1
|
Riedl A, Bojková D, Tan J, Jeney Á, Larsen PK, Jeney C, Full F, Kalinke U, Ruzsics Z. Construction and Characterization of a High-Capacity Replication-Competent Murine Cytomegalovirus Vector for Gene Delivery. Vaccines (Basel) 2024; 12:791. [PMID: 39066429 PMCID: PMC11281640 DOI: 10.3390/vaccines12070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
We investigated the basic characteristics of a new murine cytomegalovirus (MCMV) vector platform. Using BAC technology, we engineered replication-competent recombinant MCMVs with deletions of up to 26% of the wild-type genome. To this end, we targeted five gene blocks (m01-m17, m106-m109, m129-m141, m144-m158, and m159-m170). BACs featuring deletions from 18% to 26% of the wild-type genome exhibited delayed virus reconstitution, while smaller deletions (up to 16%) demonstrated reconstitution kinetics similar to those of the wild type. Utilizing an innovative methodology, we introduced large genomic DNA segments, up to 35 kbp, along with reporter genes into a newly designed vector with a potential cloning capacity of 46 kbp (Q4). Surprisingly, the insertion of diverse foreign DNAs alleviated the delayed plaque formation phenotype of Q4, and these large inserts remained stable through serial in vitro passages. With reporter-gene-expressing recombinant MCMVs, we successfully transduced not only mouse cell lines but also non-rodent mammalian cells, including those of human, monkey, bovine, and bat origin. Remarkably, even non-mammalian cell lines derived from chickens exhibited successful transduction.
Collapse
Affiliation(s)
- André Riedl
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Denisa Bojková
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Medical Virology, Goethe University Frankfurt, University Hospital, 60596 Frankfurt am Main, Germany
| | - Jiang Tan
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Ábris Jeney
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Pia-Katharina Larsen
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Institute for Experimental Infection Research, 30625 Hanover, Germany
| | - Csaba Jeney
- Department of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Florian Full
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Ulrich Kalinke
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Institute for Experimental Infection Research, 30625 Hanover, Germany
| | - Zsolt Ruzsics
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Fink A, Blaum F, Babic Cac M, Ebert S, Lemmermann NAW, Reddehase MJ. An endocytic YXXΦ (YRRF) cargo sorting motif in the cytoplasmic tail of murine cytomegalovirus AP2 'adapter adapter' protein m04/gp34 antagonizes virus evasion of natural killer cells. Med Microbiol Immunol 2015; 204:383-94. [PMID: 25850989 DOI: 10.1007/s00430-015-0414-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 03/26/2015] [Indexed: 12/29/2022]
Abstract
Viruses have evolved proteins that bind immunologically relevant cargo molecules at the cell surface for their downmodulation by internalization. Via a tyrosine-based sorting motif YXXΦ in their cytoplasmic tails, they link the bound cargo to the cellular adapter protein-2 (AP2), thereby sorting it into clathrin-triskelion-coated pits for accelerated endocytosis. Downmodulation of CD4 molecules by lentiviral protein NEF represents the most prominent example. Based on connecting cargo to cellular adapter molecules, such specialized viral proteins have been referred to as 'connectors' or 'adapter adapters.' Murine cytomegalovirus glycoprotein m04/gp34 binds stably to MHC class-I (MHC-I) molecules and suspiciously carries a canonical YXXΦ endocytosis motif YRRF in its cytoplasmic tail. Disconnection from AP2 by motif mutation ARRF should retain m04-MHC-I complexes at the cell surface and result in an enhanced silencing of natural killer (NK) cells, which recognize them via inhibitory receptors. We have tested this prediction with a recombinant virus in which the AP2 motif is selectively destroyed by point mutation Y248A, and compared this with the deletion of the complete protein in a Δm04 mutant. Phenotypes were antithetical in that loss of AP2-binding enhanced NK cell silencing, whereas absence of m04-MHC-I released them from silencing. We thus conclude that AP2-binding antagonizes NK cell silencing by enhancing endocytosis of the inhibitory ligand m04-MHC-I. Based on a screen for tyrosine-based endocytic motifs in cytoplasmic tail sequences, we propose here the new hypothesis that most proteins of the m02-m16 gene family serve as 'adapter adapters,' each selecting its specific cell surface cargo for clathrin-assisted internalization.
Collapse
Affiliation(s)
- Annette Fink
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz and Research Center for Immunotherapy (FZI), Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131, Mainz, Germany,
| | | | | | | | | | | |
Collapse
|
3
|
Noncanonical expression of a murine cytomegalovirus early protein CD8 T-cell epitope as an immediate early epitope based on transcription from an upstream gene. Viruses 2014; 6:808-31. [PMID: 24535000 PMCID: PMC3939483 DOI: 10.3390/v6020808] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/17/2014] [Accepted: 01/26/2014] [Indexed: 11/23/2022] Open
Abstract
Viral CD8 T-cell epitopes, represented by viral peptides bound to major histocompatibility complex class-I (MHC-I) glycoproteins, are often identified by “reverse immunology”, a strategy not requiring biochemical and structural knowledge of the actual viral protein from which they are derived by antigen processing. Instead, bioinformatic algorithms predicting the probability of C-terminal cleavage in the proteasome, as well as binding affinity to the presenting MHC-I molecules, are applied to amino acid sequences deduced from predicted open reading frames (ORFs) based on the genomic sequence. If the protein corresponding to an antigenic ORF is known, it is usually inferred that the kinetic class of the protein also defines the phase in the viral replicative cycle during which the respective antigenic peptide is presented for recognition by CD8 T cells. We have previously identified a nonapeptide from the predicted ORFm164 of murine cytomegalovirus that is presented by the MHC-I allomorph H-2 Dd and that is immunodominant in BALB/c (H-2d haplotype) mice. Surprisingly, although the ORFm164 protein gp36.5 is expressed as an Early (E) phase protein, the m164 epitope is presented already during the Immediate Early (IE) phase, based on the expression of an upstream mRNA starting within ORFm167 and encompassing ORFm164.
Collapse
|
4
|
A 128-base-pair sequence containing the pac1 and a presumed cryptic pac2 sequence includes cis elements sufficient to mediate efficient genome maturation of human cytomegalovirus. J Virol 2011; 85:4432-9. [PMID: 21345955 DOI: 10.1128/jvi.02307-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus DNA replication proceeds via concatemeric replicative intermediates that are comprised of head-to-tail linked genomes. Genome maturation is carried out by the terminase, an enzyme complex that mediates both the insertion of concatemer DNA into capsids and its subsequent cleavage to release genomes within these capsids. This cleavage is sequence specific, but the governing cis-acting DNA sequences are only partially characterized. Two highly conserved motifs, the pac1 and pac2 motifs, lie near the ends of herpesvirus genomes and are known to be critical for genome maturation. In murine cytomegalovirus, poorly conserved sequences distal to the pac2 motif up to 150 bp from the point of cleavage are also important for cleavage. Here, we sought to identify the cleavage/packaging signals of human cytomegalovirus. Our results show that a previously proposed pac2-like poly(A) tract is dispensable for cleavage/packaging function and suggest that human cytomegalovirus may utilize a cryptic pac2 motif that lacks a poly(A) tract characteristic of pac2 motifs in other herpesviruses. Additional distal sequences 47 to 100 bp from the point of cleavage were found to enhance cleavage efficiency. These results should facilitate the identification of trans-acting factors that bind to these cis elements and elucidation of their functions. Such information will be critical for understanding the molecular basis of this complex process.
Collapse
|
5
|
Lemmermann NA, Podlech J, Seckert CK, Kropp KA, Grzimek NK, Reddehase MJ, Holtappels R. CD8 T-Cell Immunotherapy of Cytomegalovirus Disease in the Murine Model. IMMUNOLOGY OF INFECTION 2010. [DOI: 10.1016/s0580-9517(10)37016-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
The efficacy of antigen processing is critical for protection against cytomegalovirus disease in the presence of viral immune evasion proteins. J Virol 2009; 83:9611-5. [PMID: 19553308 DOI: 10.1128/jvi.00936-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cytomegaloviruses (CMVs) code for immunoevasins, glycoproteins that are specifically dedicated to interfere with the presentation of antigenic peptides to CD8 T cells. Nonetheless, the biological outcome is not an immune evasion of the virus, since CD8 T cells can control CMV infection even when immunoevasins are expressed. Here, we compare the processing of a protective and a nonprotective epitope derived from the same viral protein, the antiapoptotic protein M45 in the murine model. The data provide evidence to conclude that protection against CMVs critically depends on antigenic peptides generated in an amount sufficient to exhaust the inhibitory capacity of immunoevasins.
Collapse
|
7
|
Properties of virion transactivator proteins encoded by primate cytomegaloviruses. Virol J 2009; 6:65. [PMID: 19473490 PMCID: PMC2693105 DOI: 10.1186/1743-422x-6-65] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 05/27/2009] [Indexed: 11/25/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) is a betaherpesvirus that causes severe disease in situations where the immune system is immature or compromised. HCMV immediate early (IE) gene expression is stimulated by the virion phosphoprotein pp71, encoded by open reading frame (ORF) UL82, and this transactivation activity is important for the efficient initiation of viral replication. It is currently recognized that pp71 acts to overcome cellular intrinsic defences that otherwise block viral IE gene expression, and that interactions of pp71 with the cell proteins Daxx and ATRX are important for this function. A further property of pp71 is the ability to enable prolonged gene expression from quiescent herpes simplex virus type 1 (HSV-1) genomes. Non-human primate cytomegaloviruses encode homologs of pp71, but there is currently no published information that addresses their effects on gene expression and modes of action. Results The UL82 homolog encoded by simian cytomegalovirus (SCMV), strain Colburn, was identified and cloned. This ORF, named S82, was cloned into an HSV-1 vector, as were those from baboon, rhesus monkey and chimpanzee cytomegaloviruses. The use of an HSV-1 vector enabled expression of the UL82 homologs in a range of cell types, and permitted investigation of their abilities to direct prolonged gene expression from quiescent genomes. The results show that all UL82 homologs activate gene expression, and that neither host cell type nor promoter target sequence has major effects on these activities. Surprisingly, the UL82 proteins specified by non-human primate cytomegaloviruses, unlike pp71, did not direct long term expression from quiescent HSV-1 genomes. In addition, significant differences were observed in the intranuclear localization of the UL82 homologs, and in their effects on Daxx. Strikingly, S82 mediated the release of Daxx from nuclear domain 10 substructures much more rapidly than pp71 or the other proteins tested. All UL82 homologs stimulated the early release of ATRX from nuclear domain 10. Conclusion All of the UL82 homolog proteins analysed activated gene expression, but surprising differences in other aspects of their properties were revealed. The results provide new information on early events in infection with cytomegaloviruses.
