1
|
Ríos Carrasco M, Gröne A, van den Brand JMA, de Vries RP. The mammary glands of cows abundantly display receptors for circulating avian H5 viruses. J Virol 2024:e0105224. [PMID: 39387556 DOI: 10.1128/jvi.01052-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024] Open
Abstract
Influenza A viruses (IAVs) from the H5N1 2.3.4.4b clade are circulating in dairy farms in the USA.; ruminants were presumed not to be hosts for IAVs. Previously, IAV-positive mammalian species were hunters and scavengers, possibly getting infected while feeding on infected birds. It is now recognized that H5N1 viruses that circulate in US dairy cattle transmit through a mammary gland route, in contrast to transmission by aerosols via the respiratory tract. The sialome in the cow mammary and respiratory tract is so far solely defined using plant lectins. Here, we used recombinant HA proteins representing current circulating and classical H5 viruses to determine the distribution of IAV receptors in the respiratory and mammary tract tissues of cows. We complemented our study by mapping the glycan distribution of the upper and lower respiratory tracts of horses and pigs. Most of the sialome of the cow respiratory tract is lined with sialic acid modifications, such as N-glycolyl and O-acetyl, which are not bound by IAV. Interestingly, the H5 protein representing the cow isolates is bound significantly in the mammary gland, whereas classical H5 proteins failed to do so. Furthermore, whereas the 9-O-acetyl modification is prominent in all tissues tested, the 5-N-glycolyl modification is not, resulting in the display of receptors for avian IAV hemagglutinins. This could explain the high levels of virus found in these tissues and milk, adding supporting data to this virus transmission route.IMPORTANCEH5N1 influenza viruses, which usually affect birds, have been found on dairy farms in the USA. Surprisingly, these viruses are spreading among dairy cows, and there is a possibility that they do not spread through the air but through their milk glands. To understand this better, we studied how the virus attaches to tissues in the cow's respiratory tract and mammary glands using specific viral proteins. We found that the cow-associated virus binds strongly to the mammary glands, unlike older versions infecting birds. This might explain why the virus is found in cow's milk, suggesting a new way the virus could be spreading.
Collapse
Affiliation(s)
- María Ríos Carrasco
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Andrea Gröne
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Judith M A van den Brand
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
Huang P, Sun L, Li J, Wu Q, Rezaei N, Jiang S, Pan C. Potential cross-species transmission of highly pathogenic avian influenza H5 subtype (HPAI H5) viruses to humans calls for the development of H5-specific and universal influenza vaccines. Cell Discov 2023; 9:58. [PMID: 37328456 DOI: 10.1038/s41421-023-00571-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023] Open
Abstract
In recent years, highly pathogenic avian influenza H5 subtype (HPAI H5) viruses have been prevalent around the world in both avian and mammalian species, causing serious economic losses to farmers. HPAI H5 infections of zoonotic origin also pose a threat to human health. Upon evaluating the global distribution of HPAI H5 viruses from 2019 to 2022, we found that the dominant strain of HPAI H5 rapidly changed from H5N8 to H5N1. A comparison of HA sequences from human- and avian-derived HPAI H5 viruses indicated high homology within the same subtype of viruses. Moreover, amino acid residues 137A, 192I, and 193R in the receptor-binding domain of HA1 were the key mutation sites for human infection in the current HPAI H5 subtype viruses. The recent rapid transmission of H5N1 HPAI in minks may result in the further evolution of the virus in mammals, thereby causing cross-species transmission to humans in the near future. This potential cross-species transmission calls for the development of an H5-specific influenza vaccine, as well as a universal influenza vaccine able to provide protection against a broad range of influenza strains.
Collapse
Affiliation(s)
- Pan Huang
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd., Guangzhou, Guangdong, China
| | - Lujia Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jinhao Li
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd., Guangzhou, Guangdong, China
| | - Qingyi Wu
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd., Guangzhou, Guangdong, China
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Chungen Pan
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd., Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Praena B, Wan XF. Influenza Virus Infections in Polarized Cells. Viruses 2022; 14:1307. [PMID: 35746778 PMCID: PMC9231244 DOI: 10.3390/v14061307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 02/05/2023] Open
Abstract
In humans and other mammals, the respiratory tract is represented by a complex network of polarized epithelial cells, forming an apical surface facing the external environment and a basal surface attached to the basement layer. These cells are characterized by differential expression of proteins and glycans, which serve as receptors during influenza virus infection. Attachment between these host receptors and the viral surface glycoprotein hemagglutinin (HA) initiates the influenza virus life cycle. However, the virus receptor binding specificities may not be static. Sialylated N-glycans are the most well-characterized receptors but are not essential for the entry of influenza viruses, and other molecules, such as O-glycans and non-sialylated glycans, may be involved in virus-cell attachment. Furthermore, correct cell polarity and directional trafficking of molecules are essential for the orderly development of the system and affect successful influenza infection; on the other hand, influenza infection can also change cell polarity. Here we review recent advances in our understanding of influenza virus infection in the respiratory tract of humans and other mammals, particularly the attachment between the virus and the surface of the polar cells and the polarity variation of these cells due to virus infection.
Collapse
Affiliation(s)
- Beatriz Praena
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO 65211, USA;
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
| | - Xiu-Feng Wan
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO 65211, USA;
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
| |
Collapse
|
4
|
Nemanichvili N, Spruit CM, Berends AJ, Gröne A, Rijks JM, Verheije MH, de Vries RP. Wild and domestic animals variably display Neu5Ac and Neu5Gc sialic acids. Glycobiology 2022; 32:791-802. [PMID: 35648131 PMCID: PMC9387512 DOI: 10.1093/glycob/cwac033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Sialic acids are used as a receptor by several viruses and variations in the linkage type or C-5 modifications affect the binding properties. A species barrier for multiple viruses is present due to α2,3- or α2,6-linked sialic acids. The C-5 position of the sialic acid can be modified to form N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc), which acts as a determinant for host susceptibility for pathogens such as influenza A virus, rotavirus, and transmissible gastroenteritis coronavirus. Neu5Gc is present in most mammals such as pigs and horses but is absent in humans, ferrets, and dogs. However, little is known about C-5 content in wildlife species or how many C-5 modified sialic acids are present on N-linked glycans or glycolipids. Using our previously developed tissue microarray system, we investigated how 2 different lectins specific for Neu5Gc can result in varying detection levels of Neu5Gc glycans. We used these lectins to map Neu5Gc content in wild Suidae, Cervidae, tigers, and European hedgehogs. We show that Neu5Gc content is highly variable among different species. Furthermore, the removal of N-linked glycans reduces the binding of both Neu5Gc lectins while retention of glycolipids by omitting methanol treatment of tissues increases lectin binding. These findings highlight the importance of using multiple Neu5Gc lectins as the rich variety in which Neu5Gc is displayed can hardly be detected by a single lectin.
Collapse
Affiliation(s)
- Nikoloz Nemanichvili
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Cindy M Spruit
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Alinda J Berends
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Andrea Gröne
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Jolianne M Rijks
- Dutch Wildlife Health Centre, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Monique H Verheije
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
5
|
Abstract
Influenza A viruses (IAV) initiate infection by binding to glycans with terminal sialic acids on the cell surface. Hosts of IAV variably express two major forms of sialic acid, N-acetylneuraminic acid (NeuAc) and N-glycolylneuraminic acid (NeuGc). NeuGc is produced in most mammals including horses and pigs, but is absent in humans, ferrets, and birds. The only known naturally occurring IAVs that exclusively bind NeuGc are extinct highly pathogenic equine H7N7 viruses. We determined the crystal structure of a representative equine H7 hemagglutinin (HA) in complex with NeuGc and observed high similarity in the receptor-binding domain with an avian H7 HA. To determine the molecular basis for NeuAc and NeuGc specificity, we performed systematic mutational analyses, based on the structural insights, on two distant avian H7 HAs and an H15 HA. We found that mutation A135E is key for binding α2,3-linked NeuGc but does not abolish NeuAc binding. Additional mutations S128T, I130V, T189A, and K193R converted the specificity from NeuAc to NeuGc. We investigated the residues at positions 128, 130, 135, 189, and 193 in a phylogenetic analysis of avian and equine H7 HAs. This revealed a clear distinction between equine and avian residues. The highest variability was observed at key position 135, of which only the equine glutamic acid led to NeuGc binding. These results demonstrate that genetically distinct H7 and H15 HAs can be switched from NeuAc to NeuGc binding and vice versa after introduction of several mutations, providing insights into the adaptation of H7 viruses to NeuGc receptors. (250 words) Importance Influenza A viruses cause millions of cases of severe illness and deaths annually. To initiate infection and replicate, the virus first needs to bind to a structure on the cell surface, like a key fitting in a lock. For influenza A viruses, these 'keys' (receptors) on the cell surface are chains of sugar molecules (glycans). The terminal sugar on these glycans is often either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc). Most influenza A viruses bind NeuAc, but a small minority binds NeuGc. NeuGc is present in species like horses, pigs, and mice, but not in humans, ferrets, and birds. Here, we investigated the molecular determinants of NeuGc specificity and the origin of viruses that bind NeuGc.
Collapse
|
6
|
Broszeit F, Tzarum N, Zhu X, Nemanichvili N, Eggink D, Leenders T, Li Z, Liu L, Wolfert MA, Papanikolaou A, Martínez-Romero C, Gagarinov IA, Yu W, García-Sastre A, Wennekes T, Okamatsu M, Verheije MH, Wilson IA, Boons GJ, de Vries RP. N-Glycolylneuraminic Acid as a Receptor for Influenza A Viruses. Cell Rep 2020; 27:3284-3294.e6. [PMID: 31189111 PMCID: PMC6750725 DOI: 10.1016/j.celrep.2019.05.048] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/05/2019] [Accepted: 05/15/2019] [Indexed: 12/05/2022] Open
Abstract
A species barrier for the influenza A virus is the differential expression of sialic acid, which can either be α2,3-linked for avians or α2,6-linked for human viruses. The influenza A virus hosts also express other species-specific sialic acid derivatives. One major modification at C-5 is N-glycolyl (NeuGc), instead of N-acetyl (NeuAc). N-glycolyl is mammalian specific and expressed in pigs and horses, but not in humans, ferrets, seals, or dogs. Hemagglutinin (HA) adaptation to either N-acetyl or N-glycolyl is analyzed on a sialoside microarray containing both α2,3- and α2,6-linkage modifications on biologically relevant N-glycans. Binding studies reveal that avian, human, and equine HAs bind either N-glycolyl or N-acetyl. Structural data on N-glycolyl binding HA proteins of both H5 and H7 origin describe this specificity. Neuraminidases can cleave N-glycolyl efficiently, and tissue-binding studies reveal strict species specificity. The exclusive manner in which influenza A viruses differentiate between N-glycolyl and N-acetyl is indicative of selection. Broszeit and colleagues demonstrate that influenza A viruses recognize either N-acetyl or N-glycolyl neuraminic acid, and they explain these specificities using X-ray structures. NeuGc-binding viruses are perfectly viable, and neuraminidases can cleave NeuGc-containing receptor structures. There is an apparent selection now for NeuAc, as no known NeuGc-binding virus currently circulates.
Collapse
Affiliation(s)
- Frederik Broszeit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Netanel Tzarum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nikoloz Nemanichvili
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Dirk Eggink
- Department of Experimental Virology, Amsterdam Medical Centre, Amsterdam, the Netherlands
| | - Tim Leenders
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Zeshi Li
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Margreet A Wolfert
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Andreas Papanikolaou
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Carles Martínez-Romero
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ivan A Gagarinov
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Wenli Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tom Wennekes
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Monique H Verheije
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
7
|
Quantifying within-host diversity of H5N1 influenza viruses in humans and poultry in Cambodia. PLoS Pathog 2020; 16:e1008191. [PMID: 31951644 PMCID: PMC6992230 DOI: 10.1371/journal.ppat.1008191] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/30/2020] [Accepted: 11/04/2019] [Indexed: 12/31/2022] Open
Abstract
Avian influenza viruses (AIVs) periodically cross species barriers and infect humans. The likelihood that an AIV will evolve mammalian transmissibility depends on acquiring and selecting mutations during spillover, but data from natural infection is limited. We analyze deep sequencing data from infected humans and domestic ducks in Cambodia to examine how H5N1 viruses evolve during spillover. Overall, viral populations in both species are predominated by low-frequency (<10%) variation shaped by purifying selection and genetic drift, and half of the variants detected within-host are never detected on the H5N1 virus phylogeny. However, we do detect a subset of mutations linked to human receptor binding and replication (PB2 E627K, HA A150V, and HA Q238L) that arose in multiple, independent humans. PB2 E627K and HA A150V were also enriched along phylogenetic branches leading to human infections, suggesting that they are likely human-adaptive. Our data show that H5N1 viruses generate putative human-adapting mutations during natural spillover infection, many of which are detected at >5% frequency within-host. However, short infection times, genetic drift, and purifying selection likely restrict their ability to evolve extensively during a single infection. Applying evolutionary methods to sequence data, we reveal a detailed view of H5N1 virus adaptive potential, and develop a foundation for studying host-adaptation in other zoonotic viruses. H5N1 avian influenza viruses can cross species barriers and cause severe disease in humans. H5N1 viruses currently cannot replicate and transmit efficiently among humans, but animal infection studies and modeling experiments have suggested that human adaptation may require only a few mutations. However, data from natural spillover infection has been limited, posing a challenge for risk assessment. Here, we analyze a unique dataset of deep sequence data from H5N1 virus-infected humans and domestic ducks in Cambodia. We find that well-known markers of human receptor binding and replication arise in multiple, independent humans. We also find that 3 mutations detected within-host are enriched along phylogenetic branches leading to human infections, suggesting that they are likely human-adapting. However, we also show that within-host evolution in both humans and ducks are shaped heavily by purifying selection and genetic drift, and that a large fraction of within-host variation is never detected on the H5N1 phylogeny. Taken together, our data show that H5N1 viruses do generate human-adapting mutations during natural infection. However, short infection times, purifying selection, and genetic drift may severely limit how much H5N1 viruses can evolve during the course of a single infection.
Collapse
|
8
|
Wasik BR, Voorhees IEH, Barnard KN, Alford-Lawrence BK, Weichert WS, Hood G, Nogales A, Martínez-Sobrido L, Holmes EC, Parrish CR. Influenza Viruses in Mice: Deep Sequencing Analysis of Serial Passage and Effects of Sialic Acid Structural Variation. J Virol 2019; 93:e01039-19. [PMID: 31511393 PMCID: PMC6854484 DOI: 10.1128/jvi.01039-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022] Open
Abstract
Influenza A viruses have regularly jumped to new host species to cause epidemics or pandemics, an evolutionary process that involves variation in the viral traits necessary to overcome host barriers and facilitate transmission. Mice are not a natural host for influenza virus but are frequently used as models in studies of pathogenesis, often after multiple passages to achieve higher viral titers that result in clinical disease such as weight loss or death. Here, we examine the processes of influenza A virus infection and evolution in mice by comparing single nucleotide variations of a human H1N1 pandemic virus, a seasonal H3N2 virus, and an H3N2 canine influenza virus during experimental passage. We also compared replication and sequence variation in wild-type mice expressing N-glycolylneuraminic acid (Neu5Gc) with those seen in mice expressing only N-acetylneuraminic acid (Neu5Ac). Viruses derived from plasmids were propagated in MDCK cells and then passaged in mice up to four times. Full-genome deep sequencing of the plasmids, cultured viruses, and viruses from mice at various passages revealed only small numbers of mutational changes. The H3N2 canine influenza virus showed increases in frequency of sporadic mutations in the PB2, PA, and NA segments. The H1N1 pandemic virus grew well in mice, and while it exhibited the maintenance of some minority mutations, there was no clear evidence for adaptive evolution. The H3N2 seasonal virus did not establish in the mice. Finally, there were no clear sequence differences associated with the presence or absence of Neu5Gc.IMPORTANCE Mice are commonly used as a model to study the growth and virulence of influenza A viruses in mammals but are not a natural host and have distinct sialic acid receptor profiles compared to humans. Using experimental infections with different subtypes of influenza A virus derived from different hosts, we found that evolution of influenza A virus in mice did not necessarily proceed through the linear accumulation of host-adaptive mutations, that there was variation in the patterns of mutations detected in each repetition, and that the mutation dynamics depended on the virus examined. In addition, variation in the viral receptor, sialic acid, did not affect influenza virus evolution in this model. Overall, our results show that while mice provide a useful animal model for influenza virus pathology, host passage evolution will vary depending on the specific virus tested.
