have not yet been ascertained. Here, based on bioinformatics analyses, we report that cleavage was predicted at an arginine and lysine-rich region in the middle of P74. A series of recombinant viruses with site-directed mutants in this region of P74 were generated. R325 or R334 was identified as primary cleavage site. In addition, we showed that P74 is also cleaved by brush border membrane vesicles (BBMV) of the host insect at R325 or R334, instead of R195, R196, and R199, as previously reported. Simultaneous mutations in R195, R196, and R199 lead to instability of P74 during ODV release. Bioassays showed that mutations at both R325 and R334 significantly affected oral infectivity. Taken together, our data show that both R325 and R334 of AcMNPV P74 are the primary cleavage site for both occlusion body endogenous proteinase and BBMV proteinase during ODV release and are critical for oral infection. IMPORTANCE Cleavage of viral envelope proteins is usually an important trigger for viral entry into host cells. Baculoviruses are insect-specific viruses that infect host insects via the oral route. P74, a per os infectivity factor of baculoviruses, is cleaved during viral entry. However, the function and precise cleavage sites of P74 remain unknown. In this study, we found that R325 or R334 between the N- and C-conserved domains of P74 was the primary cleavage site by proteinase either from the occlusion body or host midgut. The biological significance of cleavage seems to be the release of the potential fusion peptide at the N-terminus of the cleaved C-terminal P74. Our results shed light on the cleavage model of P74 and imply its role in membrane fusion in baculovirus per os infection.
Collapse
Affiliation(s)
- Zhuorui Li
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiying Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiang Li
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Manli Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhihong Hu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xi Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
2
|
Yu Y, Zhang T, Lu D, Wang J, Xu Z, Zhang Y, Liu Q. Genome-wide nonessential gene identification of Autographa californica multiple nucleopolyhedrovirus. Gene 2023; 863:147239. [PMID: 36736504 DOI: 10.1016/j.gene.2023.147239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/07/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
The Baculovirus Expression Vector System (BEVS) is an insect cell-based heterologous protein expression system that possesses powerful potential in the development of protein drugs and vaccines. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the most widely-used vector in BEVS with 151 open reading frames (ORFs) containing essential and nonessential genes. Deletion of nonessential genes has many advantages including increased foreign gene insertion. In this study, the λ red recombination system was used to knock out genes in a modified AcMNPV that carried an enhanced yellow fluorescent protein (eYFP) at the Ac126-Ac127 locus. Eighty genes were almost completely deleted respectively and 69 gene knockout AcMNPVs (KOVs) were obtained to evaluate their infection efficiency. After infecting Spodoptera frugiperda 9 (Sf9) cells, 51 KOVs including 62 genes showed similar infectivity as wide type (WT) and hence were defined as nonessential genes. However, 18 KOVs produced fewer infectious virions, indicating that these genes were influential in the production of progeny viruses. Combining our research with previous studies, a desired minimal AcMNPV genome containing 86 ORFs and all of the homologous regions (hrs) was brought up, facilitating genetic modification of baculovirus vectors and improvement of recombinant protein expression in the future.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Tong Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Dongbo Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenhe Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
3
|
Zhang X, He A, Zong Y, Tian H, Zhang Z, Zhao K, Xu X, Chen H. Improvement of protein production in baculovirus expression vector system by removing a total of 10 kb of nonessential fragments from Autographa californica multiple nucleopolyhedrovirus genome. Front Microbiol 2023; 14:1171500. [PMID: 37125202 PMCID: PMC10133524 DOI: 10.3389/fmicb.2023.1171500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Baculovirus expression vector system (BEVS) is a powerful and versatile platform for recombinant protein production in insect cells. As the most frequently used baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) encodes 155 open reading frames (ORFs), including a considerable number of non-essential genes for the virus replication in cell culture. Studies have shown that protein production in BEVS can be improved by removing some viral dispensable genes, and these AcMNPV vectors also offer the possibility of accommodating larger exogenous gene fragments. In this study, we, respectively, deleted 14 DNA fragments from AcMNPV genome, each of them containing at least two contiguous genes that were known nonessential for viral replication in cell culture or functionally unknown. The effects of these fragment-deletions on virus replication and exogenous protein production were examined. The results showed that 11 of the 14 fragments, containing 43 genes, were dispensable for the virus replication in cultured cells. By detecting the expression of intracellularly expressed and secreted reporter proteins, we demonstrated that nine of the fragment-deletions benefited protein production in Sf9 cells and/or in High Five cells. After combining the deletion of some dispensable fragments, we obtained two AcMNPV vectors shortened by more than 10 kb but displayed an improved capacity for recombinant protein production. The deletion strategies used in this study has the potential to further improve the BEVS.
Collapse
|
4
|
The Membrane-Anchoring Region of the AcMNPV P74 Protein Is Expendable or Interchangeable with Homologs from Other Species. Viruses 2021; 13:v13122416. [PMID: 34960685 PMCID: PMC8704774 DOI: 10.3390/v13122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
Baculoviruses are insect pathogens that are characterized by assembling the viral dsDNA into two different enveloped virions during an infective cycle: occluded virions (ODVs; immersed in a protein matrix known as occlusion body) and budded virions (BVs). ODVs are responsible for the primary infection in midgut cells of susceptible larvae thanks to the per os infectivity factor (PIF) complex, composed of at least nine essential viral proteins. Among them, P74 is a crucial factor whose activity has been identified as virus-specific. In this work, the p74 gene from AcMNPV was pseudogenized using CRISPR/Cas9 technology and then complemented with wild-type alleles from SeMNPV and HearSNPV species, as well as chimeras combining the P74 amino and carboxyl domains. The results on Spodoptera exigua and Rachiplusia nu larvae showed that an amino terminal sector of P74 (lacking two potential transmembrane regions but possessing a putative nuclear export signal) is sufficient to restore the virus infectivity whether alone or fused to the P74 transmembrane regions of the other evaluated viral species. These results provide novel information about the functional role of P74 and delimit the region on which mutagenesis could be applied to enhance viral activity and, thus, produce better biopesticides.
Collapse
|
5
|
Chen T, Duan X, Hu H, Shang Y, Hu Y, Deng F, Wang H, Wang M, Hu Z. Systematic Analysis of 42 Autographa Californica Multiple Nucleopolyhedrovirus Genes Identifies An Additional Six Genes Involved in the Production of Infectious Budded Virus. Virol Sin 2021; 36:762-773. [PMID: 33683665 PMCID: PMC8379328 DOI: 10.1007/s12250-021-00355-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/29/2020] [Indexed: 01/15/2023] Open
Abstract
Baculoviruses have been widely used as a vector for expressing foreign genes. Among numerous baculoviruses, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the most frequently used and it encodes 155 open reading frames (ORFs). Here, we systematically investigated the impact of 42 genes of AcMNPV on the production of infectious budded viruses (BVs) by constructing gene-knockout bacmids and subsequently conducting transfection and infection assays. The results showed that among the 39 functionally unverified genes and 3 recently reported genes, 36 are dispensable for infectious BV production, as the one-step growth curves of the gene-knockout viruses were not significantly different from those of the parental virus. Three genes (ac62, ac82 and ac106/107) are essential for infectious BV production, as deletions thereof resulted in complete loss of infectivity while the repaired viruses showed no significant difference in comparison to the parental virus. In addition, three genes (ac13, ac51 and ac120) are important but not essential for infectious BV production, as gene-knockout viruses produced significantly lower BV levels than that of the parental virus or repaired viruses. We then grouped the 155 AcMNPV genes into three categories (Dispensable, Essential, or Important for infectious BV production). Based on our results and previous publications, we constructed a schematic diagram of a potential mini-genome of AcMNPV, which contains only essential and important genes. The results shed light on our understanding of functional genomics of baculoviruses and provide fundamental information for future engineering of baculovirus expression system.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xiaoyan Duan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Hengrui Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Yu Shang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
6
|
Boogaard B, van Lent JWM, van Oers MM. Functional analysis of the baculovirus per os infectivity factors 3 and 9 by imaging the interaction between fluorescently labelled virions and isolated midgut cells. J Gen Virol 2021; 101:778-784. [PMID: 32416750 DOI: 10.1099/jgv.0.001430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Baculovirus occlusion-derived viruses (ODVs) contain ten known per os infectivity factors (PIFs). These PIFs are crucial for midgut infection of insect larvae and form, with the exception of PIF5, an ODV entry complex. Previously, R18-dequenching assays have shown that PIF3 is dispensable for binding and fusion with midgut epithelial cells. Oral infection nevertheless fails in the absence of PIF3. PIF9 has not been analysed in much depth yet. Here, the biological role of these two PIFs in midgut infection was examined by monitoring the fate of fluorescently labelled ODVs when incubated with isolated midgut cells from Spodoptera exigua larvae. Confocal microscopy showed that in the absence of either PIF3 or PIF9, the ODVs bound to the brush borders, but the nucleocapsids failed to enter the cells. Finally, we discuss how the results obtained for PIF3 with dequenching assays and confocal microscopy can be explained by a two-phase fusion process.
