1
|
Templeton CW, Traktman P. UV Irradiation of Vaccinia Virus-Infected Cells Impairs Cellular Functions, Introduces Lesions into the Viral Genome, and Uncovers Repair Capabilities for the Viral Replication Machinery. J Virol 2022; 96:e0213721. [PMID: 35404095 PMCID: PMC9093118 DOI: 10.1128/jvi.02137-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/17/2022] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus (VV), the prototypic poxvirus, encodes a repertoire of proteins responsible for the metabolism of its large dsDNA genome. Previous work has furthered our understanding of how poxviruses replicate and recombine their genomes, but little is known about whether the poxvirus genome undergoes DNA repair. Our studies here are aimed at understanding how VV responds to exogenous DNA damage introduced by UV irradiation. Irradiation of cells prior to infection decreased protein synthesis and led to an ∼12-fold reduction in viral yield. On top of these cell-specific insults, irradiation of VV infections at 4 h postinfection (hpi) introduced both cyclobutene pyrimidine dimer (CPD) and 6,4-photoproduct (6,4-PP) lesions into the viral genome led to a nearly complete halt to further DNA synthesis and to a further reduction in viral yield (∼35-fold). DNA lesions persisted throughout infection and were indeed present in the genomes encapsidated into nascent virions. Depletion of several cellular proteins that mediate nucleotide excision repair (XP-A, -F, and -G) did not render viral infections hypersensitive to UV. We next investigated whether viral proteins were involved in combatting DNA damage. Infections performed with a virus lacking the A50 DNA ligase were moderately hypersensitive to UV irradiation (∼3-fold). More strikingly, when the DNA polymerase inhibitor cytosine arabinoside (araC) was added to wild-type infections at the time of UV irradiation (4 hpi), an even greater hypersensitivity to UV irradiation was seen (∼11-fold). Virions produced under the latter condition contained elevated levels of CPD adducts, strongly suggesting that the viral polymerase contributes to the repair of UV lesions introduced into the viral genome. IMPORTANCE Poxviruses remain of significant interest because of their continuing clinical relevance, their utility for the development of vaccines and oncolytic therapies, and their illustration of fundamental principles of viral replication and virus/cell interactions. These viruses are unique in that they replicate exclusively in the cytoplasm of infected mammalian cells, providing novel challenges for DNA viruses. How poxviruses replicate, recombine, and possibly repair their genomes is still only partially understood. Using UV irradiation as a form of exogenous DNA damage, we have examined how vaccinia virus metabolizes its genome following insult. We show that even UV irradiation of cells prior to infection diminishes viral yield, while UV irradiation during infection damages the genome, causes a halt in DNA accumulation, and reduces the viral yield more severely. Furthermore, we show that viral proteins, but not the cellular machinery, contribute to a partial repair of the viral genome following UV irradiation.
Collapse
Affiliation(s)
- Conor W. Templeton
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Paula Traktman
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Departments of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
2
|
Jean J, Rodríguez-López MI, Jubinville E, Núñez-Delicado E, Gómez-López VM. Potential of pulsed light technology for control of SARS-CoV-2 in hospital environments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 215:112106. [PMID: 33383557 PMCID: PMC7767662 DOI: 10.1016/j.jphotobiol.2020.112106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/13/2020] [Accepted: 12/12/2020] [Indexed: 12/22/2022]
Abstract
The emergence of the SARS-CoV-2 infection and its potential transmission through touching surfaces in clinical environments have impelled the use of conventional and novel methods of disinfection to prevent its spreading. Among the latter, pulsed light may be an effective, non-chemical decontamination alternative. Pulsed light technology inactivates microorganisms and viruses by using high intensity polychromatic light pulses, which degrades nucleic acids and proteins. This review describes this technology, compiles and critically analyzes the evidence about the virucidal efficacy of pulsed light technology with view on its potential use against SARS-CoV-2 in touching surfaces in health-care facilities. The efficacy of pulsed light proved against many different kind of viruses allows to conclude that is a suitable candidate to inactivate SARS-CoV-2 as long as the required fluence is applied and the appropriated exposure to contaminated surfaces is guaranteed. Pulsed light can inactivate many different types of viruses. Its antimicrobial efficacy has been proved in different health care facilities. Pulsed light produces fast inactivation and it is ecologically friendly. Evidence shows that it should be effective for SARS-CoV-2 inactivation.
