1
|
Bendahmane S, Follo M, Zhang F, Linhardt RJ. Towards Cell-Permeable Hepatitis B Virus Core Protein Variants as Potential Antiviral Agents. Microorganisms 2024; 12:1776. [PMID: 39338451 PMCID: PMC11434381 DOI: 10.3390/microorganisms12091776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatitis B virus (HBV) infection remains a major health threat with limited treatment options. One of various new antiviral strategies is based on a fusion of Staphylococcus aureus nuclease (SN) with the capsid-forming HBV core protein (HBc), termed coreSN. Through co-assembly with wild-type HBc-subunits, the fusion protein is incorporated into HBV nucleocapsids, targeting the nuclease to the encapsidated viral genome. However, coreSN expression was based on transfection of a plasmid vector. Here, we explored whether introducing protein transduction domains (PTDs) into a fluorescent coreSN model could confer cell-penetrating properties for direct protein delivery into cells. Four PTDs were inserted into two different positions of the HBc sequence, comprising the amphiphilic translocation motif (TLM) derived from the HBV surface protein PreS2 domain and three basic PTDs derived from the Tat protein of human immunodeficiency virus-1 (HIV-1), namely Tat4, NP, and NS. To directly monitor the interaction with cells, the SN in coreSN was replaced with the green fluorescent protein (GFP). The fusion proteins were expressed in E. coli, and binding to and potential uptake by human cells was examined through flow cytometry and fluorescence microscopy. The data indicate PTD-dependent interactions with the cells, with evidence of uptake in particular for the basic PTDs. Uptake was enhanced by a triplicated Simian virus 40 (SV40) large T antigen nuclear localization signal (NLS). Interestingly, the basic C terminal domain of the HBV core protein was found to function as a novel PTD. Hence, further developing cell-permeable viral capsid protein fusions appears worthwhile.
Collapse
Affiliation(s)
- Sanaa Bendahmane
- Private Faculty of Health Professions and Technologies, Private University of Marrakech, Marrakech 42312, Morocco
| | - Marie Follo
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
2
|
Hou L, Zhao J, Cai L, Jin L, Liu B, Li S, Yang J, Ji T, Li S, Shi L, Shen B, Yu H, Wang Y, Cai X. HBV PreC interacts with SUV39H1 to induce viral replication by blocking the proteasomal degradation of viral polymerase. J Med Virol 2024; 96:e29607. [PMID: 38628076 DOI: 10.1002/jmv.29607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/13/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Hepatitis B e antigen (HBeAg) seropositivity during the natural history of chronic hepatitis B (CHB) is known to coincide with significant increases in serum and intrahepatic HBV DNA levels. However, the precise underlying mechanism remains unclear. In this study, we found that PreC (HBeAg precursor) genetic ablation leads to reduced viral replication both in vitro and in vivo. Furthermore, PreC impedes the proteasomal degradation of HBV polymerase, promoting viral replication. We discovered that PreC interacts with SUV39H1, a histone methyltransferase, resulting in a reduction in the expression of Cdt2, an adaptor protein of CRL4 E3 ligase targeting HBV polymerase. SUV39H1 induces H3K9 trimethylation of the Cdt2 promoter in a PreC-induced manner. CRISPR-mediated knockout of endogenous SUV39H1 or pharmaceutical inhibition of SUV39H1 decreases HBV loads in the mouse liver. Additionally, genetic depletion of Cdt2 in the mouse liver abrogates PreC-related HBV replication. Interestingly, a negative correlation of intrahepatic Cdt2 with serum HBeAg and HBV DNA load was observed in CHB patient samples. Our study thus sheds light on the mechanistic role of PreC in inducing HBV replication and identifies potential therapeutic targets for HBV treatment.
Collapse
Affiliation(s)
- Lidan Hou
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Jie Zhao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Liuxin Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Boqiang Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Shijie Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Jin Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tong Ji
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Songyi Li
- Animal Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Shi
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Bo Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| |
Collapse
|
3
|
Yang R, Ko YH, Li F, Lokareddy RK, Hou CFD, Kim C, Klein S, Antolínez S, Marín JF, Pérez-Segura C, Jarrold MF, Zlotnick A, Hadden-Perilla JA, Cingolani G. Structural basis for nuclear import of hepatitis B virus (HBV) nucleocapsid core. SCIENCE ADVANCES 2024; 10:eadi7606. [PMID: 38198557 PMCID: PMC10780889 DOI: 10.1126/sciadv.adi7606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Nuclear import of the hepatitis B virus (HBV) nucleocapsid is essential for replication that occurs in the nucleus. The ~360-angstrom HBV capsid translocates to the nuclear pore complex (NPC) as an intact particle, hijacking human importins in a reaction stimulated by host kinases. This paper describes the mechanisms of HBV capsid recognition by importins. We found that importin α1 binds a nuclear localization signal (NLS) at the far end of the HBV coat protein Cp183 carboxyl-terminal domain (CTD). This NLS is exposed to the capsid surface through a pore at the icosahedral quasi-sixfold vertex. Phosphorylation at serine-155, serine-162, and serine-170 promotes CTD compaction but does not affect the affinity for importin α1. The binding of 30 importin α1/β1 augments HBV capsid diameter to ~620 angstroms, close to the maximum size trafficable through the NPC. We propose that phosphorylation favors CTD externalization and prompts its compaction at the capsid surface, exposing the NLS to importins.