Collapse
Affiliation(s)
- Bob Boogaard
- Present address: Erasmus Medical Centre, Rotterdam, Netherlands.,Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, the Netherlands
| | - Jan W M van Lent
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, the Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, the Netherlands
| |
Collapse
|
7
|
The C-termini of the baculovirus per os infectivity factors 1 and 2 mediate ODV oral infectivity by facilitating the binding of PIF0 and PIF8 to the core of the entry complex. J Gen Virol 2020; 101:553-564. [DOI: 10.1099/jgv.0.001404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
8
|
Bombyx mori nucleopolyhedrovirus F-like protein Bm14 is a type I integral membrane protein that facilitates ODV attachment to the midgut epithelial cells. J Gen Virol 2020; 101:309-321. [DOI: 10.1099/jgv.0.001389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
9
|
Hou D, Kuang W, Luo S, Zhang F, Zhou F, Chen T, Zhang Y, Wang H, Hu Z, Deng F, Wang M. Baculovirus ODV-E66 degrades larval peritrophic membrane to facilitate baculovirus oral infection. Virology 2019; 537:157-164. [PMID: 31493654 DOI: 10.1016/j.virol.2019.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 11/17/2022]
Abstract
ODV-E66 is a major envelope proteins of baculovirus occlusion derived virus (ODV) with chondroitinase activity. Here, we studied the roles of ODV-E66 during Helicoverpa armigera nucleopolyhedrovirus (HearNPV) primary infection. ODV-E66 is a late viral protein dispensable for BV production and ODV morphogenesis. Deletion of odv-e66 had a profound effect on HearNPV oral infectivity in 4th instar larvae with a 50% lethal concentration (LC50) value of 26 fold higher than that of the repaired virus, compared to in 3rd instar larvae. Calcofluor white, an agent which destroys the peritrophic membrane (PM), could rescue the oral infectivity of odv-e66 deleted HearNPV, implying the PM may be the target of ODV-E66. In vitro assays showed HearNPV ODV-E66 has chondroitinase activity. Electron microscopy demonstrated that odv-e66 deletion alleviated the damage to the PM caused by HearNPV infection. These data suggest an important role of ODV-E66 in the penetration of the PM during oral infection.
Collapse
Affiliation(s)
- Dianhai Hou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Wenhua Kuang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sijiani Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fenghua Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fengqiao Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tong Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yanfang Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
10
|
Boogaard B, Evers F, van Lent JWM, van Oers MM. The baculovirus Ac108 protein is a per os infectivity factor and a component of the ODV entry complex. J Gen Virol 2019; 100:669-678. [DOI: 10.1099/jgv.0.001200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Bob Boogaard
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Felix Evers
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jan W. M. van Lent
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
11
|
Baculovirus Per Os Infectivity Factor Complex: Components and Assembly. J Virol 2019; 93:JVI.02053-18. [PMID: 30602603 DOI: 10.1128/jvi.02053-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022] Open
Abstract
Baculovirus entry into insect midgut cells is dependent on a multiprotein complex of per os infectivity factors (PIFs) on the envelopes of occlusion-derived virions (ODVs). The structure and assembly of the PIF complex are largely unknown. To reveal the complete members of the complex, a combination of blue native polyacrylamide gel electrophoresis, liquid chromatography-tandem mass spectrometry, and Western blotting was conducted on three different baculoviruses. The results showed that the PIF complex has a molecular mass of ∼500 kDa and consists of nine PIFs, including a newly discovered member (PIF9). To decipher the assembly process, each pif gene was knocked out from the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) genome individually by use of synthetic baculovirus technology, and the impact on PIF complex formation was investigated. Deletion of pif8 resulted in the formation of an ∼400-kDa subcomplex. Deletion of pif0, -4, -6, -7, or -9 resulted in a subcomplex of ∼230 kDa, but deletion of pif1, -2, or -3 abolished formation of any complex. Taken together, our data identified a core complex of ∼230 kDa, consisting of PIF1, -2, and -3. This revised the previous knowledge that the core complex was about 170 kDa and contained PIF1 to -4. Analysis of the PIF complex in cellular fractions suggested that it is assembled in the cytoplasm before being transported to the nucleus and subsequently incorporated into the envelopes of ODVs. Only the full complex, not the subcomplex, is resistant to proteolytic attack, indicating the essentiality of correct complex assembly for oral infection.IMPORTANCE Entry of baculovirus into host insects is mediated by a per os infectivity factor (PIF) complex on the envelopes of occlusion-derived viruses (ODVs). Knowledge of the composition and structure of the PIF complex is fundamental to understanding its mode of action. By using multiple approaches, we determined the complete list of proteins (nine) in the PIF complex. In contrast to previous knowledge in the field, the core complex is revised to ∼230 kDa and consists of PIF1 to -3 but not PIF4. Interestingly, our results suggest that the PIF complex is formed in the cytoplasm prior to its transport to the nucleus and subsequent incorporation into ODVs. Only the full complex is resistant to proteolytic degradation in the insect midgut, implying the critical role of the entire complex. These findings provide the baseline for future studies on the ODV entry mechanism mediated by the multiprotein complex.
Collapse
|
12
|
Li S, Li L, Zhao H, Liu W. Disruption of Autographa Californica Multiple Nucleopolyhedrovirus ac111 Results in Reduced per os Infectivity in a Host-Dependent Manner. Viruses 2018; 10:v10100527. [PMID: 30262719 PMCID: PMC6213390 DOI: 10.3390/v10100527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 01/04/2023] Open
Abstract
The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac111 gene is highly conserved in lepidopteran-specific baculoviruses, and its function in the AcMNPV life cycle is still unknown. To investigate the function of ac111, an ac111-knockout AcMNPV (vAc111KO) was constructed through homologous recombination in Escherichia coli. Viral growth curve analysis and plaque assays showed that the deletion of ac111 had no effect on infectious budded virion production. Quantitative real-time polymerase chain reaction analysis confirmed that viral DNA replication was unaffected in the absence of ac111. Electron microscopy revealed that the ac111 deletion did not affect nucleocapsid assembly, occlusion-derived virion formation, or the embedding of occlusion-derived virions into the occlusion bodies. However, in vivo bioassays showed that although the deletion of ac111 did not affect the per os infectivity of AcMNPV in Spodoptera exigua larvae, it led to an approximately five-fold reduction in infectivity of AcMNPV in Trichoplusia ni larvae, and vAc111KO took approximately 21 h longer to kill Trichoplusia ni larvae than the wild-type viruses. Taken together, our results demonstrated that although ac111 is not essential for virus replication in vitro, it plays an important role in the per os infectivity of AcMNPV in a host-dependent manner.
Collapse
Affiliation(s)
- Sainan Li
- Department of Biology, Zhaoqing University, Zhaoqing 526061, China.
| | - Lu Li
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China.
| | - Haizhou Zhao
- Department of Biology, Zhaoqing University, Zhaoqing 526061, China.
| | - Wenhua Liu
- Department of Biology, Zhaoqing University, Zhaoqing 526061, China.
| |
Collapse
|
13
|
Saxena A, Byram PK, Singh SK, Chakraborty J, Murhammer D, Giri L. A structured review of baculovirus infection process: integration of mathematical models and biomolecular information on cell–virus interaction. J Gen Virol 2018; 99:1151-1171. [DOI: 10.1099/jgv.0.001108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Abha Saxena
- 1Indian Institute of Technology Hyderabad, Chemical Engineering, Village Kandi, Sangareddy, Hyderabad, Telangana 502205, India
| | - Prasanna Kumar Byram
- 1Indian Institute of Technology Hyderabad, Chemical Engineering, Village Kandi, Sangareddy, Hyderabad, Telangana 502205, India
| | - Suraj Kumar Singh
- 1Indian Institute of Technology Hyderabad, Chemical Engineering, Village Kandi, Sangareddy, Hyderabad, Telangana 502205, India
| | - Jayanta Chakraborty
- 2Indian Institute of Technology Kharagpur, Chemical Engineering, Kharagpur, West Bengal 721302, India
| | - David Murhammer
- 3The University of Iowa, Department of Chemical and Biochemical Engineering, Iowa City, IA 52242-1527, USA
| | - Lopamudra Giri
- 1Indian Institute of Technology Hyderabad, Chemical Engineering, Village Kandi, Sangareddy, Hyderabad, Telangana 502205, India
| |
Collapse
|
14
|
Boogaard B, van Oers MM, van Lent JWM. An Advanced View on Baculovirus per Os Infectivity Factors. INSECTS 2018; 9:insects9030084. [PMID: 30018247 PMCID: PMC6164829 DOI: 10.3390/insects9030084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 11/16/2022]
Abstract
Baculoviruses are arthropod-specific large DNA viruses that orally infect the larvae of lepidopteran, hymenopteran and dipteran insect species. These larvae become infected when they eat a food source that is contaminated with viral occlusion bodies (OBs). These OBs contain occlusion-derived viruses (ODVs), which are released upon ingestion of the OBs and infect the endothelial midgut cells. At least nine different ODV envelope proteins are essential for this oral infectivity and these are denoted per os infectivity factors (PIFs). Seven of these PIFs form a complex, consisting of PIF1, 2, 3 and 4 that form a stable core complex and PIF0 (P74), PIF6 and PIF8 (P95) that associate with this complex with lower affinity than the core components. The existence of a PIF complex and the fact that the pif genes are conserved in baculovirus genomes suggests that PIF-proteins cooperatively mediate oral infectivity rather than as individual functional entities. This review therefore discusses the knowledge obtained for individual PIFs in light of their relationship with other members of the PIF complex.