Collapse
Affiliation(s)
- Brian R Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Ian E H Voorhees
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Karen N Barnard
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brynn K Alford-Lawrence
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Wendy S Weichert
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Grace Hood
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- College of Veterinary Medicine, University of Queensland, Gatton, Queensland, Australia
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
9
|
A Y161F Hemagglutinin Substitution Increases Thermostability and Improves Yields of 2009 H1N1 Influenza A Virus in Cells. J Virol 2018; 92:JVI.01621-17. [PMID: 29118117 DOI: 10.1128/jvi.01621-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022] Open
Abstract
Vaccination is the primary strategy for influenza prevention and control. However, egg-based vaccines, the predominant production platform, have several disadvantages, including the emergence of viral antigenic variants that can be induced during egg passage. These limitations have prompted the development of cell-based vaccines, which themselves are not without issue. Most importantly, vaccine seed viruses often do not grow efficiently in mammalian cell lines. Here we aimed to identify novel high-yield signatures for influenza viruses in continuous Madin-Darby canine kidney (MDCK) and Vero cells. Using influenza A(H1N1)pdm09 virus as the testing platform and an integrating error-prone PCR-based mutagenesis strategy, we identified a Y161F mutation in hemagglutinin (HA) that not only enhanced the infectivity of the resultant virus by more than 300-fold but also increased its thermostability without changing its original antigenic properties. The vaccine produced from the Y161F mutant fully protected mice against lethal challenge with wild-type A(H1N1)pdm09. Compared with A(H1N1)pdm09, the Y161F mutant had significantly higher avidity for avian-like and human-like receptor analogs. Of note, the introduction of the Y161F mutation into HA of seasonal H3N2 influenza A virus (IAV) and canine H3N8 IAV also increased yields and thermostability in MDCK cells and chicken embryotic eggs. Thus, residue F161 plays an important role in determining viral growth and thermostability, which could be harnessed to optimize IAV vaccine seed viruses.IMPORTANCE Although a promising complement to current egg-based influenza vaccines, cell-based vaccines have one large challenge: high-yield vaccine seeds for production. In this study, we identified a molecular signature, Y161F, in hemagglutinin (HA) that resulted in increased virus growth in Madin-Darby canine kidney and Vero cells, two cell lines commonly used for influenza vaccine manufacturing. This Y161F mutation not only increased HA thermostability but also enhanced its binding affinity for α2,6- and α2,3-linked Neu5Ac. These results suggest that a vaccine strain bearing the Y161F mutation in HA could potentially increase vaccine yields in mammalian cell culture systems.
Collapse
|
10
|
Dong W, Farooqui A, Leon AJ, Kelvin DJ. Inhibition of influenza A virus infection by ginsenosides. PLoS One 2017; 12:e0171936. [PMID: 28187149 PMCID: PMC5302443 DOI: 10.1371/journal.pone.0171936] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 01/28/2017] [Indexed: 02/05/2023] Open
Abstract
Influenza viruses cause mild to severe respiratory infections in humans. Due to efficient means of transmission, the viruses infect human population on a large scale. Apart from vaccines, antiviral drugs are used to control infection; neuraminidase inhibitors are thought to be the first choice of treatment, particularly for severe cases. Rapidly evolving and emerging influenza viruses with increased frequency of viral resistance to these drugs stress the need to explore novel antiviral compounds. In this study, we investigated antiviral activity of ginseng extract and ginsenosides, the ginseng-derived triterpene and saponin compounds, against 2009 pandemic H1N1 virus in vitro and in vivo. Our data showed that treatment of mice with ginsenosides protected the animals from lethal 2009 pandemic H1N1 infection and lowered viral titers in animal lungs. Mechanistic studies revealed that ginsenosides interact with viral hemagglutinin protein and prevent the attachment of virus with α 2-3' sialic acid receptors present on host cell surfaces. The interference in the viral attachment process subsequently minimizes viral entry into the cells and decreases the severity of the viral infection. We also describe that sugar moieties present in ginsenosides are indispensible for their attachment with viral HA protein. On the basis of our observations, we can say that ginsenosides are promising candidates for the development of antiviral drugs for influenza viruses.
