1
|
Langeveld JPM, Balkema-Buschmann A, Becher D, Thomzig A, Nonno R, Andréoletti O, Davidse A, Di Bari MA, Pirisinu L, Agrimi U, Groschup MH, Beekes M, Shih J. Stability of BSE infectivity towards heat treatment even after proteolytic removal of prion protein. Vet Res 2021; 52:59. [PMID: 33863379 PMCID: PMC8052740 DOI: 10.1186/s13567-021-00928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022] Open
Abstract
The unconventional infectious agents of transmissible spongiform encephalopathies (TSEs) are prions. Their infectivity co-appears with PrPSc, aberrant depositions of the host's cellular prion protein (PrPC). Successive heat treatment in the presence of detergent and proteolysis by a keratinase from Bacillus licheniformis PWD-1 was shown before to destroy PrPSc from bovine TSE (BSE) and sheep scrapie diseased brain, however data regarding expected reduction of infectivity were still lacking. Therefore, transgenic Tgbov XV mice which are highly BSE susceptible were used to quantify infectivity before and after the bovine brain treatment procedure. Also four immunochemical analyses were applied to compare the levels of PrPSc. After heating at 115 °C with or without subsequent proteolysis, the original BSE infectivity of 106.2-6.4 ID50 g-1 was reduced to a remaining infectivity of 104.6-5.7 ID50 g-1 while strain characteristics were unaltered, even after precipitation with methanol. Surprisingly, PrPSc depletion was 5-800 times higher than the loss of infectivity. Similar treatment was applied on other prion strains, which were CWD1 in bank voles, 263 K scrapie in hamsters and sheep PG127 scrapie in tg338 ovinized mice. In these strains however, infectivity was already destroyed by heat only. These findings show the unusual heat resistance of BSE and support a role for an additional factor in prion formation as suggested elsewhere when producing prions from PrPC. Leftover material in the remaining PrPSc depleted BSE preparation offers a unique substrate for searching additional elements for prion infectivity and improving our concept about the nature of prions.
Collapse
Affiliation(s)
- Jan P M Langeveld
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), 8221RA 39, Lelystad, The Netherlands.
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Dieter Becher
- MICROMUN, Institut Für Mikrobiologische Forschung GmbH, 17489, Greifswald, Germany
| | - Achim Thomzig
- Prion and Prionoid Research Unit, Robert Koch-Institute, 13353, Berlin, Germany
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, 00161, Rome, Italy
| | - Olivier Andréoletti
- UMR INRAE/ENVT 1225 IHAP, École Nationale Vétérinaire de Toulouse, 31300, Toulouse, France
| | - Aart Davidse
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), 8221RA 39, Lelystad, The Netherlands
| | - Michele A Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, 00161, Rome, Italy
| | - Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, 00161, Rome, Italy
| | - Umberto Agrimi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, 00161, Rome, Italy
| | | | - Michael Beekes
- Prion and Prionoid Research Unit, Robert Koch-Institute, 13353, Berlin, Germany
| | - Jason Shih
- Department of Poultry Science, North Carolina State University, Raleigh, NC, 27695-7608, USA
| |
Collapse
|
2
|
Botsios S, Tittman S, Manuelidis L. Rapid chemical decontamination of infectious CJD and scrapie particles parallels treatments known to disrupt microbes and biofilms. Virulence 2016; 6:787-801. [PMID: 26556670 DOI: 10.1080/21505594.2015.1098804] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative human CJD and sheep scrapie are diseases caused by several different transmissible encephalopathy (TSE) agents. These infectious agents provoke innate immune responses in the brain, including late-onset abnormal prion protein (PrP-res) amyloid. Agent particles that lack detectable PrP sequences by deep proteomic analysis are highly infectious. Yet these agents, and their unusual resistance to denaturation, are often evaluated by PrP amyloid disruption. To reexamine the intrinsic resistance of TSE agents to denaturation, a paradigm for less resistant viruses and microbes, we developed a rapid and reproducible high yield agent isolation procedure from cultured cells that minimized PrP amyloid and other cellular proteins. Monotypic neuronal GT1 cells infected with the FU-CJD or 22L scrapie agents do not have complex brain changes that can camouflage infectious particles and prevent their disruption, and there are only 2 reports on infectious titers of any human CJD strain treated with chemical denaturants. Infectious titers of both CJD and scrapie were reduced by >4 logs with Thiourea-urea, a treatment not previously tested. A mere 5 min exposure to 4M GdnHCl at 22°C reduced infectivity by >5 logs. Infectious 22L particles were significantly more sensitive to denaturation than FU-CJD particles. A protocol using sonication with these chemical treatments may effectively decontaminate complicated instruments, such as duodenoscopes that harbor additional virulent microbes and biofilms associated with recent iatrogenic infections.
Collapse
Affiliation(s)
- Sotirios Botsios
- a Yale Medical School; Section of Neuropathology (Surgery) ; New Haven , CT USA
| | - Sarah Tittman
- a Yale Medical School; Section of Neuropathology (Surgery) ; New Haven , CT USA
| | - Laura Manuelidis
- a Yale Medical School; Section of Neuropathology (Surgery) ; New Haven , CT USA
| |
Collapse
|
3
|
|
4
|
Laferrière F, Tixador P, Moudjou M, Chapuis J, Sibille P, Herzog L, Reine F, Jaumain E, Laude H, Rezaei H, Béringue V. Quaternary structure of pathological prion protein as a determining factor of strain-specific prion replication dynamics. PLoS Pathog 2013; 9:e1003702. [PMID: 24130496 PMCID: PMC3795044 DOI: 10.1371/journal.ppat.1003702] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022] Open
Abstract
Prions are proteinaceous infectious agents responsible for fatal neurodegenerative diseases in animals and humans. They are essentially composed of PrP(Sc), an aggregated, misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrP(C)). Stable variations in PrP(Sc) conformation are assumed to encode the phenotypically tangible prion strains diversity. However the direct contribution of PrP(Sc) quaternary structure to the strain biological information remains mostly unknown. Applying a sedimentation velocity fractionation technique to a panel of ovine prion strains, classified as fast and slow according to their incubation time in ovine PrP transgenic mice, has previously led to the observation that the relationship between prion infectivity and PrP(Sc) quaternary structure was not univocal. For the fast strains specifically, infectivity sedimented slowly and segregated from the bulk of proteinase-K resistant PrP(Sc). To carefully separate the respective contributions of size and density to this hydrodynamic behavior, we performed sedimentation at the equilibrium and varied the solubilization conditions. The density profile of prion infectivity and proteinase-K resistant PrP(Sc) tended to overlap whatever the strain, fast or slow, leaving only size as the main responsible factor for the specific velocity properties of the fast strain most infectious component. We further show that this velocity-isolable population of discrete assemblies perfectly resists limited proteolysis and that its templating activity, as assessed by protein misfolding cyclic amplification outcompetes by several orders of magnitude that of the bulk of larger size PrP(Sc) aggregates. Together, the tight correlation between small size, conversion efficiency and duration of disease establishes PrP(Sc) quaternary structure as a determining factor of prion replication dynamics. For certain strains, a subset of PrP assemblies appears to be the best template for prion replication. This has important implications for fundamental studies on prions.
Collapse
Affiliation(s)
- Florent Laferrière
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Philippe Tixador
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Mohammed Moudjou
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Jérôme Chapuis
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Pierre Sibille
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Laetitia Herzog
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Fabienne Reine
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Emilie Jaumain
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Hubert Laude
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Human Rezaei
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Vincent Béringue
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
5
|
Béland M, Roucou X. Homodimerization as a molecular switch between low and high efficiency PrP C cell surface delivery and neuroprotective activity. Prion 2013; 7:170-4. [PMID: 23357826 DOI: 10.4161/pri.23583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PrP (C) is associated with a variety of functions, and its ability to interact with a multitude of partners, including itself, may largely explain PrP multifunctionality and the lack of consensus on the genuine physiological function of the protein in vivo. In contrast, there is a consensus in the literature that alterations in PrP (C) trafficking and intracellular retention result in neuronal degeneration. In addition, a proteolytic modification in the late secretory pathway termed the α-cleavage induces the secretion of PrPN1, a PrP (C) -derived metabolite with fascinating neuroprotective activity against toxic oligomeric Aβ molecules implicated in Alzheimer disease. Thus, studies focusing on understanding the regulation of PrP (C) trafficking to the cell surface and the modulation of α-cleavage are essential. The objective of this commentary is to highlight recent evidences that PrP (C) homodimerization stimulates trafficking of the protein to the cell surface and results in high levels of PrPN1 secretion. We also discuss a hypothetical model for these results and comment on future challenges and opportunities.