Collapse
Affiliation(s)
- Ruoyu Yang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ying-Hui Ko
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ravi K. Lokareddy
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Chun-Feng David Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Christine Kim
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, IN 47405, USA
| | - Shelby Klein
- Department of Chemistry, Indiana University, Bloomington, Indiana, IN 47405, USA
| | - Santiago Antolínez
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Juan F. Marín
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Carolina Pérez-Segura
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana, IN 47405, USA
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, IN 47405, USA
| | | | - Gino Cingolani
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| |
Collapse
|
4
|
Mbelle M, Dusheiko G. HBV eradication from the host: Current understanding and challenges. Clin Liver Dis (Hoboken) 2024; 23:e0188. [PMID: 38841198 PMCID: PMC11152883 DOI: 10.1097/cld.0000000000000188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 06/07/2024] Open
Abstract
1_a435pedtKaltura.
Collapse
|
5
|
Diao Z, Luo H, Li Y, Ma Z, Tang F, Cao B, Feng Y, Mo Z, Gao H. The hepatitis B virus pre-core protein p22 suppresses TNFα-induced apoptosis by regulating the NF-κB pathway. Am J Transl Res 2023; 15:5184-5196. [PMID: 37692946 PMCID: PMC10492049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/15/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVE Cell apoptosis is strongly associated with hepatocellular carcinoma (HCC) progress. Thus, gaining a comprehensive understanding of the virus interfering with the apoptotic process is important for the development of effective anti-tumor therapies. The objective of this study is to explore the potential involvement of HBeAg-p22 (HBV-p22) in TNFα-induced apoptosis. METHODS Protein expression was detected using western blot. Cell viability and apoptosis were assessed by employing Cell Counting Kit-8 (CCK8) and flow cytometry, respectively. Evaluation of protein-protein interactions was accomplished through co-immunoprecipitation and glutathione-S-transferase (GST) pull-down assays. RESULTS In this study, it was shown that HBV-p22 inhibited apoptosis of human hepatoma cell lines after tumor necrosis factor-alpha (TNF-α) stimulation. Mechanistically, HBV-p22 suppressed Jun N-terminal kinases (JNK) signaling and enhanced nuclear factor kappa-B (NF-κB) signaling. Moreover, HBV-p22 interacted with I-kappa B kinase α (IKKα) and increased its phosphorylation. CONCLUSIONS Collectively, HBV-p22, whereby the mechanism contributing to anti-apoptotic effect was regulation of the NF-κB pathway via enhancing the phosphorylation of IKKα.
Collapse
Affiliation(s)
- Zhihong Diao
- Department of Laboratory Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanning 530011, Guangxi, P. R. China
| | - Huan Luo
- Department of Laboratory Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanning 530011, Guangxi, P. R. China
| | - Ying Li
- Department of Laboratory Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanning 530011, Guangxi, P. R. China
| | - Zhenli Ma
- Department of Laboratory Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanning 530011, Guangxi, P. R. China
| | - Fangmei Tang
- Department of Laboratory Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanning 530011, Guangxi, P. R. China
| | - Buqing Cao
- Department of Laboratory Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanning 530011, Guangxi, P. R. China
| | - Yuqing Feng
- Department of Laboratory Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanning 530011, Guangxi, P. R. China
| | - Zhongsong Mo
- Department of Laboratory Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanning 530011, Guangxi, P. R. China
| | - Hongjun Gao
- Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanning 530011, Guangxi, P. R. China
| |
Collapse
|
6
|
Romero S, Unchwaniwala N, Evans EL, Eliceiri KW, Loeb DD, Sherer NM. Live Cell Imaging Reveals HBV Capsid Translocation from the Nucleus To the Cytoplasm Enabled by Cell Division. mBio 2023; 14:e0330322. [PMID: 36809075 PMCID: PMC10127671 DOI: 10.1128/mbio.03303-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/17/2023] [Indexed: 02/23/2023] Open
Abstract
Hepatitis B virus (HBV) capsid assembly is traditionally thought to occur predominantly in the cytoplasm, where the virus gains access to the virion egress pathway. To better define sites of HBV capsid assembly, we carried out single cell imaging of HBV Core protein (Cp) subcellular trafficking over time under conditions supporting genome packaging and reverse transcription in Huh7 hepatocellular carcinoma cells. Time-course analyses including live cell imaging of fluorescently tagged Cp derivatives showed Cp to accumulate in the nucleus at early time points (~24 h), followed by a marked re-distribution to the cytoplasm at 48 to 72 h. Nucleus-associated Cp was confirmed to be capsid and/or high-order assemblages using a novel dual label immunofluorescence strategy. Nuclear-to-cytoplasmic re-localization of Cp occurred predominantly during nuclear envelope breakdown in conjunction with cell division, followed by strong cytoplasmic retention of Cp. Blocking cell division resulted in strong nuclear entrapment of high-order assemblages. A Cp mutant, