1
|
Comparative Characterization of the Sindbis Virus Proteome from Mammalian and Invertebrate Hosts Identifies nsP2 as a Component of the Virion and Sorting Nexin 5 as a Significant Host Factor for Alphavirus Replication. J Virol 2018; 92:JVI.00694-18. [PMID: 29743363 PMCID: PMC6026752 DOI: 10.1128/jvi.00694-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 04/27/2018] [Indexed: 01/08/2023] Open
Abstract
Recent advances in mass spectrometry methods and instrumentation now allow for more accurate identification of proteins in low abundance. This technology was applied to Sindbis virus, the prototypical alphavirus, to investigate the viral proteome. To determine if host proteins are specifically packaged into alphavirus virions, Sindbis virus (SINV) was grown in multiple host cells representing vertebrate and mosquito hosts, and total protein content of purified virions was determined. This analysis identified host factors not previously associated with alphavirus entry, replication, or egress. One host protein, sorting nexin 5 (SNX5), was shown to be critical for the replication of three different alphaviruses, Sindbis, Mayaro, and Chikungunya viruses. The most significant finding was that in addition to the host proteins, SINV nonstructural protein 2 (nsP2) was detected within virions grown in all host cells examined. The protein and RNA-interacting capabilities of nsP2 coupled with its presence in the virion support a role for nsP2 during packaging and/or entry of progeny virus. This function has not been identified for this protein. Taken together, this strategy identified at least one host factor integrally involved in alphavirus replication. Identification of other host proteins provides insight into alphavirus-host interactions during viral replication in both vertebrate and invertebrate hosts. This method of virus proteome analysis may also be useful for the identification of protein candidates for host-based therapeutics. IMPORTANCE Pathogenic alphaviruses, such as Chikungunya and Mayaro viruses, continue to plague public health in developing and developed countries alike. Alphaviruses belong to a group of viruses vectored in nature by hematophagous (blood-feeding) insects and are termed arboviruses (arthropod-borne viruses). This group of viruses contains many human pathogens, such as dengue fever, West Nile, and Yellow fever viruses. With few exceptions, there are no vaccines or prophylactics for these agents, leaving one-third of the world population at risk of infection. Identifying effective antivirals has been a long-term goal for combating these diseases not only because of the lack of vaccines but also because they are effective during an ongoing epidemic. Mass spectrometry-based analysis of the Sindbis virus proteome can be effective in identifying host genes involved in virus replication and novel functions for virus proteins. Identification of these factors is invaluable for the prophylaxis of this group of viruses.
Collapse
|
2
|
Expression of mosquito microRNA Aae-miR-2940-5p is downregulated in response to West Nile virus infection to restrict viral replication. J Virol 2014; 88:8457-67. [PMID: 24829359 DOI: 10.1128/jvi.00317-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED West Nile virus (WNV) is an enveloped virus with a single-stranded positive-sense RNA genome from the Flaviviridae family. WNV is spread by mosquitoes and able to infect humans, causing encephalitis and meningitis that can be fatal; it therefore presents a significant risk for human health. In insects, innate response to RNA virus infection mostly relies on RNA interference and JAK/SAT pathways; however, some evidence indicates that it can also involve microRNAs (miRNAs). miRNAs are small noncoding RNAs that regulate gene expression at posttranscriptional level and play an important role in a number of processes, including immunity and antiviral response. In this study, we focus on the miRNA-mediated response to WNV in mosquito cells. We demonstrate that in response to WNV infection the expression of a mosquito-specific miRNA, aae-miR-2940, is selectively downregulated in Aedes albopictus cells. This miRNA is known to upregulate the metalloprotease m41 FtsH gene, which we have also shown to be required for efficient WNV replication. Correspondingly, downregulation of aae-miR-2940 reduced the metalloprotease level and restricted WNV replication. Thus, we have identified a novel miRNA-dependent mechanism of antiviral response to WNV in mosquitoes. IMPORTANCE A detailed understanding of vector-pathogen interactions is essential to address the problems posed by vector-borne diseases. Host and viral miRNAs play an important role in regulating expression of viral and host genes involved in endogenous processes, including antiviral response. There has been no evidence to date for the role of mosquito miRNAs in response to flaviviruses. In this study, we show that downregulation of aae-miR-2940 in mosquito cells acts as a potential antiviral mechanism in the mosquito host to inhibit WNV replication by repressing the expression of the metalloprotease m41 FtsH gene, which is required for efficient WNV replication. This is the first identification of an miRNA-dependent antiviral mechanism in mosquitoes, which inhibits replication of WNV. Our findings should facilitate identification of targets in the mosquito genome that can be utilized to suppress vector population and/or limit WNV replication.
Collapse
|
3
|
Chapter 5. In vivo analysis of the decay of transcripts generated by cytoplasmic RNA viruses. Methods Enzymol 2008; 449:97-123. [PMID: 19215755 DOI: 10.1016/s0076-6879(08)02405-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The field of RNA decay has grown extensively over the last few years and numerous decay pathways have been identified and characterized. This is a truly powerful machinery for both regulation and quality control of gene expression. It is very likely that the transcripts of RNA viruses must successfully confront this arsenal of enzymes and RNA binding factors in order to establish a productive infection. This interface is an understudied branch of virology that needs to be explored if we are to fully comprehend the molecular biology of virus-cell interactions. Research in this area has the potential to increase our understanding of the fundamentals of both mRNA stability and viral biology, perhaps leading to novel antiviral approaches. This chapter discusses methods for examining the half-lives of viral RNAs during natural infection, including purification of the viral transcripts and subsequent analysis of both deadenylation and decay. Additionally, a hybrid selection protocol for identifying viral-specific small RNAs that are generated during infection by the RNAi branch of the cellular RNA decay machinery is described.
Collapse
|
4
|
Sawicki DL, Silverman RH, Williams BR, Sawicki SG. Alphavirus minus-strand synthesis and persistence in mouse embryo fibroblasts derived from mice lacking RNase L and protein kinase R. J Virol 2003; 77:1801-11. [PMID: 12525614 PMCID: PMC140908 DOI: 10.1128/jvi.77.3.1801-1811.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2002] [Accepted: 10/24/2002] [Indexed: 11/20/2022] Open
Abstract
We report our studies to probe the possible role of the host response to double-stranded RNA in cessation of alphavirus minus-strand synthesis. Mouse embryo fibroblasts (MEF) from Mx1-deficient mice that also lack either the protein kinase R (PKR) or the latent RNase L or both PKR and RNase L were screened. In RNase L-deficient but not wild-type or PKR-deficient MEF, there was continuous synthesis of minus-strand templates and the formation of new replication complexes producing viral plus strands. Inhibiting translation caused minus-strand synthesis to stop and a loss of transcription activity of the mature replication complexes. This turnover of replication complexes that were stable in cells containing RNase L suggested that RNase L plays some role, albeit possibly indirect, in the formation of stable replication complexes during alphavirus infection. In addition, confluent monolayers of RNase L-deficient murine cells readily established persistent infections and were not killed. This phenotype is contrary to what has been observed for infection in vertebrate cells with a presumably functional RNase L gene and more resembled alphavirus replication in Aedes mosquito cells, in which the activity of replication complexes making plus stands was also found to decay with inhibition of translation.
Collapse
Affiliation(s)
- Dorothea L Sawicki
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio 43614, USA.
| | | | | | | |
Collapse
|
5
|
Hernandez R, Luo T, Brown DT. Exposure to low pH is not required for penetration of mosquito cells by Sindbis virus. J Virol 2001; 75:2010-3. [PMID: 11160702 PMCID: PMC115149 DOI: 10.1128/jvi.75.4.2010-2013.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is widely held that the penetration of cells by alphaviruses is dependent on exposure to the acid environment of an endosome. The alphavirus Sindbis virus replicates in both vertebrate and invertebrate cell cultures. We have found that exposure to an acid environment may not be required for infection of cells of the insect host. In this work, we investigated the effects of two agents (NH(4)Cl and chloroquine), which raise the pH of intracellular compartments (lysosomotropic weak bases) on the infection and replication of Sindbis virus in cells of the insect host Aedes albopictus. The results show that both of these agents increase the pH of endosomes, as indicated by protection against diphtheria toxin intoxication. NH(4)Cl blocked the production of infectious virus and blocked virus RNA synthesis when added prior to infection. Chloroquine, in contrast to its effect on vertebrate cells, had no inhibitory effect on infectious virus production in mosquito cells even when added prior to infection. Treatment with NH(4)Cl did not prevent the penetration of virus RNA into the cell cytoplasm or translation of the RNA to produce a precursor to virus nonstructural proteins. These data suggest that while these two drugs raise the pH of endosomes, they do not block insect cell penetration. These data support previous results published by our laboratory suggesting that exposure to an acid environment within the cell may not be an obligatory step in the process of infection of cells by alphaviruses.