Collapse
Affiliation(s)
- Wei Dong
- Division of Immunology, International Institute of Infection and Immunity, University Health Network & Shantou University Medical College, Shantou, China
| | - Amber Farooqui
- Division of Immunology, International Institute of Infection and Immunity, University Health Network & Shantou University Medical College, Shantou, China
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, China
| | - Alberto J. Leon
- Division of Immunology, International Institute of Infection and Immunity, University Health Network & Shantou University Medical College, Shantou, China
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - David J. Kelvin
- Division of Immunology, International Institute of Infection and Immunity, University Health Network & Shantou University Medical College, Shantou, China
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, China
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Deptartment of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
11
|
Kannan S, Kolandaivel P. Computational studies of pandemic 1918 and 2009 H1N1 hemagglutinins bound to avian and human receptor analogs. J Biomol Struct Dyn 2015; 34:272-89. [PMID: 25893548 DOI: 10.1080/07391102.2015.1027737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The purpose of this work was to study the binding properties of two pandemic influenza A virus 1918 H1N1 (SC1918) and 2009 H1N1 (CA09) hemagglutinin (HA) with avian and human receptors. The quantum chemical calculations have been performed to analyze the interactions of 130 loop, 190 helix, 220 loop region, and conserved residues 95,145,153-155, of pandemic viruses' HA with sialo-trisaccharide receptor of avian and human using density functional theory. The HA's residues Tyr 95, Ala 138, Gln 191, Arg 220, and Asp 225 from the above regions have stronger interaction with avian receptor. The residues Thr 136, Trp 153, His 183, and Asp 190 of HA are important and play a significant role to bind with human receptor. The residues Tyr 95, Ala 138, Lys 145, Trp 153, Gln 192, and Gln 226 of HA of CA09 virus have found more interaction energies with human than avian receptors. Due to mutations in the active residues of HA of CA09 virus comparing with SC1918, the binding capabilities of HA with human have been increased. The molecular dynamics simulation was made to understand the different dynamical properties of HA and molecular interactions between HA of these two viruses with sialo-trisaccharide receptors of avian and human receptors. The interaction energy of HA of CA09 virus with human receptor decreases due to the human receptor far away from conserved residue region of HA protein. This reveals that the conserved residues particularly Lys 145 play major contribution to interaction with human receptor in HA of CA09 virus.
Collapse
Affiliation(s)
- S Kannan
- a Department of Physics , Bharathiar University , Coimbatore 641 046 , India
| | - P Kolandaivel
- a Department of Physics , Bharathiar University , Coimbatore 641 046 , India
| |
Collapse
|
12
|
Role of EXT1 and Glycosaminoglycans in the Early Stage of Filovirus Entry. J Virol 2015; 89:5441-9. [PMID: 25741008 DOI: 10.1128/jvi.03689-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Filoviruses, including both Ebola virus (EBOV) and Marburg virus (MARV), can infect humans and other animals, causing hemorrhagic fever with a high mortality rate. Entry of these viruses into the host is mediated by a single filoviral glycoprotein (GP). GP is composed of two subunits: GP1, which is responsible for attachment and binding to receptor(s) on susceptible cells, and GP2, which mediates viral and cell membrane fusion. Although numerous host factors have been implicated in the entry process, the initial attachment receptor(s) has not been well defined. In this report, we demonstrate that exostosin 1 (EXT1), which is involved in biosynthesis of heparan sulfate (HS), plays a role in filovirus entry. Expression knockdown of EXT1 by small interfering RNAs (siRNAs) impairs GP-mediated pseudoviral entry and that of infectious EBOV and MARV in tissue cultured cells. Furthermore, HS, heparin, and other related glycosaminoglycans (GAGs), to different extents, can bind to and block GP-mediated viral entry and that of infectious filoviruses. These results strongly suggest that HS and other related GAGs are attachment receptors that are utilized by filoviruses for entry and infection. These GAGs may have therapeutic potential in treating EBOV- and MARV-infected patients. IMPORTANCE Infection by Ebola virus and Marburg virus can cause severe illness in humans, with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The ongoing 2014 outbreak in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we provide several pieces of evidence that demonstrate that heparan sulfate and other closely related glycosaminoglycans are the molecules that are used by filoviruses for initial attachment. Furthermore, we demonstrate that these glycosaminoglycans can block entry of and infection by filoviruses. Thus, this work provides mechanistic insights on the early step of filoviral infection and suggests a possible therapeutic option for diseases caused by filovirus infection.
Collapse
|
13
|
Antanasijevic A, Basu A, Bowlin TL, Mishra RK, Rong L, Caffrey M. Mutagenesis studies of the H5 influenza hemagglutinin stem loop region. J Biol Chem 2014; 289:22237-45. [PMID: 24947513 DOI: 10.1074/jbc.m114.572974] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Influenza outbreaks, particularly the pandemic 1918 H1 and avian H5 strains, are of high concern to public health. The hemagglutinin envelope protein of influenza plays a critical role in viral entry and thus is an attractive target for inhibition of virus entry. The highly conserved stem loop region of hemagglutinin has been shown to undergo critically important conformational changes during the entry process and, moreover, to be a site for inhibition of virus entry by antibodies, small proteins, and small drug-like molecules. In this work we probe the structure-function properties of the H5 hemagglutinin stem loop region by site-directed mutagenesis. We find that most mutations do not disrupt expression, proteolytic processing, incorporation into virus, or receptor binding; however, many of the mutations disrupt the entry process. We further assess the effects of mutations on inhibition of entry by a neutralizing monoclonal antibody (C179) and find examples of increased and decreased sensitivity to the antibody, consistent with the antibody binding site observed by x-ray crystallography. In addition, we tested the sensitivity of the mutants to MBX2329, a small molecule inhibitor of influenza entry. Interestingly, the mutants exhibit increased and decreased sensitivities to MBX2329, which gives further insight into the binding site of the compound on HA and potential mechanisms of escape. Finally, we have modeled the binding site of MBX2329 using molecular dynamics and find that the resulting structure is in good agreement with the mutagenesis results. Together these studies underscore the importance of the stem loop region to HA function and suggest potential sites for therapeutic intervention of influenza entry.