Collapse
Affiliation(s)
- Julie Jean
- Département des Sciences des Aliments, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, QC, Canada
| | - María Isabel Rodríguez-López
- Departamento de Tecnología de la Alimentación y Nutrición, Universidad Católica San Antonio de Murcia, Campus de los Jerónimos, E-30107 Murcia, Spain
| | - Eric Jubinville
- Département des Sciences des Aliments, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, QC, Canada
| | - Estrella Núñez-Delicado
- Departamento de Tecnología de la Alimentación y Nutrición, Universidad Católica San Antonio de Murcia, Campus de los Jerónimos, E-30107 Murcia, Spain
| | - Vicente M Gómez-López
- Catedra Alimentos para la Salud, Universidad Católica San Antonio de Murcia, Campus de los Jerónimos, E-30107 Murcia, Spain.
| |
Collapse
|
3
|
Sagripanti JL, Voss L, Marschall HJ, David Lytle C. Inactivation of Vaccinia Virus by Natural Sunlight and by Artificial UVB Radiation. Photochem Photobiol 2013; 89:132-8. [DOI: 10.1111/j.1751-1097.2012.01207.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/16/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Jose-Luis Sagripanti
- Research and Technology Directorate; Edgewood Chemical Biological Center; U.S. Army; Aberdeen; MD
| | - Luzie Voss
- Wehrwissenschafliches Institut für Schutztechnologien (WIS); Munster; Germany
| | | | - Carl David Lytle
- Research and Technology Directorate; Edgewood Chemical Biological Center; U.S. Army; Aberdeen; MD
| |
Collapse
|
4
|
Sagripanti JL, Lytle CD. Sensitivity to ultraviolet radiation of Lassa, vaccinia, and Ebola viruses dried on surfaces. Arch Virol 2010; 156:489-94. [PMID: 21104283 DOI: 10.1007/s00705-010-0847-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 10/20/2010] [Indexed: 11/28/2022]
Abstract
Germicidal UV (also known as UVC) provides a means to decontaminate infected environments as well as a measure of viral sensitivity to sunlight. The present study determined UVC inactivation slopes (and derived D(37) values) of viruses dried onto nonporous (glass) surfaces. The data obtained indicate that the UV resistance of Lassa virus is higher than that of Ebola virus. The UV sensitivity of vaccinia virus (a surrogate for variola virus) appeared intermediate between that of the two virulent viruses studied. In addition, the three viruses dried on surfaces showed a relatively small but significant population of virions (from 3 to 10 % of virus in the inoculum) that appeared substantially more protected by their environment from the effect of UV than the majority of virions tested. The findings reported in this study should assist in estimating the threat posed by the persistence of virus in environments contaminated during epidemics or after an accidental or intentional release.
Collapse
Affiliation(s)
- Jose-Luis Sagripanti
- Research and Technology Directorate, Edgewood Chemical Biological Center, U.S. Army, Aberdeen Proving Ground, MD, USA.
| | | |
Collapse
|
5
|
Abstract
Infection of Agallia constricta vector cell monolayers with wound tumor virus results in the synthesis of 12 virus-specific polypeptides. Confirmation that these polypeptides are virus encoded rather than virus induced was obtained by cell-free translation of in vitro synthesized viral mRNA. In addition, transcription by purified wound tumor virus particles was coupled with translation of the resulting transcripts in a wheat embryo cell-free extract. Six previously described structural polypeptides, one presumptive structural polypeptide, and five previously unidentified nonstructural polypeptides were synthesized in infected vector cell monolayers, in cell-free extracts directed by in vitro synthesized viral mRNA, and in the homologous plant cell-free system, in which viral transcription was coupled with translation. Pulse-chase experiments revealed no evidence of precursor-product relationships for the wound tumor virus-specific polypeptides.