Collapse
Affiliation(s)
- R Hernandez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | |
Collapse
|
6
|
Hernandez R, Lee H, Nelson C, Brown DT. A single deletion in the membrane-proximal region of the Sindbis virus glycoprotein E2 endodomain blocks virus assembly. J Virol 2000; 74:4220-8. [PMID: 10756035 PMCID: PMC111937 DOI: 10.1128/jvi.74.9.4220-4228.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelopment of the Sindbis virus nucleocapsid in the modified cell plasma membrane involves a highly specific interaction between the capsid (C) protein and the endodomain of the E2 glycoprotein. We have previously identified a domain of the Sindbis virus C protein involved in binding to the E2 endodomain (H. Lee and D. T. Brown, Virology 202:390-400, 1994). The C-E2 binding domain resides in a hydrophobic cleft with C Y180 and W247 on opposing sides of the cleft. Structural modeling studies indicate that the E2 domain, which is proposed to bind the C protein (E2 398T, 399P, and 400Y), is located at a sufficient distance from the membrane to occupy the C protein binding cleft (S. Lee, K. E. Owen, H. K. Choi, H. Lee, G. Lu, G. Wengler, D. T. Brown, M. G. Rossmann, and R. J. Kuhn, Structure 4:531-541, 1996). To measure the critical spanning length of the E2 endodomain which positions the TPY domain into the putative C binding cleft, we have constructed a deletion mutant, DeltaK391, in which a nonconserved lysine (E2 K391) at the membrane-cytoplasm junction of the E2 tail has been deleted. This mutant was found to produce very low levels of virus from BHK-21 cells due to a defect in an unidentified step in nucleocapsid binding to the E2 endodomain. In contrast, DeltaK391 produced wild-type levels of virus from tissue-cultured mosquito cells. We propose that the phenotypic differences displayed by this mutant in the two diverse host cells arise from fundamental differences in the lipid composition of the insect cell membranes which affect the physical and structural properties of membranes and thereby virus assembly. The data suggest that these viruses have evolved properties adapted specifically for assembly in the diverse hosts in which they grow.
Collapse
Affiliation(s)
- R Hernandez
- Department of Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
7
|
Singh IR, Suomalainen M, Varadarajan S, Garoff H, Helenius A. Multiple mechanisms for the inhibition of entry and uncoating of superinfecting Semliki Forest virus. Virology 1997; 231:59-71. [PMID: 9143303 DOI: 10.1006/viro.1997.8492] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recombinant Semliki Forest viruses (SFV) that express one or none of the viral structural proteins were used to infect cells and to analyze the fate of incoming superinfecting wild-type viruses. It was found that in addition to the previously described block in replication that superinfecting viruses encounter within 15 min of infection, other mechanisms of superinfection inhibition occurred at later times. Over a 6-hr infection period, inhibition was seen in binding of virus to the cell surface, in acid-activated penetration into the cytoplasm, and in uncoating of nucleocapsids. For each of these processes, the inhibitory mechanism was investigated. In summary, we found that infection evoked several independent mechanisms for blocking the entry and uncoating of superinfecting viruses. The results also offered new insights into the normal processes of penetration and uncoating of SFV.