Collapse
Affiliation(s)
- Bob Boogaard
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Jan W M van Lent
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
15
|
Abstract
Baculoviruses are large DNA viruses of insects that are highly pathogenic in many hosts. In the infection cycle, baculoviruses produce two types of virions. These virion phenotypes are physically and functionally distinct, and each serves a critical role in the biology of the virus. One phenotype, the occlusion-derived virus (ODV), is occluded within a crystallized protein that facilitates oral infection of the host. A large complex of at least nine ODV envelope proteins called per os infectivity factors are critically important for ODV infection of insect midgut epithelial cells. Viral egress from midgut cells is by budding to produce a second virus phenotype, the budded virus (BV). BV binds, enters, and replicates in most other tissues of the host insect. Cell recognition and entry by BV are mediated by a single major envelope glycoprotein: GP64 in some baculoviruses and F in others. Entry and egress by the two virion phenotypes occur by dramatically different mechanisms and reflect a life cycle in which ODV is specifically adapted for oral infection while BV mediates dissemination of the infection within the animal.
Collapse
Affiliation(s)
- Gary W Blissard
- Boyce Thompson Institute at Cornell University, Ithaca, New York 14853, USA;
| | - David A Theilmann
- Summerland Research and Development Center, Agriculture and Agri-Food Canada, Summerland, British Columbia V0H 1Z0, Canada;
| |
Collapse
|
16
|
The Functional Oligomeric State of Tegument Protein GP41 Is Essential for Baculovirus Budded Virion and Occlusion-Derived Virion Assembly. J Virol 2018; 92:JVI.02083-17. [PMID: 29643237 DOI: 10.1128/jvi.02083-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/31/2018] [Indexed: 12/18/2022] Open
Abstract
gp41, one of the baculovirus core genes, encodes the only recognized tegument (O-glycosylated) protein of the occlusion-derived virion (ODV) phenotype so far. A previous study using a temperature-sensitive Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) mutant showed that GP41 plays a crucial role in budded virion (BV) formation. However, the precise function of GP41 in the baculovirus replication cycle remains unclear. In this study, AcMNPV GP41 was found to accumulate around the ring zone (RZ) region within the infected nucleus and finally assembled into both BVs and ODVs. Deletion of gp41 from the AcMNPV genome showed that BVs were no longer formed and ODVs were no longer assembled, suggesting the essential role of this gene in baculovirus virion morphogenesis. In infected cells, besides the 42-kDa monomers, dimers and trimers were detected under nonreducing conditions, whereas only trimeric GP41 forms were selectively incorporated into BVs or ODVs. Mutations of all five cysteines in GP41 individually had minor effects on GP41 oligomer formation, albeit certain mutations impaired infectious BV production, suggesting flexibility in the intermolecular disulfide bonding. Single mutations of key leucines within two predicted leucine zipper-like motifs did not interfere with GP41 oligomerization or BV and ODV formation, but double leucine mutations completely blocked oligomerization of GP41 and progeny BV production. In the latter case, the usual subcellular localization, especially RZ accumulation, of GP41 was abolished. The above findings clearly point out a close correlation between GP41 oligomerization and function and therefore highlight the oligomeric state as the functional form of GP41 in the baculovirus replication cycle.IMPORTANCE The tegument, which is sandwiched between the nucleocapsid and the virion envelope, is an important substructure of many enveloped viruses. It is composed of one or more proteins that have important functions during virus entry, replication, assembly, and egress. Unlike another large DNA virus (herpesvirus) that encodes an extensive set of tegument components, baculoviruses very likely exploit the major tegument protein, GP41, to execute functions in baculovirus virion morphogenesis and assembly. However, the function of this O-glycosylated baculovirus tegument protein remains largely unknown. In this study, we identified trimers as the functional structure of GP41 in baculovirus virion morphogenesis and showed that both disulfide bridging and protein-protein interactions via the two leucine zipper-like domains are involved in the formation of different oligomeric states. This study advances our understanding of the unique viral tegument protein GP41 participating in the life cycle of baculoviruses.
Collapse
|
17
|
Shen Y, Wang H, Xu W, Wu X. Bombyx mori nucleopolyhedrovirus orf133 and orf134 are involved in the embedding of occlusion-derived viruses into polyhedra. J Gen Virol 2018; 99:717-729. [PMID: 29624165 DOI: 10.1099/jgv.0.001058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) orf133 (bm133) and orf134 (bm134), the orthologues of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac4 and ac5, are two adjacent genes with opposite transcriptional orientations and are highly conserved in all sequenced group I nucleopolyhedroviruses (NPVs). A double bm133-bm134 knockout bacmid was generated to enable the functional study of each gene independently or together. Compared with wild-type and double-repair viruses, deletion of both bm133 and bm134 did not affect budded virus (BV) production or viral DNA replication in transfected BmN cells. Electron microscopy revealed that the double knockout did not affect nucleocapsid assembly, virus-induced intranuclear microvesicle formation or occlusion-derived virus (ODV) production, but the number of virions embedded in the polyhedra decreased significantly. Further investigations showed that disruption of either gene was unable to recover the defect of ODV occlusion, suggesting that Bm133 and Bm134 are indispensable to the embedding of ODVs into polyhedra. Confocal microscopy analysis showed that Bm133 and Bm134 distributed throughout the whole cell during viral infection and Bm134 concentrated on the mature polyhedra in lysed cells. These results suggest that although Bm133 and Bm134 are not essential for BV or ODV development, they play vital roles in polyhedra morphogenesis.
Collapse
Affiliation(s)
- Yunwang Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Haiping Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weifan Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
18
|
Makalliwa GA, Wang X, Zhang H, Zhang N, Chen C, Li J, Deng F, Wang H, Wang M, Hu Z. HearNPV Pseudotyped with PIF1, 2, and 3 from MabrNPV: Infectivity and Complex Stability. Virol Sin 2018; 33:187-196. [PMID: 29549650 PMCID: PMC6178116 DOI: 10.1007/s12250-018-0014-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/08/2018] [Indexed: 11/25/2022] Open
Abstract
Effective oral infection is set off by interaction of a group of conserved per os infectivity factors (PIFs) with larval midgut columnar epithelial cells. We constructed pseudotyped viruses by substituting pif1, pif2 or pif3 genes of Helicoverpa armigera nucleopolyhedrovirus (HearNPV) with their homologs from Mamestra bracissae multiple nucleopolyhedrovirus and tested their infectivity to tissue culture cells and to larvae. Transfection and infection assays revealed that all recombinant viruses generated infectious budded virus in both cell culture and in larvae. Electron microscopy showed synthesized occlusion body and occlusion derived virus (ODV) were morphologically indistinguishable from those of the parental virus. By contrast, feeding assays revealed that pseudotyped viruses could not rescue oral infectivity except for pif3 pseudotyped virus that only partially rescued oral infectivity but at a mortality rate much lower than that of the parental HearNPV. Consistent with the bioassay result, PIF complex was detected in ODVs of pif3 pseudotyped virus only but not in pif1 or pif2 pseudotyped viruses. Our results suggest that PIF complex is essential for oral infectivity, and in the formation of the PIF complex, PIF1, 2 are virus-specific while PIF3 does not appear to be as specific and can function in heterologous environment, albeit to a much more limited extent.