Collapse
|
8
|
Gustems M, Busche A, Messerle M, Ghazal P, Angulo A. In vivo competence of murine cytomegalovirus under the control of the human cytomegalovirus major immediate-early enhancer in the establishment of latency and reactivation. J Virol 2008; 82:10302-7. [PMID: 18684819 PMCID: PMC2566294 DOI: 10.1128/jvi.01255-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 07/29/2008] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) major immediate-early enhancer has been postulated to play a pivotal role in the control of latency and reactivation. However, the absence of an animal model has obstructed a direct test of this hypothesis. Here we report on the establishment of an in vivo, experimentally tractable system for quantitatively investigating physiological functions of the HCMV enhancer. Using a neonate BALB/c mouse model, we show that a chimeric murine CMV under the control of the HCMV enhancer is competent in vivo, replicating in key organs of mice with acute CMV infection and exhibiting latency/reactivation features comparable for the most part to those of the parental and revertant viruses.
Collapse
Affiliation(s)
- Montse Gustems
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, C/Villarroel 170, Barcelona 08036, Spain.
| | | | | | | | | |
Collapse
|
9
|
Transactivation of cellular genes involved in nucleotide metabolism by the regulatory IE1 protein of murine cytomegalovirus is not critical for viral replicative fitness in quiescent cells and host tissues. J Virol 2008; 82:9900-16. [PMID: 18684825 DOI: 10.1128/jvi.00928-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite its high coding capacity, murine CMV (mCMV) does not encode functional enzymes for nucleotide biosynthesis. It thus depends on cellular enzymes, such as ribonucleotide reductase (RNR) and thymidylate synthase (TS), to be supplied with deoxynucleoside triphosphates (dNTPs) for its DNA replication. Viral transactivation of these cellular genes in quiescent cells of host tissues is therefore a parameter of viral fitness relevant to pathogenicity. Previous work has shown that the IE1, but not the IE3, protein of mCMV transactivates RNR and TS gene promoters and has revealed an in vivo attenuation of the mutant virus mCMV-DeltaIE1. It was attractive to propose the hypothesis that lack of transactivation by IE1 and a resulting deficiency in the supply of dNTPs are the reasons for growth attenuation. Here, we have tested this hypothesis with the mutant virus mCMV-IE1-Y165C expressing an IE1 protein that selectively fails to transactivate RNR and TS in quiescent cells upon transfection while maintaining the capacity to disperse repressive nuclear domains (ND10). Our results confirm in vivo attenuation of mCMV-DeltaIE1, as indicated by a longer doubling time in host organs, whereas mCMV-IE1-Y165C replicated like mCMV-WT and the revertant virus mCMV-IE1-C165Y. Notably, the mutant virus transactivated RNR and TS upon infection of quiescent cells, thus indicating that IE1 is not the only viral transactivator involved. We conclude that transactivation of cellular genes of dNTP biosynthesis is ensured by redundancy and that attenuation of mCMV-DeltaIE1 results from the loss of other critical functions of IE1, with its function in the dispersal of ND10 being a promising candidate.
Collapse
|
10
|
Mouse cytomegalovirus microRNAs dominate the cellular small RNA profile during lytic infection and show features of posttranscriptional regulation. J Virol 2007; 81:13771-82. [PMID: 17942535 DOI: 10.1128/jvi.01313-07] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNA molecules that regulate gene expression at the posttranscriptional level. Originally identified in a variety of organisms ranging from plants to mammals, miRNAs have recently been identified in several viruses. Viral miRNAs may play a role in modulating both viral and host gene expression. Here, we report on the identification and characterization of 18 viral miRNAs from mouse fibroblasts lytically infected with the murine cytomegalovirus (MCMV). The MCMV miRNAs are expressed at early times of infection and are scattered in small clusters throughout the genome with up to four distinct miRNAs processed from a single transcript. No significant homologies to human CMV-encoded miRNAs were found. Remarkably, as soon as 24 h after infection, MCMV miRNAs constituted about 35% of the total miRNA pool, and at 72 h postinfection, this proportion was increased to more than 60%. However, despite the abundance of viral miRNAs during the early phase of infection, the expression of some MCMV miRNAs appeared to be regulated. Hence, for three miRNAs we observed polyuridylation of their 3' end, coupled to subsequent degradation. Individual knockout mutants of two of the most abundant MCMV miRNAs, miR-m01-4 and miR-M44-1, or a double knockout mutant of miR-m21-1 and miR-M23-2, incurred no or only a very mild growth deficit in murine embryonic fibroblasts in vitro.
Collapse
|
11
|
Corbett AJ, Forbes CA, Moro D, Scalzo AA. Extensive sequence variation exists among isolates of murine cytomegalovirus within members of the m02 family of genes. J Gen Virol 2007; 88:758-769. [PMID: 17325348 DOI: 10.1099/vir.0.82623-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Murine cytomegalovirus (MCMV) is a widely used model for human cytomegalovirus (HCMV) and has facilitated many important discoveries about the biology of CMVs. Most of these studies are conducted using the laboratory MCMV strains Smith and K181. However, wild-derived isolates of MCMV, like HCMV clinical isolates, exhibit genetic variation from laboratory strains, particularly at the ends of their genomes in areas containing known or putative immune-evasion and tropism genes. This study analysed the nucleotide sequence of the m02-m05 region, within the m02 gene family, of a number of laboratory and wild-derived MCMV isolates, and found a large degree of variation in both the sequence and arrangement of genes. A new open reading frame (ORF), designated m03.5, was found to be present in a number of wild isolates of MCMV in place of m03. Two distinct isolates, W8 and W8211, were found to possess both m03 and m03.5. Both m03 and m03.5 had early transcription kinetics and the encoded proteins could be detected on the cell surface, consistent with a possible role in immune evasion through binding to host-cell proteins. These data show that gene duplication and sequence variation occur within different isolates of MCMV found in the wild. As this variation among strains may alter the function of genes, these findings should be considered when analysing gene function or host-virus interactions in laboratory models.
Collapse
Affiliation(s)
- Alexandra J Corbett
- Centre for Experimental Immunology, Lions Eye Institute, 2 Verdun Street, Nedlands, WA 6009, Australia
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Nedlands, WA 6009, Australia
| | - Catherine A Forbes
- Centre for Experimental Immunology, Lions Eye Institute, 2 Verdun Street, Nedlands, WA 6009, Australia
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Nedlands, WA 6009, Australia
| | - Dorian Moro
- School of Natural Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Anthony A Scalzo
- Centre for Experimental Immunology, Lions Eye Institute, 2 Verdun Street, Nedlands, WA 6009, Australia
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
12
|
Ghazal P, Visser AE, Gustems M, García R, Borst EM, Sullivan K, Messerle M, Angulo A. Elimination of ie1 significantly attenuates murine cytomegalovirus virulence but does not alter replicative capacity in cell culture. J Virol 2005; 79:7182-94. [PMID: 15890957 PMCID: PMC1112098 DOI: 10.1128/jvi.79.11.7182-7194.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major immediate-early (MIE) genes of cytomegaloviruses (CMV) are broadly thought to be decisive regulators of lytic replication and reactivation from latency. To directly assess the role of the MIE protein IE1 during the infection of murine CMV (MCMV), we constructed an MCMV with exon 4 of the ie1 gene deleted. We found that, independent of the multiplicity of infection, the resulting recombinant virus, MCMVdie1, which fails to express the IE1 protein, was fully competent for early gene expression and replicated in different cultured cell types with identical kinetics to those of parental or revertant virus. Immunofluorescence microscopy studies revealed that MCMVdie1 was greatly impaired in its capacity to disrupt promyelocytic leukemia bodies in NIH 3T3 cells early after infection, a process that has been proposed to increase viral transcription efficiency. We examined MCMVdie1 in the murine model using both immunocompetent BALB/c and severe combined immunodeficient (SCID) mice. When MCMVdie1 was inoculated into these two types of mice, significantly lower viral titers were detected in infected organs than in those of the wild-type virus-infected animals. Moreover, the ie1-deficient MCMV exhibited a markedly reduced virulence. While all animals infected with 5 x 10(4) PFU of parental virus died by 30 days postinfection, SCID mice infected with a similar dose of MCMVdie1 did not succumb before 60 days postinfection. The in vivo defective growth phenotype of MCMVdie1 was abrogated upon rescue of ie1. These results demonstrate the significance of the ie1 gene for promoting an acute MCMV infection and virulence yet indicate that MCMV is able to grow in vivo, although impaired, in the absence of the ie1 gene.
Collapse
Affiliation(s)
- Peter Ghazal
- Scottish Centre for Genomic Technology and Informatics, University of Edinburgh, Medical School, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Redwood AJ, Messerle M, Harvey NL, Hardy CM, Koszinowski UH, Lawson MA, Shellam GR. Use of a murine cytomegalovirus K181-derived bacterial artificial chromosome as a vaccine vector for immunocontraception. J Virol 2005; 79:2998-3008. [PMID: 15709020 PMCID: PMC548423 DOI: 10.1128/jvi.79.5.2998-3008.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytomegaloviruses (CMVs) are members of the Betaherpesvirinae subfamily of the Herpesviridae, and their properties of latency, large DNA size, gene redundancy, and ability to be cloned as bacterial artificial chromosomes (BACs) suggest their utility as vaccine vectors. While the K181 strain of murine CMV (MCMV) is widely used to study MCMV biology, a BAC clone of this virus had not previously been produced. We report here the construction of a BAC clone of the K181(Perth) strain of MCMV. The in vivo and in vitro growth characteristics of virus derived from the K181 BAC were similar to those of wild-type K181. The utility of the K181 BAC as a method for the rapid production of vaccine vectors was assessed. A vaccine strain of BAC virus, expressing the self-fertility antigen, murine zona pellucida 3, was produced rapidly using standard bacterial genetics techniques and rendered female BALB/c mice infertile with a single intraperitoneal inoculation. In addition, attenuated vaccine strains lacking the open reading frames m07 to m12 exhibited no reduction in efficacy compared to the full-length vaccine strain. In conclusion, we describe the production of a K181-based BAC virus which behaved essentially as wild-type K181 and allowed the rapid production of effective viral vaccine vectors.