Collapse
Affiliation(s)
- I R Singh
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510-8002, USA
| | | | | | | | | |
Collapse
|
8
|
Miller ML, Brown DT. Morphogenesis of Sindbis virus in three subclones of Aedes albopictus (mosquito) cells. J Virol 1992; 66:4180-90. [PMID: 1602541 PMCID: PMC241221 DOI: 10.1128/jvi.66.7.4180-4190.1992] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The morphogenesis of Sindbis virus in three Aedes albopictus subcloned cell lines was examined. Each line was distinguishable with respect to morphology, cytopathic response to infection, and progeny yield. C7-10 cells, which produced the highest titers of virus and exhibited the most severe cytopathic response, were characterized ultrastructurally by the presence of budding particles at the cell surface and at the membranes of internal vesicles. C6/36 cells, which displayed a moderate cytotoxic response, manifested similar features in response to Sindbis virus infection. Both cell types also produced a structure composed of an electron-dense matrix in which nucleocapsids were embedded. Internally matured virions were released by exocytosis from these cells. In addition to a lack of cytopathic effect, u4.4 cells also failed to exhibit obvious morphogenetic changes upon infection. Virus particles were occasionally seen within vesicles, but budding at the cell surface was not detected. The mechanism of release of internally matured virions was not apparent. These studies provide further evidence that these three subcloned mosquito cell lines represent different tissues in the larval or adult insect.
Collapse
Affiliation(s)
- M L Miller
- Cell Research Institute, University of Texas, Austin 78713-7640
| | | |
Collapse
|
9
|
Buzan JM, Schlesinger S. Expression of the nonstructural proteins of Sindbis virus in insect cells by a baculovirus vector. Virus Res 1992; 23:209-22. [PMID: 1320794 DOI: 10.1016/0168-1702(92)90109-m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The genome of Sindbis virus encodes the polypeptides that are required for the replication and transcription of the virus RNA in infected cells. These polypeptides are translated as a polyprotein that is co- and post-translationally cleaved by an autoproteinase to give rise to four polypeptides designated nsP1, nsP2, nsP3 and nsP4. We have initiated a study of the functions of these proteins by expressing them in the Autographa californica baculovirus polyhedrin expression system. Spodoptera frugiperda cells infected with the recombinant baculovirus synthesized the four Sindbis polypeptides. We used a complementation assay which measures chloramphenicol acetyltransferase (CAT) activity to demonstrate that these proteins were biologically active. The infected cells were transfected with a Sindbis defective RNA that contains the CAT gene downstream of the promoter for the synthesis of the viral subgenomic RNA. CAT activity was found only in cells that had been infected with the recombinant baculovirus, not with wild type baculovirus, indicating that the required Sindbis nsP activities were present. Sindbis virions grew poorly in S. frugiperda cells and self-replicating Sindbis RNAs produced only very low levels of biological activity. Our results suggest that these cells are defective in their ability to replicate Sindbis RNAs and that the block is partially overcome when the Sindbis nsP mRNA is expressed under the control of the baculovirus DNA.
Collapse
Affiliation(s)
- J M Buzan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | | |
Collapse
|
10
|
Durbin R, Kane A, Stollar V. A mutant of Sindbis virus with altered plaque morphology and a decreased ratio of 26 S:49 S RNA synthesis in mosquito cells. Virology 1991; 183:306-12. [PMID: 2053283 DOI: 10.1016/0042-6822(91)90143-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
When our stock of standard Sindbis virus (SVSTD) is assayed by plaque formation on Aedes albopictus mosquito cells, about 1-2% of the plaques appear much clearer and sharper than the majority of the plaques. One of these clear plaques was picked, grown into a viral stock (SVCP), and used to prepare viral cDNA. Making use of the infectious Sindbis virus plasmid, Toto 1101 (Rice et al., 1987), we mapped the causal mutation for the clear plaque phenotype to a region between nt 7334 and 7716, and by sequencing of the viral RNA identified a mutation at nucleotide 7592. This mutation lies in the junction region of the viral genome, specifically at nucleotide -6, with reference to the initiation site for 26 S RNA synthesis. In SVCP-infected mosquito cells, but not in SVCP-infected chick cells, the ratio of subgenomic 26 S to 49 S (genomic) RNA synthesis was decreased relative to that observed in SVSTD infected cells. In terms of amino acid coding, the SVCP mutation is silent.