Collapse
Affiliation(s)
- D L Nuss
- Division of Laboratories and Research, New York State Department of Health, Albany, New York 12201
| | | |
Collapse
|
6
|
Human CMV Infection of Porcine Endothelial Cells Increases Adhesion Receptor Expression and Human Leukocyte Recruitment. Transplantation 2009; 87:1792-800. [DOI: 10.1097/tp.0b013e3181a75a41] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Abstract
UV radiation from the sun is the primary germicide in the environment. The goal of this study was to estimate inactivation of viruses by solar exposure. We reviewed published reports on 254-nm UV inactivation and tabulated the sensitivities of a wide variety of viruses, including those with double-stranded DNA, single-stranded DNA, double-stranded RNA, or single-stranded RNA genomes. We calculated D(37) values (fluence producing on average one lethal hit per virion and reducing viable virus to 37%) from all available data. We defined "size-normalized sensitivity" (SnS) by multiplying UV(254) sensitivities (D(37) values) by the genome size, and SnS values were relatively constant for viruses with similar genetic composition. In addition, SnS values were similar for complete virions and their defective particles, even when the corresponding D(37) values were significantly different. We used SnS to estimate the UV(254) sensitivities of viruses for which the genome composition and size were known but no UV inactivation data were available, including smallpox virus, Ebola, Marburg, Crimean-Congo, Junin, and other hemorrhagic viruses, and Venezuelan equine encephalitis and other encephalitis viruses. We compiled available data on virus inactivation as a function of wavelength and calculated a composite action spectrum that allowed extrapolation from the 254-nm data to solar UV. We combined our estimates of virus sensitivity with solar measurements at different geographical locations to predict virus inactivation. Our predictions agreed with the available experimental data. This work should be a useful step to understanding and eventually predicting the survival of viruses after their release in the environment.
Collapse
Affiliation(s)
- C David Lytle
- Edgewood Chemical Biological Center, U.S. Army, Aberdeen Proving Ground, Maryland 21010-5424, USA
| | | |
Collapse
|
8
|
Lytle CD, Sagripanti JL. Predicted inactivation of viruses of relevance to biodefense by solar radiation. J Virol 2005. [PMID: 16254359 DOI: 10.1128/jvi792214244-142522005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
UV radiation from the sun is the primary germicide in the environment. The goal of this study was to estimate inactivation of viruses by solar exposure. We reviewed published reports on 254-nm UV inactivation and tabulated the sensitivities of a wide variety of viruses, including those with double-stranded DNA, single-stranded DNA, double-stranded RNA, or single-stranded RNA genomes. We calculated D(37) values (fluence producing on average one lethal hit per virion and reducing viable virus to 37%) from all available data. We defined "size-normalized sensitivity" (SnS) by multiplying UV(254) sensitivities (D(37) values) by the genome size, and SnS values were relatively constant for viruses with similar genetic composition. In addition, SnS values were similar for complete virions and their defective particles, even when the corresponding D(37) values were significantly different. We used SnS to estimate the UV(254) sensitivities of viruses for which the genome composition and size were known but no UV inactivation data were available, including smallpox virus, Ebola, Marburg, Crimean-Congo, Junin, and other hemorrhagic viruses, and Venezuelan equine encephalitis and other encephalitis viruses. We compiled available data on virus inactivation as a function of wavelength and calculated a composite action spectrum that allowed extrapolation from the 254-nm data to solar UV. We combined our estimates of virus sensitivity with solar measurements at different geographical locations to predict virus inactivation. Our predictions agreed with the available experimental data. This work should be a useful step to understanding and eventually predicting the survival of viruses after their release in the environment.
Collapse
Affiliation(s)
- C David Lytle
- Edgewood Chemical Biological Center, U.S. Army, Aberdeen Proving Ground, Maryland 21010-5424, USA
| | | |
Collapse
|
9
|
Lytle CD, Sagripanti JL. Predicted inactivation of viruses of relevance to biodefense by solar radiation. J Virol 2005. [PMID: 16254359 DOI: 10.1128/jvi.79.22.14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
UV radiation from the sun is the primary germicide in the environment. The goal of this study was to estimate inactivation of viruses by solar exposure. We reviewed published reports on 254-nm UV inactivation and tabulated the sensitivities of a wide variety of viruses, including those with double-stranded DNA, single-stranded DNA, double-stranded RNA, or single-stranded RNA genomes. We calculated D(37) values (fluence producing on average one lethal hit per virion and reducing viable virus to 37%) from all available data. We defined "size-normalized sensitivity" (SnS) by multiplying UV(254) sensitivities (D(37) values) by the genome size, and SnS values were relatively constant for viruses with similar genetic composition. In addition, SnS values were similar for complete virions and their defective particles, even when the corresponding D(37) values were significantly different. We used SnS to estimate the UV(254) sensitivities of viruses for which the genome composition and size were known but no UV inactivation data were available, including smallpox virus, Ebola, Marburg, Crimean-Congo, Junin, and other hemorrhagic viruses, and Venezuelan equine encephalitis and other encephalitis viruses. We compiled available data on virus inactivation as a function of wavelength and calculated a composite action spectrum that allowed extrapolation from the 254-nm data to solar UV. We combined our estimates of virus sensitivity with solar measurements at different geographical locations to predict virus inactivation. Our predictions agreed with the available experimental data. This work should be a useful step to understanding and eventually predicting the survival of viruses after their release in the environment.
