1
|
Analysis of the costructure of the simian virus 40 T-antigen origin binding domain with site I reveals a correlation between GAGGC spacing and spiral assembly. J Virol 2012; 87:2923-34. [PMID: 23269808 DOI: 10.1128/jvi.02549-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyomavirus origins of replication contain multiple occurrences of G(A/G)GGC, the high-affinity binding element for the viral initiator T-antigen (T-ag). The site I regulatory region of simian virus 40, involved in the repression of transcription and the enhancement of DNA replication initiation, contains two GAGGC sequences arranged head to tail and separated by a 7-bp AT-rich sequence. We have solved a 3.2-Å costructure of the SV40 origin-binding domain (OBD) bound to site I. We have also established that T-ag assembly on site I is limited to the formation of a single hexamer. These observations have enabled an analysis of the role(s) of the OBDs bound to the site I pentanucleotides in hexamer formation. Of interest, they reveal a correlation between the OBDs bound to site I and a pair of OBD subunits in the previously described hexameric spiral structure. Based on these findings, we propose that spiral assembly is promoted by pentanucleotide pairs arranged in a head-to-tail manner. Finally, the possibility that spiral assembly by OBD subunits accounts for the heterogeneous distribution of pentanucleotides found in the origins of replication of polyomaviruses is discussed.
Collapse
|
2
|
Development of quantitative and high-throughput assays of polyomavirus and papillomavirus DNA replication. Virology 2010; 399:65-76. [PMID: 20079917 DOI: 10.1016/j.virol.2009.12.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/17/2009] [Accepted: 12/17/2009] [Indexed: 11/23/2022]
Abstract
Polyoma- and papillomaviruses genome replication is initiated by the binding of large T antigen (LT) and of E1 and E2, respectively, at the viral origin (ori). Replication of an ori-containing plasmid occurs in cells transiently expressing these viral proteins and is typically quantified by Southern blotting or PCR. To facilitate the study of SV40 and HPV31 DNA replication, we developed cellular assays in which transient replication of the ori-plasmid is quantified using a firefly luciferase gene located in cis to the ori. Under optimized conditions, replication of the SV40 and HPV31 ori-plasmids resulted in a 50- and 150-fold increase in firefly luciferase levels, respectively. These results were validated using replication-defective mutants of LT, E1 and E2 and with inhibitors of DNA replication and cell-cycle progression. These quantitative and high-throughput assays should greatly facilitate the study of SV40 and HPV31 DNA replication and the identification of small-molecule inhibitors of this process.
Collapse
|
3
|
Fradet-Turcotte A, Vincent C, Joubert S, Bullock PA, Archambault J. Quantitative analysis of the binding of simian virus 40 large T antigen to DNA. J Virol 2007; 81:9162-74. [PMID: 17596312 PMCID: PMC1951407 DOI: 10.1128/jvi.00384-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SV40 large T antigen (T-ag) is a multifunctional protein that successively binds to 5'-GAGGC-3' sequences in the viral origin of replication, melts the origin, unwinds DNA ahead of the replication fork, and interacts with host DNA replication factors to promote replication of the simian virus 40 genome. The transition of T-ag from a sequence-specific binding protein to a nonspecific helicase involves its assembly into a double hexamer whose formation is likely dictated by the propensity of T-ag to oligomerize and its relative affinities for the origin as well as for nonspecific double- and single-stranded DNA. In this study, we used a sensitive assay based on fluorescence anisotropy to measure the affinities of wild-type and mutant forms of the T-ag origin-binding domain (OBD), and of a larger fragment containing the N-terminal domain (N260), for different DNA substrates. We report that the N-terminal domain does not contribute to binding affinity but reduces the propensity of the OBD to self-associate. We found that the OBD binds with different affinities to its four sites in the origin and determined a consensus binding site by systematic mutagenesis of the 5'-GAGGC-3' sequence and of the residue downstream of it, which also contributes to affinity. Interestingly, the OBD also binds to single-stranded DNA with an approximately 10-fold higher affinity than to nonspecific duplex DNA and in a mutually exclusive manner. Finally, we provide evidence that the sequence specificity of full-length T-ag is lower than that of the OBD. These results provide a quantitative basis onto which to anchor our understanding of the interaction of T-ag with the origin and its assembly into a double hexamer.
Collapse
Affiliation(s)
- Amélie Fradet-Turcotte
- Laboratory of Molecular Virology, Institut de Recherches Cliniques de Montréal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
4
|
Wasylyk B, Wasylyk C, Matthes H, Wintzerith M, Chambon P. Transcription from the SV40 early-early and late-early overlapping promoters in the absence of DNA replication. EMBO J 2002; 2:1605-11. [PMID: 11892819 PMCID: PMC555330 DOI: 10.1002/j.1460-2075.1983.tb01631.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Transcription for a hybrid SV40 promoter-beta globin coding sequence recombinant initiates from both early-early (EE) and late-early (LE) SV40 start sites (EES and LES) in the absence of DNA replication. The 72-bp repeat is essential to potentiate the elements of the two overlapping EE and LE promoters (EEP and LEP). Two current models, which can account for the EE to LE shift in RNA chain initiation during the SV40 replication cycle, are that LE transcription is linked to replication and occurs on newly replicated DNA molecules or that there are two promoter elements, a stronger EEP and a weaker LEP, T antigen repressing the EEP late in infection. Our results support the second model. A 5'-TATTTAT-3' to 5'-TATCGAT-3' mutation in the putative SV40 TATA box decreases transcription from EES, increases transcription from LES, and inhibits DNA replication. Therefore, this element acts as a classical TATA box for transcription, and yet is also important for DNA replication.
Collapse
Affiliation(s)
- B Wasylyk
- Laboratoire de Génétique Moléculaire des Eucaryotes du CNRS, Unité 184 de Biologie Moléculaire et de Génie Génétique de l'INSERM, Faculté de Médicine, Strasbourg, France
| | | | | | | | | |
Collapse
|
5
|
Sreekumar KR, Prack AE, Winters DR, Barbaro BA, Bullock PA. The simian virus 40 core origin contains two separate sequence modules that support T-antigen double-hexamer assembly. J Virol 2000; 74:8589-600. [PMID: 10954561 PMCID: PMC116372 DOI: 10.1128/jvi.74.18.8589-8600.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using subfragments of the simian virus 40 (SV40) core origin, we demonstrate that two alternative modules exist for the assembly of T-antigen (T-ag) double hexamers. Pentanucleotides 1 and 3 and the early palindrome (EP) constitute one assembly unit, while pentanucleotides 2 and 4 and the AT-rich region constitute a second, relatively weak, assembly unit. Related studies indicate that on the unit made up of pentanucleotide 1 and 3 and the EP assembly unit, the first hexamer forms on pentanucleotide 1 and that owing to additional protein-DNA and protein-protein interactions, the second hexamer is able to form on pentanucleotide 3. Oligomerization on the unit made up of pentanucleotide 2 and 4 and the AT-rich region is initiated by assembly of a hexamer on pentanucleotide 4; subsequent formation of the second hexamer takes place on pentanucleotide 2. Given that oligomerization on the SV40 origin is limited to double-hexamer formation, it is likely that only a single module is used for the initial assembly of T-ag double hexamers. Finally, we discuss the evidence that nucleotide hydrolysis is required for the remodeling events that result in the utilization of the second assembly unit.
Collapse
Affiliation(s)
- K R Sreekumar
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
6
|
Barbaro BA, Sreekumar KR, Winters DR, Prack AE, Bullock PA. Phosphorylation of simian virus 40 T antigen on Thr 124 selectively promotes double-hexamer formation on subfragments of the viral core origin. J Virol 2000; 74:8601-13. [PMID: 10954562 PMCID: PMC116373 DOI: 10.1128/jvi.74.18.8601-8613.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell cycle-dependent phosphorylation of simian virus 40 (SV40) large tumor antigen (T-ag) on threonine 124 is essential for the initiation of viral DNA replication. A T-ag molecule containing a Thr-->Ala substitution at this position (T124A) was previously shown to bind to the SV40 core origin but to be defective in DNA unwinding and initiation of DNA replication. However, exactly what step in the initiation process is defective as a result of the T124A mutation has not been established. Therefore, to better understand the control of SV40 replication, we have reinvestigated the assembly of T124A molecules on the SV40 origin. Herein it is demonstrated that hexamer formation is unaffected by the phosphorylation state of Thr 124. In contrast, T124A molecules are defective in double-hexamer assembly on subfragments of the core origin containing single assembly units. We also report that T124A molecules are inhibitors of T-ag double hexamer formation. These and related studies indicate that phosphorylation of T-ag on Thr 124 is a necessary step for completing the assembly of functional double hexamers on the SV40 origin. The implications of these studies for the cell cycle control of SV40 DNA replication are discussed.
Collapse
Affiliation(s)
- B A Barbaro
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
7
|
Wilderman PJ, Hu B, Woodworth ME. Conformational changes in simian virus 40 rearranged regulatory regions: effects of the 21-base-pair promoters and their location. J Virol 1999; 73:10254-63. [PMID: 10559342 PMCID: PMC113079 DOI: 10.1128/jvi.73.12.10254-10263.1999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian virus 40 (SV40) is an excellent model system for investigating the cis- and trans-acting factors involved in eukaryotic DNA replication because it uses host enzymes, with the exception of the virus-encoded T-antigen (T-ag), to replicate its genome. Although its origin of replication (ori) is essential for DNA replication, there are transcriptional promoters and enhancers that affect DNA replication efficiency. T-ag binds to sites I to III within and around ori with different affinities and induces structural changes. We were interested in determining if the position of the promoters relative to ori influences the binding of T-ag to these regions. Furthermore, we characterized the DNA structural changes that occur as a result of protein binding when the promoters are absent and also when the promoters are moved from their wild-type position upstream of ori to a position downstream of ori. Using sequence- and conformation-specific chemical probes, our data indicate that (i) the conformation of site I is influenced by T-ag binding and by flanking sequences, (ii) the conformation of the promoters after T-ag binding is dependent on their location, and (iii) unwinding of ori is influenced by the location of the promoters and their presence or absence. These differences in DNA conformation may help explain decreases in relative DNA replication efficiency that occur when the promoters are absent or located downstream of ori.
Collapse
Affiliation(s)
- P J Wilderman
- Department of Microbiology, Miami University, Oxford, Ohio 45056, USA
| | | | | |
Collapse
|
8
|
Kim HY, Barbaro BA, Joo WS, Prack AE, Sreekumar KR, Bullock PA. Sequence requirements for the assembly of simian virus 40 T antigen and the T-antigen origin binding domain on the viral core origin of replication. J Virol 1999; 73:7543-55. [PMID: 10438844 PMCID: PMC104281 DOI: 10.1128/jvi.73.9.7543-7555.1999] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The regions of the simian virus 40 (SV40) core origin that are required for stable assembly of virally encoded T antigen (T-ag) and the T-ag origin binding domain (T-ag-obd(131-260)) have been determined. Binding of the purified T-ag-obd(131-260) is mediated by interactions with the central region of the core origin, site II. In contrast, T-ag binding and hexamer assembly requires a larger region of the core origin that includes both site II and an additional fragment of DNA that may be positioned on either side of site II. These studies indicate that in the context of T-ag, the origin binding domain can engage the pentanucleotides in site II only if a second region of T-ag interacts with one of the flanking sequences. The requirements for T-ag double-hexamer assembly are complex; the nucleotide cofactor present in the reaction modulates the sequence requirements for oligomerization. Nevertheless, these experiments provide additional evidence that only a subset of the SV40 core origin is required for assembly of T-ag double hexamers.
Collapse
Affiliation(s)
- H Y Kim
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
9
|
Joo WS, Kim HY, Purviance JD, Sreekumar KR, Bullock PA. Assembly of T-antigen double hexamers on the simian virus 40 core origin requires only a subset of the available binding sites. Mol Cell Biol 1998; 18:2677-87. [PMID: 9566887 PMCID: PMC110647 DOI: 10.1128/mcb.18.5.2677] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/1997] [Accepted: 02/03/1998] [Indexed: 02/07/2023] Open
Abstract
Initiation of simian virus 40 (SV40) DNA replication is dependent upon the assembly of two T-antigen (T-ag) hexamers on the SV40 core origin. To further define the oligomerization mechanism, the pentanucleotide requirements for T-ag assembly were investigated. Here, we demonstrate that individual pentanucleotides support hexamer formation, while particular pairs of pentanucleotides suffice for the assembly of T-ag double hexamers. Related studies demonstrate that T-ag double hexamers formed on "active pairs" of pentanucleotides catalyze a set of previously described structural distortions within the core origin. For the four-pentanucleotide-containing wild-type SV40 core origin, footprinting experiments indicate that T-ag double hexamers prefer to bind to pentanucleotides 1 and 3. Collectively, these experiments demonstrate that only two of the four pentanucleotides in the core origin are necessary for T-ag assembly and the induction of structural changes in the core origin. Since all four pentanucleotides in the wild-type origin are necessary for extensive DNA unwinding, we concluded that the second pair of pentanucleotides is required at a step subsequent to the initial assembly process.
Collapse
Affiliation(s)
- W S Joo
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
DNA replication is a complicated process that is largely regulated during stages of initiation. The Siman Virus 40 in vitro replication system has served as an excellent model for studies of the initiation of DNA replication, and its regulation, in eukaryotes. Initiation of SV40 replication requires a single viral protein termed T-antigen, all other proteins are supplied by the host. The recent determination of the solution structure of the T-antigen domain that recognizes the SV40 origin has provided significant insights into the initiation process. For example, it has afforded a clearer understanding of origin recognition, T-antigen oligomerization, and DNA unwinding. Furthermore, the Simian virus 40 in vitro replication system has been used to study nascent DNA formation in the vicinity of the viral origin of replication. Among the conclusions drawn from these experiments is that nascent DNA synthesis does not initiate in the core origin in vitro and that Okazaki fragment formation is complex. These and related studies demonstrate that significant progress has been made in understanding the initiation of DNA synthesis at the molecular level.
Collapse
Affiliation(s)
- P A Bullock
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
11
|
Joo WS, Luo X, Denis D, Kim HY, Rainey GJ, Jones C, Sreekumar KR, Bullock PA. Purification of the simian virus 40 (SV40) T antigen DNA-binding domain and characterization of its interactions with the SV40 origin. J Virol 1997; 71:3972-85. [PMID: 9094674 PMCID: PMC191549 DOI: 10.1128/jvi.71.5.3972-3985.1997] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To better define protein-DNA interactions at a eukaryotic origin, the domain of simian virus 40 (SV40) large T antigen that specifically interacts with the SV40 origin has been purified and its binding to DNA has been characterized. Evidence is presented that the affinity of the purified T antigen DNA-binding domain for the SV40 origin is comparable to that of the full-length T antigen. Furthermore, stable binding of the T antigen DNA-binding domain to the SV40 origin requires pairs of pentanucleotide recognition sites separated by approximately one turn of a DNA double helix and positioned in a head-to-head orientation. Although two pairs of pentanucleotides are present in the SV40 origin, footprinting and band shift experiments indicate that binding is limited to dimer formation on a single pair of pentanucleotides. Finally, it is demonstrated that the T antigen DNA-binding domain interacts poorly with single-stranded DNA.
Collapse
Affiliation(s)
- W S Joo
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Origins of replication (ORIs) among prokaryotes, viruses, and multicellular organisms appear to possess simple tri-, tetra-, or higher dispersed repetitions of nucleotides, AT tracts, inverted repeats, one to four binding sites of an initiator protein, intrinsically curved DNA, DNase I-hypersensitive sites, a distinct pattern of DNA methylation, and binding sites for transcription factors. Eukaryotic ORIs are sequestered on the nuclear matrix; this attachment is supposed to facilitate execution of their activation/deactivation programs during development. Furthermore, ORIs fall into various classes with respect to their sequence complexity: those enriched in AT tracts, those with GA- and CT-rich tracts, a smaller class of GC-rich ORIs, and a major class composed of mixed motifs yet containing distinct AT and polypurine or GC stretches. Multimers of an initiator protein in prokaryotes and viruses that might have evolved into a multiprotein replication initiation complex in multicellular organisms bind to the core ORI, causing a structural distortion to the DNA which is transferred to the AT tract flanking the initiator protein site; single-stranded DNA-binding proteins then interact with the melted AT tract as well as with the DNA polymerase alpha-primase complex in animal viruses and mammalian cells, causing initiation in DNA replication. ORIs in mammalian cells seem to colocalize with matrix-attached regions and are proposed to become DNase I-hypersensitive during their activation.
Collapse
Affiliation(s)
- T Boulikas
- Institute of Molecular Medical Sciences, Palo Alto, California 94306, USA
| |
Collapse
|
13
|
Bambara RA, Huang L. Reconstitution of mammalian DNA replication. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995; 51:93-122. [PMID: 7659780 DOI: 10.1016/s0079-6603(08)60877-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- R A Bambara
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | |
Collapse
|
14
|
Bharucha VA, Peden KW, Tennekoon GI. SV40 large T antigen with c-Jun down-regulates myelin P0 gene expression: a mechanism for papovaviral T antigen-mediated demyelination. Neuron 1994; 12:627-37. [PMID: 7512351 DOI: 10.1016/0896-6273(94)90218-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Expression of myelin proteins has been shown to be altered in transgenic mice that express papovaviral large tumor (T) antigens. This paper analyzes the effect on P0 gene expression in secondary Schwann cells transfected with the SV40 T antigen gene and in Schwann cells immortalized by T antigen. In secondary Schwann cells, both T antigen and c-Jun are required for significant inhibition of the P0 promoter; expression of only one of the proteins is insufficient for repression of the P0 gene. T antigen, c-Jun (p39), and c-Jun-related protein (p47) form an immunoprecipitable complex in SV40 immortalized Schwann cell lines, and T antigen and c-Jun bind independently and as a complex to the P0 promoter. Our data suggest that the probable molecular mechanism underlying the hypomyelination observed in transgenic animals expressing T antigen may be due to the repression of the P0 gene by T antigen and c-Jun.
Collapse
Affiliation(s)
- V A Bharucha
- Department of Pediatrics, University of Michigan, Ann Arbor 48109
| | | | | |
Collapse
|
15
|
York D, Filutowicz M. Autoregulation-deficient mutant of the plasmid R6K-encoded pi protein distinguishes between palindromic and nonpalindromic binding sites. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80619-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
|
17
|
Wilson VG, Ludes-Meyers J. A bovine papillomavirus E1-related protein binds specifically to bovine papillomavirus DNA. J Virol 1991; 65:5314-22. [PMID: 1654443 PMCID: PMC249011 DOI: 10.1128/jvi.65.10.5314-5322.1991] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The E1 open reading frame of bovine papillomavirus (BPV) was expressed as a RecA-E1 fusion protein in Escherichia coli. The bacterially expressed RecA-E1 protein exhibited sequence-specific DNA binding activity; strong binding to the region from nucleotides 7819 to 93 on the BPV genome (designated region A) and weak binding to the adjacent region from nucleotides 7457 to 7818 (region B) were observed. The interaction between the BPV-derived RecA-E1 protein and region A appeared to be highly specific for BPV DNA, as no comparable binding was detected with heterologous papillomavirus DNAs. Binding to region A was eliminated by digestion of region A at the unique HpaI site, which suggests that the RecA-E1 binding site(s) was at or near the HpaI recognition sequence. Binding to region B but not region A was observed when nuclear extracts from ID13 cells were used as a source of E1 proteins. The absence of region A binding by ID13 extracts may reflect a negative regulation of E1 DNA binding activity.
Collapse
Affiliation(s)
- V G Wilson
- Department of Medical Microbiology and Immunology, Texas A&M University, College Station 77843
| | | |
Collapse
|
18
|
Scheidtmann KH, Buck M, Schneider J, Kalderon D, Fanning E, Smith AE. Biochemical characterization of phosphorylation site mutants of simian virus 40 large T antigen: evidence for interaction between amino- and carboxy-terminal domains. J Virol 1991; 65:1479-90. [PMID: 1847465 PMCID: PMC239928 DOI: 10.1128/jvi.65.3.1479-1490.1991] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The simian virus 40 large T antigen is phosphorylated at eight or more sites that are clustered in an amino-terminal region and a carboxy-terminal region of the protein. Mutants carrying exchanges at these phosphorylation sites have been generated in vitro by bisulfite or oligonucleotide-directed mutagenesis and analyzed for their phosphorylation patterns. Two-dimensional phosphopeptide analyses of the mutant large T antigens confirmed most of the previously identified phosphorylation sites, namely, serine residues 106, 112, 123, 639, 677, and 679 and threonine residues 124 and 701. In addition, serine residue 120 was identified as a new site, whereas serines residues 111 and 676 were excluded. Interestingly, several of the mutants exhibited secondary effects in that a mutation in the amino-terminal region affected phosphorylation at distant and even carboxy-terminal sites and vice versa. Thus, the amino- and carboxy-terminal domains appear to be in close proximity in the three-dimensional structure of large T antigen. The possible consequences of the above findings and the role of phosphorylation are discussed.
Collapse
|
19
|
Haas MW, Ramanujam P, Chandrasekharappa SC, Subramanian KN. Sequence requirements for activation of replication by the SV40 transcriptional promoter or enhancer elements. Virology 1991; 180:41-8. [PMID: 1845833 DOI: 10.1016/0042-6822(91)90007-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous studies have demonstrated that the 21- or the 72-bp repeat transcriptional control elements enhance the efficiency of SV40 DNA replication in vivo, provided either of these repeats is located near the end of the core replication origin containing the 17-bp A + T-containing sequence. Using two sets of point mutants we have investigated the contributions of the various sequence motifs present in the 21- or the 72-bp repeats toward activation of replication. Regarding the contribution of the six GC motif components of the 21-bp repeats, we find that GC motif I, located closest to the core origin, is dispensable for activation of replication. A mutation in GC-I in fact causes an increase in replication efficiency. We also find that GC motifs I and II present in the nontandem copy of the 21-bp repeats are not sufficient to activate replication. Our present study indicates that a combination of three GC motifs such as II, III, and IV (including one of the two perfect, tandem copies of the 21-bp repeats) is important for activation of replication. Regarding the 72-bp repeat transcriptional enhancer region, we find mutations in a number of its individual motifs to have a negative consequence on replication, with mutations in the GT-I*/TC-II and Sph-II/octamer motifs exhibiting the most negative effects. Overall, we find that the replication activation effects of the 21- and the 72-bp repeats require the participation of multiple motifs present in them. Cellular factors binding to these motifs are expected to mediate their replication activation effects. For the most part, the motifs required for activation of replication are the same as those reported in earlier studies to be important for efficient early and late viral mRNA transcription.
Collapse
MESH Headings
- Base Sequence
- DNA Replication/genetics
- DNA, Viral/biosynthesis
- DNA, Viral/genetics
- Electrophoresis, Polyacrylamide Gel
- Enhancer Elements, Genetic/genetics
- Gene Expression Regulation, Viral/genetics
- Molecular Sequence Data
- Mutagenesis
- Plasmids
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Viral/genetics
- Repetitive Sequences, Nucleic Acid
- Simian virus 40/genetics
- Simian virus 40/growth & development
- Transcription, Genetic
- Virus Replication/genetics
Collapse
Affiliation(s)
- M W Haas
- Department of Microbiology and Immunology, University of Illinois College of Medicine 60612
| | | | | | | |
Collapse
|
20
|
Bignami M, Lane DP. O6-methylguanine in the SV40 origin of replication inhibits binding but increases unwinding by viral large T antigen. Nucleic Acids Res 1990; 18:3785-93. [PMID: 2165252 PMCID: PMC331078 DOI: 10.1093/nar/18.13.3785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To study the effect of the potentially cytotoxic base O6-methylguanine (O6-meG) on the initiation of DNA replication, double-stranded oligonucleotides corresponding to the SV40 origin of replication were constructed in which O6-meG replaced guanine in one strand. Out of 14 methylated residues, 10 were present in the Binding sites for T antigen (3 in Binding Site 1 and 7 in Binding Site 2). Binding of purified T antigen to the substituted oligonucleotide was considerably reduced in comparison to the unsubstituted one, as measured by nitrocellulose filter binding. Both the ATP-dependent and ATP-independent binding of T antigen were affected by the presence of the methylated base. Band shift analysis revealed an altered pattern of delayed-migrating complexes of T antigen with the O6-meG-containing oligonucleotide. Competition experiments, in which unmodified oligonucleotides containing Binding Site 1 or 2 were included in the binding assays, indicated that the affinity of T antigen for the O6-meG modified sites was reduced. When partially duplex oligonucleotides containing either Binding Site 1 or Site 2 of the origin of replication were used as substrates for the helicase activity of T antigen, the presence of O6-meG increased the extent of T antigen catalysed displacement of single-stranded DNA fragments.
Collapse
Affiliation(s)
- M Bignami
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts, UK
| | | |
Collapse
|
21
|
Abstract
An overview of the chemical and photochemical probes which over the past ten years have been used in studies of DNA/ligand complexes and of non-B-form DNA conformations is presented with emphasis on the chemical reactions of the probes with DNA and on their present 'use-profile'. The chemical probes include: dimethyl sulfate, ethyl nitroso urea, diethyl pyrocarbonate, osmium tetroxide, permanganate, aldehydes, methidiumpropyl-EDTA-Fell (MPE), phenanthroline metal complexes and EDTA/FeII. The photochemical probes that have been used include: psoralens, UVB, acridines and uranyl salts. The biological systems analysed by use of these probes are reviewed by tabulation.
Collapse
Affiliation(s)
- P E Nielsen
- Department of Biochemistry B, Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
22
|
Buchanan RL, Gralla JD. Programmed factor binding to simian virus 40 GC-box replication and transcription control sequences. J Virol 1990; 64:347-53. [PMID: 2152821 PMCID: PMC249108 DOI: 10.1128/jvi.64.1.347-353.1990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nuclear footprinting revealed a temporal program involving factor binding to the repetitive GC-box DNA elements present in the simian virus 40 regulatory region. This program specified ordered and directional binding to these tandem regulatory sequences in vivo during the late phase of infection. The program was interrupted by the DNA replication inhibitor aphidicolin or by inactivation of the viral replication factor simian virus 40 T antigen, suggesting a link between viral DNA replication and new factor binding. Measurements of DNA accumulation in viruses lacking either the distal or proximal halves of the GC-box region suggested that the region has a dual role in replication control. Overall, the data point to important relationships between DNA replication and factor binding to the GC-box DNA, a multifunctional regulatory region.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Southern
- Cell Line
- Cell Nucleus/metabolism
- Cytosine
- DNA Replication
- DNA, Viral/analysis
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Viral
- Genes, Regulator
- Genes, Viral
- Guanine
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- Repetitive Sequences, Nucleic Acid
- Simian virus 40/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- R L Buchanan
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024
| | | |
Collapse
|
23
|
Yang L, Jessee CB, Lau K, Zhang H, Liu LF. Template supercoiling during ATP-dependent DNA helix tracking: studies with simian virus 40 large tumor antigen. Proc Natl Acad Sci U S A 1989; 86:6121-5. [PMID: 2548199 PMCID: PMC297787 DOI: 10.1073/pnas.86.16.6121] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Incubation of topologically relaxed plasmid DNA with simian virus 40 (SV40) large tumor antigen (T antigen), ATP, and eubacterial DNA topoisomerase I resulted in the formation of highly positively supercoiled DNA. Eukaryotic DNA topoisomerase I could not substitute for eubacterial DNA topoisomerase 1 in this reaction. Furthermore, the addition of eukaryotic topoisomerase I to a preincubated reaction mixture containing both T antigen and eubacterial topoisomerase I caused rapid relaxation of the positively supercoiled DNA. These results suggest that SV40 T antigen can introduce topoisomerase-relaxable supercoils into DNA in a reaction coupled to ATP hydrolysis. We interpret the observed T antigen supercoiling reaction in terms of a recently proposed twin-supercoiled-domain model that describes the mechanics of DNA helix-tracking processes. According to this model positive and negative supercoils are generated ahead of and behind the moving SV40 T antigen, respectively. The preferential relaxation of negative supercoils by eubacterial DNA topoisomerase I explains the accumulation of positive supercoils in the DNA template. The supercoiling assay using DNA conformation-specific eubacterial DNA topoisomerase I may be of general use for the detection of ATP-dependent DNA helix-tracking proteins.
Collapse
Affiliation(s)
- L Yang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | |
Collapse
|
24
|
Abstract
The sequence components that direct high-affinity binding of simian virus 40 (SV40) T antigen to SV40 origin region I are composed of two recognition pentanucleotides separated by a spacer. This region has binding sites for two T-antigen monomeric units. We extended the tripartite region I sequence by one and two sets of spacers and pentanucleotides and also shortened the region by one pentanucleotide. Our T-antigen-binding studies with these constructs show that the protein has a strong preference for binding to an even rather than an odd number of pentanucleotides separated by spacer sequences. Gel retardation assays reveal that the size of the complex formed between the 17-base-pair region I sequence and T antigen did not increase when the sequence was extended with one spacer-pentanucleotide sequence but did increase with two such units. DNase I footprinting and fragment assay experiments indicate that the protein did not protect a pentanucleotide that was not paired with another pentanucleotide. The unpaired pentanucleotide resumed its binding activity when it was paired with a spacer and another pentanucleotide sequence. We propose that T antigen binds to region I as a preformed dimer.
Collapse
Affiliation(s)
- S P Deb
- Department of Microbiology, Medical College of Wisconsin, Milwaukee 53226
| | | |
Collapse
|
25
|
Wang EH, Friedman PN, Prives C. The murine p53 protein blocks replication of SV40 DNA in vitro by inhibiting the initiation functions of SV40 large T antigen. Cell 1989; 57:379-92. [PMID: 2541911 DOI: 10.1016/0092-8674(89)90913-6] [Citation(s) in RCA: 185] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have characterized the effect of murine p53 on SV40 DNA replication in vitro. Purified wild-type murine p53 dramatically inhibited the ability of SV40 T antigen to mediate the replication of a plasmid bearing the viral origin (ori-DNA) in vitro. In contrast, polyoma ori-DNA replication in vitro was unaffected by p53. Surprisingly, both unbound p53 and SV40 T antigen-bound p53 were equally detrimental to SV40 ori-DNA replication. Thus, p53 interferes with interactions between T antigen molecules that are required for DNA synthesis. p53 inhibited the binding to and subsequent unwinding of the SV40 origin by T antigen and thus selectively blocked the initial stages of ori-DNA replication. In contrast to the nononcogenic wild-type murine p53, high concentrations of a mutant transforming p53 failed to block SV40 ori-DNA replication in vitro. These observations may provide insight into a possible role for p53 in the cell.
Collapse
Affiliation(s)
- E H Wang
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | |
Collapse
|
26
|
Abstract
We have analyzed the cis-acting sequence elements and properties of the origin of DNA replication of human papovavirus BK (BKV). The precise boundaries of the origin varied, depending on the cell type and the viral T antigen used for assay. The BKV minimal origin of replication consisted of an inverted repeat, T-antigen-binding site II, and a 20-base-pair AT block when assayed in monkey kidney CV1 and HeLa cells by using the BKV T antigen. This 76-base-pair minimal origin did not replicate in COS cells in the presence of the simian virus 40 (SV40) T antigen. Unlike that from the SV40 minimal origin, replication from the BKV minimal origin was not enhanced by BKV ori-flanking sequences in CV1 or HeLa cells, using the BKV T antigen. BKV ori-flanking sequences did activate the SV40 minimal origin of replication in COS cells and relieved the orientation-dependent property of this origin. Finally, the BKV T antigen was found to autoregulate activity of the BKV early transcriptional regulatory region. The BKV origin of replication shows similarities to and differences from those of the related viruses SV40 and polyomavirus, suggesting that the proteins involved in the initiation of replication interact with origin sequences differently in these viruses.
Collapse
Affiliation(s)
- K L Deyerle
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | |
Collapse
|
27
|
Borowiec JA, Hurwitz J. Localized melting and structural changes in the SV40 origin of replication induced by T-antigen. EMBO J 1988; 7:3149-58. [PMID: 2846276 PMCID: PMC454705 DOI: 10.1002/j.1460-2075.1988.tb03182.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Replication of simian virus 40 (SV40) DNA is dependent upon the binding of the viral T-antigen to the SV40 origin of replication. Structural changes in the origin of replication induced by binding of T-antigen were probed by chemical modifications of the DNA. In the presence of ATP, T-antigen rendered two of three domains in the SV40 core origin hypersensitive to attack by either dimethyl sulfate or potassium permanganate (KMnO4). One of these domains, the early palindrome, was shown to contain an 8-bp region of melted DNA as determined from methylation of cytosine residues and by nuclease S1 cleavage of methylated DNA. DNA melting was not dependent upon either the hydrolysis of ATP or the binding of T-antigen to an adjacent site (site I). A second domain, the A/T element, was extensively modified by KMnO4 but no significant melting was detected. Rather, the pattern of modification indicates that T-antigen caused a conformational change of the double-stranded DNA in this region. These results suggest that T-antigen, in the presence of ATP, destabilizes the SV40 origin by melting and structurally deforming two flanking regions within the core origin sequence. These DNA structural changes may provide access to other replication factors, allowing complete denaturation of the SV40 origin and the initiation of SV40 DNA replication.
Collapse
Affiliation(s)
- J A Borowiec
- Graduate Program in Molecular Biology, Sloan-Kettering Cancer Center, New York, NY 10021
| | | |
Collapse
|
28
|
Schirmbeck R, Deppert W. Analysis of mechanisms controlling the interactions of SV40 large T antigen with the SV40 ORI region. Virology 1988; 165:527-38. [PMID: 2841799 DOI: 10.1016/0042-6822(88)90597-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have characterized the interactions of simian virus 40 (SV40) large tumor antigen (large T) with the control region of the SV40 genome, the SV40 ORI, by analyzing the specific binding of large T antigen to SV40 wild-type origin DNA and to isolated binding sites I and II, respectively. DNA binding affinities of large T antigen were determined under standardized conditions and DNA excess, using a target-bound DNA binding assay (M. Hinzpeter, E. Fanning, and W. Deppert, 1986, Virology 148, 159-167). Our results show that large T antigen exhibits similar affinities for isolated binding sites I and II and for combined sites I and II on wild-type ORI DNA. When the fraction of large T antigen molecules (calculated per large T antigen monomers) able to bind specifically to these sites was determined (DNA binding activity of large T antigen) we found that only 2% of large T antigen molecules present in extracts of lytically infected cells were able to bind to isolated site II, whereas about 50% bound to isolated site I. However, only about 10% of large T antigen molecules bound to the complete wild-type ORI, containing combined binding sites I and II. Thus, a much larger proportion of large T antigen molecules is capable of binding specifically to site I as is suggested by analysis of large T antigen binding to combined sites I and II on the SV40 wild-type ORI. These findings indicate that the interaction of large T antigen with the SV40 wild-type ORI is restricted on one hand by the ability of large T antigen to bind to site II, and on the other hand by the spatial arrangement of binding sites I and II on the SV40 wild-type ORI.
Collapse
Affiliation(s)
- R Schirmbeck
- Department of Biochemistry, University of Ulm, Federal Republic of Germany
| | | |
Collapse
|
29
|
Replication from a proximal simian virus 40 origin is severely inhibited by multiple reiterations of the 72-base-pair repeat enhancer sequence. Mol Cell Biol 1988. [PMID: 2837646 DOI: 10.1128/mcb.8.4.1509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a previous study in our laboratory, the effect of the reiteration frequency of the simian virus 40 (SV40) 72-base-pair (bp) repeat enhancer on transcription from the proximal SV40 early promoter was investigated (R. Kumar, T. A. Firak, C. T. Schroll, and K. N. Subramanian, Proc. Natl. Acad. Sci. USA 83:3199-3203, 1986). Increasing the enhancer copy number to four increased transcription proportionately; further increments in enhancer copy number reversed this effect, resulting in a decrease in the transcriptional activation. In the present study, the effect of enhancer reiteration on the replication efficiency of plasmids containing the SV40 origin of replication was investigated in transient replication assays in vivo in COS-1 monkey kidney cells producing the SV40 large tumor antigen required for replication. A plasmid containing the SV40 core origin and three copies of the replication-activating, G+C-rich 21-bp repeat promoter element replicated efficiently. Plasmids containing multiple copies of the 72-bp repeat enhancer cloned in head-to-tail linkage adjacent to the 21-bp repeat and the core origin replicated less efficiently; the decrease in replication efficiency could be correlated with the number of copies of the 72-bp repeat; replication was severely curtailed when 10 or more copies of the 72-bp repeat were present. Replication was not significantly inhibited by an increase in the number of copies of the 21-bp repeat to 15 or by the presence of three copies of a 360-bp pBR322 sequence in the immediate vicinity. Multiple copies of the 72-bp enhancer in cis were unable to inhibit replication from a second SV40 origin of replication situated 2 kilobase pairs away from the enhancer reiteration. Replication of four different test plasmids was not inhibited in trans by cotransfection of an excess of a potential competitor plasmid containing a 24-copy reiteration of the 72-bp enhancer. These results indicate that multiple tandem reiterations of the 72-bp enhancer inhibit replication only when they are present in cis adjacent to the origin of replication. Possible explanations for this inhibitory effect, such as an unfavorable local chromatin structure induced by the multimeric enhancer region or reduced or improper communications between factors bound to the multimeric region and the adjacent replication origin, are discussed.
Collapse
|
30
|
Auborn KJ, Markowitz RB, Wang E, Yu YT, Prives C. Simian virus 40 (SV40) T antigen binds specifically to double-stranded DNA but not to single-stranded DNA or DNA/RNA hybrids containing the SV40 regulatory sequences. J Virol 1988; 62:2204-8. [PMID: 3367427 PMCID: PMC253332 DOI: 10.1128/jvi.62.6.2204-2208.1988] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Simian virus 40 T antigen has been shown previously to bind specifically with high affinity to sites within the regulatory region of double-stranded simian virus 40 DNA. Using competition filter binding and the DNA-binding immunoassay, we show that T antigen did not bind specifically to either early or late single-stranded DNA containing these binding sites. Moreover, T antigen did not bind these sequences present in single-stranded RNA, RNA/RNA duplexes, or RNA/DNA hybrids. T antigen did, however, bind as efficiently to single-stranded DNA-cellulose as to double-stranded DNA-cellulose. This binding was nonspecific because it was independent of the presence of T-antigen-binding sites. The implications of these observations are discussed.
Collapse
Affiliation(s)
- K J Auborn
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | | | | | |
Collapse
|
31
|
Stetter G, Müller D, Montenarh M. SV40 T-antigen binding to site II is functionally separated from binding to site I. Virology 1988; 164:309-17. [PMID: 2835853 DOI: 10.1016/0042-6822(88)90543-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During lytic infection SV40 T antigen binds specifically to three different regions of the SV40 DNA to initiate viral DNA replication and to regulate early and late transcription. We have used the recently described plasmids pKB1, containing a 23-bp oligonucleotide coding for site I, pdl1085 containing sites II and III together with SV40 specific flanking sequences, and as a control pATC, a plasmid which contains all three binding sites (D. Müller et al. (1987), Virology 161, 81-91) to analyze the differential binding of T antigen to these individual binding sites in the course of an SV40 infection. We found that shortly after infection the amount of bound DNA increased with the concentration of T antigen reaching a steady-state level at about 20 hr after infection. In comparison to binding at site I, binding to site II appeared with a delay of about 8-9 hr corresponding to the onset of viral DNA replication. The correlation between binding of T antigen to site II and the SV40 DNA replication could be further corroborated by using T antigen from the heat-sensitive mutant tsA58 which completely failed to bind to site II at nonpermissive temperature but exhibited a residual binding to site I. This reduced binding to site I proved insufficient for the proper functioning of autorepression. Our results support the hypothesis that distinctly different subclasses of T-antigen binding to site I or site II may exist.
Collapse
Affiliation(s)
- G Stetter
- Department of Biochemistry, University of Ulm, Federal Republic of Germany
| | | | | |
Collapse
|
32
|
Arthur AK, Höss A, Fanning E. Expression of simian virus 40 T antigen in Escherichia coli: localization of T-antigen origin DNA-binding domain to within 129 amino acids. J Virol 1988; 62:1999-2006. [PMID: 2835505 PMCID: PMC253284 DOI: 10.1128/jvi.62.6.1999-2006.1988] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The genomic coding sequence of the large T antigen of simian virus 40 (SV40) was cloned into an Escherichia coli expression vector by joining new restriction sites, BglII and BamHI, introduced at the intron boundaries of the gene. Full-length large T antigen, as well as deletion and amino acid substitution mutants, were inducibly expressed from the lac promoter of pUC9, albeit with different efficiencies and protein stabilities. Specific interaction with SV40 origin DNA was detected for full-length T antigen and certain mutants. Deletion mutants lacking T-antigen residues 1 to 130 and 260 to 708 retained specific origin-binding activity, demonstrating that the region between residues 131 and 259 must carry the essential binding domain for DNA-binding sites I and II. A sequence between residues 302 and 320 homologous to a metal-binding "finger" motif is therefore not required for origin-specific binding. However, substitution of serine for either of two cysteine residues in this motif caused a dramatic decrease in origin DNA-binding activity. This region, as well as other regions of the full-length protein, may thus be involved in stabilizing the DNA-binding domain and altering its preference for binding to site I or site II DNA.
Collapse
Affiliation(s)
- A K Arthur
- Institute for Biochemistry, Munich, Federal Republic of Germany
| | | | | |
Collapse
|
33
|
Podgornaya OI, Perelygina LM, Tomilin NV. Multi-site binding of human nuclear protein to the Alu-family repeated DNA. FEBS Lett 1988; 232:99-102. [PMID: 2835272 DOI: 10.1016/0014-5793(88)80394-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nuclear protein which selectively binds to the Alu-family DNA repeat (AFR, Blur8) is partially purified from human HeLa cells using a gel retention assay. At low protein concentrations only a single complex of the protein with AFR is formed (CII). Increasing protein concentrations lead to the gradual disappearance of CII, being replaced by complexes with higher (CI) and lower (CIII, CIV) electrophoretic mobilities. Differential binding of AFR restriction subfragments indicates that multiple protein-binding sites are present within AFR. We discuss two models explaining the anomalous electrophoretic mobility of CII by DNA bending or looping upon cooperative multi-site binding of the protein to AFR.
Collapse
Affiliation(s)
- O I Podgornaya
- Institute of Cytology, Academy of Sciences, Leningrad, USSR
| | | | | |
Collapse
|
34
|
Abstract
Autonomously replicating sequences (ARSs) of the yeast S. cerevisiae function as replication origins on plasmids and probably also on chromosomes. ARS function requires a copy of the ARS core consensus (5'-[A/T]TTTAT[A/G]TTT[A/T]-3') and additional sequences 3' to the T-rich strand of the consensus. Our analysis of an ARS from chromosome III, the C2G1 ARS, suggests that ARS function depends on the presence of an exact match to the core consensus and the presence of additional near matches in the 3' flanking region. We have demonstrated that ARS function can be mediated by multiple matches to the core consensus by constructing synthetic ARS elements from oligonucleotides containing copies of the consensus sequence. We find that two copies of the core consensus are sufficient for ARS activity and that an artificial ARS as efficient as a natural chromosomal ARS can be constructed from multiple core consensus elements in a specific orientation.
Collapse
Affiliation(s)
- T G Palzkill
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark 07103
| | | |
Collapse
|
35
|
Sequence-specific interactions between a cellular DNA-binding protein and the simian virus 40 origin of DNA replication. Mol Cell Biol 1988. [PMID: 2832743 DOI: 10.1128/mcb.8.2.903] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The core origin of simian virus 40 (SV40) DNA replication is composed of a 64-base-pair sequence encompassing T-antigen-binding site II and adjacent sequences on either side. A 7-base-pair sequence to the early side of T-antigen-binding site II which is conserved among the papovavirus genomes SV40, BK, JC, and SA12 was recently shown to be part of a 10-base-pair sequence required for origin activity (S. Deb, A.L. DeLucia, C.-P. Baur, A. Koff, and P. Tegtmeyer, Mol. Cell. Biol. 6:1663-1670, 1986), but its functional role was not defined. In the present report, we have used gel retention assays to identify a monkey cell factor that interacts specifically with double-stranded DNA carrying this sequence and also binds to single-stranded DNA. DNA-protein complexes formed with extracts from primate cells are more abundant and display electrophoretic mobilities distinct from those formed with rodent cell extracts. The binding activity of the factor on mutant templates is correlated with the replication activity of the origin. The results suggest that the monkey cell factor may be involved in SV40 DNA replication.
Collapse
|
36
|
Abstract
We have examined the control sequences for the late promoter function of simian virus 40 (SV40) in COS-1 cells which produce SV40 T antigen constitutively. Plasmids were constructed by cloning mutant late promoter segments upstream from sequences coding for the bacterial chloramphenicol acetyltransferase (CAT) gene, and were converted to "double-origin" type by inserting functional replication origin segments downstream from the CAT gene for replicative competence when necessary. The late promoter activity was determined by transient expression assay of the CAT mRNA and enzyme activity levels following DNA-mediated gene transfer into COS-1 cells. We find that the minimal replication origin and the 21-bp repeat containing T antigen and transcription factor Sp1 binding sites, respectively, are dispensable for late promoter function provided that one copy of the 72-bp repeat enhancer is present. We have mapped within the 72-bp repeat the major late promoter component in a 68-bp fragment (located between nucleotides 205 and 272), and found an overlapping 55-bp fragment (located between nucleotides 179 and 234) to have about one-fifth of the late promoter activity. Both the 68- and 55-bp fragments lack some of the core sequence elements required of the 72-bp repeat for transcriptional enhancer activity, and lack the ability to enhance the activity of the SV40 early promoter. The results suggest that the organization of functional units of the 72-bp repeat required for transcriptional enhancement of the early promoter is different from that required for late promoter function. The 21-bp repeat was found to have some late promoter activity located within the origin-distal copy in the absence of the 72-bp repeat. In association with the 21-bp repeat, the otherwise dispensable origin-proximal 22-bp of the 72-bp repeat containing activator protein AP-1 binding site augmented late promoter activity by three- to fourfold.
Collapse
Affiliation(s)
- S S Gong
- Department of Microbiology and Immunology, University of Illinois, College of Medicine, Chicago 60612
| | | |
Collapse
|
37
|
Klausing K, Scheidtmann KH, Baumann EA, Knippers R. Effects of in vitro dephosphorylation on DNA-binding and DNA helicase activities of simian virus 40 large tumor antigen. J Virol 1988; 62:1258-65. [PMID: 2831386 PMCID: PMC253135 DOI: 10.1128/jvi.62.4.1258-1265.1988] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Simian virus 40 large T antigen is a phosphoprotein with two clusters of phosphorylation sites. Each cluster includes four serine residues and one threonine residue. In vitro treatment with intestinal alkaline phosphatase removes the phosphate groups from the serine but not from the threonine residues. Potato acid phosphatase additionally dephosphorylates the phosphothreonine (Thr-124) in the N-terminal cluster but does not attack the phosphothreonine in the C-terminal cluster (Thr-701). Two biochemical functions of untreated and partially dephosphorylated T antigen were assayed, namely, its specific DNA-binding property and its DNA helicase activity. After treatment with alkaline phosphatase, T antigen had a severalfold higher affinity for the specific binding sites in the viral genomic control region, in particular, for binding site II in the origin of replication. However, T antigen, when dephosphorylated by acid phosphatase, had DNA-binding properties similar to those of the untreated control. Neither alkaline nor acid dephosphorylation affected the DNA helicase activity of T antigen.
Collapse
Affiliation(s)
- K Klausing
- Fakultät für Biologie, Universität Konstanz, Federal Republic of Germany
| | | | | | | |
Collapse
|
38
|
Kumar R, Yoon KP, Subramanian KN. Replication from a proximal simian virus 40 origin is severely inhibited by multiple reiterations of the 72-base-pair repeat enhancer sequence. Mol Cell Biol 1988; 8:1509-17. [PMID: 2837646 PMCID: PMC363310 DOI: 10.1128/mcb.8.4.1509-1517.1988] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In a previous study in our laboratory, the effect of the reiteration frequency of the simian virus 40 (SV40) 72-base-pair (bp) repeat enhancer on transcription from the proximal SV40 early promoter was investigated (R. Kumar, T. A. Firak, C. T. Schroll, and K. N. Subramanian, Proc. Natl. Acad. Sci. USA 83:3199-3203, 1986). Increasing the enhancer copy number to four increased transcription proportionately; further increments in enhancer copy number reversed this effect, resulting in a decrease in the transcriptional activation. In the present study, the effect of enhancer reiteration on the replication efficiency of plasmids containing the SV40 origin of replication was investigated in transient replication assays in vivo in COS-1 monkey kidney cells producing the SV40 large tumor antigen required for replication. A plasmid containing the SV40 core origin and three copies of the replication-activating, G+C-rich 21-bp repeat promoter element replicated efficiently. Plasmids containing multiple copies of the 72-bp repeat enhancer cloned in head-to-tail linkage adjacent to the 21-bp repeat and the core origin replicated less efficiently; the decrease in replication efficiency could be correlated with the number of copies of the 72-bp repeat; replication was severely curtailed when 10 or more copies of the 72-bp repeat were present. Replication was not significantly inhibited by an increase in the number of copies of the 21-bp repeat to 15 or by the presence of three copies of a 360-bp pBR322 sequence in the immediate vicinity. Multiple copies of the 72-bp enhancer in cis were unable to inhibit replication from a second SV40 origin of replication situated 2 kilobase pairs away from the enhancer reiteration. Replication of four different test plasmids was not inhibited in trans by cotransfection of an excess of a potential competitor plasmid containing a 24-copy reiteration of the 72-bp enhancer. These results indicate that multiple tandem reiterations of the 72-bp enhancer inhibit replication only when they are present in cis adjacent to the origin of replication. Possible explanations for this inhibitory effect, such as an unfavorable local chromatin structure induced by the multimeric enhancer region or reduced or improper communications between factors bound to the multimeric region and the adjacent replication origin, are discussed.
Collapse
Affiliation(s)
- R Kumar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60680
| | | | | |
Collapse
|
39
|
Traut W, Fanning E. Sequence-specific interactions between a cellular DNA-binding protein and the simian virus 40 origin of DNA replication. Mol Cell Biol 1988; 8:903-11. [PMID: 2832743 PMCID: PMC363222 DOI: 10.1128/mcb.8.2.903-911.1988] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The core origin of simian virus 40 (SV40) DNA replication is composed of a 64-base-pair sequence encompassing T-antigen-binding site II and adjacent sequences on either side. A 7-base-pair sequence to the early side of T-antigen-binding site II which is conserved among the papovavirus genomes SV40, BK, JC, and SA12 was recently shown to be part of a 10-base-pair sequence required for origin activity (S. Deb, A.L. DeLucia, C.-P. Baur, A. Koff, and P. Tegtmeyer, Mol. Cell. Biol. 6:1663-1670, 1986), but its functional role was not defined. In the present report, we have used gel retention assays to identify a monkey cell factor that interacts specifically with double-stranded DNA carrying this sequence and also binds to single-stranded DNA. DNA-protein complexes formed with extracts from primate cells are more abundant and display electrophoretic mobilities distinct from those formed with rodent cell extracts. The binding activity of the factor on mutant templates is correlated with the replication activity of the origin. The results suggest that the monkey cell factor may be involved in SV40 DNA replication.
Collapse
Affiliation(s)
- W Traut
- Institute for Biochemistry, Munich, Federal Republic of Germany
| | | |
Collapse
|
40
|
Borowiec JA, Hurwitz J. ATP stimulates the binding of simian virus 40 (SV40) large tumor antigen to the SV40 origin of replication. Proc Natl Acad Sci U S A 1988; 85:64-8. [PMID: 2829177 PMCID: PMC279482 DOI: 10.1073/pnas.85.1.64] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Simian virus 40 (SV40) large tumor antigen (T antigen) binds to two contiguous sites at the SV40 origin of replication. Of these two sites, I and II, only site II is critical for replication. We have studied the interaction between T antigen and these sites by two methods--nitrocellulose filter binding and DNase I protection. We show that T antigen binds with high occupancy to site I at 0 degrees C, 25 degrees C, and 37 degrees C but to site II only at 0 degrees C and 25 degrees C. At 37 degrees C, the temperature essential for the initiation of SV40 DNA replication in vitro, ATP is required for the interaction of T antigen and site II. ATP can be replaced efficiently by adenosine 5'-[beta,gamma-imido]triphosphate and ADP, suggesting that hydrolysis of the nucleotide is not essential for the binding of T antigen to site II. The binding to the region critical for replication can occur in the presence of a variety of nucleoside triphosphates; dATP supports binding at a concentration 1/30th that of ATP, while dGTP and rGTP were inactive at all concentrations tested.
Collapse
Affiliation(s)
- J A Borowiec
- Graduate Program in Molecular Biology, Sloan-Kettering Cancer Center, New York, NY 10021
| | | |
Collapse
|
41
|
Affiliation(s)
- T J Kelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
42
|
Pollwein P, Wagner S, Knippers R. Application of an immunoprecipitation procedure to the study of SV40 tumor antigen interaction with mouse genomic DNA sequences. Nucleic Acids Res 1987; 15:9741-59. [PMID: 3697081 PMCID: PMC306528 DOI: 10.1093/nar/15.23.9741] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Simian Virus 40 (SV40) large T antigen is a DNA binding protein with high affinity for segments of the viral genome. To find out whether T antigen also binds to sequences of genomic cellular DNA we mixed T antigen and SAU 3 A restricted mouse DNA under stringent DNA binding conditions. Resulting protein-DNA complexes were immunoprecipitated using T antigen specific monoclonal or polyclonal antibodies. The DNA fragments in the immunoprecipitates were cloned in plasmid vectors. Four plasmid clones were selected for a detailed investigation of the inserted mouse DNA fragments. Nucleotide sequencing and DNase I footprint experiments showed that T antigen binds to sites in these fragments consisting of two tandemly oriented G(A)AGGC pentamers separated by AT rich spacers of different lengths. The cellular binding sites are very similar in their architecture to the SV40-DNA binding site I. The isolated cellular DNA fragments with T antigen binding sites occur only once or a few times in the mouse genome. Our data help to further define the structure of T antigen's DNA binding sites. The genetic functions of the isolated cellular DNA elements are not known.
Collapse
Affiliation(s)
- P Pollwein
- Fakultät für Biologie, Universität Konstanz, FRG
| | | | | |
Collapse
|
43
|
Dean FB, Dodson M, Echols H, Hurwitz J. ATP-dependent formation of a specialized nucleoprotein structure by simian virus 40 (SV40) large tumor antigen at the SV40 replication origin. Proc Natl Acad Sci U S A 1987; 84:8981-5. [PMID: 2827164 PMCID: PMC299675 DOI: 10.1073/pnas.84.24.8981] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The large tumor antigen (T antigen) specified by simian virus 40 (SV40) is required for viral DNA replication. To carry out its function, T antigen binds to duplex DNA at the origin of replication (oriSV40) and exerts a helicase activity that unwinds the two DNA strands. Previous work has defined two binding sites for T antigen near oriSV40, designated sites I and II; site II is within the 64-base-pair core sequence absolutely required for viral DNA replication. We have used electron microscopy and gel electrophoresis to characterize the interaction of T antigen with the origin region. We have found that effective binding to site II under conditions that support DNA replication requires ATP or a nonhydrolyzable analog. In the absence of ATP, T antigen binds mainly to site I; in the presence of ATP, both sites I and II are occupied, and binding is markedly increased. The ATP-dependent reaction generates a complex multimeric structure for T antigen. We conclude that T antigen forms an ATP-dependent nucleoprotein structure at oriSV40. We suggest that this nucleoprotein complex provides for the precise initiation of SV40 DNA replication.
Collapse
Affiliation(s)
- F B Dean
- Memorial Sloan-Kettering Cancer Center, Program in Molecular Biology, New York, NY 10021
| | | | | | | |
Collapse
|
44
|
Deb SP, Tegtmeyer P. ATP enhances the binding of simian virus 40 large T antigen to the origin of replication. J Virol 1987; 61:3649-54. [PMID: 2824805 PMCID: PMC255975 DOI: 10.1128/jvi.61.12.3649-3654.1987] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Simian virus 40 large T antigen initiates DNA replication by binding to the origin of replication. We examined the binding of T antigen to origin regions I, II, and III under conditions designed for efficient in vitro replication functions. We found that 4 mM ATP enhanced the binding of T antigen to regions I and II of the origin DNA by 4- to 20-fold. DNase-footprinting and fragment assays showed that ATP extended the DNase protection domain of T antigen bound to region II by 5 to 10 base pairs at both ends of the core origin of replication. This alteration suggests a change in the conformation of T antigen, bound DNA, or both.
Collapse
Affiliation(s)
- S P Deb
- Department of Microbiology, State University of New York, Stony Brook 11794-8261
| | | |
Collapse
|
45
|
Dean FB, Borowiec JA, Ishimi Y, Deb S, Tegtmeyer P, Hurwitz J. Simian virus 40 large tumor antigen requires three core replication origin domains for DNA unwinding and replication in vitro. Proc Natl Acad Sci U S A 1987; 84:8267-71. [PMID: 2825183 PMCID: PMC299523 DOI: 10.1073/pnas.84.23.8267] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Simian virus 40 (SV40) large tumor antigen (T antigen) unwinds DNA containing the SV40 origin of replication. The origin requirement for unwinding can be satisfied by the 64-base-pair SV40 core origin that supports T-antigen-dependent DNA replication both in vivo and in vitro. The core origin contains three domains with specific DNA sequence features. These include an inverted repeat, a central T-antigen binding domain, and an adenine- and thymine-rich domain containing a DNA bending focus. The domain and spacer requirements of the core origin for DNA unwinding and replication in vitro are strikingly similar to the origin requirements for DNA replication in vivo. Thus, each of the three functional domains of the core origin contributes directly to the initiation of duplex DNA unwinding by T antigen.
Collapse
Affiliation(s)
- F B Dean
- Graduate Program in Molecular Biology, Sloan Kettering Cancer Center, New York, NY 10021
| | | | | | | | | | | |
Collapse
|
46
|
Müller D, Ugi I, Ballas K, Reiser P, Henning R, Montenarh M. The AT-rich sequence of the SV40 control region influences the binding of SV40 T antigen to binding sites II and III. Virology 1987; 161:81-90. [PMID: 2823473 DOI: 10.1016/0042-6822(87)90173-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During lytic infection SV40 T antigen binds specifically to three different regions of the SV40 DNA to initiate DNA replication and to regulate early and late transcription. We constructed plasmids containing either 23-bp synthetic oligonucleotides representing site I or II or SV40 DNA fragments with combinations of binding sites II and III with or without SV40 specific flanking regions. These plasmids were used to determine which sequences are sufficient for specific binding to isolated regions II and III. Under identical conditions T antigen bound in a sensitive in vitro binding assay efficiently to site I but not to the corresponding oligonucleotide of site II. Binding to site II could only be observed in the presence of the adjacent 17-bp AT-rich region of the SV40 DNA. On account of the markedly low affinity for binding site II, T antigen concentrations were required which exceeded those necessary to achieve saturation of binding to site I. The very low affinity for isolated site III could be slightly raised by the same AT-rich region. An increased binding to site II at 37 degrees compared to 0 degree in the presence of this region points to an indirect influence on the DNA structure of the binding site.
Collapse
Affiliation(s)
- D Müller
- Department of Biochemistry, University of Ulm, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- H Stahl
- Fakultät für Biologie, Universität Konstanz, F.R.G
| | | |
Collapse
|
48
|
Chandrasekharappa SC, Subramanian KN. Effects of position and orientation of the 72-base-pair-repeat transcriptional enhancer on replication from the simian virus 40 core origin. J Virol 1987; 61:2973-80. [PMID: 3041016 PMCID: PMC255869 DOI: 10.1128/jvi.61.10.2973-2980.1987] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A number of recent studies have reported that in papovaviruses such as simian virus 40 (SV40) and polyomavirus, the replication of the viral DNA in vivo is activated by the viral transcriptional enhancer or promoter sequences. Both viral and cellular transcriptional enhancers are well known for their ability to activate transcription in a position- and orientation-independent manner. In the present study, we investigated the effect of the position and orientation of the SV40 72-base-pair (bp) repeat enhancer on its replication activation function. We constructed plasmids containing one copy each of the SV40 core origin and enhancer placed in either order and orientation and at different distances from each other. We assayed the replication efficiencies of these plasmids in the presence of an internal control plasmid in COS-1 monkey kidney cells producing the SV40 T antigen required for replication. We found that the 72-bp repeat was capable of activating replication equally well in either orientation when placed 8 or 9 bp from the core origin. The activation of replication was totally abolished, and replication efficiencies in most instances were found to be lower than that obtained with the core origin alone, when the 72-bp repeat was separated from the core origin by distances of 99 bp or more. This was in direct contrast to the situation with polyomavirus, in which activation of replication by the homologous enhancer or by the SV40 72-bp repeat enhancer is known to be position independent. We also found that when the SV40 core origin and the 72-bp repeat enhancer were adjacent to each other, efficient activation of replication was obtained only if the end of the core origin containing the 17-bp A + T block was linked with the enhancer. In the other orientation of the core origin, activation of replication was either diminished or abolished. Hypotheses such as alteration of chromatin structure by the enhancer and interaction between trans-acting factors binding to the enhancer and the core origin mediating the activation effect are discussed.
Collapse
|
49
|
Deb S, Tsui S, Koff A, DeLucia AL, Parsons R, Tegtmeyer P. The T-antigen-binding domain of the simian virus 40 core origin of replication. J Virol 1987; 61:2143-9. [PMID: 3035215 PMCID: PMC254235 DOI: 10.1128/jvi.61.7.2143-2149.1987] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The simian virus 40 origin of replication contains a 27-base-pair palindrome with the sequence 5'-CA-GAGGC-C-GAGGC-G-GCCTC-G-GCCTC-TG-3'. The four 5'-GAGGC-3'/5'-GCCTC-3' pentanucleotides are known contact sites for simian virus 40 T-antigen binding in vitro. We used oligonucleotide-directed cassette mutagenesis to identify features of this palindrome that are important for the initiation of DNA replication in vivo. Each base pair of a pentanucleotide is crucial for DNA replication. In contrast, sequences adjacent to pentanucleotides have little or no effect on replication. Thus, the pentanucleotide is the basic functional unit, not only for T-antigen binding but also for DNA replication. All four pentanucleotides are indispensable in the initiation process. The spacing of pentanucleotides is crucial because duplication of the single base pair between binding sites has a far greater effect on replication than does substitution of the same base pair. Inversion of any pentanucleotide blocks DNA synthesis. Thus, the pentanucleotide is not a functionally symmetrical unit. We propose that each pentanucleotide positions a monomer of T antigen at the proper distance, rotation, and orientation relative to other T-antigen monomers and to other origin domains and that such positioning leads to subsequent events in replication.
Collapse
|
50
|
Wilson VG. Methylation of specific cytosine residues enhances simian virus 40 T-antigen binding to origin region DNA. J Virol 1987; 61:2344-8. [PMID: 3035234 PMCID: PMC283706 DOI: 10.1128/jvi.61.7.2344-2348.1987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Specific binding of simian virus 40 large T antigen to origin region DNA requires the interaction of T antigen with multiples of a consensus recognition pentanucleotide sequence (5'-G[T]-A[G]-G-G-C-3'). To assess the interaction of T antigen with cytosine residues in the recognition sequences, bacterial methylases were used to methylate simian virus 40 form I DNA in vitro at specific cytosine residues. Methylation of a subset of the cytosine residues in the pentanucleotide sequences resulted in enhanced binding of T antigen to origin region DNA. Enhanced binding to the methylated pentanucleotides indicates that the methyl groups introduced on this subset of pentanucleotide cytosine residues could not have sterically interfered with the interaction of T antigen with the recognition sequences. This lack of steric interference suggests that T antigen does not make close contact in the major groove with these particular cytosine residues during normal binding.
Collapse
|