Collapse
Affiliation(s)
- Maxime Béland
- Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC Canada
| | | |
Collapse
|
6
|
Miyazawa K, Emmerling K, Manuelidis L. High CJD infectivity remains after prion protein is destroyed. J Cell Biochem 2012; 112:3630-7. [PMID: 21793041 DOI: 10.1002/jcb.23286] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The hypothesis that host prion protein (PrP) converts into an infectious prion form rests on the observation that infectivity progressively decreases in direct proportion to the decrease of PrP with proteinase K (PK) treatment. PrP that resists limited PK digestion (PrP-res, PrP(sc)) has been assumed to be the infectious form, with speculative types of misfolding encoding the many unique transmissible spongiform encephalopathy (TSE) agent strains. Recently, a PK sensitive form of PrP has been proposed as the prion. Thus we re-evaluated total PrP (sensitive and resistant) and used a cell-based assay for titration of infectious particles. A keratinase (NAP) known to effectively digest PrP was compared to PK. Total PrP in FU-CJD infected brain was reduced to ≤0.3% in a 2 h PK digest, yet there was no reduction in titer. Remaining non-PrP proteins were easily visualized with colloidal gold in this highly infectious homogenate. In contrast to PK, NAP digestion left 0.8% residual PrP after 2 h, yet decreased titer by >2.5 log; few residual protein bands remained. FU-CJD infected cells with 10× the infectivity of brain by both animal and cell culture assays were also evaluated. NAP again significantly reduced cell infectivity (>3.5 log). Extreme PK digestions were needed to reduce cell PrP to <0.2%, yet a very high titer of 8 logs survived. Our FU-CJD brain results are in good accord with the only other report on maximal PrP destruction and titer. It is likely that one or more residual non-PrP proteins may protect agent nucleic acids in infectious particles.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Department of Surgery, Yale Medical School, New Haven, Connecticut 06511, USA
| | | | | |
Collapse
|
7
|
Margalith I, Suter C, Ballmer B, Schwarz P, Tiberi C, Sonati T, Falsig J, Nyström S, Hammarström P, Aslund A, Nilsson KPR, Yam A, Whitters E, Hornemann S, Aguzzi A. Polythiophenes inhibit prion propagation by stabilizing prion protein (PrP) aggregates. J Biol Chem 2012; 287:18872-87. [PMID: 22493452 DOI: 10.1074/jbc.m112.355958] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Luminescent conjugated polymers (LCPs) interact with ordered protein aggregates and sensitively detect amyloids of many different proteins, suggesting that they may possess antiprion properties. Here, we show that a variety of anionic, cationic, and zwitterionic LCPs reduced the infectivity of prion-containing brain homogenates and of prion-infected cerebellar organotypic cultured slices and decreased the amount of scrapie isoform of PrP(C) (PrP(Sc)) oligomers that could be captured in an avidity assay. Paradoxically, treatment enhanced the resistance of PrP(Sc) to proteolysis, triggered the compaction, and enhanced the resistance to proteolysis of recombinant mouse PrP(23-231) fibers. These results suggest that LCPs act as antiprion agents by transitioning PrP aggregates into structures with reduced frangibility. Moreover, ELISA on cerebellar organotypic cultured slices and in vitro conversion assays with mouse PrP(23-231) indicated that poly(thiophene-3-acetic acid) may additionally interfere with the generation of PrP(Sc) by stabilizing the conformation of PrP(C) or of a transition intermediate. Therefore, LCPs represent a novel class of antiprion agents whose mode of action appears to rely on hyperstabilization, rather than destabilization, of PrP(Sc) deposits.
Collapse
Affiliation(s)
- Ilan Margalith
- Institute of Neuropathology, University Hospital of Zurich, CH-8091 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Moore RA, Timmes A, Wilmarth PA, Priola SA. Comparative profiling of highly enriched 22L and Chandler mouse scrapie prion protein preparations. Proteomics 2010; 10:2858-69. [PMID: 20518029 PMCID: PMC3742083 DOI: 10.1002/pmic.201000104] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 05/16/2010] [Indexed: 12/11/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases are characterized by the accumulation of an aggregated isoform of the prion protein (PrP). This pathological isoform, termed PrP(Sc), appears to be the primary component of the TSE infectious agent or prion. However, it is not clear to what extent other protein cofactors may be involved in TSE pathogenesis or whether there are PrP(Sc)-associated proteins which help to determine TSE strain-specific disease phenotypes. We enriched PrP(Sc) from the brains of mice infected with either 22L or Chandler TSE strains and examined the protein content of these samples using nanospray LC-MS/MS. These samples were compared with "mock" PrP(Sc) preparations from uninfected brains. PrP was the major component of the infected samples and ferritin was the most abundant impurity. Mock enrichments contained no detectable PrP but did contain a significant amount of ferritin. Of the total proteins identified, 32% were found in both mock and infected samples. The similarities between PrP(Sc) samples from 22L and Chandler TSE strains suggest that the non-PrP(Sc) protein components found in standard enrichment protocols are not strain specific.
Collapse
Affiliation(s)
- Roger A Moore
- Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | | | | | | |
Collapse
|
9
|
Tixador P, Herzog L, Reine F, Jaumain E, Chapuis J, Le Dur A, Laude H, Béringue V. The physical relationship between infectivity and prion protein aggregates is strain-dependent. PLoS Pathog 2010; 6:e1000859. [PMID: 20419156 PMCID: PMC2855332 DOI: 10.1371/journal.ppat.1000859] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 03/16/2010] [Indexed: 11/18/2022] Open
Abstract
Prions are unconventional infectious agents thought to be primarily composed of PrP(Sc), a multimeric misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrP(C)). They cause fatal neurodegenerative diseases in both animals and humans. The disease phenotype is not uniform within species, and stable, self-propagating variations in PrP(Sc) conformation could encode this 'strain' diversity. However, much remains to be learned about the physical relationship between the infectious agent and PrP(Sc) aggregation state, and how this varies according to the strain. We applied a sedimentation velocity technique to a panel of natural, biologically cloned strains obtained by propagation of classical and atypical sheep scrapie and BSE infectious sources in transgenic mice expressing ovine PrP. Detergent-solubilized, infected brain homogenates were used as starting material. Solubilization conditions were optimized to separate PrP(Sc) aggregates from PrP(C). The distribution of PrP(Sc) and infectivity in the gradient was determined by immunoblotting and mouse bioassay, respectively. As a general feature, a major proteinase K-resistant PrP(Sc) peak was observed in the middle part of the gradient. This population approximately corresponds to multimers of 12-30 PrP molecules, if constituted of PrP only. For two strains, infectivity peaked in a markedly different region of the gradient. This most infectious component sedimented very slowly, suggesting small size oligomers and/or low density PrP(Sc) aggregates. Extending this study to hamster prions passaged in hamster PrP transgenic mice revealed that the highly infectious, slowly sedimenting particles could be a feature of strains able to induce a rapidly lethal disease. Our findings suggest that prion infectious particles are subjected to marked strain-dependent variations, which in turn could influence the strain biological phenotype, in particular the replication dynamics.
Collapse
Affiliation(s)
- Philippe Tixador
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Laëtitia Herzog
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Fabienne Reine
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Emilie Jaumain
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Jérôme Chapuis
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Annick Le Dur
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Hubert Laude
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
- * E-mail: (HL); (VB)
| | - Vincent Béringue
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
- * E-mail: (HL); (VB)
| |
Collapse
|
10
|
Roostaee A, Côté S, Roucou X. Aggregation and amyloid fibril formation induced by chemical dimerization of recombinant prion protein in physiological-like conditions. J Biol Chem 2009; 284:30907-16. [PMID: 19710507 DOI: 10.1074/jbc.m109.057950] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prion diseases are caused by the conversion of a cellular protein (PrP(C)) into a misfolded, aggregated isoform (PrP(Res)). Misfolding of recombinant PrP(C) in the absence of PrP(Res) template, cellular factors, denaturing agents, or at neutral pH has not been achieved. A number of studies indicate that dimerization of PrP(C) may be a key step in the aggregation process. In an effort to understand the molecular event that may activate misfolding of PrP(C) in more relevant physiological conditions, we tested if enforced dimerization of PrP(C) may induce a conformational change reminiscent of the conversion of PrP(C) to PrP(Res). We used a well described inducible dimerization strategy whereby a chimeric PrP(C) composed of a modified FK506-binding protein (Fv) fused with PrP(C) and termed Fv-PrP is incubated in the presence of a monomeric FK506 or dimerizing AP20187 ligand. Addition of AP20187 but not FK506 to recombinant Fv-PrP (rFv-PrP) in physiological-like conditions resulted in a rapid conformational change characterized by an increase in beta-sheet structure and simultaneous aggregation of the protein. Aggregates were partially resistant to proteinase K and induced the conversion of soluble rFv-PrP in serial seeding experiments. As judged from thioflavin T binding and electron microscopy, aggregates converted to amyloid fibers. Aggregates were toxic to cultured cells, whereas soluble rFv-PrP and amyloid fibers were harmless. This study strongly supports the proposition that dimerization of PrP(C) is a key pathological primary event in the conversion of PrP(C) and may initiate the pathogenesis of prion diseases.
Collapse
Affiliation(s)
- Alireza Roostaee
- Department of Biochemistry, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | |
Collapse
|
11
|
Petrakis S, Malinowska A, Dadlez M, Sklaviadis T. Identification of proteins co-purifying with scrapie infectivity. J Proteomics 2009; 72:690-4. [PMID: 19367687 DOI: 10.1016/j.jprot.2009.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PrP(C), the cellular isoform of prion protein, is widely expressed in most tissues. Despite its involvement in several bioprocesses it still has no apparent physiological role. During propagation of Transmissible Spongiform Encephalopathies, PrP(C) is converted to the pathological isoform, PrP(Sc), in a process believed to be mediated by unknown host factors. PrP(Sc) has altered biochemical properties and forms amyloid aggregates that display infectious characteristics. PrP(Sc) is also the major component in biochemically enriched infectious samples. Other molecules co-purify with it, but the protein content of these aggregates remains unknown. The goal of this project was to identify other host molecules with high affinity for PrP(Sc). Here, we present the identification of protein molecules that co-purify with PrP(Sc) isolated from naturally scrapie-infected ovine brain tissue. The infectious preparations were analyzed by two-dimensional gel electrophoresis and unknown proteins were identified by LC-MS/MS. These proteins may prove to be strategic targets for prevention and therapy of prion diseases.