Collapse
Affiliation(s)
- R Durbin
- Department of Molecular Genetics and Microbiology, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854-5635
| | | | | |
Collapse
|
11
|
Barton DJ, Sawicki SG, Sawicki DL. Solubilization and immunoprecipitation of alphavirus replication complexes. J Virol 1991; 65:1496-506. [PMID: 1847467 PMCID: PMC239930 DOI: 10.1128/jvi.65.3.1496-1506.1991] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alphavirus replication complexes that are located in the mitochondrial fraction of infected cells which pellets at 15,000 x g (P15 fraction) were used for the in vitro synthesis of viral 49S genome RNA, subgenomic 26S mRNA, and replicative intermediates (RIs). Comparison of the polymerase activity in P15 fractions from Sindbis virus (SIN)- and Semliki Forest virus (SFV)-infected cells indicated that both had similar kinetics of viral RNA synthesis in vitro but the SFV fraction was twice as active and produced more labeled RIs than SIN. When assayed in vitro under conditions of high specific activity, which limits incorporation into RIs, at least 70% of the polymerase activity was recovered after detergent treatment. Treatment with Triton X-100 or with Triton X-100 plus deoxycholate (DOC) solubilized some prelabeled SFV RIs but little if any SFV or SIN RNA polymerase activity from large structures that also contained cytoskeletal components. Treatment with concentrations of DOC greater than 0.25% or with 1% Triton X-100-0.5% DOC in the presence of 0.5 M NaCl released the polymerase activity in a soluble form, i.e., it no longer pelleted at 15,000 x g. The DOC-solubilized replication complexes, identified by their polymerase activity in vitro and by the presence of prelabeled RI RNA, had a density of 1.25 g/ml, were 20S to 100S in size, and contained viral nsP1, nsP2, phosphorylated nsP3, nsP4, and possibly nsP34 proteins. Immunoprecipitation of the solubilized structures indicated that the nonstructural proteins were complexed together and that a presumed cellular protein of approximately 120 kDa may be part of the complex. Antibodies specific for nsP3, and to a lesser extent antibodies to nsP1, precipitated native replication complexes that retained prelabeled RIs and were active in vitro in viral RNA synthesis. Thus, antibodies to nsP3 bound but did not disrupt or inhibit the polymerase activity of replication complexes in vitro.
Collapse
Affiliation(s)
- D J Barton
- Department of Microbiology, Medical College of Ohio, Toledo 43699
| | | | | |
Collapse
|
12
|
Preugschat F, Yao CW, Strauss JH. In vitro processing of dengue virus type 2 nonstructural proteins NS2A, NS2B, and NS3. J Virol 1990; 64:4364-74. [PMID: 2143543 PMCID: PMC247904 DOI: 10.1128/jvi.64.9.4364-4374.1990] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have tested the hypothesis that the flavivirus nonstructural protein NS3 is a viral proteinase that generates the termini of several nonstructural proteins by using an efficient in vitro expression system and monospecific antisera directed against the nonstructural proteins NS2B and NS3. A series of cDNA constructs was transcribed by using T7 RNA polymerase, and the RNA was translated in reticulocyte lysates. The resulting protein patterns indicated that proteolytic processing occurred in vitro to generate NS2B and NS3. The amino termini of NS2B and NS3 produced in vitro were found to be the same as the termini of NS2B and NS3 isolated from infected cells. Deletion analysis of cDNA constructs localized the protease domain within NS3 to the first 184 amino acids but did not eliminate the possibility that sequences within NS2B were also required for proper cleavage. Kinetic analysis of processing events in vitro and experiments to examine the sensitivity of processing to dilution suggested that an intramolecular cleavage between NS2A and NS2B preceded an intramolecular cleavage between NS2B and NS3. The data from these expression experiments confirm that NS3 is the viral proteinase responsible for cleavage events generating the amino termini of NS2B and NS3 and presumably for cleavages generating the termini of NS4A and NS5 as well.