Collapse
Affiliation(s)
- C David Lytle
- Edgewood Chemical Biological Center, U.S. Army, Aberdeen Proving Ground, Maryland 21010-5424, USA
| | | |
Collapse
|
10
|
Abstract
BACKGROUND The role of nitric oxide (NO) in the host defense against viruses has not been well defined. Several studies have implicated NO as responsible for the destruction of a variety of viruses. However, others have reported that certain viruses can impair the ability of macrophages to produce NO. This study was initiated to determine the ability of macrophages to produce NO in response to vaccinia virus infection. METHODS RAW 264.7 murine macrophages in minimum essential medium were exposed to virus-containing supernatants for 1 h before stimulation with Escherichia coli lipopolysaccharide (LPS, 0.001 and 1.0 microg/ml). After further 24-h incubations, nitrite concentration, cell viability, and inducible nitric oxide synthase (iNOS) were quantitated. RESULTS The viral preparation alone did not stimulate nitric oxide synthesis (measured as nitrite) by macrophages. However, macrophages exposed to 0.001 and 1.0 microg/ml LPS produced 7.7 +/- 0.6 and 16.6 +/- 0.8 nmole/1.1 x 10(6) cells/24-h nitrite, respectively. Production of nitrite caused cell death. Macrophages incubated with vaccinia virus prior to exposure to LPS resulted in a dose-dependent decrease in nitrite production. An 80% inhibition of nitrite was noted when macrophages were exposed to vaccinia virus (m.o.i. 10(-4)) plus LPS (1.0 microg/ml) (P < 0.05). Further study showed that this inhibition was not associated with changes in cell viability or substrate availability, but was associated with a marked reduction in iNOS protein. When the virus was inactivated with UV-irradiation, the same incubation caused a 46% inhibition of nitrite production (P < 0.05 vs active virus). However, this effect occurred without altering the quantity of iNOS protein. CONCLUSION These results indicate that active vaccinia virus inhibits the ability of stimulated macrophages to produce NO by hindering iNOS protein expression. Because live viral particles were not entirely required for this inhibition, it is possible that by products of viral infection, such as soluble viral proteins, may also be responsible for this effect.
Collapse
Affiliation(s)
- Charles F Bellows
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
11
|
Abstract
The development and continued refinement of techniques for the efficient insertion and expression of heterologous DNA sequences from within the genomic context of infectious vaccinia virus recombinants are among the most promising current approaches towards effective immunoprophylaxis against a variety of protozoan, viral, and bacterial human pathogens. Because of its medical relevance, this area is the subject of intense research interest and has evolved rapidly during the past several years. This review (i) provides an updated overview of the technology that exists for assembling recombinant vaccinia virus strains, (ii) discusses the advantages and disadvantages of these approaches, (iii) outlines the areas of outgoing research directed towards overcoming the limitations of current techniques, and (iv) provides some insight (i.e., speculation) about probable future refinements in the use of vaccinia virus as a vector.
Collapse
Affiliation(s)
- D E Hruby
- Department of Microbiology, Oregon State University, Corvallis 97331-3804
| |
Collapse
|
12
|
Affiliation(s)
- B Moss
- Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
13
|
Abstract
Identification of a tightly spaced and tandemly oriented late gene cluster within the central conserved region of the vaccinia virus genome suggested the possibility of coordinate regulation of the genes within this domain (S.L. Weinrich and D.E. Hruby, Nucleic Acids Res. 14:3003-3016, 1986). To test this hypothesis, the steady-state levels of transcripts derived from the individual late genes were examined. Cytoplasmic RNA was isolated from infected cells at hourly intervals throughout infection and was used in concert with 5' S1 nuclease mapping procedures to detect transcripts from specific late genes. Among the set of six closely linked late genes, marked differences were observed in both the levels of transcription and the kinetic patterns of expression, providing direct evidence for the existence of differentially regulated gene subsets within the late gene class. Furthermore, these experiments identified one of the genes (encoding a 33,000-molecular-weight polypeptide) as being expressed both early and late postinfection. Interestingly, although transcripts from the constitutively expressed gene were initiated at the same start sites throughout infection, a discrete terminus for these transcripts was detected only at early times. These data suggest that the lack of cis-acting termination signals is not the reason for the late gene transcript heterogeneity observed in vaccinia virus-infected cells.