Collapse
Affiliation(s)
- S Petrakis
- Prion Disease Research Group, Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | |
Collapse
|
12
|
Sun R, Liu Y, Zhang H, Manuelidis L. Quantitative recovery of scrapie agent with minimal protein from highly infectious cultures. Viral Immunol 2008; 21:293-302. [PMID: 18788938 DOI: 10.1089/vim.2008.0039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There are few reports on the isolation, quantitative recovery, and relative purification of infectious particles that cause scrapie, Creutzfeldt-Jakob disease (CJD) and epidemic bovine spongiform encephalopathy (BSE). Because pure prion protein (PrP) has failed to show significant infectivity, it is critical to find other molecules that are integral agent components. Only complex diseased tissues such as degenerating brain have been fractionated, and agent recoveries have been quite low in concentrated abnormal prion protein (PrP-res) preparations. To simplify the purification of infectious particles, we evaluated a monotypic cell line that continuously produced high levels of the 22L scrapie agent (N2a-22L). A new rapid and accurate GT1 culture assay was used to titrate infectivity in six representative sucrose gradients. We developed a streamlined approximately 3-h procedure that yielded full recovery of starting infectivity in fractions with only a few selected protein bands (representing <1% of starting protein). Infectious particles reproducibly sedimented through >30% sucrose steps, whereas PrP and PrP-res sedimentation varied depending on the conditions used. Both normal and abnormal PrP could be largely separated from infectivity in a single short centrifugation. Because no foreign enzymes were added to achieve reasonably purified infectious particles, these preparations may be used to elicit diagnostic antibodies to foreign agent proteins.
Collapse
Affiliation(s)
- Ru Sun
- Section of Neuropathology, Yale Medical School, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
13
|
Suzuki SY, Takata M, Teruya K, Shinagawa M, Mohri S, Yokoyama T. Conformational change in hamster scrapie prion protein (PrP27-30) associated with proteinase K resistance and prion infectivity. J Vet Med Sci 2008; 70:159-65. [PMID: 18319576 DOI: 10.1292/jvms.70.159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The scrapie prion protein (PrP27-30) is a crucial component of the prion and is responsible for its transmissibility. Structural information on this protein is limited because it is insoluble and shows aggregated properties. In this study, PrP27-30 was effectively dispersed using sonication under the weak alkaline condition. Subsequently, the small PrP27-30 aggregates were subjected to different pH, heat, and denaturing conditions. The loss of proteinase K (PK) resistance of PrP27-30 and prion infectivity were monitored along with spectroscopic changes. Prion inactivation could not be achieved by the loss of PK resistance alone; a significant loss of the PrP27-30 amyloid structure, which was represented by a decrease in thioflavin T fluorescence, was required for the loss of transmissibility.
Collapse
Affiliation(s)
- Sachiko Y Suzuki
- Prion Disease Research Center, National Institute of Animal Health, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Laurent M. Bistability and the species barrier in prion diseases: stepping across the threshold or not. Biophys Chem 2007; 72:211-22. [PMID: 17029708 DOI: 10.1016/s0301-4622(98)00135-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/16/1998] [Accepted: 02/13/1998] [Indexed: 12/28/2022]
Abstract
The infectious agent of transmissible spongiform encephalopathies is thought to be a cellular protein, the prion protein, which undergoes, under some circumstances, a dramatic conformational change leading to pathogenesis. The conversion between the normal and pathogenic isoforms corresponds to a autocatalytic mechanism and the metabolism of the prion protein exhibits switches between a normal, stable steady state and a pathogenic one. When the disease can be transmitted between two species, a primary infection from a heterologous donor has to be followed by two passages in the same host species so that the incubation period is stabilized. Sometimes, no pathogenic isoform of the prion protein is detected after the first passage, although corresponding brain extracts remain infectious. The observation that three and only three passages are needed in order to stabilize the strain strongly suggests that, during the course of the primary infection by the heterologous donor, an intermediary conformational species is formed. Within this assumption, a common mechanism involving only conformational changes of the prion protein can give a unifying interpretation of the problem of species barrier, lag characteristics and apparent lack of detection of the pathogenic isoform after the first passage in experiments dealing with interspecies transmission of prion diseases.
Collapse
Affiliation(s)
- M Laurent
- Service d'Imagerie Cellulaire, URA D2227 CNRS, Bât. 440, Université Paris-Sud, Centre d'Orsay, 91405 Orsay Cedex, France.
| |
Collapse
|
15
|
Manuelidis L. A 25 nm virion is the likely cause of transmissible spongiform encephalopathies. J Cell Biochem 2007; 100:897-915. [PMID: 17044041 DOI: 10.1002/jcb.21090] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The transmissible spongiform encephalopathies (TSEs) such as endemic sheep scrapie, sporadic human Creutzfeldt-Jakob disease (CJD), and epidemic bovine spongiform encephalopathy (BSE) may all be caused by a unique class of "slow" viruses. This concept remains the most parsimonious explanation of the evidence to date, and correctly predicted the spread of the BSE agent to vastly divergent species. With the popularization of the prion (infectious protein) hypothesis, substantial data pointing to a TSE virus have been largely ignored. Yet no form of prion protein (PrP) fulfills Koch's postulates for infection. Pathologic PrP is not proportional to, or necessary for infection, and recombinant and "amplified" prions have failed to produce significant infectivity. Moreover, the "wealth of data" claimed to support the existence of infectious PrP are increasingly contradicted by experimental observations, and cumbersome speculative notions, such as spontaneous PrP mutations and invisible strain-specific forms of "infectious PrP" are proposed to explain the incompatible data. The ability of many "slow" viruses to survive harsh environmental conditions and enzymatic assaults, their stealth invasion through protective host-immune defenses, and their ability to hide in the host and persist for many years, all fit nicely with the characteristics of TSE agents. Highly infectious preparations with negligible PrP contain nucleic acids of 1-5 kb, even after exhaustive nuclease digestion. Sedimentation as well as electron microscopic data also reveal spherical infectious particles of 25-35 nm in diameter. This particle size can accommodate a viral genome of 1-4 kb, sufficient to encode a protective nucleocapsid and/or an enzyme required for its replication. Host PrP acts as a cellular facilitator for infectious particles, and ultimately accrues pathological amyloid features. A most significant advance has been the development of tissue culture models that support the replication of many different strains of agent and can produce high levels of infectivity. These models provide new ways to rapidly identify intrinsic viral and strain-specific molecules so important for diagnosis, prevention, and fundamental understanding.
Collapse
|
16
|
Biswas S, Langeveld JPM, Tipper D, Lu S. Intracellular accumulation of a 46 kDa species of mouse prion protein as a result of loss of glycosylation in cultured mammalian cells. Biochem Biophys Res Commun 2006; 349:153-61. [PMID: 16935263 DOI: 10.1016/j.bbrc.2006.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 08/04/2006] [Indexed: 11/18/2022]
Abstract
Prion diseases are fatal neurodegenerative disorders characterized by the accumulation of an abnormal isoform (PrPSc) of the normal cellular prion protein (PrPC) in the brain. Reportedly, abnormal N-linked glycosylation patterns in PrPC are associated with disease susceptibility; thus, we compared the glycosylation status of normal and several mutant forms of the murine prion protein (MuPrP) in cultured mammalian cells. Substitution of the N-terminal signal sequence of normal MuPrP with a heterologous signal peptide did not alter glycosylation. When expressed without the C-terminal glycophosphatidylinositol anchor signal, the majority of MuPrP remained intracellular and unglycosylated, and a 46 kDa species (p46) of the unglycosylated PrPC was detected on reducing gels. p46 was also observed when wild-type MuPrP was expressed in the presence of tunicamycin or enzymatically deglycosylated in vitro. A rabbit polyclonal anti-serum raised against dimeric MuPrP cross-reacted with p46 and localized the signal within the Golgi apparatus. We propose that the 46 kDa signal is a dimeric form of MuPrP and in the light of recent studies, it can be argued that a relatively stable, non-glycosylated, cytoplasmic PrPC dimer, produced as a result of compromised glycosylation is an intermediate in initiating conversion of PrPC to PrPSc in sporadic transmissible spongiform encephalopathies.
Collapse
Affiliation(s)
- Subhabrata Biswas
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
17
|
Baker CA, Martin D, Manuelidis L. Microglia from Creutzfeldt-Jakob disease-infected brains are infectious and show specific mRNA activation profiles. J Virol 2002; 76:10905-13. [PMID: 12368333 PMCID: PMC136595 DOI: 10.1128/jvi.76.21.10905-10913.2002] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurons are often assumed to be the principal sites for replication of the infectious agents causing Creutzfeldt-Jakob disease (CJD), scrapie, and bovine spongiform encephalopathy because they express high levels of normal and pathological prion protein (PrP). However, isolated brain cell types have not been evaluated for either infection or gene expression. Microglia purified from CJD-infected mice showed infectivity comparable to that of starting brain homogenate but expressed approximately 50-fold less PrP. CJD-infected microglia also displayed morphological changes indicative of cellular activation. To determine the molecular pathways of activation, we evaluated pertinent transcripts, including those linked to inflammation. Semiquantitative reverse transcription-PCR showed a >4-fold increase in cathepsin S, an enzyme important in antigen presentation, the cytokine interleukin-1beta, and the chemokine B-lymphocyte chemoattractant. The profile of microglial changes induced by the CJD agent differed substantially from activation induced by bacterial lipopolysaccharide or by beta-amyloid, a structure comparable to pathological PrP. These microglial studies emphasize migratory hematopoietic cells in the dispersion, and possibly replication, of the CJD agent. The low PrP levels in these highly infectious and activated cells further support the concept that pathological PrP is the result of infection rather than the infectious agent itself. Because microglia develop a specific pattern of responses to the CJD agent, microglial markers may be exploited in the diagnosis of these spongiform encephalopathies.