Collapse
Affiliation(s)
- George Alliwa Makalliwa
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Huanyu Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
19
|
Wang X, Chen C, Zhang N, Li J, Deng F, Wang H, Vlak JM, Hu Z, Wang M. The group I alphabaculovirus-specific protein, AC5, is a novel component of the occlusion body but is not associated with ODVs or the PIF complex. J Gen Virol 2018; 99:585-595. [PMID: 29465345 DOI: 10.1099/jgv.0.001031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autographa californica nucleopolyhedrovirus (AcMNPV) orf5 (ac5) is a group I alphabaculovirus-specific gene of unknown function, although the protein (AC5) was previously reported to be associated with the per os infectivity factor (PIF) complex. The purpose of this study was to study the dynamics of AC5 during AcMNPV infection and to verify whether it is indeed a component of the PIF complex. Transcription and expression analyses suggested that ac5 is a late viral gene. An ac5-deleted recombinant AcMNPV was generated by homologous recombination. A one-step growth curve assay indicated that ac5 was not required for budded virus (BV) production in Sf9 cells. Scanning electron microscopy and transmission electron microscopy demonstrated that the deletion of ac5 did not affect occlusion body (OB) morphology, and nor did it affect the insertion of occlusion-derived virus (ODV) into OBs. Partially denaturing SDS-PAGE and a co-immunoprecipitation assay clearly showed that AC5 was not a component of the PIF complex, while the deletion of ac5 did not affect the formation and presence of the PIF complex. Further analyses showed, however, that AC5 was an OB-specific protein, but it was not detected as a component of BVs or ODVs. Bioassay experiments showed that the oral infectivity of ac5-deleted AcMNPV to third instar Spodoptera exigua larvae was not significantly different from that of the ac5-repaired virus. In conclusion, AC5 is an intrinsic protein of OBs, instead of being a component of the PIF complex, and is not essential for either BV or ODV infection. AC5 is awaiting the assignment of another hitherto unknown function.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cheng Chen
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Nan Zhang
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiang Li
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Fei Deng
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Hualin Wang
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Just M Vlak
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Zhihong Hu
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Manli Wang
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|
20
|
Wang J, Hou D, Wang Q, Kuang W, Zhang L, Li J, Shen S, Deng F, Wang H, Hu Z, Wang M. Genome analysis of a novel Group I alphabaculovirus obtained from Oxyplax ochracea. PLoS One 2018; 13:e0192279. [PMID: 29390020 PMCID: PMC5794183 DOI: 10.1371/journal.pone.0192279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/18/2018] [Indexed: 02/03/2023] Open
Abstract
Oxyplax ochracea (Moore) is a pest that causes severe damage to a wide range of crops, forests and fruit trees. The complete genome sequence of Oxyplax ochracea nucleopolyhedrovirus (OxocNPV) was determined using a Roche 454 pyrosequencing system. OxocNPV has a double-stranded DNA (dsDNA) genome of 113,971 bp with a G+C content of 31.1%. One hundred and twenty-four putative open reading frames (ORFs) encoding proteins of >50 amino acids in length and with minimal overlapping were predicted, which covered 92% of the whole genome. Six baculoviral typical homologous regions (hrs) were identified. Phylogenetic analysis and gene parity plot analysis showed that OxocNPV belongs to clade “a” of Group I alphabaculoviruses, and it seems to be close to the most recent common ancestor of Group I alphabaculoviruses. Three unique ORFs (with no homologs in the National Center for Biotechnology Information database) were identified. Interestingly, OxocNPV lacks three auxiliary genes (lef7, ie-2 and pcna) related to viral DNA replication and RNA transcription. In addition, OxocNPV has significantly different sequences for several genes (including ie1 and odv-e66) in comparison with those of other baculoviruses. However, three dimensional structure prediction showed that OxocNPV ODV-E66 contain the conserved catalytic residues, implying that it might possess polysaccharide lyase activity as AcMNPV ODV-E66. All these unique features suggest that OxocNPV represents a novel species of the Group I alphabaculovirus lineage.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Dianhai Hou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Qianran Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wenhua Kuang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Lei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
21
|
Autographa californica Nucleopolyhedrovirus AC141 (Exon0), a Potential E3 Ubiquitin Ligase, Interacts with Viral Ubiquitin and AC66 To Facilitate Nucleocapsid Egress. J Virol 2018; 92:JVI.01713-17. [PMID: 29142135 DOI: 10.1128/jvi.01713-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022] Open
Abstract
During the infection cycle of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), two forms of virions are produced, budded virus (BV) and occlusion-derived virus (ODV). Nucleocapsids that form BV have to egress from the nucleus, whereas nucleocapsids that form ODV remain inside the nucleus. The molecular mechanism that determines whether nucleocapsids remain inside or egress from the nucleus is unknown. AC141 (a predicted E3 ubiquitin ligase) and viral ubiquitin (vUbi) have both been shown to be required for efficient BV production. In this study, it was hypothesized that vUbi interacts with AC141, and in addition, that this interaction was required for BV production. Deletion of both ac141 and vubi restricted viral infection to a single cell, and BV production was completely eliminated. AC141 was ubiquitinated by either vUbi or cellular Ubi, and this interaction was required for optimal BV production. Nucleocapsids in BV, but not ODV, were shown to be specifically ubiquitinated by vUbi, including a 100-kDa protein, as well as high-molecular-weight conjugates. The viral ubiquitinated 100-kDa BV-specific nucleocapsid protein was identified as AC66, which is known to be required for BV production and was shown by coimmunoprecipitation and mass spectrometry to interact with AC141. Confocal microscopy also showed that AC141, AC66, and vUbi interact at the nuclear periphery. These results suggest that ubiquitination of nucleocapsid proteins by vUbi functions as a signal to determine if a nucleocapsid will egress from the nucleus and form BV or remain in the nucleus to form ODV.IMPORTANCE Baculoviruses produce two types of virions called occlusion-derived virus (ODV) and budded virus (BV). ODVs are required for oral infection, whereas BV enables the systemic spread of virus to all host tissues, which is critical for killing insects. One of the important steps for BV production is the export of nucleocapsids out of the nucleus. This study investigated the molecular mechanisms that enable the selection of nucleocapsids for nuclear export instead of being retained within the nucleus, where they would become ODV. Our data show that ubiquitination, a universal cellular process, specifically tags nucleocapsids of BV, but not those found in ODV, using a virus-encoded ubiquitin (vUbi). Therefore, ubiquitination may be the molecular signal that determines if a nucleocapsid is destined to form a BV, thus ensuring lethal infection of the host.
Collapse
|
22
|
Boogaard B, van Lent JWM, Theilmann DA, Erlandson MA, van Oers MM. Baculoviruses require an intact ODV entry-complex to resist proteolytic degradation of per os infectivity factors by co-occluded proteases from the larval host. J Gen Virol 2017; 98:3101-3110. [PMID: 29134933 DOI: 10.1099/jgv.0.000974] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Baculoviruses orally infect caterpillars in the form of occlusion-derived viruses (ODVs). The ODV-envelope contains a number of proteins which are essential for oral infectivity, called per os infectivity factors (PIFs). Most of these PIFs are involved in the formation of an ODV-entry complex that consists of a stable core, formed by PIF1, PIF2, PIF3 and PIF4, and the more loosely associated PIFs P74 (PIF0) and P95 (PIF8). PIF1, PIF2 and PIF3 are essential for formation of the stable core, whereas deletion of the pif4 gene results in the formation of a smaller complex. P74 is not needed for formation of the stable core. We show here in larva-derived ODVs of the Autographa californica multicapsid nucleopolyhedrovirus that PIF-proteins are degraded by host-derived proteases after deletion of a single pif-gene. Constituents of the stable core-complex appeared to be more resistant to proteases as part of the complex than as monomer, as in ODVs of a p74 deletion mutant only the stable core was found but no PIF monomers. When the stable core lacks PIF4, it lost its proteolytic resistance as the resulting smaller core complex was degraded in a pif4 deletion mutant. We also identified PIF6 as a loosely associated component of the entry complex that appeared nevertheless important for the proteolytic resistance of the stable core, which was degraded after deletion of pif6. We conclude from these results that an intact entry-complex in the ODV-envelope is prerequisite for proteolytic resistance of PIF-proteins under the alkaline conditions of the larval midgut.
Collapse
Affiliation(s)
- Bob Boogaard
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Jan W M van Lent
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - David A Theilmann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway #97, Summerland, BC, Canada
| | - Martin A Erlandson
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
23
|
Per os infectivity factors: a complicated and evolutionarily conserved entry machinery of baculovirus. SCIENCE CHINA-LIFE SCIENCES 2017; 60:806-815. [PMID: 28755302 DOI: 10.1007/s11427-017-9127-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/06/2017] [Indexed: 01/12/2023]
Abstract
Baculoviruses are a family of arthropod-specific large DNA viruses that infect insect species belonging to the orders Lepidoptera, Hymenoptera and Diptera. In nature, occlusion-derived viruses (ODVs) initiate baculovirus primary infection in the midgut epithelium of insect hosts, and this process is largely dependent on a number of ODV envelope proteins designated as per os infectivity factors (PIFs). Interestingly, PIF homologs are also present in other invertebrate large DNA viruses, which is indicative that per os infection is an ancient and phylogenetically conserved entry mechanism shared by these viruses. Here, we review the advances in the knowledge of the functions of individual PIFs and recent discoveries about the PIF complex, and discuss the evolutionary implications of PIF homologs in invertebrate DNA viruses. Furthermore, future research highlights on the per os infection mechanism are also prospected.
Collapse
|
24
|
Zheng Q, Shen Y, Kon X, Zhang J, Feng M, Wu X. Protein-protein interactions of the baculovirus per os infectivity factors (PIFs) in the PIF complex. J Gen Virol 2017; 98:853-861. [PMID: 28141488 DOI: 10.1099/jgv.0.000730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
After ingestion of occlusion bodies, the occlusion-derived viruses (ODVs) of the baculoviruses establish the first round of infection within the larval host midgut cells. Several ODV envelope proteins, called per os infectivity factors (PIFs), have been shown to be essential for oral infection. Eight PIFs have been identified to date, including P74, PIFs 1-6 and Ac110. At least six PIFs, P74, PIFs 1-4 and PIF6, together with three other ODV-specific proteins, Ac5, P95 (Ac83) and Ac108, have been reported to form a complex on the ODV surface. In this study, in order to understand the interactions of these PIFs, the direct protein-protein interactions of the nine components of the Autographa californica multiple nucleopolyhedrovirus PIF complex were investigated using yeast two-hybrid (Y2H) screening combined with bimolecular fluorescence complementation (BiFC) assay. Six direct interactions, comprising PIF1-PIF2, PIF1-PIF3, PIF1-PIF4, PIF1-P95, PIF2-PIF3 and PIF3-PIF4, were identified in the Y2H analysis, and these results were further verified by BiFC. For P74, PIF6, Ac5 and Ac108, no direct interaction was identified. P95 (Ac83) was identified to interact with PIF1, and further Y2H analysis of the truncation and deletion mutants showed that the predicted P95 chitin-binding domain and amino acids 100-200 of PIF1 were responsible for P95 interaction with PIF1. Furthermore, a summary of the protein-protein interactions of PIFs reported so far, comprising 10 reciprocal interactions and two self-interactions, is presented, which will facilitate our understanding of the characteristics of the PIF complex.