Collapse
Affiliation(s)
- Alec J Redwood
- Microbiology and Immunology, School of Biomedical and Chemical Sciences, M502, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
| | | | | | | | | | | | | |
Collapse
|
14
|
Bubeck A, Wagner M, Ruzsics Z, Lötzerich M, Iglesias M, Singh IR, Koszinowski UH. Comprehensive mutational analysis of a herpesvirus gene in the viral genome context reveals a region essential for virus replication. J Virol 2004; 78:8026-35. [PMID: 15254174 PMCID: PMC446129 DOI: 10.1128/jvi.78.15.8026-8035.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Essential viral proteins perform vital functions during morphogenesis via a complex interaction with other viral and cellular gene products. Here, we present a novel approach to comprehensive mutagenesis of essential cytomegalovirus genes and biological analysis in the 230-kbp-genome context. A random Tn7-based mutagenesis procedure at the single-gene level was combined with site-specific recombination via the FLP/FLP recognition target site system for viral genome reconstitution. We show the function of more than 100 mutants from a larger library of M50/p35, a protein involved in capsid egress from the nucleus. This protein recruits other viral proteins and cellular enzymes to the inner nuclear membrane. Our approach enabled us to rapidly discriminate between essential and nonessential regions within the coding sequence. Based on the prediction of the screen, we were able to map a site essential for viral protein-protein interaction at the amino acid level.
Collapse
Affiliation(s)
- Anja Bubeck
- Max von Pettenkofer Institut für Virologie, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Ghazal P, Messerle M, Osborn K, Angulo A. An essential role of the enhancer for murine cytomegalovirus in vivo growth and pathogenesis. J Virol 2003; 77:3217-28. [PMID: 12584345 PMCID: PMC149741 DOI: 10.1128/jvi.77.5.3217-3228.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription of cytomegalovirus (CMV) immediate-early (IE) genes is regulated by a large and complex enhancer containing an array of binding sites for a variety of cellular transcription factors. Previously, using bacterial artificial chromosome recombinants of the virus genome, it was reported that the enhancer region of murine CMV (MCMV) is dispensable but performs a key function for viral multiplication (A. Angulo, M. Messerle, U. H. Koszinowski, and P. Ghazal, J. Virol. 72:8502-8509, 1998). In the present study, we defined, through the reconstitution of infectious enhancerless MCMVs, the growth requirement for the enhancer in tissue culture and explored its significance for steering a productive infection in vivo. A comparison of cis and trans complementation systems for infection of enhancerless virus in permissive fibroblasts revealed a multiplicity-dependent growth phenotype that is severely compromised in the rate of infectious-virus multiplication. The in vivo impact of viruses that have an amputated enhancer was investigated in an extremely sensitive model of MCMV infection, the SCID mouse. Histological examination of spleens, livers, lungs, and salivary glands from animals infected with enhancer-deficient MCMV demonstrated an absence of tissue damage associated with CMV infection. The lack of pathogenic lesions correlated with a defect in replication competence. Enhancerless viruses were not detectable in major target organs harvested from SCID mice. The pathogenesis and growth defect reverted upon restoration of the enhancer. Markedly, while SCID mice infected with 5 PFU of parental MCMV died within 50 days postinfection, all mice infected with enhancerless virus survived for the duration of the experiment (1 year) after infection with 5 x 10(5) PFU. Together, these results clarify the importance of the enhancer for MCMV growth in cell culture and underscore the in vivo significance of this region for MCMV virulence and pathogenesis.
Collapse
Affiliation(s)
- Peter Ghazal
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
16
|
Wagner M, Gutermann A, Podlech J, Reddehase MJ, Koszinowski UH. Major histocompatibility complex class I allele-specific cooperative and competitive interactions between immune evasion proteins of cytomegalovirus. J Exp Med 2002; 196:805-16. [PMID: 12235213 PMCID: PMC2194048 DOI: 10.1084/jem.20020811] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2002] [Revised: 07/11/2002] [Accepted: 08/07/2002] [Indexed: 11/30/2022] Open
Abstract
Cytomegaloviruses (CMVs) deploy a set of genes for interference with antigen presentation in the major histocompatibility complex (MHC) class I pathway. In murine CMV (MCMV), three genes were identified so far: m04/gp34, m06/gp48, and m152/gp40. While their function as immunoevasins was originally defined after their selective expression, this may not necessarily reflect their biological role during infection. The three immunoevasins might act synergistically, but they might also compete for their common substrate, the MHC class I complexes. To approach this question in a systematic manner, we have generated a complete set of mutant viruses with deletions of the three genes in all seven possible combinations. Surface expression of a set of MHC class I molecules specified by haplotypes H-2(d) (K(d), D(d), and L(d)) and H-2(b) (K(b) and D(b)) was the parameter for evaluation of the interference with class I trafficking. The data show the following: first, there exists no additional MCMV gene of major influence on MHC class I surface expression; second, the strength of the inhibitory effect of immunoevasins shows an allele-specific hierarchy; and third, the immunoevasins act not only synergistically but can, in certain combinations, interact antagonistically. In essence, this work highlights the importance of studying the immunosubversive mechanisms of cytomegaloviruses in the context of gene expression during the viral replicative cycle in infected cells.
Collapse
Affiliation(s)
- Markus Wagner
- Max von Pettenkofer Institute, Department for Virology, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
17
|
Gold MC, Munks MW, Wagner M, Koszinowski UH, Hill AB, Fling SP. The murine cytomegalovirus immunomodulatory gene m152 prevents recognition of infected cells by M45-specific CTL but does not alter the immunodominance of the M45-specific CD8 T cell response in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:359-65. [PMID: 12077265 DOI: 10.4049/jimmunol.169.1.359] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although in vitro studies have shown that herpesviruses, including murine CMV (MCMV), encode genes that interfere with the MHC class I pathway, their effects on the CTL response in vivo is unclear. We identified a D(b)-restricted CTL epitope from MCMV M45 by screening an MCMV genomic library using CTL clones isolated from mice infected with MCMV lacking m152. Because m152 severely inhibits CTL recognition of M45 in vitro, we questioned whether an M45-specific response would be generated in mice infected with wild-type MCMV expressing m152. Mice infected with wild-type MCMV or MCMVDelta(m)152 made similar responses to the M45 Ag. Moreover, we saw no skewing of the proportion of M45-specific CD8 T cells within the total MCMV-specific response after infection with MCMV with m152. Despite the profound effect m152 has on presentation of M45 in vitro, it does not affect the immunodominance of M45 in the CTL response in vivo.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Animals
- Antigen Presentation/genetics
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cell Line
- Cell Line, Transformed
- Cell Separation
- Clone Cells
- Epitopes, T-Lymphocyte/immunology
- Female
- H-2 Antigens/immunology
- Herpesviridae Infections/immunology
- Histocompatibility Antigen H-2D
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/immunology
- Immunodominant Epitopes/immunology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Muromegalovirus/genetics
- Muromegalovirus/immunology
- Muromegalovirus/physiology
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Ribonucleotide Reductases/immunology
- Ribonucleotide Reductases/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- Viral Proteins
Collapse
Affiliation(s)
- Marielle C Gold
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97201, USA
| | | | | | | | | | | |
Collapse
|
18
|
Holtappels R, Grzimek NKA, Simon CO, Thomas D, Dreis D, Reddehase MJ. Processing and presentation of murine cytomegalovirus pORFm164-derived peptide in fibroblasts in the face of all viral immunosubversive early gene functions. J Virol 2002; 76:6044-53. [PMID: 12021337 PMCID: PMC136202 DOI: 10.1128/jvi.76.12.6044-6053.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD8 T cells are the principal effector cells in the resolution of acute murine cytomegalovirus (mCMV) infection in host organs. This undoubted antiviral and protective in vivo function of CD8 T cells appeared to be inconsistent with immunosubversive strategies of the virus effected by early (E)-phase genes m04, m06, and m152. The so-called immune evasion proteins gp34, gp48, and gp37/40, respectively, were found to interfere with peptide presentation at different steps in the major histocompatibility complex (MHC) class I pathway of antigen processing and presentation in fibroblasts. Accordingly, they were proposed to prevent recognition and lysis of infected fibroblasts by cytolytic T lymphocytes (CTL) during the E phase of viral gene expression. We document here that the previously identified MHC class I D(d)-restricted antigenic peptide (257)AGPPRYSRI(265) encoded by gene m164 is processed as well as presented for recognition by m164-specific CTL during the E and late phases of viral replication in the very same cells in which the immunosubversive viral proteins are effectual in preventing the presentation of processed immediate-early 1 (m123-exon 4) peptide (168)YPHFMPTNL(176). Thus, while immunosubversion is a reality, these mechanisms are apparently not as efficient as the term immune evasion implies. The pORFm164-derived peptide is the first noted peptide that constitutively escapes the immunosubversive viral functions. The most important consequence is that even the concerted action of all immunosubversive E-phase proteins eventually fails to prevent immune recognition in the E phase. The bottom-line message is that there exists no immune evasion of mCMV in fibroblasts.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology, Johannes Gutenberg University, 55101 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Morello CS, Ye M, Spector DH. Development of a vaccine against murine cytomegalovirus (MCMV), consisting of plasmid DNA and formalin-inactivated MCMV, that provides long-term, complete protection against viral replication. J Virol 2002; 76:4822-35. [PMID: 11967299 PMCID: PMC136169 DOI: 10.1128/jvi.76.10.4822-4835.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2001] [Accepted: 02/05/2002] [Indexed: 01/02/2023] Open
Abstract
We previously demonstrated that immunization of mice with plasmid DNAs (pDNAs) expressing the murine cytomegalovirus (MCMV) genes IE1-pp89 and M84 provided synergistic protection against sublethal viral challenge, while immunization with plasmids expressing putative virion proteins provided no or inconsistent protection. In this report, we sought to augment protection by increasing the breadth of the immune response. We identified another MCMV gene (m04 encoding gp34) that provided strong and consistent protection against viral replication in the spleen. We also found that immunization with a DNA pool containing 10 MCMV genes that individually were nonprotective elicited reproducible protection against low to intermediate doses of challenge virus. Moreover, inclusion of these plasmids into a mixture with gp34, pp89, and M84 DNAs provided even greater protection than did coimmunization with pp89 and M84. The highest level of protection was achieved by immunization of mice with the pool of 13 pDNAs, followed by formalin-inactivated MCMV (FI-MCMV). Immunization with FI-MCMV elicited neutralizing antibodies against salivary gland-derived MCMV, and of greatest importance, mice immunized with both the combined pDNA pool and FI-MCMV had undetectable levels of virus in the spleen and salivary glands after challenge. Intracellular cytokine staining of splenocytes from pDNA- and FI-MCMV-immunized mice showed that pDNA immunization elicited high levels of pp89- and M83-specific CD8(+) T cells, whereas both pDNA and FI-MCMV immunizations generated strong CD8(+)-T-cell responses against virion-associated antigens. Taken together, these results show that immunization with pDNA and inactivated virus provides strong antibody and cell-mediated immunity against CMV infection.