Collapse
Affiliation(s)
- Aleksandar Antanasijevic
- From the Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607
| | - Arnab Basu
- Microbiotix Inc., Worcester, Massachusetts 01605
| | | | - Rama K Mishra
- the Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208, and
| | - Lijun Rong
- the Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612
| | - Michael Caffrey
- From the Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607,
| |
Collapse
|
14
|
Abstract
Despite heroic efforts to prevent the emergence of an influenza pandemic, avian influenza A virus has prevailed by crossing the species barriers to infect humans worldwide, occasionally with morbidity and mortality at unprecedented levels, and the virus later usually continues circulation in humans as a seasonal influenza virus, resulting in health-social-economic problems each year. Here, we review current knowledge of influenza viruses, their life cycle, interspecies transmission, and past pandemics and discuss the molecular basis of pandemic acquisition, notably of hemagglutinin (lectin) acting as a key contributor to change in host specificity in viral infection.
Collapse
Affiliation(s)
- Jun Hirabayashi
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | | |
Collapse
|
15
|
Abstract
Reverse genetics systems allow artificial generation of non-segmented and segmented negative-sense RNA viruses, like influenza viruses, entirely from cloned cDNA. Since the introduction of reverse genetics systems over a decade ago, the ability to generate ‘designer’ influenza viruses in the laboratory has advanced both basic and applied research, providing a powerful tool to investigate and characterise host–pathogen interactions and advance the development of novel therapeutic strategies. The list of applications for reverse genetics has expanded vastly in recent years. In this review, we discuss the development and implications of this technique, including the recent controversy surrounding the generation of a transmissible H5N1 influenza virus. We will focus on research involving the identification of viral protein function, development of live-attenuated influenza virus vaccines, host–pathogen interactions, immunity and the generation of recombinant influenza virus vaccine vectors for the prevention and treatment of infectious diseases and cancer.
Collapse
|
16
|
New small molecule entry inhibitors targeting hemagglutinin-mediated influenza a virus fusion. J Virol 2013; 88:1447-60. [PMID: 24198411 DOI: 10.1128/jvi.01225-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Influenza viruses are a major public health threat worldwide, and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The influenza virus glycoprotein hemagglutinin (HA) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-influenza drugs. Using pseudotype virus-based high-throughput screens, we have identified several new small molecules capable of inhibiting influenza virus entry. We prioritized two novel inhibitors, MBX2329 and MBX2546, with aminoalkyl phenol ether and sulfonamide scaffolds, respectively, that specifically inhibit HA-mediated viral entry. The two compounds (i) are potent (50% inhibitory concentration [IC50] of 0.3 to 5.9 μM); (ii) are selective (50% cytotoxicity concentration [CC(50)] of >100 μM), with selectivity index (SI) values of >20 to 200 for different influenza virus strains; (iii) inhibit a wide spectrum of influenza A viruses, which includes the 2009 pandemic influenza virus A/H1N1/2009, highly pathogenic avian influenza (HPAI) virus A/H5N1, and oseltamivir-resistant A/H1N1 strains; (iv) exhibit large volumes of synergy with oseltamivir (36 and 331 μM(2) % at 95% confidence); and (v) have chemically tractable structures. Mechanism-of-action studies suggest that both MBX2329 and MBX2546 bind to HA in a nonoverlapping manner. Additional results from HA-mediated hemolysis of chicken red blood cells (cRBCs), competition assays with monoclonal antibody (MAb) C179, and mutational analysis suggest that the compounds bind in the stem region of the HA trimer and inhibit HA-mediated fusion. Therefore, MBX2329 and MBX2546 represent new starting points for chemical optimization and have the potential to provide valuable future therapeutic options and research tools to study the HA-mediated entry process.