Collapse
Affiliation(s)
- Qin Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yunwang Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiangshuo Kon
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jianjia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Min Feng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
25
|
Autographa californica Multiple Nucleopolyhedrovirus AC83 is a Per Os Infectivity Factor (PIF) Protein Required for Occlusion-Derived Virus (ODV) and Budded Virus Nucleocapsid Assembly as well as Assembly of the PIF Complex in ODV Envelopes. J Virol 2017; 91:JVI.02115-16. [PMID: 28031365 DOI: 10.1128/jvi.02115-16] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/13/2016] [Indexed: 02/05/2023] Open
Abstract
Baculovirus occlusion-derived virus (ODV) initiates infection of lepidopteran larval hosts by binding to the midgut epithelia, which is mediated by per os infectivity factors (PIFs). Autographa californica multiple nucleopolyhedrovirus (AcMNPV) encodes seven PIF proteins, of which PIF1 to PIF4 form a core complex in ODV envelopes to which PIF0 and PIF6 loosely associate. Deletion of any pif gene results in ODV being unable to bind or enter midgut cells. AC83 also associates with the PIF complex, and this study further analyzed its role in oral infectivity to determine if it is a PIF protein. It had been proposed that AC83 possesses a chitin binding domain that enables transit through the peritrophic matrix; however, no chitin binding activity has ever been demonstrated. AC83 has been reported to be found only in the ODV envelopes, but in contrast, the Orgyia pseudotsugata MNPV AC83 homolog is associated with both ODV nucleocapsids and envelopes. In addition, unlike known pif genes, deletion of ac83 eliminates nucleocapsid formation. We propose a new model for AC83 function and show AC83 is associated with both ODV nucleocapsids and envelopes. We also further define the domain required for nucleocapsid assembly. The cysteine-rich region of AC83 is also shown not to be a chitin binding domain but a zinc finger domain required for the recruitment or assembly of the PIF complex to ODV envelopes. As such, AC83 has all the properties of a PIF protein and should be considered PIF8. In addition, pif7 (ac110) is reported as the 38th baculovirus core gene.IMPORTANCE ODV is essential for the per os infectivity of the baculovirus AcMNPV. To initiate infection, ODV binds to microvilli of lepidopteran midgut cells, a process which requires a group of seven virion envelope proteins called PIFs. In this study, we reexamined the function of AC83, a protein that copurifies with the ODV PIFs, to determine its role in the oral infection process. A zinc finger domain was identified and a new model for AC83 function was proposed. In contrast to previous studies, AC83 was found to be physically located in both the envelope and nucleocapsid of ODV. By deletion analysis, the AC83 domain required for nucleocapsid assembly was more finely delineated. We show that AC83 is required for PIF complex formation and conclude that it is a true per os infectivity factor and should be called PIF8.
Collapse
|
26
|
Microscopic investigation of AcMNPV infection in the Trichoplusia ni midgut. J Invertebr Pathol 2016; 141:24-33. [DOI: 10.1016/j.jip.2016.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/14/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022]
|
27
|
The Autographa californica multiple nucleopolyhedrovirus ac110 gene encodes a new per os infectivity factor. Virus Res 2016; 221:30-7. [DOI: 10.1016/j.virusres.2016.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 11/21/2022]
|
28
|
The Host Specificities of Baculovirus per os Infectivity Factors. PLoS One 2016; 11:e0159862. [PMID: 27454435 PMCID: PMC4959699 DOI: 10.1371/journal.pone.0159862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022] Open
Abstract
Baculoviruses are insect-specific pathogens with a generally narrow host ranges. Successful primary infection is initiated by the proper interaction of at least 8 conserved per os infectivity factors (PIFs) with the host's midgut cells, a process that remains largely a mystery. In this study, we investigated the host specificities of the four core components of the PIF complex, P74, PIF1, PIF2 and PIF3 by using Helicoverpa armigera nucleopolyhedrovirus (HearNPV) backbone. The four pifs of HearNPV were replaced by their counterparts from a group I Autographa californica multiple nucleopolyhedrovirus (AcMNPV) or a group II Spodoptera litura nucleopolyhedrovirus (SpltNPV). Transfection and infection assays showed that all the recombinant viruses were able to produce infectious budded viruses (BVs) and were lethal to H. armigera larvae via intrahaemocoelic injection. However, feeding experiments using very high concentration of occlusion bodies demonstrated that all the recombinant viruses completely lost oral infectivity except SpltNPV pif3 substituted pif3-null HearNPV (vHaBacΔpif3-Sppif3-ph). Furthermore, bioassay result showed that the median lethal concentration (LC50) value of vHaBacΔpif3-Sppif3-ph was 23-fold higher than that of the control virus vHaBacΔpif3-Hapif3-ph, indicating that SpltNPV pif3 can only partially substitute the function of HearNPV pif3. These results suggested that most of PIFs tested have strict host specificities, which may account, at least in part, for the limited host ranges of baculoviruses.
Collapse
|
29
|
Yin F, Zhu Z, Liu X, Hou D, Wang J, Zhang L, Wang M, Kou Z, Wang H, Deng F, Hu Z. The Complete Genome of a New Betabaculovirus from Clostera anastomosis. PLoS One 2015; 10:e0132792. [PMID: 26168260 PMCID: PMC4500397 DOI: 10.1371/journal.pone.0132792] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/19/2015] [Indexed: 11/18/2022] Open
Abstract
Clostera anastomosis (Lepidoptera: Notodontidae) is a defoliating forest insect pest. Clostera anastomosis granulovirus-B (ClasGV-B) belonging to the genus Betabaculovirus of family Baculoviridae has been used for biological control of the pest. Here we reported the full genome sequence of ClasGV-B and compared it to other previously sequenced baculoviruses. The circular double-stranded DNA genome is 107,439 bp in length, with a G+C content of 37.8% and contains 123 open reading frames (ORFs) representing 93% of the genome. ClasGV-B contains 37 baculovirus core genes, 25 lepidopteran baculovirus specific genes, 19 betabaculovirus specific genes, 39 other genes with homologues to baculoviruses and 3 ORFs unique to ClasGV-B. Hrs appear to be absent from the ClasGV-B genome, however, two non-hr repeats were found. Phylogenetic tree based on 37 core genes from 73 baculovirus genomes placed ClasGV-B in the clade b of betabaculoviruses and was most closely related to Erinnyis ello GV (ErelGV). The gene arrangement of ClasGV-B also shared the strongest collinearity with ErelGV but differed from Clostera anachoreta GV (ClanGV), Clostera anastomosis GV-A (ClasGV-A, previously also called CaLGV) and Epinotia aporema GV (EpapGV) with a 20 kb inversion. ClasGV-B genome contains three copies of polyhedron envelope protein gene (pep) and phylogenetic tree divides the PEPs of betabaculoviruses into three major clades: PEP-1, PEP-2 and PEP/P10. ClasGV-B also contains three homologues of P10 which all harbor an N-terminal coiled-coil domain and a C-terminal basic sequence. ClasGV-B encodes three fibroblast growth factor (FGF) homologues which are conserved in all sequenced betabaculoviruses. Phylogenetic analysis placed these three FGFs into different groups and suggested that the FGFs were evolved at the early stage of the betabaculovirus expansion. ClasGV-B is different from previously reported ClasGV-A and ClanGV isolated from Notodontidae in sequence and gene arrangement, indicating the virus is a new notodontid betabaculovirus.