Collapse
Affiliation(s)
- Christopher S Morello
- Molecular Biology Section, Division of Biology, University of California, San Diego, La Jolla, California 92093-0366, USA
| | | | | |
Collapse
|
20
|
Holtappels R, Grzimek NKA, Thomas D, Reddehase MJ. Early gene m18, a novel player in the immune response to murine cytomegalovirus. J Gen Virol 2002; 83:311-316. [PMID: 11807223 DOI: 10.1099/0022-1317-83-2-311] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The identification of all antigenic peptides encoded by a pathogen, its T cell 'immunome', is a research aim for rational vaccine design. Screening of proteome-spanning peptide libraries or computational prediction is used to identify antigenic peptides recognized by CD8 T cells. Based on their high coding capacity, cytomegaloviruses (CMVs) could specify numerous antigenic peptides. Yet, current evidence indicates that the memory CD8 T cell response in a given haplotype is actually focused on a few viral proteins. CMVs actively interfere with antigen processing and presentation by the expression of immune evasion proteins. In the case of murine CMV (mCMV), these proteins are effectual in the early (E) phase of the virus replication cycle and should thus preclude the presentation of peptides derived from E proteins. Notably, the m18 gene is here added to a growing list of mCMV E genes that encode antigenic peptides in spite of the E phase immune evasion strategies of the virus.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology, Johannes Gutenberg University, Hochhaus am Augustusplatz, 55101 Mainz, Germany1
| | - Natascha K A Grzimek
- Institute for Virology, Johannes Gutenberg University, Hochhaus am Augustusplatz, 55101 Mainz, Germany1
| | - Doris Thomas
- Institute for Virology, Johannes Gutenberg University, Hochhaus am Augustusplatz, 55101 Mainz, Germany1
| | - Matthias J Reddehase
- Institute for Virology, Johannes Gutenberg University, Hochhaus am Augustusplatz, 55101 Mainz, Germany1
| |
Collapse
|
21
|
|
22
|
Kavanagh DG, Koszinowski UH, Hill AB. The murine cytomegalovirus immune evasion protein m4/gp34 forms biochemically distinct complexes with class I MHC at the cell surface and in a pre-Golgi compartment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3894-902. [PMID: 11564807 DOI: 10.4049/jimmunol.167.7.3894] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently demonstrated that the murine CMV (MCMV) gene m4 is an immune evasion gene that protects MCMV-infected targets from some virus-specific CTL clones. m4 encodes m4/gp34, a 34-kDa glycoprotein that binds to major histocompatibility complex class I in the endoplasmic reticulum and forms a detergent-stable complex that is exported to the surface of the cell. To investigate how m4/gp34 promotes CTL evasion, we analyzed the assembly and export of m4/gp34-K(b) complexes. We found that 50-70% of K(b) exported over the course of MCMV infection was m4/gp34 associated. Because these complexes are present at the cell surface, it is possible that m4 mediates CTL evasion by interfering with contact between class I and receptors on the T cell. In addition, we found that K(b) retained by the MCMV immune evasion gene m152 formed a novel type of complex with Endo H-sensitive m4/gp34; these complexes are distinguished from the exported complexes by being stable in 1% digitonin and unstable in 1% Nonidet P-40. Because this association occurs in a pre-Golgi compartment, m4/gp34 might also interfere with Ag presentation by affecting some aspect of class I assembly, such as peptide loading. Although m4/gp34 requires beta(2)-microglobulin to bind class I, there was no significant binding of m4/gp34 to beta(2)-microglobulin in the absence of class I H chain, demonstrating that m4/gp34 forms Nonidet P-40-stable complexes specifically with folded conformations of class I. We conclude that m4/gp34 promotes immune evasion by a novel mechanism involving altered assembly and/or T cell recognition of class I molecules.
Collapse
Affiliation(s)
- D G Kavanagh
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA
| | | | | |
Collapse
|
23
|
Buerger I, Reefschlaeger J, Bender W, Eckenberg P, Popp A, Weber O, Graeper S, Klenk HD, Ruebsamen-Waigmann H, Hallenberger S. A novel nonnucleoside inhibitor specifically targets cytomegalovirus DNA maturation via the UL89 and UL56 gene products. J Virol 2001; 75:9077-86. [PMID: 11533171 PMCID: PMC114476 DOI: 10.1128/jvi.75.19.9077-9086.2001] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
3-Hydroxy-2,2-dimethyl-N-[4([[5-(dimethylamino)-1-naphthyl]sulfonyl]amino)-phenyl]propanamide (BAY 38-4766) is a novel selective nonnucleoside inhibitor of cytomegalovirus (CMV) replication with an excellent safety profile. This compound and structural analogues inhibit neither viral DNA synthesis nor viral transcription and translation. Accumulation of dense bodies and noninfectious enveloped particles coincides with inhibition of both concatemer processing and functional cleavage at intergenomic transitions, pointing to interference with viral DNA maturation and packaging of monomeric genome lengths. Resistant virus populations, including a murine CMV (MCMV) isolate with 566-fold-decreased drug sensitivity, were selected in vitro. Sequencing of the six open reading frames (ORFs) known to be essentially involved in viral DNA cleavage and packaging identified mutations in ORFs UL56, UL89, and UL104. Construction of MCMV recombinants expressing different combinations of murine homologues of mutant UL56, UL89, and UL104 and analysis of drug susceptibilities clearly demonstrated that mutant ORFs UL89 exon II (M360I) and M56 (P202A I208N) individually confer resistance to BAY 38-4766. A combination of both mutant proteins exhibited a strong synergistic effect on resistance, reconstituting the high-resistance phenotype of the in vitro mutant. These findings are consistent with genetic mapping of resistance to TCRB (2,5,6-trichloro-1-beta-D-ribofuranosyl benzimidazole) (P. M. Krosky et al., J. Virol. 72:4721-4728, 1998) and provide further indirect evidence that proteins encoded by UL89 and UL56 function as two subunits of the CMV terminase. While these studies also suggest that the molecular mechanism of BAY 38-4766 is distinct from that of benzimidazole ribonucleosides, they also offer an explanation for the excellent specificity and tolerability of BAY 38-4766, since mammalian DNA does not undergo comparable maturation steps.
Collapse
Affiliation(s)
- I Buerger
- Antiinfective Research, Virology, Business Group Pharma, Bayer AG, D-42096 Wuppertal, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kavanagh DG, Gold MC, Wagner M, Koszinowski UH, Hill AB. The multiple immune-evasion genes of murine cytomegalovirus are not redundant: m4 and m152 inhibit antigen presentation in a complementary and cooperative fashion. J Exp Med 2001; 194:967-78. [PMID: 11581318 PMCID: PMC2193484 DOI: 10.1084/jem.194.7.967] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Both human cytomegaloviruses (HCMVs) and murine cytomegaloviruses (MCMVs) encode multiple genes that interfere with antigen presentation by major histocompatibility complex (MHC) class I, and thus protect infected targets from lysis by virus-specific cytotoxic T lymphocytes (CTLs). HCMV has been shown to encode four such genes and MCMV to encode two. MCMV m152 blocks the export of class I from a pre-Golgi compartment, and MCMV m6 directs class I to the lysosome for degradation. A third MCMV gene, m4, encodes a glycoprotein which is expressed at the cell surface in association with class I. Here we here show that m4 is a CTL-evasion gene which, unlike previously described immune-evasion genes, inhibited CTLs without blocking class I surface expression. m152 was necessary to block antigen presentation to both K(b)- and D(b)-restricted CTL clones, while m4 was necessary to block presentation only to K(b)-restricted clones. m152 caused complete retention of D(b), but only partial retention of K(b), in a pre-Golgi compartment. Thus, while m152 effectively inhibited D(b)-restricted CTLs, m4 was required to completely inhibit K(b)-restricted CTLs. We propose that cytomegaloviruses encode multiple immune-evasion genes in order to cope with the diversity of class I molecules in outbred host populations.