Collapse
|
17
|
Antanasijevic A, Cheng H, Wardrop DJ, Rong L, Caffrey M. Inhibition of influenza H7 hemagglutinin-mediated entry. PLoS One 2013; 8:e76363. [PMID: 24194835 PMCID: PMC3806803 DOI: 10.1371/journal.pone.0076363] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/26/2013] [Indexed: 12/20/2022] Open
Abstract
The recent outbreak of H7N9 influenza in China is of high concern to public health. H7 hemagglutinin (HA) plays a critical role in influenza entry and thus HA presents an attractive target for antivirals. Previous studies have suggested that the small molecule tert-butyl hydroquinone (TBHQ) inhibits the entry of influenza H3 HA by binding to the stem loop of HA and stabilizing the neutral pH conformation of HA, thereby disrupting the membrane fusion step. Based on amino acid sequence, structure and immunogenicity, H7 is a related Group 2 HA. In this work we show, using a pseudovirus entry assay, that TBHQ inhibits H7 HA-mediated entry, as well as H3 HA-mediated entry, with an IC50 ~ 6 µM. Using NMR, we show that TBHQ binds to the H7 stem loop region. STD NMR experiments indicate that the aromatic ring of TBHQ makes extensive contact with the H7 HA surface. Limited proteolysis experiments indicate that TBHQ inhibits influenza entry by stabilizing the H7 HA neutral pH conformation. Together, this work suggests that the stem loop region of H7 HA is an attractive target for therapeutic intervention and that TBHQ, which is a widely used food preservative, is a promising lead compound.
Collapse
Affiliation(s)
- Aleksandar Antanasijevic
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Han Cheng
- Department of Microbiology & Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Duncan J. Wardrop
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lijun Rong
- Department of Microbiology & Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Michael Caffrey
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
18
|
Influenza a virus entry: implications in virulence and future therapeutics. Adv Virol 2013; 2013:121924. [PMID: 23365574 PMCID: PMC3556402 DOI: 10.1155/2013/121924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/09/2012] [Accepted: 12/23/2012] [Indexed: 12/15/2022] Open
Abstract
Influenza A viruses have broad host tropism, being able to infect a range of hosts from wild fowl to swine to humans. This broad tropism makes highly pathogenic influenza A strains, such as H5N1, potentially dangerous to humans if they gain the ability to jump from an animal reservoir to humans. How influenza A viruses are able to jump the species barrier is incompletely understood due to the complex genetic nature of the viral surface glycoprotein, hemagglutinin, which mediates entry, combined with the virus's ability to use various receptor linkages. Current therapeutics against influenza A include those that target the uncoating process after entry as well as those that prevent viral budding. While there are therapeutics in development that target entry, currently there are none clinically available. We review here the genetics of influenza A viruses that contribute to entry tropism, how these genetic alterations may contribute to receptor usage and species tropism, as well as how novel therapeutics can be developed that target the major surface glycoprotein, hemagglutinin.
Collapse
|
19
|
Wang J, Qi X, Lu C. Mutations in the C-terminal tail of NS1 protein facilitate the replication of classical swine H1N1 influenza A virus in mice. Folia Microbiol (Praha) 2012; 57:169-75. [PMID: 22430886 DOI: 10.1007/s12223-012-0110-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 03/02/2012] [Indexed: 11/26/2022]
Abstract
The NS1 protein of classical swine H1N1 influenza A virus evolved dynamically during the past 80 years, most notable changes happened in the four C-terminal sequences and the C-terminal truncation of 11 amino acids. However, the role of these changes on the virulence of classical swine H1N1 influenza A virus remains unknown. Using reverse genetics, three NS1 mutant viruses (RSEV, GSEI, and EPEV) and a wild-type virus (PEQK) were generated from A/Swine/Shanghai/1/2005 virus and the pathogenicity of the viruses was determined in mice. The results showed that RSEV and PEQK viruses could not infect the mice. By contrast, GSEI and EPEV viruses could replicate in the lungs of mice without prior adaptation. The viral titers in lungs from GSEI and EPEV virus-infected mice were 2,300 and 7 pfu/g at fourth-day post-infection, respectively. Mild-to-moderate alveolitis was observed in the histopathological test of lungs from GSEI and EPEV virus-infected mice. The results indicated that C-terminal GSEI and EPEV motifs of NS1 protein involved in viral virulence and facilitated the A/Swine/Shanghai/1/2005 virus crossing the species barrier from swine to mice.
Collapse
Affiliation(s)
- Jinxiang Wang
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Jiangsu, People's Republic of China
| | | | | |
Collapse
|