Collapse
Affiliation(s)
- F Preugschat
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | | | |
Collapse
|
13
|
Lemm JA, Durbin RK, Stollar V, Rice CM. Mutations which alter the level or structure of nsP4 can affect the efficiency of Sindbis virus replication in a host-dependent manner. J Virol 1990; 64:3001-11. [PMID: 2159558 PMCID: PMC249484 DOI: 10.1128/jvi.64.6.3001-3011.1990] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Two mutants of Sindbis virus have been isolated which grow inefficiently at 34.5 degrees C in mosquito cells yet replicate normally in chicken embryo fibroblast cells at the same temperature. In addition, these mutants exhibit temperature-sensitive growth in both cell types and are RNA- at the nonpermissive temperatures (K.J. Kowal and V. Stollar, Virology 114:140-148, 1981). To clarify the basis of this host restriction, we have mapped the causal mutations for these temperature-dependent, host-restricted mutants. Functional mapping and sequence analysis of the mutant cDNAs revealed several mutations which mapped to the amino terminus of nsP4, the putative polymerase subunit of the viral RNA replicase. These mutations resulted in the following amino acid changes in nsP4: leucine to valine at residue 48, aspartate to glycine at residue 142, and proline to arginine at residue 187. Virus containing any of these mutations was restricted in its ability to replicate in mosquito but not chicken embryo fibroblast cells at 34.5 degrees C. In addition to its temperature-dependent, host-restricted phenotype, virus derived from one cDNA clone also exhibited decreased levels of nsP34 and nsP4 yet contained only a silent change in its genome. This C-to-U mutation occurred at nucleotide 5751, the first nucleotide after the opal termination codon separating nsP3 and nsP4. Our results suggest that this substitution decreases readthrough of the opal codon and diminishes production of nsP34 and nsP4. Such a decrease in synthesis rates might lead to levels of these products which are insufficient for viral RNA replication in mosquito cells at the higher temperature. This work provides the first evidence that nsP4 function can be strongly influenced by the host environment.
Collapse
Affiliation(s)
- J A Lemm
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | | | | | | |
Collapse
|
14
|
Abstract
A cDNA clone from which infectious RNA can be transcribed was used to construct 42 site-specific mutations in the 3' nontranslated region of the Sindbis virus genome. The majority of these mutations were made in the 3'-terminal 19-nucleotide conserved sequence element and consisted of single nucleotide substitutions or of small (1 to 8) nucleotide deletions. An attempt was made to recover mutant viruses after transfection of SP6-transcribed RNA into chicken cells. In most cases, viable virus was recovered, but almost all mutants grew more poorly than wild-type virus when tested under a number of culture conditions. In the case of mutations having only a moderate effect, the virus grew as well as the wild type but was slightly delayed in growth. Mutations having a more severe effect led to lower virus yields. In many cases, virus growth was more severely impaired in mosquito cells than in chicken cells, but the opposite phenotype was also seen, in which the mutant grew as well as or better than the wild type in mosquito cells but more poorly in chicken cells. One substitution mutant, 3NT7C, was temperature sensitive for growth in chicken cells and severely crippled for growth in mosquito cells. Insertion mutations were also constructed which displaced the 19-nucleotide element by a few nucleotides relative to the poly(A) tail. These mutations had little effect on virus growth. Deletion of large regions (31 to 293 nucleotides long) of the 3' nontranslated region outside of the 19-nucleotide element resulted in viruses which were more severely crippled in mosquito cells than in chicken cells. From these results, the following principles emerge. (i) The entire 3' nontranslated region is important for efficient virus replication, although there is considerable plasticity in this region in that most nucleotide substitutions or deletions made resulted in viable virus and, in some cases, in virus that grew quite efficiently. Replication competence was particularly sensitive to changes involving the C at position 1, the A at position 7, and a stretch of 9 U residues punctuated by a G at position 14. (ii) The panel of mutants examined collectively deleted the entire 3' nontranslated region. Only mutants in which 8 nucleotides in the 3' terminal 19 nucleotides had been deleted or in which the 3' terminal C was deleted were nonviable. Although the 3' terminal C was essential for replication, it could be displaced by at least 7 nucleotides from its 3' terminal position adjacent to the poly(A) tract.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R J Kuhn
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | | | |
Collapse
|
15
|
Koblet H. The "merry-go-round": alphaviruses between vertebrate and invertebrate cells. Adv Virus Res 1990; 38:343-402. [PMID: 1977293 DOI: 10.1016/s0065-3527(08)60866-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- H Koblet
- Institute for Medical Microbiology, University of Berne, Switzerland
| |
Collapse
|