Collapse
Affiliation(s)
- Daniel G. Kavanagh
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201
| | - Marielle C. Gold
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201
| | - Markus Wagner
- Max von Pettenkofer Institut, D-81377 Munich, Germany
| | | | - Ann B. Hill
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201
| |
Collapse
|
25
|
Angulo A, Ghazal P, Messerle M. The major immediate-early gene ie3 of mouse cytomegalovirus is essential for viral growth. J Virol 2000; 74:11129-36. [PMID: 11070009 PMCID: PMC113196 DOI: 10.1128/jvi.74.23.11129-11136.2000] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The significance of the major immediate-early gene ie3 of mouse cytomegalovirus (MCMV) and that of the corresponding ie2 gene of human cytomegalovirus to viral replication are not known. To investigate the function of the MCMV IE3 regulatory protein, we generated two different MCMV recombinants that contained a large deletion in the IE3 open reading frame (ORF). The mutant genomes were constructed by the bacterial artificial chromosome mutagenesis technique, and MCMV ie3 deletion mutants were reconstituted on a mouse fibroblast cell line that expresses the MCMV major immediate-early genes. The ie3 deletion mutants failed to replicate on normal mouse fibroblasts even when a high multiplicity of infection was used. The replication defect was rescued when the IE3 protein was provided in trans by a complementing cell line. A revertant virus in which the IE3 ORF was restored was able to replicate with wild-type kinetics in normal mouse fibroblasts, providing evidence that the defective growth phenotype of the ie3 mutants was due to disruption of the ie3 gene. To characterize the point of restriction in viral replication that is controlled by ie3, we analyzed the pattern of expression of selective early (beta) and late (gamma) genes. While we could detect transcripts for the immediate-early gene ie1 in cells infected with the ie3 mutants, we failed to detect transcripts for representative beta and gamma genes. These data demonstrate that the MCMV transactivator IE3 plays an indispensable role during viral replication in tissue culture, implicating a similar role for the human CMV ie2 gene product. To our knowledge, the ie3 deletion mutants represent the first MCMV recombinants isolated that contain a disruption of an essential gene.
Collapse
Affiliation(s)
- A Angulo
- Department of Immunology and Molecular Biology, Division of Virology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
26
|
Wagner M, Michel D, Schaarschmidt P, Vaida B, Jonjic S, Messerle M, Mertens T, Koszinowski U. Comparison between human cytomegalovirus pUL97 and murine cytomegalovirus (MCMV) pM97 expressed by MCMV and vaccinia virus: pM97 does not confer ganciclovir sensitivity. J Virol 2000; 74:10729-36. [PMID: 11044117 PMCID: PMC110947 DOI: 10.1128/jvi.74.22.10729-10736.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The UL97 protein (pUL97) of human cytomegalovirus (HCMV) is a protein kinase that also phosphorylates ganciclovir (GCV), but its biological function is not yet clear. The M97 protein (pM97) of mouse cytomegalovirus (MCMV) is the homolog of pUL97. First, we studied the consequences of genetic replacement of M97 by UL97. Using the infectious bacterial plasmid clone of the full-length MCMV genome (M. Wagner, S. Jonjic, U. H. Koszinowski, and M. Messerle, J. Virol. 73:7056-7060, 1999), we replaced the M97 gene with the UL97 gene and constructed an MCMV M97 deletion mutant and a revertant virus. In addition, pUL97 and pM97 were expressed by recombinant vaccinia virus to compare both for known functions. Remarkably, pM97 proved not to be the reason for the GCV sensitivity of MCMV. When expressed by the recombinant MCMV, however, pUL97 was phosphorylated and endowed MCMV with the capacity to phosphorylate GCV, thereby rendering MCMV more susceptible to GCV. We found that deletion of pM97, although it is not essential for MCMV replication, severely affected virus growth. This growth deficit was only partially amended by pUL97 expression. When expressed by recombinant vaccinia viruses, both proteins were phosphorylated and supported phosphorylation of GCV, but pUL97 was about 10 times more effective than pM97. One hint of the functional differences between the proteins was provided by the finding that pUL97 accumulates in the nucleus, whereas pM97 is predominantly located in the cytoplasm of infected cells. In vivo testing revealed that the UL97-MCMV recombinant should allow evaluation of novel antiviral drugs targeted to the UL97 protein of HCMV in mice.
Collapse
Affiliation(s)
- M Wagner
- Max von Pettenkofer Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ehsani ME, Abraha TW, Netherland-Snell C, Mueller N, Taylor MM, Holwerda B. Generation of mutant murine cytomegalovirus strains from overlapping cosmid and plasmid clones. J Virol 2000; 74:8972-9. [PMID: 10982341 PMCID: PMC102093 DOI: 10.1128/jvi.74.19.8972-8979.2000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a cosmid and plasmid system to generate mutant strains of murine cytomegalovirus (MCMV). The system is based on a series of seven overlapping cosmid clones that regenerate MCMV when cotransfected into mouse cells. The unaltered cosmids produce MCMV that is indistinguishable from wild-type MCMV based on restriction enzyme digest patterns of virus DNA and growth rates both in vitro and in vivo. Analysis of viral DNA from plaque-purified recombinant isolates taken from in vitro and in vivo stocks indicated that regeneration did not introduce novel mutations in the recombinant viral genomes. Isolation of specific genes and subsequent generation of specific mutant MCMVs was accomplished by replacement of cosmids with overlapping plasmid subclones. A new vector, PmeSUB, featuring a multiple cloning site and a stringent origin of replication, was constructed to make large subclones for use with smaller subclones containing the gene of interest. The utility of this system was demonstrated by the generation of two different mutant MCMVs from different combinations of overlapping plasmid subclones of one cosmid. The advantages of this system are that (i) target genes are maintained as small clones making them amenable to standard in vitro mutagenesis manipulations and that (ii) no reporter or selection genes are necessary to identify mutants.
Collapse
Affiliation(s)
- M E Ehsani
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | |
Collapse
|
28
|
Henry SC, Schmader K, Brown TT, Miller SE, Howell DN, Daley GG, Hamilton JD. Enhanced green fluorescent protein as a marker for localizing murine cytomegalovirus in acute and latent infection. J Virol Methods 2000; 89:61-73. [PMID: 10996640 DOI: 10.1016/s0166-0934(00)00202-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A recombinant murine cytomegalovirus (mCMV) that expresses enhanced green fluorescent protein (EGFP) under control of the native immediate-early 1/3 promoter was constructed to detect directly sites of viral activity in latent and reactivated infections. The recombinant virus had acute and latent infection characteristics similar to those of wild-type mCMV. Rare green-fluorescing foci were observed in paraffin sections from lungs and spleens infected latently. Positive immunoperoxidase staining for EGFP in sections of the same lung tissues suggests that these cells may be sites of restricted viral gene expression. EGFP was detected easily in tissue explants reactivating from latent infection in vitro. Morphology and adhesion characteristics of fluorescing cells suggest that viral reactivation occurs in tissue macrophages in explant cultures. The observations presented in this study demonstrate the usefulness of EGFP-expressing recombinants as tools for direct tracking of mCMV activity in vivo and in vitro.
Collapse
Affiliation(s)
- S C Henry
- Department of Veterans Affairs, Medical Research Service and the Research Center on AIDS and HIV Infection, 111-H, 508 Fulton Street, Durham, NC 27705, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
McVoy MA, Ramnarain D. Machinery to support genome segment inversion exists in a herpesvirus which does not naturally contain invertible elements. J Virol 2000; 74:4882-7. [PMID: 10775628 PMCID: PMC112012 DOI: 10.1128/jvi.74.10.4882-4887.2000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many herpesviruses, genome segments flanked by inverted repeats invert during DNA replication. It is not known whether this inversion is a consequence of an inherently recombinagenic replicative mechanism common to all herpesviruses or whether the replication enzymes of viruses with invertible segments have specifically evolved additional enzymatic activities to drive inversion. By artificially inserting a fusion of terminal sequences into the genome of a virus which normally lacks invertible elements (murine cytomegalovirus), we created a genome composed of long and short segments flanked by 1,359- and 543-bp inverted repeats. Analysis of genomic DNA from this virus revealed that inversion of both segments generates equimolar amounts of four isomers during the viral propagation necessary to produce DNA for analysis from a single viral particle. We conclude that a herpesvirus which naturally lacks invertible elements is able to support efficient segment inversion. Thus, the potential to invert is probably inherent in the replication machinery of all herpesviruses, irrespective of genome structure, and therefore genomes with invertible elements could have evolved simply by acquisition of inverted repeats and without concomitant evolution of enzymatic activities to mediate inversion. Furthermore, the recombinagenicity of herpesvirus DNA replication must have some importance independent of genome segment inversion.
Collapse
Affiliation(s)
- M A McVoy
- Department of Pediatrics, Medical College of Virginia/Virginia Commonwealth University, Richmond, Virginia 23298-0163, USA.
| | | |
Collapse
|
30
|
Holtappels R, Thomas D, Podlech J, Geginat G, Steffens HP, Reddehase MJ. The putative natural killer decoy early gene m04 (gp34) of murine cytomegalovirus encodes an antigenic peptide recognized by protective antiviral CD8 T cells. J Virol 2000; 74:1871-84. [PMID: 10644360 PMCID: PMC111665 DOI: 10.1128/jvi.74.4.1871-1884.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several early genes of murine cytomegalovirus (MCMV) encode proteins that mediate immune evasion by interference with the major histocompatibility complex class I (MHC-I) pathway of antigen presentation to cytolytic T lymphocytes (CTL). Specifically, the m152 gene product gp37/40 causes retention of MHC-I molecules in the endoplasmic reticulum (ER)-Golgi intermediate compartment. Lack of MHC-I on the cell surface should activate natural killer (NK) cells recognizing the "missing self." The retention, however, is counteracted by the m04 early gene product gp34, which binds to folded MHC-I molecules in the ER and directs the complex to the cell surface. It was thus speculated that gp34 might serve to silence NK cells and thereby complete the immune evasion of MCMV. In light of these current views, we provide here results demonstrating an in vivo role for gp34 in protective antiviral immunity. We have identified an antigenic nonapeptide derived from gp34 and presented by the MHC-I molecule D(d). Besides the immunodominant immediate-early nonapeptide consisting of IE1 amino acids 168-176 (IE1(168-176)), the early nonapeptide m04(243-251) is the second antigenic peptide described for MCMV. The primary immune response to MCMV generates significant m04-specific CD8 T-cell memory. Upon adoptive transfer into immunodeficient recipients, an m04-specific CTL line controls MCMV infection with an efficacy comparable to that of an IE1-specific CTL line. Thus, gp34 is the first noted early protein of MCMV that escapes viral immune evasion mechanisms. These data document that MCMV is held in check by a redundance of protective CD8 T cells recognizing antigenic peptides in different phases of viral gene expression.
Collapse
Affiliation(s)
- R Holtappels
- Institute for Virology, Johannes Gutenberg University, 55101 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Wagner M, Jonjic S, Koszinowski UH, Messerle M. Systematic excision of vector sequences from the BAC-cloned herpesvirus genome during virus reconstitution. J Virol 1999; 73:7056-60. [PMID: 10400809 PMCID: PMC112796 DOI: 10.1128/jvi.73.8.7056-7060.1999] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently the mouse cytomegalovirus (MCMV) genome was cloned as an infectious bacterial artificial chromosome (BAC) (M. Messerle, I. Crnkovic, W. Hammerschmidt, H. Ziegler, and U. H. Koszinowski, Proc. Natl. Acad. Sci. USA 94:14759-14763, 1997). The virus obtained from this construct is attenuated in vivo due to deletion of viral sequences and insertion of the BAC vector. We reconstituted the full-length MCMV genome and flanked the BAC vector with identical viral sequences. This new construct represents a versatile basis for construction of MCMV mutants since virus generated from the construct loses the bacterial sequences and acquires wild-type properties.
Collapse
Affiliation(s)
- M Wagner
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | | | | | | |
Collapse
|
32
|
Brune W, Ménard C, Hobom U, Odenbreit S, Messerle M, Koszinowski UH. Rapid identification of essential and nonessential herpesvirus genes by direct transposon mutagenesis. Nat Biotechnol 1999; 17:360-4. [PMID: 10207884 DOI: 10.1038/7914] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herpesviruses are important pathogens in animals and humans. The large DNA genomes of several herpesviruses have been sequenced, but the function of the majority of putative genes is elusive. Determining which genes are essential for their replication is important for identifying potential chemotherapy targets, designing herpesvirus vectors, and generating attenuated vaccines. For this purpose, we recently reported that herpesvirus genomes can be maintained as infectious bacterial artificial chromosomes (BAC) in Escherichia coli. Here we describe a one-step procedure for random-insertion mutagenesis of a herpesvirus BAC using a Tn1721-based transposon system. Transposon insertion sites were determined by direct sequencing, and infectious virus was recovered by transfecting cultured cells with the mutant genomes. Lethal mutations were rescued by cotransfecting cells containing noninfectious genomes with the corresponding wild-type subgenomic fragments. We also constructed revertant genomes by allelic exchange in bacteria. These methods, which are generally applicable to any cloned herpesvirus genome, will facilitate analysis of gene function for this virus family.
Collapse
Affiliation(s)
- W Brune
- Department of Virology, Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Angulo A, Messerle M, Koszinowski UH, Ghazal P. Enhancer requirement for murine cytomegalovirus growth and genetic complementation by the human cytomegalovirus enhancer. J Virol 1998; 72:8502-9. [PMID: 9765387 PMCID: PMC110259 DOI: 10.1128/jvi.72.11.8502-8509.1998] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytomegalovirus (CMV) enhancer is a highly complex regulatory region containing multiple elements that interact with a variety of host-encoded transcription factors. Many of these sequence elements are conserved among the different species strains of CMV, although the arrangement of the various elements and overall sequence composition of the CMV enhancers differ remarkably. To delineate the importance of this region to a productive infection and to explore the possibility of generating a murine CMV (MCMV) under the control of human CMV (HCMV) genetic elements, the MCMV enhancer was resected and replaced either with nonregulatory sequences or with paralogous sequences from HCMV. The effects of these various deletions and substitutions on viral growth in transfected or infected tissue-culture cells were evaluated. We found that mutations in MCMV that eliminate or substitute for the enhancer with nonregulatory sequences showed a severe deficiency in virus synthesis. This growth defect is effectively complemented by the homologous MCMV enhancer as well as the HCMV enhancer. In the latter case, the chimeric viruses (hybrid MCMV strains) containing the molecularly shuffled human enhancer exhibit infectious kinetics similar to that of parental wild-type and wild-type revertant MCMV. These results also show that open reading frames m124, m124.1, and m125 located within the enhancer region are nonessential for growth of MCMV in cells. Most importantly, we conclude that the enhancer of MCMV is required for optimal infection and that its diverged human counterpart can advantageously replace its role in promoting viral infectivity.
Collapse
Affiliation(s)
- A Angulo
- Departments of Immunology and Molecular Biology, Division of Virology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
34
|
McVoy MA, Nixon DE, Adler SP, Mocarski ES. Sequences within the herpesvirus-conserved pac1 and pac2 motifs are required for cleavage and packaging of the murine cytomegalovirus genome. J Virol 1998; 72:48-56. [PMID: 9420199 PMCID: PMC109348 DOI: 10.1128/jvi.72.1.48-56.1998] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The DNA sequence motifs pac1 [an A-rich region flanked by poly(C) runs] and pac2 (CGCGGCG near an A-rich region) are conserved near herpesvirus genomic termini and are believed to mediate cleavage of genomes from replicative concatemers. To determine their importance in the cleavage process, we constructed a number of recombinant murine cytomegaloviruses with a second cleavage site inserted at an ectopic location within the viral genome. Cleavage at a wild-type ectopic site occurred as frequently as at the natural cleavage site, whereas mutation of this ectopic site revealed that some of the conserved motifs of pac1 and pac2 were essential for cleavage whereas others were not. Within pac1, the left poly(C) region was very important for cleavage and packaging but the A-rich region was not. Within pac2, the A-rich region and adjacent sequences were essential for cleavage and packaging and the CGCGGCG region contributed to, but was not strictly essential for, efficient cleavage and packaging. A second A-rich region was not important at all. Furthermore, mutations that prevented cleavage also blocked duplication and deletion of the murine cytomegalovirus 30-bp terminal repeat at the ectopic site, suggesting that repeat duplication and deletion are consequences of cleavage. Given that the processes of genome cleavage and packaging appear to be highly conserved among herpesviruses, these findings should be relevant to other members of this family.
Collapse
Affiliation(s)
- M A McVoy
- Department of Pediatrics, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0163, USA.
| | | | | | | |
Collapse
|
35
|
Messerle M, Crnkovic I, Hammerschmidt W, Ziegler H, Koszinowski UH. Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A 1997; 94:14759-63. [PMID: 9405686 PMCID: PMC25110 DOI: 10.1073/pnas.94.26.14759] [Citation(s) in RCA: 340] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A strategy for cloning and mutagenesis of an infectious herpesvirus genome is described. The mouse cytomegalovirus genome was cloned and maintained as a 230 kb bacterial artificial chromosome (BAC) in E. coli. Transfection of the BAC plasmid into eukaryotic cells led to a productive virus infection. The feasibility to introduce targeted mutations into the BAC cloned virus genome was shown by mutation of the immediate-early 1 gene and generation of a mutant virus. Thus, the complete construction of a mutant herpesvirus genome can now be carried out in a controlled manner prior to the reconstitution of infectious progeny. The described approach should be generally applicable to the mutagenesis of genomes of other large DNA viruses.
Collapse
Affiliation(s)
- M Messerle
- Max von Pettenkofer-Institut für Hygiene und Mikrobiologie, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany.
| | | | | | | | | |
Collapse
|
36
|
Masse MJ, Messerle M, Mocarski ES. The location and sequence composition of the murine cytomegalovirus replicator (oriLyt). Virology 1997; 230:350-60. [PMID: 9143291 DOI: 10.1006/viro.1997.8473] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
DNA replication during human or simian cytomegalovirus (CMV) infection has been shown to be under control of a replicator region referred to as oriLyt. The murine CMV oriLyt has been mapped to a region of the genome located upstream of the gene encoding the herpesvirus-conserved single-stranded DNA binding protein, analogous to human and simian CMV oriLyts. A minimal oriLyt of approximately 1.7 kbp has been identified using a transient replication system. Like occurs with human and simian CMV counterparts, addition of flanking sequences to this minimal origin-stimulated replication efficiency. Analysis of the DNA sequence in this region shows that murine CMV oriLyt is complex and exhibits an asymmetric distribution of nucleotides as well as many repeat sequence elements, including distinct AT- and GC-rich regions and region with arrays of closely spaced direct repeats. Despite similarities in organization of all three CMV oriLyts, no sequence identity and only limited DNA sequence similarity was detectable. Consistent with this sequence divergence, the human and murine CMV oriLyts were unable to substitute for one another in transient replication assays.
Collapse
Affiliation(s)
- M J Masse
- Department of Microbiology and Immunology, Stanford University, California 94305-5402, USA
| | | | | |
Collapse
|
37
|
Kurz S, Steffens HP, Mayer A, Harris JR, Reddehase MJ. Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J Virol 1997; 71:2980-7. [PMID: 9060657 PMCID: PMC191426 DOI: 10.1128/jvi.71.4.2980-2987.1997] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The state of cytomegalovirus (CMV) after the resolution of acute infection is an unsolved problem in CMV research. While the term "latency" is in general use to indicate the maintenance of the viral genome, a formal exclusion of low-level persistent productive infection depends on the sensitivity of the assay for detecting infectious virus. We have improved the method for detecting infectivity by combining centrifugal infection of permissive indicator cells in culture, expansion to an infectious focus, and sensitive detection of immediate-early RNA in the infected cells by reverse transcriptase PCR. A limiting-dilution approach defined the sensitivity of this assay. Infectivity was thereby found to require as few as 2 to 9 virion DNA molecules of murine CMV, whereas the standard measure of infectivity, the PFU, is the equivalent of ca. 500 viral genomes. Since murine CMV forms multicapsid virions in most infected tissues, the genome-to-infectivity ratio is necessarily >1. This assay thus sets a new standard for investigating CMV latency. In mice in which acute infection was resolved, the viral DNA load in the lungs, a known organ site of CMV latency and recurrence, was found to be 1 genome per 40 lung cells, or a total of ca. 1 million genomes. Despite this high load of CMV DNA, infectious virus was not detected with the improved assay, but recurrence was inducible. These data provide evidence against a low-level persistent productive infection and also imply that intermittent spontaneous recurrence is not a frequent event in latently infected lungs.
Collapse
Affiliation(s)
- S Kurz
- Institute for Virology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | |
Collapse
|
38
|
Ziegler H, Thale R, Lucin P, Muranyi W, Flohr T, Hengel H, Farrell H, Rawlinson W, Koszinowski UH. A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 1997; 6:57-66. [PMID: 9052837 DOI: 10.1016/s1074-7613(00)80242-3] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The principle by which mouse cytomegalovirus blocks antigen presentation in the MHC class I pathway was investigated. The responsible gene m152, encoding a type I transmembrane glycoprotein of 40 kDa, is a member of a gene family located in the right-hand terminal region of the 230 kb virus genome. Expression of m152 in murine and human cells arrested the export of mouse class I complexes from the ER-Golgi intermediate compartment/cis-Golgi compartment and inhibited lysis by cytotoxic T cells. The plasma membrane transport of human MHC class I molecules was not affected. The deletion of the cytoplasmic tail of gp40 did not lift its effect on class I molecule export, indicating that this protein differs in its functions from known immunosubversive viral gene products and represents a novel principle by which a herpesvirus shuts off MHC class I function.
Collapse
Affiliation(s)
- H Ziegler
- Max von Pettenkofer Institut, Ludwig-Maximilians-Universitat, Munchen, Federal Republic of Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Schröder C, Linde G, Fehler F, Keil GM. From essential to beneficial: glycoprotein D loses importance for replication of bovine herpesvirus 1 in cell culture. J Virol 1997; 71:25-33. [PMID: 8985319 PMCID: PMC191020 DOI: 10.1128/jvi.71.1.25-33.1997] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Glycoprotein D (gD) of bovine herpesvirus 1 (BHV-1) has been shown to be an essential component of virions involved in virus entry. gD expression in infected cells is also required for direct cell-to-cell spread. Therefore, BHV-1 gD functions are identical in these aspects to those of herpes simplex virus 1 (HSV-1) gD. In contrast, the gD homolog of pseudorabies virus (PrV), although essential for penetration, is not necessary for direct cell-to-cell spread. Cocultivation of cells infected with phenotypically gD-complemented gD- mutant BHV-1/80-221 with noncomplementing cells resulted in the isolation of the cell-to-cell-spreading gD-negative mutant ctcs+BHV-1/80-221, which was present in the gD-null BIV-1 stocks. ctcs+BHV-1/80-221 could be propagated only by mixing infected with uninfected cells, and virions released into the culture medium were noninfectious. Marker rescue experiments revealed that a single point mutation in the first position of codon 450 of the glycoprotein H open reading frame, resulting in a glycine-to-tryptophan exchange, enabled complementation of the gD function for cell-to-cell spread. After about 40 continuous passages of ctcs+BHV-1/80-221-infected cells with noninfected cells, the plaque morphology in the cultures started to change from roundish to comet shaped. Cells from such plaques produced infectious gD- virus, named gD-infBHV-1, which entered cells much more slowly than wild-type BHV-1. In contrast, integration of the gD gene into the genomes of gD-infBHV-1 and ctcs+BHV-1/80-221 resulted in recombinants with accelerated penetration in comparison to wild-type virions. In summary, our results demonstrate that under selective conditions, the function of BHV-1 gD for direct cell-to-cell spread and entry into cells can be compensated for by mutations in other viral (glyco)proteins, leading to the hypothesis that gD is involved in formation of penetration-mediating complexes in the viral envelope of which gH is a component. Together with results for PrV, varicella-zoster virus, which lacks a gD homolog, and Marek's disease virus, whose gD homolog is not essential for infectivity, our data may open new insights into the evolution of alphaherpesviruses.
Collapse
Affiliation(s)
- C Schröder
- Institute of Molecular and Cellular Virology, Federal Research Centre for Virus Diseases of Animals, Insel Riems, Germany
| | | | | | | |
Collapse
|
40
|
Abstract
The complete DNA sequence of the Smith strain of murine cytomegalovirus (MCMV) was determined from virion DNA by using a whole-genome shotgun approach. The genome has an overall G+C content of 58.7%, consists of 230,278 bp, and is arranged as a single unique sequence with short (31-bp) terminal direct repeats and several short internal repeats. Significant similarity to the genome of the sequenced human cytomegalovirus (HCMV) strain AD169 is evident, particularly for 78 open reading frames encoded by the central part of the genome. There is a very similar distribution of G+C content across the two genomes. Sequences toward the ends of the MCMV genome encode tandem arrays of homologous glycoproteins (gps) arranged as two gene families. The left end encodes 15 gps that represent one family, and the right end encodes a different family of 11 gps. A homolog (m144) of cellular major histocompatibility complex (MHC) class I genes is located at the end of the genome opposite the HCMV MHC class I homolog (UL18). G protein-coupled receptor (GCR) homologs (M33 and M78) occur in positions congruent with two (UL33 and UL78) of the four putative HCMV GCR homologs. Counterparts of all of the known enzyme homologs in HCMV are present in the MCMV genome, including the phosphotransferase gene (M97), whose product phosphorylates ganciclovir in HCMV-infected cells, and the assembly protein (M80).
Collapse
Affiliation(s)
- W D Rawlinson
- Laboratory of Molecular Biology, Cambridge, United Kingdom.
| | | | | |
Collapse
|
41
|
Thäle R, Szepan U, Hengel H, Geginat G, Lucin P, Koszinowski UH. Identification of the mouse cytomegalovirus genomic region affecting major histocompatibility complex class I molecule transport. J Virol 1995; 69:6098-105. [PMID: 7666513 PMCID: PMC189506 DOI: 10.1128/jvi.69.10.6098-6105.1995] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mouse cytomegalovirus (MCMV) functions expressed at the beginning of the early phase of the viral replication cycle interfere with the major histocompatibility complex (MHC) class I-restricted pathway of antigen presentation (M. J. Reddehase, M. R. Fibi, G. M. Keil, and U. H. Koszinowski, J. Virol. 60:1125-1129, 1986; M. Del Val, K. Münch, M. J. Reddehase, and U. H. Koszinowski, Cell 58:305-315, 1989). Nascent MHC class I heavy chains associate with beta 2-microglobulin and peptide, but the assembled trimolecular complex is retained in the endoplasmatic reticulum/cis-Golgi compartment (M. Del Val, H. Hengel, H. Häcker, U. Hartlaub, T. Ruppert, P. Lucin, and U. H. Koszinowski, J. Exp. Med. 176:729-738, 1992). To locate the responsible genomic region, the cytoplasmic retention of MHC class I molecules after injection of MCMV DNA was tested. The function was mapped to the HindIII E fragment. A recombinant MCMV deletion mutant delta MS94.5 lacking 15.8 kb in HindIII-E was constructed. Restoration of MHC class I molecule maturation and recognition of antigenic peptides by cytolytic T lymphocytes during the first hours of the early phase in mutant virus-infected cells proved the correct location to a 6.8-kb region in the HindIII E fragment. At later stages of the early phase, membrane-resident MHC class I molecules and cytolytic T lymphocyte recognition disappeared in delta MS94.5 mutant virus-infected cells. These results demonstrate that more than one early-gene function of MCMV affects the MHC class I pathway of antigen presentation. The redundant MHC class I-reactive functions target the transport of MHC class I molecules at different steps.
Collapse
Affiliation(s)
- R Thäle
- Department of Virology, University of Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Li W, Eidman K, Gehrz RC, Kari B. Identification and molecular characterization of the murine cytomegalovirus homolog of the human cytomegalovirus UL100 gene. Virus Res 1995; 36:163-75. [PMID: 7653096 DOI: 10.1016/0168-1702(94)00117-u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The UL100 gene of human cytomegalovirus (HCMV) has been shown to encode an envelope glycoprotein that might play an important role in HCMV infection. Using the HCMV UL100 gene as a probe in low stringency hybridization studies, we were able to identify the putative UL100 homologous gene of murine cytomegalovirus (MCMV), strain Smith. The MCMV gene was sequenced and localized to the left end of the EcoRI fragment H on the MCMV physical map. This genomic location is similar to that found for the HCMV UL100 gene. The MCMV UL100 mRNA is 1.6 kb in size and is expressed exclusively in the late stages of infection. The 5' and 3' boundaries of the transcript were determined. The open reading frame (ORF) of the UL100 gene could encode a protein of 371 amino acid residues with a calculated molecular mass of 42 kDa. Computer analysis of the deduced amino acid sequence of this gene predicted the presence of eight transmembrane domains and four N-linked glycosylation sites in the protein. Sequence comparison revealed that this putative protein shares similarity with the predicted UL100 homologs of several other herpesviruses, and is most similar to the HCMV UL100 protein (47% identity).
Collapse
Affiliation(s)
- W Li
- Biomedical Research Center, St. Paul Children's Hospital, St. Paul, Minnesota 55102, USA
| | | | | | | |
Collapse
|
43
|
Matsuzawa H, Shimizu K, Okada K, Ando K, Hashimoto K, Koga Y. Analysis of target organs for the latency of murine cytomegalovirus DNA using specific pathogen free and germfree mice. Arch Virol 1995; 140:853-64. [PMID: 7605198 DOI: 10.1007/bf01314962] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cytomegalovirus (CMV) establishes a latent infection in its host; however, the organ sites of viral latency and its mechanism still remain to be fully clarified. To elucidate this issue, a latent infection with murine (M) CMV was attempted to induce in mice and the organ sites of the latent viral genome were examined for more than one year by a polymerase chain reaction (PCR). As a result, latent MCMV DNA was detectable in both the lung and the spleen as late as 59 weeks after infection. The heart was also observed to be a target organ of latent MCMV DNA, though the amount of viral DNA was much less than that seen in the lung and spleen. In germfree (GF) mice, on the other hand, no such latent viral DNA was observed in the spleens, while it was seen, but to a significantly smaller degree, in the lungs and the hearts than in the same organs of specific pathogen-free (SPF) mice. The amount of infectious virions generated in the host appeared to be almost equal between the GF and SPF mice. The above findings therefore suggest that the spleen, lung and heart are target organs for MCMV latency and the indigenous bacterial flora, which are not colonizing in GF mice, play an important role in the establishment of such viral latency in SPF mice.
Collapse
Affiliation(s)
- H Matsuzawa
- Department of Infectious Diseases, Tokai University School of Medicine, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Messerle M, Rapp M, Lucin P, Koszinowski UH. Characterization of a conserved gene block in the murine cytomegalovirus genome. Virus Genes 1995; 10:73-80. [PMID: 7483291 DOI: 10.1007/bf01724298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The nucleotide sequence between the lytic origin and the gH gene of the murine cytomegalovirus genome (map units 0.416-0.455) was determined. Five of the 15 open reading frames identified encode polypeptides, which exhibit significant homology to polypeptides of human cytomegalovirus (HCMV) (UL69, UL71, and UL73) and to polypeptides of several other herpesviruses (dUTPase and helicase/primase). The location in the genome of the five open reading frames and their direction of transcription is perfectly conserved between murine cytomegalovirus (MCMV) and HCMV. These data suggest that MCMV and HCMV have a highly related genome organization. Thus, MCMV offers a good model for molecular and functional analysis of cytomegalovirus genes in vitro and in vivo.
Collapse
Affiliation(s)
- M Messerle
- Institute of Medical Virology, University of Heidelberg, FRG
| | | | | | | |
Collapse
|
45
|
Thäle R, Lucin P, Schneider K, Eggers M, Koszinowski UH. Identification and expression of a murine cytomegalovirus early gene coding for an Fc receptor. J Virol 1994; 68:7757-65. [PMID: 7966565 PMCID: PMC237237 DOI: 10.1128/jvi.68.12.7757-7765.1994] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Several herpesviruses, including cytomegalovirus, induce receptors for the Fc domain of murine immunoglobulin G (IgG) molecules. Viral genes coding for these receptors have been characterized only for alphaherpesviruses. In this report, we describe a new approach that led to the identification of an Fc receptor (FcR) of murine cytomegalovirus (MCMV). The Fc fragment of IgG precipitated glycoproteins (gp) of 86 to 88 and 105 kDa from MCMV-infected cells. Deglycosylation by endoglycosidase F resulted in a protein with a molecular mass of 64 kDa. Injection of complete MCMV DNA or of DNA fragments, and the subsequent testing of cytoplasmic binding of IgG by immunofluorescence microscopy, was used to search for the coding region in the MCMV genome. The gene was located in the HindIII J fragment, map units 0.838 to 0.846, where an open reading frame of 1,707 nucleotides predicts a gp of 569 amino acids with a calculated molecular mass of 65 kDa. The sequence of this gp is related to those of the gE proteins of herpes simplex virus type 1 and varicella-zoster virus. The defined length of the mRNA, 1,838 nucleotides, was in agreement with that of a 1.9-kb RNA expressed throughout the replication cycle, starting at the early stages of infection. Expression of the gene fcr1 by recombinant vaccinia virus resulted in the synthesis of gp86/88 and gp105, each with FcR properties, and the correct identification of the gene encoding the FcR was confirmed by the DNA injection method.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Line, Transformed
- Cytomegalovirus/genetics
- Cytomegalovirus/immunology
- DNA Primers
- DNA, Complementary
- Embryo, Mammalian
- Genes, Viral
- Genetic Vectors
- Immunoglobulin Fc Fragments/metabolism
- Immunoglobulin G/metabolism
- Kinetics
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/isolation & purification
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Oligodeoxyribonucleotides
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Receptors, Fc/biosynthesis
- Receptors, Fc/isolation & purification
- Receptors, Fc/metabolism
- Restriction Mapping
- Vaccinia virus
- Viral Proteins
Collapse
Affiliation(s)
- R Thäle
- Department of Virology, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
46
|
Vieira J, Farrell HE, Rawlinson WD, Mocarski ES. Genes in the HindIII J fragment of the murine cytomegalovirus genome are dispensable for growth in cultured cells: insertion mutagenesis with a lacZ/gpt cassette. J Virol 1994; 68:4837-46. [PMID: 8035482 PMCID: PMC236423 DOI: 10.1128/jvi.68.8.4837-4846.1994] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The organization and function of the genes encoded within the HindIII J region of the murine cytomegalovirus genome were analyzed by transcript mapping and cDNA isolation, nucleotide sequence analysis and identification of open reading frames (ORFs), and construction of recombinant viruses carrying insertions disrupting five of the seven ORFs. This region was found to encode five beta transcripts and one gamma transcript in addition to two beta transcripts previously mapped to the sgg1 locus. Seven open reading frames were identified, and one was recognized as a homolog of a human cytomegalovirus US22 gene family. The five largest ORFs contained within the HindIII J fragment (sgg1, HJ4, HJ5, HJ6, and HJ7) were each disrupted by the insertion of a lacZ/gpt genetic marker cassette. The growth kinetics of all recombinant viruses were investigated and found to be the same as wild-type parental virus, indicating that these five ORFs were dispensable for growth in cell culture.
Collapse
Affiliation(s)
- J Vieira
- Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305-5402
| | | | | | | |
Collapse
|
47
|
|
48
|
Balthesen M, Messerle M, Reddehase MJ. Lungs are a major organ site of cytomegalovirus latency and recurrence. J Virol 1993; 67:5360-6. [PMID: 8394453 PMCID: PMC237936 DOI: 10.1128/jvi.67.9.5360-5366.1993] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Recurrence of infectious virus from the latent viral genomes is the initiating event in the pathogenesis of cytomegalovirus (CMV) disease during states of immunodeficiency. Interstitial pneumonia is a frequent manifestation of posttransplantation CMV disease, in particular after bone marrow transplantation and heart and lung transplantations. Recurrence can occur within the transplant derived from a latent infected donor as well as within latently infected organs of the transplant recipient. The reason for a predilection of the lungs as a site of CMV pathology is so far unknown. In a murine model of CMV latency, the lungs were identified as an authentic site of latent infection, since the viral genome remained detectable in lung tissue even after it was cleared to an undetectable level in blood and bone marrow. A comparison between the lungs and the spleen, the previously most thoroughly investigated site of murine CMV latency, revealed a 10-fold-higher burden of latent viral genome for the lungs. Most important, the organ-specific risk of in vivo recurrence was found to correlate with the organ-specific viral genomic load. This new finding thus characterizes the lungs as a high-risk organ for CMV recurrence, and this fact may explain in part why interstitial pneumonia is a frequent manifestation of recurrent CMV infection.
Collapse
Affiliation(s)
- M Balthesen
- Department of Virology, University of Ulm, Germany
| | | | | |
Collapse
|
49
|
Sandford GR, Ho K, Burns WH. Characterization of the major locus of immediate-early genes of rat cytomegalovirus. J Virol 1993; 67:4093-103. [PMID: 8389919 PMCID: PMC237778 DOI: 10.1128/jvi.67.7.4093-4103.1993] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A major locus of rat cytomegalovirus (RCMV) immediate-early (IE) RNA transcription was identified. A cDNA library from rat embryo fibroblasts infected with RCMV under IE conditions was constructed and screened by using appropriate RCMV DNA probes, revealing at least two IE genes (IE1 and IE2) transcribed from this locus by differential splicing. The first three exons (the first is noncoding) are spliced to exon 4 to form IE1 and to exon 5 to form IE2. The structural organization of the RCMV major IE region is therefore similar to that of human cytomegalovirus (HCMV) and murine cytomegalovirus (MCMV). When we compared the predicted amino acid sequences of the IE1 proteins of RCMV, HCMV, and MCMV, no areas of homology were found across all three proteins, while a few small areas of homology were found between RCMV IE1 and MCMV IE1. In contrast, large areas of homology were found across the carboxyl half of RCMV IE2, HCMV IE2, and MCMV ie3 proteins. In addition, similarities were found at the beginning of exon 5 of RCMV and MCMV. The possible significance of these conserved regions is discussed. Dinucleotide frequency analysis demonstrated a decrease in CpG frequency over the IE region. The IE gene products were able to transactivate heterologous promoters.
Collapse
Affiliation(s)
- G R Sandford
- Johns Hopkins Oncology Center, Baltimore, Maryland 21231
| | | | | |
Collapse
|
50
|
Booth TW, Scalzo AA, Carrello C, Lyons PA, Farrell HE, Singleton GR, Shellam GR. Molecular and biological characterization of new strains of murine cytomegalovirus isolated from wild mice. Arch Virol 1993; 132:209-20. [PMID: 8102523 DOI: 10.1007/bf01309855] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Studies of the prevalence of antibody to murine cytomegalovirus (MCMV) in free-living wild mice (Mus domesticus) trapped in diverse regions of Australia and on a sub-Antarctic island indicated that 90% of 468 mice had serum antibody to MCMV. Twenty-six field isolates of MCMV were plaque-purified from salivary gland extracts of representative seropositive mice. These isolates varied considerably in their ability to replicate in the salivary glands of weanling BALB/c mice with 9 of 15 failing to reach significant titres in this organ and the titres of the remaining 6 strains varying by at least 100-fold. The high frequency of restriction fragment length polymorphisms observed suggests widespread genetic heterogeneity exists among the strains. This observation was mirrored at the polypeptide level by Western blot analyses with polyclonal antisera to MCMV. The isolation in this study of four genetically distinct strains of MCMV from a single wild mouse and several strains from other individual mice demonstrates that multiple infections with MCMV may be commonplace in wild mice.
Collapse
Affiliation(s)
- T W Booth
- Department of Microbiology, University of Western Australia, Nedlands
| | | | | | | | | | | | | |
Collapse
|