Collapse
Affiliation(s)
- Christopher A Baker
- Section of Neuropathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
18
|
Abstract
The central theme in prion diseases is the conformational transition of a cellular protein from a physiologic to a pathologic (so-called scrapie) state. Currently, two alternative models exist for the mechanism of this autocatalytic process; in the template assistance model the prion is assumed to be a monomer of the scrapie conformer, whereas in the nucleated polymerization model it is thought to be an amyloid rod. A recent variation on the latter assumes disulfide reshuffling as the mechanism of polymerization. The existence of stable dimers, let alone their mechanistic role, is not taken into account in either of these models. In this paper we review evidence supporting that the dimerization of either the normal or the scrapie state, or both, has a decisive role in prion replication. The contribution of redox changes, i.e., the temporary opening and possible rearrangement of the intramolecular disulfide bridge is also considered. We present a model including these features largely ignored so far and show that it adheres satisfactorily to the observed phenomenology of prion replication.
Collapse
Affiliation(s)
- Peter Tompa
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest
| | | | | | | |
Collapse
|
19
|
Narang H. A critical review of the nature of the spongiform encephalopathy agent: protein theory versus virus theory. Exp Biol Med (Maywood) 2002; 227:4-19. [PMID: 11788778 DOI: 10.1177/153537020222700103] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
All spongiform encephalopathies (SEs) result in brain disorders brought about by a slow virus. Since the origin of bovine SE (BSE), the infectious nature of the disease has been firmly established. Tubulofilamentous particles/scrapie termed nemavirus (NVP) and scrapie-associated fibrils (SAF) are ultrastructural markers, whereas protease-resistant protein (PrP(sc)) is a protein marker. The PrP molecules aggregate to form SAF. Each NVP consists of three layers: an outer protein coat, an intermediate ssDNA layer, and inner PrP/SAF. Therefore, ssDNA and PrP/SAF are physically associated with each other. The existence of at least 20 stable strains of SEs implies that a nucleic acid molecule serves as the information molecule. Animals inoculated with PrP(sc) do not develop the clinical disease, however, ssDNA purified from scrapie-hamster brains by alkaline gel electrophoresis mixed with binding proteins before inoculation developed the clinical disease. It appears that an "accessory protein" coded by the ssDNA of the NVP interacts with normal PrP(c) molecules, resulting in their conversion to PrP(sc)/SAF. The pathogenesis process in the infected animal, with increasing incubation periods, reveals that larger amounts of normal PrP molecules are modified to form SAF. This interferes with the normal supply of PrP to cell membranes, which become disrupted and eventually fragment, resulting in the vacuoles typical of those found in the SEs. Critical review of scientific literature has demonstrated that the agent contains a DNA genome.
Collapse
Affiliation(s)
- Harash Narang
- Ken Bell International, Newcastle Upon Tyne NE2 3DH, United Kingdom.
| |
Collapse
|
20
|
Kellershohn N, Laurent M. Prion diseases: dynamics of the infection and properties of the bistable transition. Biophys J 2001; 81:2517-29. [PMID: 11606267 PMCID: PMC1301721 DOI: 10.1016/s0006-3495(01)75897-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Prion diseases are thought to result from a pathogenic, conformational change in a cellular protein, the prion protein. The pathogenic isoform seems to convert the normal isoform in an autocatalytic process. In contrast to the conditions used for in vitro studies of enzyme kinetics, the concentration of the catalyst is not much lower than that of the substrate in the course of infection. This feature may endow the system with a time-hierarchy allowing the pathogenic isoform to relax very slowly in the course of infection. This may contribute to the long incubation periods observed in prion diseases. The dynamic process of prion propagation, including turnover of the cellular prion protein, displays bistable properties. Sporadic prion diseases may result from a change in one of the parameters associated with metabolism of the prion protein. The bistable transition observed in sporadic disease is reversible, whereas that observed in cases of exogenous contamination is irreversible. This model is consistent with the occurrence of rare, sporadic forms of prion diseases. It may also explain why only some individuals of a cohort develop a prion disease following transient food contamination.
Collapse
Affiliation(s)
- N Kellershohn
- Imagerie et Dynamique Cellulaires, UPRESA CNRS 8080, Université Paris-Sud, 91 405 Orsay Cedex, France
| | | |
Collapse
|
21
|
Callahan MA, Xiong L, Caughey B. Reversibility of Scrapie-associated Prion Protein Aggregation. J Biol Chem 2001; 276:28022-8. [PMID: 11375994 DOI: 10.1074/jbc.m103629200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the course of the transmissible spongiform encephalopathy diseases, a protease-resistant ordered aggregate of scrapie prion protein (PrP(Sc)) accumulates in affected animals. From mechanistic and therapeutic points of view, it is relevant to determine the extent to which PrP(Sc) formation and aggregation are reversible. PrP(Sc) solubilized with 5 m guanidine hydrochloride (GdnHCl) was unfolded to a predominantly random coil conformation. Upon dilution of GdnHCl, PrP refolded into a conformation that was high in alpha-helix as measured by CD spectroscopy, similar to the normal cellular isoform of PrP (PrP(C)). This provided evidence that PrP(Sc) can be induced to revert to a PrP(C)-like conformation with a strong denaturant. To examine the reversibility of PrP(Sc) formation and aggregation under more physiological conditions, PrP(Sc) aggregates were washed and resuspended in buffers lacking GdnHCl and monitored over time for the appearance of soluble PrP. No dissociation of PrP from the PrP(Sc) aggregates was detected in aqueous buffers at pH 6 and 7.5. The effective solubility of PrP was <0.7 nm. Treatment of PrP(Sc) with proteinase K (PK) before the analysis did not enhance the dissociation of PrP from the PrP(Sc) aggregates. Treatment with 2.5 m GdnHCl, which partially and reversibly unfolds PrP(Sc), caused only limited dissociation of PrP from the aggregates. The PrP that dissociated from the aggregates over time was entirely PK-sensitive, like PrP(C), whereas all of the aggregated PrP was partially PK-resistant. PrP also dissociated from aggregates of protease-resistant PrP generated in a cell-free conversion reaction, but only if treated with GdnHCl. Overall, the results suggest that PrP aggregation is not appreciably reversible under physiological conditions, but dissociation and refolding can be enhanced by treatments with GdnHCl.
Collapse
Affiliation(s)
- M A Callahan
- Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | |
Collapse
|
22
|
Plaitakis A, Viskadouraki AK, Tzagournissakis M, Zaganas I, Verghese-Nikolakaki S, Karagiorgis V, Panagiotides I, Kilindireas C, Patsouris E, Haberler C, Budka H, Sklaviadis T. Increased incidence of sporadic Creutzfeldt-Jakob disease on the island of Crete associated with a high rate ofPRNP 129-methionine homozygosity in the local population. Ann Neurol 2001. [DOI: 10.1002/ana.1285] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Manousis T, Verghese-Nikolakaki S, Keyes P, Sachsamanoglou M, Dawson M, Papadopoulos O, Sklaviadis TK. Characterization of the murine BSE infectious agent. J Gen Virol 2000; 81:1615-20. [PMID: 10811946 DOI: 10.1099/0022-1317-81-6-1615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a prion-associated disease where the infectious agent is thought to be a host-encoded protein with a protease-resistant conformation (PrP(Sc)). Here, data are presented on the solubilization of purified murine BSE material, using guanidine-HCl as a denaturing agent. This treatment led to loss of infectivity, which was partially recovered on renaturation after dialysis to remove the chaotropic agent. The renatured product was then fractionated on an isopycnic sucrose-density gradient and the fractions were analysed for the presence of PrP(Sc), nucleic acids and infectivity. It was found that the major part of PrP(Sc) (>90%) and the endogenous nucleic acids did not contribute towards the formation of infectious particles on renaturation. Infectivity was distributed in the top three, low-density fractions. Among these, the presence of considerable infectivity in the fraction of lowest density, with barely detectable PrP(Sc), is of particular interest.
Collapse
Affiliation(s)
- T Manousis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 540 06, Greece
| | | | | | | | | | | | | |
Collapse
|
24
|
Wille H, Prusiner SB, Cohen FE. Scrapie infectivity is independent of amyloid staining properties of the N-terminally truncated prion protein. J Struct Biol 2000; 130:323-38. [PMID: 10940236 DOI: 10.1006/jsbi.2000.4242] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The prion protein undergoes a profound conformational change when the cellular isoform (PrP(C)) is converted into the disease-causing form (PrP(Sc)). Limited proteolysis of PrP(Sc) produces PrP 27-30, which readily polymerizes into amyloid. To study the relationship between PrP amyloid and infectivity, we employed organic solvents that perturb protein conformation. Hexafluoro-2-propanol (HFIP), which promotes alpha-helix formation, modified the ultrastructure of PrP amyloid and decreased the beta-sheet content as well as prion infectivity. HFIP reversibly decreased the binding of Congo red dye to the PrP amyloid rods while inactivation of prion infectivity was irreversible. In contrast, 1,1,1-trifluoro-2-propanol (TFIP) did not inactivate prion infectivity but like HFIP, TFIP did alter the morphology of the rods and abolished Congo red binding. Solubilization using various solvents and detergents produced monomeric and dimeric PrP that lacked infectivity. Proteinase K resistance of detergent-treated PrP 27-30 showed no correlation with scrapie infectivity. Our results separate prion infectivity from the amyloid properties of PrP 27-30 and underscore the dependence of prion infectivity on PrP(Sc) conformation. These findings also demonstrate that the specific beta-sheet-rich structures required for prion infectivity can be differentiated from those required for amyloid formation.