Collapse
Affiliation(s)
- Feifei Yin
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China
- School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou, 571101, PR China
| | - Zheng Zhu
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Xiaoping Liu
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Dianhai Hou
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Jun Wang
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Lei Zhang
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Manli Wang
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Zheng Kou
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Hualin Wang
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Fei Deng
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Zhihong Hu
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China
- * E-mail:
| |
Collapse
|
30
|
Yu H, Xu J, Liu Q, Liu TX, Wang D. Ha83, a Chitin Binding Domain Encoding Gene, Is Important to Helicoverpa armigera Nucleopolyhedrovirus Budded Virus Production and Occlusion Body Assembling. Sci Rep 2015; 5:11088. [PMID: 26057202 PMCID: PMC4460901 DOI: 10.1038/srep11088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/14/2015] [Indexed: 01/04/2023] Open
Abstract
Helicoerpa armigera nucleopolyhedrovirus (HearNPV) ha83 is a late expressed gene that encodes a chitin binding protein. Chitin domain truncation studies revealed that the cysteine at the 128 amino acid position probably played an important role in both chitin binding ability and protein transmission of Ha83. In order to study the function of ha83 in the HearNPV infection cycle, an ha83 knockout HearNPV (Ha83KO) was constructed via homologous recombination. Viral growth and viral DNA replication curves showed that fewer budded virions were produced in Ha83KO transfected cells, while viral DNA replication was increased. Electron microscopy revealed that fewer nucleocapsids were transmitted from virogenic stroma in the Ha83KO transfected cell nucleus, and the morphology of occlusion bodies was prominently larger and cube-shaped. Furthermore, DNA quantity in occlusion bodies of Ha83KO was significantly lower than the occlusion bodies of HaWT. The transcription analysis indicated that these changes may be due to the decreased expression level of viral structural associated genes, such as polyhedrin, p10, pif-2, or cg30 in Ha83KO infected cells. Above results demonstrated that the cysteine at the 128 amino acid position in Ha83 might be the key amino acid, and Ha83 plays an important role in BVs production and OBs assembling.
Collapse
Affiliation(s)
- Huan Yu
- 1] State Key Laboratory of Crop Stress Biology for Arid Areas Northwest A&F University, Yangling, Shaanxi, P. R. China [2] Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jian Xu
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Qiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Tong-Xian Liu
- 1] State Key Laboratory of Crop Stress Biology for Arid Areas Northwest A&F University, Yangling, Shaanxi, P. R. China [2] Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Dun Wang
- 1] State Key Laboratory of Crop Stress Biology for Arid Areas Northwest A&F University, Yangling, Shaanxi, P. R. China [2] Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
31
|
Zhang X, Liang Z, Yin X, Shao X. Proteomic analysis of the occlusion-derived virus of Clostera anachoreta granulovirus. J Gen Virol 2015; 96:2394-2404. [PMID: 25872743 DOI: 10.1099/vir.0.000146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To date, proteomic studies have been performed on occlusion-derived viruses (ODVs) from five members of the family Baculoviridae, genus Alphabaculovirus, but only a single member of the genus Betabaculovirus (Pieris rapae granulovirus). In this study, LC-MS/MS was used to analyse the ODV proteins of Clostera anachoreta granulovirus (ClanGV), another member of the genus Betabaculovirus. The results indicated that 73 proteins, including the products of 27 baculovirus core genes, were present in ClanGV ODVs. This is the largest number of ODV proteins identified in baculoviruses to date. To the best of our knowledge, 24 of these proteins were newly identified as ODV-associated proteins. Twelve of the proteins were shared by all seven of the other baculoviruses that have been analysed by proteomic techniques, including P49, PIF-2, ODV-EC43, P74, P6.9, P33, VP39, ODV-EC27, VP91, GP41, VLF-1 and VP1054. ClanGV shared between 20 and 36 ODV proteins with each of the other six baculoviruses that have been analysed by proteomics. Ten proteins were identified only as ODV components of ClanGV and PrGV: Clan22, Clan27, Clan69, Clan83, Clan84, Clan90, Clan116, Clan94, FGF-3 and ME53, the first seven of which were encoded by betabaculovirus-specific genes. These findings may provide novel insights into baculovirus structure as well as reveal similarities and differences between alphabaculoviruses and betabaculoviruses.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- College of Life Sciences, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, PR China
| | - Zhenpu Liang
- College of Life Sciences, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, PR China
| | - Xinming Yin
- College of Plant Protection, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, PR China
| | - Xinfeng Shao
- College of Life Sciences, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, PR China
| |
Collapse
|
32
|
Mu J, van Lent JWM, Smagghe G, Wang Y, Chen X, Vlak JM, van Oers MM. Live imaging of baculovirus infection of midgut epithelium cells: a functional assay of per os infectivity factors. J Gen Virol 2014; 95:2531-2539. [DOI: 10.1099/vir.0.068262-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The occlusion-derived viruses (ODVs) of baculoviruses are responsible for oral infection of insect hosts, whereas budded viruses (BVs) are responsible for systemic infection within the host. The ODV membrane proteins play crucial roles in mediating virus entry into midgut epithelium cells to initiate infection and are important factors in host-range determination. For Autographa californica multiple nucleopolyhedrovirus (AcMNPV), seven conserved ODV membrane proteins have been shown to be essential for oral infectivity and are called per os infectivity factors (PIFs). Information on the function of the individual PIF proteins in virus entry is limited, partly due to the lack of a good in vitro system for monitoring ODV entry. Here, we constructed a baculovirus with EGFP fused to the nucleocapsid to monitor virus entry into primary midgut epithelium cells ex vivo using confocal fluorescence microscopy. The EGFP-labelled virus showed similar BV virulence and ODV infectivity as WT virus. The ability to bind and enter host cells was then visualized for WT AcMNPV and viruses with mutations in P74 (PIF0), PIF1 or PIF2, showing that P74 is required for ODV binding, whilst PIF1 and PIF2 play important roles in the entry of ODV after binding to midgut cells. This is the first live imaging of ODV entry into midgut cells and complements the genetic and biochemical evidence for the role of PIFs in the oral infection process.
Collapse
Affiliation(s)
- Jingfang Mu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei Province, PR China
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jan W. M. van Lent
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Yun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei Province, PR China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei Province, PR China
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
33
|
Liu X, Yin F, Zhu Z, Hou D, Wang J, Zhang L, Wang M, Wang H, Hu Z, Deng F. Genomic sequencing and analysis of Sucra jujuba nucleopolyhedrovirus. PLoS One 2014; 9:e110023. [PMID: 25329074 PMCID: PMC4201490 DOI: 10.1371/journal.pone.0110023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/08/2014] [Indexed: 11/19/2022] Open
Abstract
The complete nucleotide sequence of Sucra jujuba nucleopolyhedrovirus (SujuNPV) was determined by 454 pyrosequencing. The SujuNPV genome was 135,952 bp in length with an A+T content of 61.34%. It contained 131 putative open reading frames (ORFs) covering 87.9% of the genome. Among these ORFs, 37 were conserved in all baculovirus genomes that have been completely sequenced, 24 were conserved in lepidopteran baculoviruses, 65 were found in other baculoviruses, and 5 were unique to the SujuNPV genome. Seven homologous regions (hrs) were identified in the SujuNPV genome. SujuNPV contained several genes that were duplicated or copied multiple times: two copies of helicase, DNA binding protein gene (dbp), p26 and cg30, three copies of the inhibitor of the apoptosis gene (iap), and four copies of the baculovirus repeated ORF (bro). Phylogenetic analysis suggested that SujuNPV belongs to a subclade of group II alphabaculovirus, which differs from other baculoviruses in that all nine members of this subclade contain a second copy of dbp.
Collapse
Affiliation(s)
- Xiaoping Liu
- State Key Laboratory of Virology, Virus Resource and Bioinformatics Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Feifei Yin
- State Key Laboratory of Virology, Virus Resource and Bioinformatics Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zheng Zhu
- State Key Laboratory of Virology, Virus Resource and Bioinformatics Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Dianhai Hou
- State Key Laboratory of Virology, Virus Resource and Bioinformatics Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jun Wang
- State Key Laboratory of Virology, Virus Resource and Bioinformatics Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Lei Zhang
- State Key Laboratory of Virology, Virus Resource and Bioinformatics Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Manli Wang
- State Key Laboratory of Virology, Virus Resource and Bioinformatics Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hualin Wang
- State Key Laboratory of Virology, Virus Resource and Bioinformatics Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Virus Resource and Bioinformatics Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Fei Deng
- State Key Laboratory of Virology, Virus Resource and Bioinformatics Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
34
|
Ferreira BC, Melo FL, Souza ML, Moscardi F, Báo SN, Ribeiro BM. High genetic stability of peroral infection factors from Anticarsia gemmatalis MNPV over 20years of sampling. J Invertebr Pathol 2014; 118:66-70. [PMID: 24590109 DOI: 10.1016/j.jip.2014.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 02/15/2014] [Accepted: 02/19/2014] [Indexed: 10/25/2022]
Abstract
The Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) has been used as a biopesticide since the early 1980s in Brazil to control the major pest of soybean crops, the velvetbean caterpillar, Anticarsia gemmatalis. To monitor the genetic diversity over space and time we sequenced four pif genes (pif1, pif2, pif3 and pif4) from AgMNPV isolates collected from different regions of South America, as well as of seasonal isolates, sampled during a two-decade field experiment. Although all genes presented low levels of polymorphism, the pif-2 carries a slightly higher number of polymorphic sites. Overall, this study reveals that pif genes have remained stable after 20 years of repeated field application.