Collapse
|
14
|
Domber E, Holowczak JA. Vaccinia virus proteins on the plasma membranes of infected cells. IV. Studies employing L cells infected with ultraviolet-irradiated vaccinia virions. Virology 1986; 152:331-42. [PMID: 3487879 DOI: 10.1016/0042-6822(86)90136-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
As measured by in vitro, 51Cr-release assays, the expression on plasma membranes of two, immediate-early, vaccinia virus-specified cell-surface antigens, with mol wt of 25K-27K and 16K-17K, could be directly correlated with the susceptibility of target cells to lysis by vaccinia virus-specific cytotoxic T cells.
Collapse
|
15
|
Moussatché N. Polyamines stimulate DNA-dependent RNA synthesis catalyzed by vaccinia virus. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 826:113-20. [PMID: 4052428 DOI: 10.1016/0167-4781(85)90116-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The RNA synthesis in purified vaccinia virus can occur in the presence of either Mg2+ or Mn2+ if polyamine (spermidine or spermine) is present in the assay system. Under our assay conditions transcription was linear up to 30 min and the RNAs synthesized had a sedimentation coefficient of about 8 to 12 S. We also prepared a virus extract from purified vaccinia virus and tested for in vitro transcription. The soluble transcription system was dependent on the addition of exogenous DNA and single-stranded DNA was a more effective template than double-stranded. In the presence of polyamine and Mg2+ or Mn2+ the viral RNA polymerase was active in the transcription of total native vaccinia DNA and a small fragment cloned in pBR322.
Collapse
|
16
|
Martin JP, Aubertin AM, Kirn A. Expression of frog virus 3 early genes after ultraviolet irradiation. Virology 1982; 122:402-10. [PMID: 7147709 DOI: 10.1016/0042-6822(82)90239-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Abstract
Poxviruses comprise a large group of very complex animal DNA viruses which replicate in the cytoplasm of infected cells. Vaccinia virus, the most studied poxvirus, has a linear, double stranded DNA genome with an approximate molecular weight of 120 x 10(6) (180 kilobase pairs). The two strands of the DNA molecule are naturally cross-linked at both termini. In addition, the vaccinia virus genome contains very long inverted terminal repetitions of approximately 10 kilobase pairs which are further characterized by the presence of direct tandem repeats of a 70-base-pair sequence arranged in two blocks of 13 and 17 copies, respectively. A central region of the genome is highly conserved between different orthopoxviruses. In contrast, the ends are hypervariable and may contain extensive deletions and complex, symmetrical sequences rearrangements. Vaccinia virus gene expression is divided into two stages. Early in infection, RNA complementary to one half of one strand-equivalent of the genome is transcribed within subviral particles by the virion-associated RNA polymerase. Later in infection, after DNA replication, RNA complementary to one entire strand-equivalent is transcribed. RNA made late in infection is very heterogeneous in length and a large fraction of it contains self-complementary sequences. Late genes are clustered near the central region of the genome. Vaccinia virus mRNAs do not appear to be synthesized by a splicing mechanism.