Collapse
Affiliation(s)
- H Wille
- Departments of Neurology, Institute for Neurodegenerative Diseases, San Francisco, California, 94143, USA
| | | | | |
Collapse
|
25
|
Leontides S, Psychas V, Argyroudis S, Giannati-Stefanou A, Paschaleri-Papadopoulou E, Manousis T, Sklaviadis T. A survey of more than 11 years of neurologic diseases of ruminants with special reference to transmissible spongiform encephalopathies (TSEs) in Greece. JOURNAL OF VETERINARY MEDICINE. B, INFECTIOUS DISEASES AND VETERINARY PUBLIC HEALTH 2000; 47:303-9. [PMID: 10861199 DOI: 10.1046/j.1439-0450.2000.00348.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The first cases of scrapie were detected in Greece in a flock of sheep in October 1986. All the animals of the affected flock and all sheep in two flocks that were in contact were killed and buried. A systematic investigation of all available cases with signs indicating a neurological disease started in sheep and goats in late 1986, as well as in cattle in 1989. The investigation was based on clinical examination, necropsy or macroscopical examination of the brain and viscera, and histological examination of the brain in all animals except those with coenurosis. Histological examinations of specimens from the spinal cord and other tissues, and if considered necessary bacteriological, toxicological and serological examinations were also carried out. In October 1997, scrapie was diagnosed in sheep of a second flock (a mixed flock of sheep and goats), grazing in a pasture close to the place where scrapie was initially detected. All animals of the second flock were also killed and buried. Diagnosis in the first flock was based on clinical signs and histological lesions, and in the second immunoblotting was also used. Distinctive lesions of scrapie were found in the brain and/or the spinal cord of eight sheep with clinical signs from the two flocks. The lesions were revealed in the brain stem and/or in the cervical spinal cord, and tended to be symmetrical. In one sheep, severe lesions in the cortex of cerebral hemispheres and of the cerebellum were also found. In the brain of two sheep from the second flock the pathological isoform of PrP protein was detected. Despite the eradication scheme applied, scrapie in sheep reappeared after 11 years in a place close to where it occurred initially. This may indicate that the effectiveness of the eradication scheme implemented was not adequate and additional approaches may be needed.
Collapse
Affiliation(s)
- S Leontides
- Laboratory of Pathology, Faculty of Veterinary Medicine, Aristotle University, Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
26
|
Manousis T, Sachsamanoglou M, Toumazos P, Verghese-Nikolakaki S, Papadopoulos O, Sklaviadis T. Western blot detection of PrP(Sc)in Cyprus sheep with natural scrapie. Vet J 2000; 159:270-3. [PMID: 10775472 DOI: 10.1053/tvjl.1999.0437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- T Manousis
- Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
27
|
Shaked GM, Fridlander G, Meiner Z, Taraboulos A, Gabizon R. Protease-resistant and detergent-insoluble prion protein is not necessarily associated with prion infectivity. J Biol Chem 1999; 274:17981-6. [PMID: 10364247 DOI: 10.1074/jbc.274.25.17981] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PrPSc, an abnormal isoform of PrPC, is the only known component of the prion, an agent causing fatal neurodegenerative disorders such as bovine spongiform encephalopathy (BSE) and Creutzfeldt-Jakob disease (CJD). It has been postulated that prion diseases propagate by the conversion of detergent-soluble and protease-sensitive PrPC molecules into protease-resistant and insoluble PrPSc molecules by a mechanism in which PrPSc serves as a template. We show here that the chemical chaperone dimethyl sulfoxide (Me2SO) can partially inhibit the aggregation of either PrPSc or that of its protease-resistant core PrP27-30. Following Me2SO removal by methanol precipitation, solubilized PrP27-30 molecules aggregated into small and amorphous structures that did not resemble the rod configuration observed when scrapie brain membranes were extracted with Sarkosyl and digested with proteinase K. Interestingly, aggregates derived from Me2SO-solubilized PrP27-30 presented less than 1% of the prion infectivity obtained when the same amount of PrP27-30 in rods was inoculated into hamsters. These results suggest that the conversion of PrPC into protease-resistant and detergent-insoluble PrP molecules is not the only crucial step in prion replication. Whether an additional requirement is the aggregation of newly formed proteinase K-resistant PrP molecules into uniquely structured aggregates remains to be established.
Collapse
Affiliation(s)
- G M Shaked
- Department of Neurology, Hadassah University Hospital, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
28
|
Manuelidis L. Vaccination with an attenuated Creutzfeldt-Jakob disease strain prevents expression of a virulent agent. Proc Natl Acad Sci U S A 1998; 95:2520-5. [PMID: 9482918 PMCID: PMC19398 DOI: 10.1073/pnas.95.5.2520] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/1997] [Accepted: 01/07/1998] [Indexed: 02/06/2023] Open
Abstract
Although slow and persistent viruses often escape host defenses infection may be prevented by live vaccines. To determine whether an attenuated "slow" strain of the Creutzfeldt-Jakob disease agent (SY) could block expression of a virulent "fast" strain (FU), outbred CD-1 mice were inoculated intracerebrally with low infectious doses of SY and challenged 80 days later with higher doses of FU. For comparison, the same SY and FU samples were inoculated in two parallel control groups. All 18 superinfected mice showed incubation times identical to those inoculated with only the SY strain, yielding clinical disease >110 days later than predicted for the FU strain. Neurological signs, such as scratching and an extended clinical phase, were also characteristic for SY but not FU infection. Moreover, the widespread cortical pathology of FU was not detectable in superinfected mice. Western blot analyses further showed no strain-specific differences in prion protein (PrP) band profiles for all experimental groups, although there was approximately 10-fold more protease-resistant PrP (PrP-res) in FU brains during terminal disease. In contrast, infectivity assays revealed an approximately 10,000-fold difference between SY and FU at terminal stages, indicating that PrP-res content does not correlate with infectivity. In summary, an attenuated strain of the Creutzfeldt-Jakob disease agent evokes substantial interference against a virulent agent. Because superinfected mice had little PrP-res just before the onset of clinical disease and retained abundant cellular PrP, cellular PrP was not the factor limiting FU replication. The mechanisms underlying SY interference are not understood but could be based on host recognition of foreign molecular features shared by this class of invasive agents involving antibody production, and possibly involve defective viral particles produced by attenuated variants.
Collapse
Affiliation(s)
- L Manuelidis
- Section of Neuropathology, Yale Medical School, 310 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|
29
|
Caughey B, Raymond GJ, Kocisko DA, Lansbury PT. Scrapie infectivity correlates with converting activity, protease resistance, and aggregation of scrapie-associated prion protein in guanidine denaturation studies. J Virol 1997; 71:4107-10. [PMID: 9094691 PMCID: PMC191566 DOI: 10.1128/jvi.71.5.4107-4110.1997] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Denaturation studies with guanidine HCl (GdnHCl) were performed to test the relationship between scrapie infectivity and properties of scrapie-associated prion protein (PrP(Sc)). Large GdnHCl-induced reductions in infectivity were associated with the irreversible elimination of both the proteinase K resistance and apparent self-propagating converting activity of PrP(Sc). In intermediate GdnHCl concentrations that stimulate converting activity and partially disaggregate PrP(Sc), both scrapie infectivity and converting activity were associated with residual partially protease-resistant multimers of PrP(Sc).
Collapse
Affiliation(s)
- B Caughey
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana 59840, USA
| | | | | | | |
Collapse
|
30
|
Lasmézas CI, Deslys JP, Robain O, Jaegly A, Beringue V, Peyrin JM, Fournier JG, Hauw JJ, Rossier J, Dormont D. Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science 1997; 275:402-5. [PMID: 8994041 DOI: 10.1126/science.275.5298.402] [Citation(s) in RCA: 439] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The agent responsible for transmissible spongiform encephalopathies (TSEs) is thought to be a malfolded, protease-resistant version (PrPres) of the normal cellular prion protein (PrP). The interspecies transmission of bovine spongiform encephalopathy (BSE) to mice was studied. Although all of the mice injected with homogenate from BSE-infected cattle brain exhibited neurological symptoms and neuronal death, more than 55 percent had no detectable PrPres. During serial passage, PrPres appeared after the agent became adapted to the new host. Thus, PrPres may be involved in species adaptation, but a further unidentified agent may actually transmit BSE.
Collapse
Affiliation(s)
- C I Lasmézas
- Commissariat à l'Energie Atomique, Service de Neurovirologie, DSV/DRM/SSA, B.P. 6, 60-68 avenue du General Leclerc, 92265 Fontenay-aux-Roses Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Riesner D, Kellings K, Post K, Wille H, Serban H, Groth D, Baldwin MA, Prusiner SB. Disruption of prion rods generates 10-nm spherical particles having high alpha-helical content and lacking scrapie infectivity. J Virol 1996; 70:1714-22. [PMID: 8627692 PMCID: PMC189995 DOI: 10.1128/jvi.70.3.1714-1722.1996] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An abnormal isoform of the prion protein (PrP) designated PrPSc is the major, or possibly the only, component of infectious prions. Structural studies of PrPSc have been impeded by its lack of solubility under conditions in which infectivity is retained. Among the many detergents examined, only treatment with the ionic detergent sodium dodecyl sulfate (SDS) or Sarkosyl followed by sonication dispersed prion rods which are composed of PrP 27-30, an N-terminally truncated form of PrPSc. After ultracentrifugation at 100,000 x g for 1 h, approximately 30% of the PrP 27-30 and scrapie infectivity were found in the supernatant, which was fractionated by sedimentation through 5 to 20% sucrose gradients. Near the top of the gradient, spherical particles with an observed sedimentation coefficient of approximately 6S, approximately 10 mm in diameter and composed of four to six PrP 27-30 molecules, were found. The spheres could be digested with proteinase K and exhibited little, if any, scrapie infectivity. When the prion rods were disrupted in SDS and the entire sample was fractionated by sucrose gradient centrifugation, a lipid-rich fraction at the meniscus composed of fragments of rods and heterogeneous particles containing high levels of prion infectivity was found. Fractions adjacent to the meniscus also contained spherical particles. Circular dichroism of the spheres revealed 60% alpha-helical content; addition of 25% acetonitrile induced aggregates high in beta sheet but remaining devoid of infectivity. Although the highly purified spherical oligomers of PrP 27-30 lack infectivity, they may provide an excellent substrate for determining conditions of renaturation under which prion particles regain infectivity.
Collapse
Affiliation(s)
- D Riesner
- Institut für Physikalische Biologie und Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Somerville RA, Dunn AJ. The association between PrP and infectivity in scrapie and BSE infected mouse brain. Arch Virol 1996; 141:275-89. [PMID: 8634020 DOI: 10.1007/bf01718399] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The structure of the scrapie agent remains unknown. However, scrapie infectivity tends to co-sediment with an infection specific fraction of the glycoprotein PrP (PrPSc) under conditions which solubilise the normal form of this protein (PrPc); accordingly, PrP has been proposed as a candidate component of the agent. To investigate this further we have been examining a new scrapie-related murine model in conjunction with established scrapie models. A bovine spongiform encephalopathy (BSE) derived murine model has short incubation periods, high infectivity titre and low amounts of PrP deposited in the brain. A membrane fraction from scrapie/BSE infected brain is solubilised with Sarkosyl at pH > or = 9.0. Most PrP is also solubilised. In models of the disease with little deposition of the PrP in the brain, this solubilisation step is particularly effective in reducing the amounts of PrP sedimented from brain extracts. Gradient centrifugation of the sedimented fraction shows further separation of infectivity and the residual PrP. It is concluded that at least some PrPSc in the brain need not be associated directly with infectious agents but is deposited in brain solely as a pathological product of infection. However, a residual sedimentable fraction contains PrP which may be a component of the agent.
Collapse
Affiliation(s)
- R A Somerville
- BBSRC & MRC Neuropathogenesis Unit, Institute for Animal Health, Edinburgh, U.K
| | | |
Collapse
|
34
|
Manuelidis L, Sklaviadis T, Akowitz A, Fritch W. Viral particles are required for infection in neurodegenerative Creutzfeldt-Jakob disease. Proc Natl Acad Sci U S A 1995; 92:5124-8. [PMID: 7761460 PMCID: PMC41861 DOI: 10.1073/pnas.92.11.5124] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Several models have been proposed for the infectious agents that cause human Creutzfeldt-Jakob disease (CJD) and sheep scrapie. Purified proteins and extracted nucleic acids are not infectious. To further identify the critical molecular components of the CJD agent, 120S infectious material with reduced prion protein (PrP) was treated with guanidine hydrochloride or SDS. Particulate and soluble components were then separated by centrifugation and molecularly characterized. Conditions that optimally solubilized residual PrP and/or nucleic acid-protein complexes were used to produce subfractions that were assayed for infectivity. All controls retained > 90% of the 120S titer (approximately 15% of that in total brain) but lost > 99.5% of their infectivity after heat-SDS treatment (unlike scrapie fractions enriched for PrP). Exposure to 1% SDS at 22 degrees C produced particulate nucleic acid-protein complexes that were almost devoid of host PrP. These sedimenting complexes were as infectious as the controls. In contrast, when such complexes were solubilized with 2.5 M guanidine hydrochloride, the infectious titer was reduced by > 99.5%. Sedimenting PrP aggregates with little nucleic acid and no detectable nucleic acid-binding proteins had negligible infectivity, as did soluble but multimeric forms of PrP. These data strongly implicate a classical viral structure, possibly with no intrinsic PrP, as the CJD infectious agent. CJD-specific protective nucleic acid-binding protein(s) have already been identified in 120S preparations, and preliminary subtraction studies have revealed several CJD-specific nucleic acids. Such viral candidates deserve more attention, as they may be of use in preventing iatrogenic CJD and in solving a fundamental mystery.
Collapse
|
35
|
Priola SA, Caughey B, Wehrly K, Chesebro B. A 60-kDa prion protein (PrP) with properties of both the normal and scrapie-associated forms of PrP. J Biol Chem 1995; 270:3299-305. [PMID: 7852415 DOI: 10.1074/jbc.270.7.3299] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Scrapie is a transmissible spongiform encephalopathy of sheep and other mammals in which disease appears to be caused by the accumulation of an abnormal form of a host protein, prion protein (PrP), in the brain and other tissues. The process by which the normal protease-sensitive form of PrP is converted into the abnormal protease-resistant form is unknown. Several hypotheses predict that oligomeric forms of either the normal or abnormal PrP may act as intermediates in the conversion process. We have now identified a 60-kDa PrP derived from hamster PrP expressed in murine neuroblastoma cells. Peptide mapping studies provided evidence that the 60-kDa PrP was composed solely of PrP and, based on its molecular mass, appeared to be a PrP dimer. The 60-kDa PrP was not dissociated under several harsh denaturing conditions, which indicated that it was covalently linked. It was similar to the disease-associated form of PrP in that it formed large aggregates. However, it resembled the normal form of PrP in that it was sensitive to proteinase K and had a short metabolic half-life. The 60-kDa PrP, therefore, had characteristics of both the normal and disease-associated forms of PrP. Formation and aggregation of the 60-kDa hamster PrP occurs in uninfected mouse neuroblastoma cells, which suggests that hamster PrP has a predisposition to aggregate even in the absence of scrapie infectivity. Similar 60-kDa PrP bands were identified in scrapie-infected hamster brain but not in uninfected brain. Therefore, a 60-kDa molecule might participate in the scrapie-associated conversion of protease-sensitive PrP to protease-resistant PrP.
Collapse
Affiliation(s)
- S A Priola
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, Montana 59840
| | | | | | | |
Collapse
|
36
|
Affiliation(s)
- L Manuelidis
- Yale University Medical School, New Haven, Connecticut
| |
Collapse
|
37
|
Narang HK. Evidence that homologous ssDNA is present in scrapie, Creutzfeldt-Jakob disease, and bovine spongiform encephalopathy. Ann N Y Acad Sci 1994; 724:314-26. [PMID: 8030952 DOI: 10.1111/j.1749-6632.1994.tb38922.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Homogenized brain tissue from scrapie-infected hamsters and uninfected hamsters was subjected to sub-cellular fractionation to isolate nemavirus. Nucleic acid was extracted from these fractions, which also contained mitochondria. Agarose-gel electrophoresis revealed a band corresponding to the size of circular hamster mtDNA in both infected and uninfected samples, but slower migrating bands were observed only in samples from scrapie-infected brain. A single band of ssDNA corresponding to about 1.2 kb was purified by alkaline gel electrophoresis from the nucleic acid content of the enriched preparations of nemavirus. The ssDNA was synthesized into double-stranded DNA, cloned and sequenced. An unusual palindromic six base TACGTA repeat sequence was observed suggesting that 1.2 kb molecules consist of multiple copies of (TACGTA)n spaced along the length of the ssDNA with a preceding sequence TATATA. The comparison of the nucleotide sequence of the inserted DNA to the GenBank nucleotide database revealed no significant homology to other sequences. A probe prepared from the Nar 50 clone was hybridized against DNA prepared from scrapie, CJD, BSE and normal brains under various salt and temperature conditions. The probe reacted with a band of about 1.2 kb in scrapie, CJD and BSE but not with control normal DNA specimens, thereby confirming the presence of ssDNA in these SEs. The results suggest an intimate association between the presence of nemavirus particles and scrapie, CJD and BSE.
Collapse
Affiliation(s)
- H K Narang
- Public Health Laboratory, Newcastle General Hospital, Newcastle-Upon-Tyne, United Kingdom
| |
Collapse
|
38
|
Manuelidis L. Dementias, neurodegeneration, and viral mechanisms of disease from the perspective of human transmissible encephalopathies. Ann N Y Acad Sci 1994; 724:259-81. [PMID: 8030947 DOI: 10.1111/j.1749-6632.1994.tb38916.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Our transmission experiments with human CJD emphasize the centrality of an exogenous infectious pathogen that can exist in symbiosis with its host for extended periods. Many latent or persistent viruses can cause neurodegenerative disease and may have a role in late onset dementias. There are reasons to believe that CJD infections may share properties with some of these latent viruses in causing dementia, and several retroviral mechanisms may be operative in CJD. In order to clarify viral-like attributes of the CJD agent we have closely followed infectivity and find the following: 1) the CJD agent has a virus-like size and density, and is biochemically separable from most host-encoded prion protein (PrP); 2) Endogenous retroviral IAP RNA sequences of 5,000 bases, as well as several gag-like nucleic acid binding proteins, co-purify with infectivity in preparations treated with high concentrations of anionic detergents and exhaustive nuclease digestion. They signify the purification of true viral cores rather than aggregation artifacts, and diminish claims that there are no protected nucleic acids of > 50 bases in highly purified infectious preparations; 3) In established hamster CJD, temporal studies show the agent has an effective doubling time of approximately 7.5 days in brain, consistent with complex host-viral interactions common to slow viral infections; 4) PrP-res does not correspond to titered levels of infectivity either in a biochemical or an in vivo setting but may function as a viral receptor that can modulate disease expression. Interestingly, functional changes in glial cells occur earlier than PrP-res changes, and indicate an important role for glial cells in evolving infections; 5) Human-rodent transmission studies suggest that CJD, or a CJD-like variant can be a common but latent infection of humans, with relatively infrequent expression of neurological disease. Susceptibility to disease can rest on host attributes and possibly age-related co-factors. Nonetheless, fundamental viral principles are also operative. Agent strain variants, viral burden, and the routes of infection are critical parameters for latency and disease expression. The properties described above have led me to return to the inclusion of CJD (and scrapie) in the panorama of conventional slow viral infections of the brain, as originally proposed by Sigurdsson. Identification of virus-specific molecules are essential for elucidating the role of these agents in the spectrum of human dementias.
Collapse
Affiliation(s)
- L Manuelidis
- Section of Neuropathology, Yale University Medical School, New Haven, Connecticut 06510
| |
Collapse
|
39
|
Oesch B, Jensen M, Nilsson P, Fogh J. Properties of the scrapie prion protein: quantitative analysis of protease resistance. Biochemistry 1994; 33:5926-31. [PMID: 7910036 DOI: 10.1021/bi00185a033] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The disease-specific isoform of the prion protein (PrPSc) is an essential part of the infectious particle which causes spongiform degeneration in various mammalian species. PrPSc differs from PrP of normal animals (PrPc) by its relative protease resistance. The physical nature of this difference is still unknown. We analyzed the protease resistance of PrPSc quantitatively using an enzyme-linked immunofiltration assay. PrPSc was rendered completely protease-sensitive at alkaline pH or in > 1.5 M guanidinium thiocyanate (GdnSCN). Denaturation in 4 M GdnSCN completely abolished the protease resistance of PrPSc within 15 min, while denaturation in 7.2 M urea showed a slower time course. In the presence of ethanol, PrPSc was protected from denaturation by GdnSCN or alkaline pH. Denaturation curves were used to calculate the free energy (delta GD) as a function of different denaturant concentrations. Linear regression of delta GD values was used to extrapolate the free energy in the absence of denaturants (delta GH2O), yielding similar values (delta GH2O,GdnSCN = -2.3 kcal/mol; delta GH2O,urea = -3.1 kcal/mol). The linear relationship between delta GD and the denaturant concentration is suggestive of a two-state model involving the conformational change of a single protein domain. This is also reflected in the small number of side chains (11.6) additionally exposed to the solvent upon conversion of PrPSc to its protease-sensitive isoform. Our results suggest that only minor rearrangements of the structure of PrP are needed to abolish the protease resistance of PrPSc.
Collapse
Affiliation(s)
- B Oesch
- Brain Research Institute, University of Zürich, Switzerland
| | | | | | | |
Collapse
|
40
|
Abstract
Scrapie was thought for many years to be caused by a virus. Enriching fractions from Syrian hamster (SHa) brain for scrapie infectivity led to the discovery of the prion protein (PrP). To date, no scrapie-specific nucleic acid has been found. As well as scrapie, prion diseases include bovine spongiform encephalopathy (BSE) of cattle, as well as Creutzfeldt-Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker syndrome (GSS) of humans. Transgenic (Tg) mice expressing both SHa and mouse (Mo) PrP genes were used to probe the molecular basis of the species barrier and the mechanism of scrapie prion replication. The prion inoculum was found to dictate which prions are synthesized de novo, even though the cells express both PrP genes. Discovery of mutations in the PrP genes of humans with GSS and familial CJD established that prion diseases are both genetic and infectious. Tg mice expressing MoPrP with the GSS point mutation spontaneously develop neurologic dysfunction, spongiform degeneration and astrocytic gliosis. Inoculation of brain extracts prepared from these Tg(MoPrP-P101L) mice produced neurodegeneration in many of the recipient animals after prolonged incubation times. These and other results suggest that prions are devoid of foreign nucleic acid and are thus different from viruses and viroids. Studies on the structure of PrPSc and PrPC suggest that the difference is conformational. Whether one or more putative alpha-helices in PrPC are converted into beta-sheets during synthesis of PrPSc is unknown. Distinct prion isolates or 'strains' exhibit different patterns of PrPSc accumulation which are independent of incubation times. Whether variations in PrPSc conformation are responsible for prion diversity remains to be established. Prion studies have given new insights into the etiologies of infectious, sporadic and inherited degenerative diseases.
Collapse
Affiliation(s)
- S B Prusiner
- Department of Neurology, University of California, San Francisco 94143
| |
Collapse
|
41
|
Akowitz A, Sklaviadis T, Manuelidis L. Endogenous viral complexes with long RNA cosediment with the agent of Creutzfeldt-Jakob disease. Nucleic Acids Res 1994; 22:1101-7. [PMID: 8152913 PMCID: PMC307936 DOI: 10.1093/nar/22.6.1101] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A class of viruslike agents that induces Creutzfeldt-Jakob Disease (CJD) and scrapie remains undefined at the molecular level. Several investigators believe this infectious agent is constituted by a single host protein or 'prion', and have emphasized data that would seem to exclude the presence of any viral nucleic acids. However, more rigorous evaluations in scrapie have shown reasonably abundant nucleic acids. Additionally, in highly purified 120S CJD preparations that have been treated with nucleases, RNAs as long as 6,000 bases have been detected. Few nucleic acids have been characterized in either scrapie or CJD, but previous cloning experiments delineated relatively short LTR regions of the endogenous IAP retrovirus in 120S CJD preparations. We therefore used specific primers encompassing the entire IAP genome to test for the presence of long viral RNAs, and here show approximately 5,000 contiguous bases of the IAP RNA genome can be recovered from reasonable amounts of starting brain. The 3' env region of IAP is comparably truncated in CJD and normal preparations, and we find no evidence for IAP transduction of CJD-specific sequences. Because IAP cores can coencapsidate unrelated sequences, and are unusually resistant to physical and chemical treatments, it was relevant to find if cosedimenting cognate proteins of the IAP core, such as gag, could be detected. The predicted approximately 65 kd acidic gag protein, showing appropriate antigenic and nucleic acid binding features, was apparent in both one and 2-D Western blots. This data strongly indicates specific viral complexes cofractionate with the CJD agent. Interestingly, these nuclease resistant IAPs do not appear to be in morphologically recognizable 'R' particles. This cosedimenting viral assembly therefore provides a paradigm for non-particulate CJD complexes in infectious preparations. In developing strategies to identify a CJD specific sequence, cosedimenting IAPs can be used to assess the quality, length and recovery of RNAs extracted from highly resistant viral complexes.
Collapse
Affiliation(s)
- A Akowitz
- Yale Medical School, New Haven, CT 06510
| | | | | |
Collapse
|
42
|
Narang HK. Molecular cloning of single-stranded DNA purified from scrapie-infected hamster brain. RESEARCH IN VIROLOGY 1993; 144:375-87. [PMID: 8284515 DOI: 10.1016/s0923-2516(06)80053-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Homogenized normal and scrapie-infected hamster brains were subjected to subcellular fractionation. A single band of ssDNA corresponding to about 1.2 kb was purified by alkaline gel electrophoresis from the nucleic acid content of enriched preparations of mitochondria/tubulofilamentous particles. The ssDNA was synthesized into double-stranded DNA using Taq polymerase with four dNTP for extension. The cDNA synthesized was inserted in M13mp10, cloned and sequenced. An unusual palindromic six-base TACGTA repeat sequence was obtained and confirmed by an independent automated pathway and by cutting with a specific restriction enzyme. Comparison of the nucleotide sequence of the inserted DNA with the GenBank nucleotide database revealed no significant homology with those sequences. A probe prepared from the Nar 50 clone hybridized with the scrapie DNA band of about 1.2 kb noted above; however, no hybridization was observed with normal DNA, thus confirming the presence of ssDNA in scrapie. The presence of palindromic sequences in the scrapie genome could explain why many previous searches have revealed no evidence for a scrapie-specific nucleic acid.