Collapse
Affiliation(s)
- Briana C Ferreira
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília (UnB), Asa Norte, 70910-900 Brasília, DF, Brazil; Embrapa Recursos Genéticos e Biotecnologia (Cenargen), Parque Estação Biológica, W5 Norte Final, 70770-917 Brasília, DF, Brazil
| | - Fernando L Melo
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília (UnB), Asa Norte, 70910-900 Brasília, DF, Brazil
| | - Marlinda L Souza
- Embrapa Recursos Genéticos e Biotecnologia (Cenargen), Parque Estação Biológica, W5 Norte Final, 70770-917 Brasília, DF, Brazil
| | - Flávio Moscardi
- Centro de Ciências Agrárias, Universidade Estadual de Londrina (UEL), 86051-990 Londrina, PR, Brazil
| | - Sônia N Báo
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília (UnB), Asa Norte, 70910-900 Brasília, DF, Brazil
| | - Bergmann M Ribeiro
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília (UnB), Asa Norte, 70910-900 Brasília, DF, Brazil.
| |
Collapse
|
35
|
Bombyx mori nucleopolyhedrovirus ORF79 is a per os infectivity factor associated with the PIF complex. Virus Res 2014; 184:62-70. [PMID: 24583368 DOI: 10.1016/j.virusres.2014.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/13/2014] [Accepted: 02/13/2014] [Indexed: 11/23/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) ORF79 (Bm79) encodes an occlusion-derived virus (ODV)-specific envelope protein, which is a homologue of the per os infectivity factor 4 (PIF4) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). To investigate the role of ORF79 in the BmNPV life cycle, a Bm79 knockout virus (vBm(Bm79KO)) was constructed through homologous recombination in Escherichia coli. Viral DNA replication, budded virus (BV) production and polyhedra formation were unaffected by the absence of BM79. However, results of the larval bioassay demonstrated that the Bm79 deletion resulted in a complete loss of per os infection. Immunofluorescence analysis showed that BM79 localized at the innernuclear membrane of infected cells through its N-terminal sorting motif (SM). Further bimolecular fluorescence protein complementation and co-immunoprecipitation assays demonstrated the interaction of BM79 with PIF1, PIF2, PIF3 and ODV-E66. Thus, BM79 plays an important role in per os infection and is associated with the viral PIF complex of BmNPV.
Collapse
|
36
|
Zhu Z, Yin F, Liu X, Hou D, Wang J, Zhang L, Arif B, Wang H, Deng F, Hu Z. Genome sequence and analysis of Buzura suppressaria nucleopolyhedrovirus: a group II Alphabaculovirus. PLoS One 2014; 9:e86450. [PMID: 24475121 PMCID: PMC3901692 DOI: 10.1371/journal.pone.0086450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/10/2013] [Indexed: 12/15/2022] Open
Abstract
The genome of Buzura suppressaria nucleopolyhedrovirus (BusuNPV) was sequenced by 454 pyrosequencing technology. The size of the genome is 120,420 bp with 36.8% G+C content. It contains 127 hypothetical open reading frames (ORFs) covering 90.7% of the genome and includes the 37 conserved baculovirus core genes, 84 genes found in other baculoviruses, and 6 unique ORFs. No typical baculoviral homologous repeats (hrs) were present but the genome contained a region of repeated sequences. Gene Parity Plots revealed a 28.8 kb region conserved among the alpha- and beta-baculoviruses. Overall comparisons of BusuNPV to other baculoviruses point to a distinct species in group II Alphabaculovirus.
Collapse
Affiliation(s)
- Zheng Zhu
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Feifei Yin
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoping Liu
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Dianhai Hou
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jun Wang
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Lei Zhang
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Basil Arif
- Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste Marie, Ontario, Canada
| | - Hualin Wang
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhihong Hu
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
37
|
Liao L, Hou D, Huang H, Wang M, Deng F, Wang H, Hu Z, Zhang T. Identification of the epitopes of monoclonal antibodies against P74 of Helicoverpa armigera nucleopolyhedrovirus. Virol Sin 2013; 28:360-7. [PMID: 24306759 DOI: 10.1007/s12250-013-3393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/25/2013] [Indexed: 11/30/2022] Open
Abstract
P74 is a per os infectivity factor of baculovirus. Here, we report the production of three monoclonal antibodies (mAbs), denoted as 20D9, 20F9 and 21E1, raised against P74 of Helicoverpa armigera nucleopolyhedrovirus (HearNPV), and the identification of their recognition epitopes. The full-length P74, without the transmembrane domains at the C-terminus, was first divided into three segments (N, M and C, respectively), based on the proposed cleavage model for the protein, which were then expressed individually. Western blot analyses revealed specific cross-reactions with the N fragment, for both 20D9 and 21E1. Extensive truncation, followed by prokaryotic expression, of the P74 N fragment was then performed in order to screen for linear epitopes of P74. The recognition regions of 20D9 and 21E1 were revealed to be localized at R144-T153 and T199-C219, respectively. In addition, immunofluorescence microscopy indicated that 20D9 and 20F9 could recognize native P74 in HearNPV-infected cells. These findings will facilitate further investigations of the proteolytic processing of HearNPV P74, and of its involvement in virus-host interactions.
Collapse
Affiliation(s)
- Limin Liao
- Skate Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Autographa californica Nucleopolyhedrovirus Ac76: a dimeric type II integral membrane protein that contains an inner nuclear membrane-sorting motif. J Virol 2013; 88:1090-103. [PMID: 24198428 DOI: 10.1128/jvi.02392-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Our previous study showed that the Autographa californica Nucleopolyhedrovirus (AcMNPV) ac76 gene is essential for both budded virion (BV) and occlusion-derived virion (ODV) development. More importantly, deletion of ac76 affects intranuclear microvesicle formation. However, the exact role by which ac76 affects virion morphogenesis remains unknown. In this report, we characterized the expression, distribution, and topology of Ac76 to further understand the functional role of Ac76 in virion morphogenesis. Ac76 contains an α-helical transmembrane domain, and phase separation showed that it was an integral membrane protein. In AcMNPV-infected cells, Ac76 was detected as a stable dimer that was resistant to SDS and thermal denaturation, and only a trace amount of monomer was detected. A coimmunoprecipitation assay demonstrated the dimerization of Ac76 by high-affinity self-association. Western blot analyses of purified virions and their nucleocapsid and envelope fractions showed that Ac76 was associated with the envelope fractions of both BVs and ODVs. Immunoelectron microscopy revealed that Ac76 was localized to the plasma membrane, endoplasmic reticulum (ER), nuclear membrane, intranuclear microvesicles, and ODV envelope. Amino acids 15 to 48 of Ac76 were identified as an atypical inner nuclear membrane-sorting motif because it was sufficient to target fusion proteins to the ER and nuclear membrane in the absence of viral infection and to the intranuclear microvesicles and ODV envelope during infection. Topology analysis of Ac76 by selective permeabilization showed that Ac76 was a type II integral membrane protein with an N terminus exposed to the cytosol and a C terminus hidden in the ER lumen.
Collapse
|
39
|
Mamestra configurata nucleopolyhedrovirus-A transcriptome from infected host midgut. Virus Genes 2013; 48:174-83. [DOI: 10.1007/s11262-013-0986-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
|
40
|
The baculovirus core gene ac83 is required for nucleocapsid assembly and per os infectivity of Autographa californica nucleopolyhedrovirus. J Virol 2013; 87:10573-86. [PMID: 23864639 DOI: 10.1128/jvi.01207-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac83 is a baculovirus core gene whose function in the AcMNPV life cycle is unknown. In the present study, an ac83-knockout AcMNPV (vAc83KO) was constructed to investigate the function of ac83 through homologous recombination in Escherichia coli. No budded virions were produced in vAc83KO-transfected Sf9 cells, although viral DNA replication was unaffected. Electron microscopy revealed that nucleocapsid assembly was aborted due to the ac83 deletion. Domain-mapping studies revealed that the expression of Ac83 amino acid residues 451 to 600 partially rescued the ability of AcMNPV to produce infectious budded virions. Bioassays indicated that deletion of the chitin-binding domain of Ac83 resulted in the failure of oral infection of Trichoplusia ni larvae by AcMNPV, but AcMNPV remained infectious following intrahemocoelic injection, suggesting that the domain is involved in the binding of occlusion-derived virions to the peritrophic membrane and/or to other chitin-containing insect tissues. It has been demonstrated that Ac83 is the only component with a chitin-binding domain in the per os infectivity factor complex on the occlusion-derived virion envelope. Interestingly, a functional inner nuclear membrane sorting motif, which may facilitate the localization of Ac83 to the envelopes of occlusion-derived virions, was identified by immunofluorescence analysis. Taken together, these results demonstrate that Ac83 plays an important role in nucleocapsid assembly and the establishment of oral infection.
Collapse
|
41
|
Xiang X, Shen Y, Yang R, Chen L, Hu X, Wu X. Bombyx mori nucleopolyhedrovirus BmP95 plays an essential role in budded virus production and nucleocapsid assembly. J Gen Virol 2013; 94:1669-1679. [PMID: 23535571 DOI: 10.1099/vir.0.050583-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) BmP95 is a highly conserved gene that is found in all of the baculovirus genomes sequenced to date and is also found in nudiviruses. To investigate the role of BmP95 in virus infection in vitro, a BmP95 deletion virus (vBmP95-De) was generated by homologous recombination in Escherichia coli. Fluorescence and light microscopy and titration analysis indicated that the BmP95 deletion bacmid led to a defect in production of infectious budded virus (BV). However, deletion of BmP95 did not affect viral DNA replication. Electron microscopy showed that masses of aberrant tubular structures were present in cells transfected with the BmP95 deletion bacmid, indicating that deletion of BmP95 affected assembly of the nucleocapsid. This defect could be rescued by insertion of full-length BmP95 into the polyhedrin locus of the BmP95-knockout bacmid but not the N-terminal domain of BmP95. Together, these results showed that full-length BmP95 is essential for BV production and is required for nucleocapsid assembly.