Collapse
|
18
|
McCarron RJ, McAllister WT. Effect of alterations in reaction conditions on vaccinia virus transcription in vitro. Virology 1981; 113:392-6. [PMID: 7269248 DOI: 10.1016/0042-6822(81)90165-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
|
20
|
Bablanian R, Coppola G, Scribani S, Esteban M. Inhibition of protein synthesis by vaccinia virus. IV. The role of low-molecular-weight viral RNA in the inhibition of protein synthesis. Virology 1981; 112:13-24. [PMID: 7245615 DOI: 10.1016/0042-6822(81)90607-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Bablanian R, Coppola G, Scribani S, Esteban M. Inhibition of protein synthesis by vaccinia virus. III. The effect of ultraviolet-irradiated virus on the inhibition of protein synthesis. Virology 1981; 112:1-12. [PMID: 7245613 DOI: 10.1016/0042-6822(81)90606-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Bossart W, Bienz K. Regulation of protein synthesis in HEp-2 cells and their cytoplasmic extracts after poliovirus infection. Virology 1981; 111:555-67. [PMID: 6264672 DOI: 10.1016/0042-6822(81)90357-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Kozak M. Mechanism of mRNA recognition by eukaryotic ribosomes during initiation of protein synthesis. Curr Top Microbiol Immunol 1981; 93:81-123. [PMID: 7026182 DOI: 10.1007/978-3-642-68123-3_5] [Citation(s) in RCA: 83] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Gershowitz A, Moss B. Abortive transcription products of vaccinia virus are guanylylated, methylated, and polyadenylylated. J Virol 1979; 31:849-53. [PMID: 513196 PMCID: PMC353514 DOI: 10.1128/jvi.31.3.849-853.1979] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abortive transcription products were synthesized in vitro by UV-irradiated vaccinia virus particles that were incubated with all four ribonucleoside triphosphates or by unirradiated particles that were incubated in reaction mixtures deficient in CTP or UTP. The RNA sedimented at 4 to 6S in sucrose gradients, suggesting that premature termination had occurred, presumably in one case because the DNA contained UV-induced pyrimidine dimers and in the other case because of ribonucleoside triphosphate was present at limiting concentration for transcription. Nevertheless, the short transcripts were capped, methylated, and polyadenylylated, indicating that neither completion of an RNA chain nor processing from a polycistronic precursor was required for modification of either end of the RNA. In addition, the finding of m7G(5')pppAm and m7G(5')pppGm at the 5' ends of the short RNA molecules implied that transcription was initiated with both ATP and GTP. The presence of the polyadenylic acid tract suggested that a slow-down or cessation of transcription, rather than a specific 3'-terminal sequence, served as a signal for polyadenylylation.
Collapse
|
25
|
Abraham G. The effect of ultraviolet radiation on the primary transcription of influenza virus messenger RNAs. Virology 1979; 97:177-82. [PMID: 473590 DOI: 10.1016/0042-6822(79)90384-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Bossart W, Paoletti E, Nuss DL. Cell-free translation of purified virion-associated high-molecular-weight RNA synthesized in vitro by vaccinia virus. J Virol 1978; 28:905-16. [PMID: 215785 PMCID: PMC525815 DOI: 10.1128/jvi.28.3.905-916.1978] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Virion-associated high-molecular-weight (HMW) RNA synthesized in vitro by purified vaccinia virus particles has been translated in a wheat germ cell-free protein synthesizing system. Purified HMW RNA directs the synthesis of translation products which are identical to the translation products made in response to in vitro-synthesized, virion-released 8 to 12S mRNA. The translation of HMW RNA proceeds exclusively through a 5'-terminal cap-mediated initiation step. Furthermore, only one coding sequence is translated per HMW RNA molecule, and that sequence is probably located near the 5' end of the molecule. These conclusions are based on the following results. (i) Sodium dodecyl sulfate--polyacrylamide gel electrophoresis patterns of translation products synthesized in response to HMW RNA and in response to 8 to 12S mRNA were qualitatively identical. (ii) On an equal weight basis, HMW RNA was 25 to 30% as active as 8 to 12S mRNA in stimulating in vitro protein synthesis. (iii) Unmethylated HMW RNA was translated at 10% the efficiency of the methylated form of this RNA. (iv) m7pG inhibited the translation of fully methylated HMW RNA by 90%. (v) After the initiation step of translation was blocked by aurintricarboxylic acid, the rate with which amino acids were incorporated into individual polypeptides decreased in a similar manner for the translation of both HMW RNA and 8 to 12S mRNA. Virion-released 8 to 12S mRNA derived from virion-associated HMW RNA during a chase in the presence of ATP, GTP, and S-adenosylmethionine was also translated. At low RNA concentrations, the derived RNA appeared to stimulate amino acid incorporation more efficiently than the HMW RNA precursor. However, at higher concentrations of this RNA, protein synthesis was severely inhibited.
Collapse
|