Collapse
Affiliation(s)
- H K Narang
- Public Health Laboratory, General Hospital, Newcastle Upon Tyne, UK
| |
Collapse
|
43
|
Akowitz A, Manuelidis EE, Manuelidis L. Protected endogenous retroviral sequences copurify with infectivity in experimental Creutzfeldt-Jakob disease. Arch Virol 1993; 130:301-16. [PMID: 8517790 DOI: 10.1007/bf01309662] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Scrapie and Creutzfeldt-Jakob disease (CJD) are caused by infectious agents that are defined phenomenologically. No agent-specific molecules or particles have been identified. Biological properties, such as exponential agent replication and strain variation, as well as physical characteristics of infectivity indicate a protected viral structure. A host membrane glycoprotein of 34 kDa ("prion" protein) that aggregates at end stages of disease is clearly important in pathology and susceptibility to infection, but has no demonstrable infectivity in any purified or recombinant form. Thus a characterization of more viral-like molecules is important. In order to identify viral-like nucleic acids we previously developed methods to substantially purify the human CJD agent from experimentally infected hamster brains, and demonstrated selected retroviral-like LTR bands at pg levels that were insufficient for sequencing. To further define these and other viral-like sequences we cloned nucleic acids from highly infectious CJD fractions, and tested the efficacy of our methods using a selected retroviral probe. RNA extracted from an infectious 120 S Gaussian peak, which is reproducibly purified approximately 100,000 fold with respect to starting nucleic acids, and contains approximately 20% of the initial brain infectivity, was used to generate a cDNA library in a sequence independent amplification strategy for low levels of RNA (< 6 ng). Reconstituted strong stop experiments using several retroviral tRNA primers had indicated that Syrian hamster IAP (SHIAP) sequences should be present in both CJD and uninfected control fractions. Because SHIAP particles are extremely resistant to denaturation, their representation in a cDNA library would imply adequate extraction of other protected RNAs of viral origin. At least 900 bases of the Syrian hamster retroviral IAP genome were unambiguously identified in the cDNA library, and in independent PCR walks with selected primers, all of which were based on our cloned sequences. Sequencing confirmed the presence of protected LTR and adjacent retroviral motifs. Because these sequences were also present in control preparations they may represent normal endogenous viral contaminants that cosediment with infectivity in size and density gradients. On the other hand, LTRs can drive the expression of many diverse sequences, and it remains to be seen if CJD specific sequences are either transduced, or copackaged with, protected IAP complexes. The effective extraction and amplification of highly protected SHIAP nucleic acids of significant length sets the stage for identifying additional protected viral elements that may specify the CJD agent.
Collapse
Affiliation(s)
- A Akowitz
- Yale Medical School, New Haven, Connecticut
| | | | | |
Collapse
|
44
|
Manuelidis EE, Manuelidis L. A transmissible Creutzfeldt-Jakob disease-like agent is prevalent in the human population. Proc Natl Acad Sci U S A 1993; 90:7724-8. [PMID: 8356076 PMCID: PMC47215 DOI: 10.1073/pnas.90.16.7724] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The etiology of most human dementias is unknown. Creutzfeldt-Jakob disease (CJD), a relatively uncommon human dementia, is caused by a transmissible virus-like agent. Molecular markers that are specific for the agent have not yet been defined. However, the infectious disease can be transmitted to rodents from both brain and infected buffy coat (blood) samples. To determine whether human CJD infections are more widespread than is apparent from the low incidence of neurological disease, we attempted to transmit CJD from buffy coat samples of 30 healthy volunteers who had no family history of dementing illness. Primary transmissions from 26 of 30 individuals produced CJD-like spongiform changes in the brains of recipient hamsters at 200-500 days postinoculation. This positive evidence of viremia was found for individuals in all age groups (20-30, 40-50, and 61-71 years old), whereas 12 negatively scored brain samples failed to produce similar changes in hamsters observed for > 900 days in the same setting. We suggest that a CJD agent endemically infects humans but only infrequently produces an infectious dementia. Disease expression is likely to be influenced by several host factors in combination with viral variants that have altered neurovirulence.
Collapse
|
45
|
Sklaviadis T, Akowitz A, Manuelidis EE, Manuelidis L. Nucleic acid binding proteins in highly purified Creutzfeldt-Jakob disease preparations. Proc Natl Acad Sci U S A 1993; 90:5713-7. [PMID: 8516321 PMCID: PMC46792 DOI: 10.1073/pnas.90.12.5713] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The nature of the infectious agent causing human Creutzfeldt-Jakob disease (CJD), a slowly progressive dementia, is controversial. As in scrapie, no agent-specific proteins or nucleic acids have been identified. However, biological features of exponential replication and agent strain variation, as well as physical size and density data, are most consistent with a viral structure--i.e., a nucleic acid-protein complex. It is often assumed that nuclease treatment, which does not reduce infectious titer, leaves no nucleic acids of > 50 bp. However, nucleic acids of 500-6000 bp can be extracted from highly purified infectious complexes with a mass of approximately 1.5 x 10(7) daltons. It was therefore germane to search for nucleic acid binding proteins that might protect an agent genome. We here use Northwestern blotting to show that there are low levels of nonhistone nucleic acid binding proteins in highly purified infectious 120S gradient fractions. Several nucleic acid binding proteins were clearly host encoded, whereas others were apparent only in CJD, but not in parallel preparations from uninfected brain. Small amounts of residual host Gp34 (prion protein) did not bind any 32P-labeled nucleic acid probes. Most of the minor "CJD-specific" proteins had an acidic pI, a characteristic of many viral core proteins. Such proteins deserve further study, as they probably contribute to unique properties of resistance described for these agents. It remains to be seen if any of these proteins are agent encoded.
Collapse
|
46
|
Katz JB, Pedersen JC, Jenny AL, Taylor WD. Assessment of western immunoblotting for the confirmatory diagnosis of ovine scrapie and bovine spongiform encephalopathy (BSE). J Vet Diagn Invest 1992; 4:447-9. [PMID: 1457549 DOI: 10.1177/104063879200400414] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- J B Katz
- National Veterinary Services Laboratories, US Department of Agriculture, Ames, IA 50010
| | | | | | | |
Collapse
|
47
|
Sasaki K, Tanaka K, Ito M, Isomura H, Horiuchi M, Ishiguro N, Shinagawa M. Biological activity of subfractions from scrapie-associated fibrils. Virus Res 1992; 23:241-51. [PMID: 1352653 DOI: 10.1016/0168-1702(92)90111-l] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Subfractions, a nucleic acid fraction and a PrP fraction consisting of PrP17-25, a core fragment of PrPsc, were prepared from the scrapie-associated fibril-enriched fraction from scapie-affected mouse brains. The nucleic acid fraction consisted mainly of variously fragmented DNA and no scrapie-specific nucleic acid was detected in the fraction by SDS polyacrylamide gel electrophoresis. To examine the biological activity, the nucleic acid fraction was either first introduced into mouse L-929 cells before or after nuclease treatments, then transfected cell lysates prepared 2 weeks later were inoculated into mice, or directly inoculated into mice with or without the PrP fraction. The PrP fraction alone was also inoculated into mice. Mice inoculated with the transfected cell lysates or with the nucleic acid fraction alone showed no scrapie signs during their lifespan or the observation period. While 60% of the mice inoculated with the PrP fraction alone and 67% of those inoculated with the fraction together with the nucleic acid fraction showed clinical signs of scrapie. A nucleic acid molecule bound covalently to PrP17-25 was not detected. The results obtained by the present procedures so far suggest scrapie infectivity to be associated with PrPsc, which does not contain any detectable scrapie-genome molecule as either free or covalently bound nucleic acid.
Collapse
Affiliation(s)
- K Sasaki
- Department of Veterinary Public Health, School of Veterinary Medicine, Obihiro University of Agriculture, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Narang HK. Scrapie-associated tubulofilamentous particles in human Creutzfeldt-Jakob disease. ACTA ACUST UNITED AC 1992; 143:387-95. [PMID: 1363619 DOI: 10.1016/s0923-2516(06)80131-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Scrapie-associated fibrils (SAF) were demonstrated by a simple negative staining method for electron microscopy from fresh and frozen brains with naturally occurring human Creutzfeldt-Jakob disease (CJD). The findings confirm that SAF occur as an internal part of a larger three-layer particle. The two outer coats of SAF can be disrupted by detergent alone or can be digested in two stages by a combination of proteolytic enzymes and subsequent treatment with DNase and mung bean nuclease. Examination of thin sections from the cerebral cortex of brains from patients with CJD revealed the presence of 26-30-nm diameter tubulofilamentous particles, identical to those previously described in natural scrapie of sheep and bovine spongiform encephalopathy and also in experimentally induced scrapie in mice and hamsters and CJD-infected mice and chimpanzees. Thus, it would appear that the particles are not contaminants passaged in experimental animals.
Collapse
Affiliation(s)
- H K Narang
- Public Health Laboratory, Newcastle General Hospital, UK
| |
Collapse
|
49
|
Affiliation(s)
- S B Prusiner
- Department of Neurology, University of California, San Francisco 94143
| |
Collapse
|
50
|
Narang HK. Relationship of protease-resistant protein, scrapie-associated fibrils and tubulofilamentous particles to the agent of spongiform encephalopathies. ACTA ACUST UNITED AC 1992; 143:381-6. [PMID: 1363618 DOI: 10.1016/s0923-2516(06)80130-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tubulofilamentous particles and scrapie-associated fibrils (SAF) are ultrastructural markers, while protease-resistant protein (PrP) is a molecular biological marker for all spongiform encephalopathies. Review of all published work has suggested that PrP molecules aggregate to form a three-dimensional SAF. Further reports have suggested that a single-stranded DNA wraps round SAF and acquires an outer protein coat to form tubulofilamentous particles. As incubation period increases in the infected animals, larger amounts of PrP molecules are committed to form SAF, interfering with the normal supply of PrP to cell membranes which become disrupted and eventually fragment, resulting in vacuoles typical of those found in spongiform encephalopathies.
Collapse
Affiliation(s)
- H K Narang
- Public Health Laboratory, Newcastle General Hospital, UK
| |
Collapse
|