Collapse
Affiliation(s)
- Xingwei Xiang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yunwang Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Rui Yang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Lin Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaolong Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
42
|
Tang Q, Li G, Yao Q, Chen L, Lv P, Lian C, Chen K. Bm91 is an envelope component of ODV but is dispensable for the propagation of Bombyx mori nucleopolyhedrovirus. J Invertebr Pathol 2013; 113:70-7. [PMID: 23391406 DOI: 10.1016/j.jip.2013.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/06/2013] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
Abstract
Orf91 (Bm91) of Bombyx mori nucleopolyhedrovirus (BmNPV) is a highly conserved gene that encodes a predicted 105-amino-acid protein, but its function remains unknown. In the current study, 5'-RACE revealed that the transcription initiation site of Bm91 was - 12 nucleotides upstream of the start codon ATG, transcription of Bm91 was detected from 12 to 96 h postinfection (p.i.) and Bm91 protein was detected from 24 to 96 h p.i. in BmNPV-infected BmN cells. Furthermore, Western blot analysis revealed that Bm91 was in occlusion-derived virus (ODV) but not in budded virus (BV). To investigate the role of Bm91 in baculovirus life cycle, a Bm91-knockout virus was constructed by bacmid recombination in E. coli. Fluorescence and light microscopy showed that the production of BV and occlusion bodies (OBs) in Bm91-deficient-virus-infected BmN cells were similar to those in wild-type-virus-infected ones. Bioassay results showed that genetic deletion of Bm91 did not significantly affect BmNPV infectivity, but extended the median lethal time (LT50). Taken together, these results indicate that Bm91 is not essential for viral propagation in vitro, but absence of the gene may affect the virulence of ODVs in silkworm larvae.
Collapse
Affiliation(s)
- Qi Tang
- School of Food and Biological Engineering, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Comparative proteomics reveal fundamental structural and functional differences between the two progeny phenotypes of a baculovirus. J Virol 2012; 87:829-39. [PMID: 23115289 DOI: 10.1128/jvi.02329-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The replication of lepidopteran baculoviruses is characterized by the production of two progeny phenotypes: the occlusion-derived virus (ODV), which establishes infection in midgut cells, and the budded virus (BV), which disseminates infection to different tissues within a susceptible host. To understand the structural, and hence functional, differences between BV and ODV, we employed multiple proteomic methods to reveal the protein compositions and posttranslational modifications of the two phenotypes of Helicoverpa armigera nucleopolyhedrovirus. In addition, Western blotting and quantitative mass spectrometry were used to identify the localization of proteins in the envelope or nucleocapsid fractions. Comparative protein portfolios of BV and ODV showing the distribution of 54 proteins, encompassing the 21 proteins shared by BV and ODV, the 12 BV-specific proteins, and the 21 ODV-specific proteins, were obtained. Among the 11 ODV-specific envelope proteins, 8 either are essential for or contribute to oral infection. Twenty-three phosphorylated and 6 N-glycosylated viral proteins were also identified. While the proteins that are shared by the two phenotypes appear to be important for nucleocapsid assembly and trafficking, the structural and functional differences between the two phenotypes are evidently characterized by the envelope proteins and posttranslational modifications. This comparative proteomics study provides new insight into how BV and ODV are formed and why they function differently.
Collapse
|
44
|
Ferrelli ML, Salvador R, Biedma ME, Berretta MF, Haase S, Sciocco-Cap A, Ghiringhelli PD, Romanowski V. Genome of Epinotia aporema granulovirus (EpapGV), a polyorganotropic fast killing betabaculovirus with a novel thymidylate kinase gene. BMC Genomics 2012; 13:548. [PMID: 23051685 PMCID: PMC3496565 DOI: 10.1186/1471-2164-13-548] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 09/22/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Epinotia aporema (Lepidoptera: Tortricidae) is an important pest of legume crops in South America. Epinotia aporema granulovirus (EpapGV) is a baculovirus that causes a polyorganotropic infection in the host larva. Its high pathogenicity and host specificity make EpapGV an excellent candidate to be used as a biological control agent. RESULTS The genome of Epinotia aporema granulovirus (EpapGV) was sequenced and analyzed. Its circular double-stranded DNA genome is 119,082 bp in length and codes for 133 putative genes. It contains the 31 baculovirus core genes and a set of 19 genes that are GV exclusive. Seventeen ORFs were unique to EpapGV in comparison with other baculoviruses. Of these, 16 found no homologues in GenBank, and one encoded a thymidylate kinase. Analysis of nucleotide sequence repeats revealed the presence of 16 homologous regions (hrs) interspersed throughout the genome. Each hr was characterized by the presence of 1 to 3 clustered imperfect palindromes which are similar to previously described palindromes of tortricid-specific GVs. Also, one of the hrs (hr4) has flanking sequences suggestive of a putative non-hr ori. Interestingly, two more complex hrs were found in opposite loci, dividing the circular dsDNA genome in two halves. Gene synteny maps showed the great colinearity of sequenced GVs, being EpapGV the most dissimilar as it has a 20 kb-long gene block inversion. Phylogenetic study performed with 31 core genes of 58 baculoviral genomes suggests that EpapGV is the baculovirus isolate closest to the putative common ancestor of tortricid specific betabaculoviruses. CONCLUSIONS This study, along with previous characterization of EpapGV infection, is useful for the better understanding of the pathology caused by this virus and its potential utilization as a bioinsecticide.
Collapse
Affiliation(s)
- María Leticia Ferrelli
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Dickison VL, Willis LG, Sokal NR, Theilmann DA. Deletion of AcMNPV ac146 eliminates the production of budded virus. Virology 2012; 431:29-39. [PMID: 22682215 DOI: 10.1016/j.virol.2012.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/02/2012] [Accepted: 05/04/2012] [Indexed: 12/22/2022]
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac146 is a highly conserved gene in the Alpha- and Betabaculovirus genera that has an unknown function. Northern blot analysis and transcript mapping showed that ac146 is transcribed at late times post infection as a 1.2 kb mRNA. To determine the role of ac146 in the baculovirus life cycle ac146 knock out viruses were constructed. Transfection and plaque assays showed that all the ac146 deletions produced a single cell phenotype indicating that no infectious budded virus (BV) was produced, however occlusion bodies were formed. The lack of BV production was confirmed by viral titration utilizing both qPCR and TCID₅₀. Analysis of BV and occlusion derived virus (ODV) revealed that AC146 is associated with both forms of the virus and is modified specifically in ODV. This study therefore demonstrates that AC146 is a late virion associated protein and is essential for the viral life cycle.
Collapse
Affiliation(s)
- Virginia L Dickison
- Irving K. Barber School of Arts and Sciences, Unit 2 Biology, University of British Columbia, Kelowna, B.C. V1V 1V7, Canada
| | | | | | | |
Collapse
|
46
|
Peng K, van Lent JWM, Boeren S, Fang M, Theilmann DA, Erlandson MA, Vlak JM, van Oers MM. Characterization of novel components of the baculovirus per os infectivity factor complex. J Virol 2012; 86:4981-8. [PMID: 22379094 PMCID: PMC3347349 DOI: 10.1128/jvi.06801-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/22/2012] [Indexed: 01/22/2023] Open
Abstract
Baculovirus occlusion-derived virus (ODV) infects insect midgut cells under alkaline conditions, a process mediated by highly conserved per os infectivity factors (PIFs), P74 (PIF0), PIF1, PIF2, PIF3, PIF4, and PIF5 (ODV-E56). Previously, a multimolecular complex composed of PIF1, PIF2, PIF3, and P74 was identified which was proposed to play an essential role during ODV entry. Recently, more proteins have been identified that play important roles in ODV oral infectivity, including PIF4, PIF5, and SF58, which might work in concert with previously known PIFs to facilitate ODV infection. In order to understand the ODV entry mechanism, the identification of all components of the PIF complex is crucial. Hence, the aim of this study was to identify additional components of the PIF complex. Coimmunoprecipitation (CoIP) combined with proteomic analysis was used to identify the components of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) PIF complex. PIF4 and P95 (AC83) were identified as components of the PIF complex while PIF5 was not, and this was confirmed with blue native PAGE and a second CoIP. Deletion of the pif4 gene impaired complex formation, but deletion of pif5 did not. Differentially denaturing SDS-PAGE further revealed that PIF4 forms a stable complex with PIF1, PIF2, and PIF3. P95 and P74 are more loosely associated with this complex. Three other proteins, AC5, AC68, and AC108 (homologue of SF58), were also found by the proteomic analysis to be associated with the PIF complex. Finally the functional significance of the PIF protein interactions is discussed.
Collapse
Affiliation(s)
- Ke Peng
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Jan W. M. van Lent
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Minggang Fang
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - David A. Theilmann
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - Martin A. Erlandson
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|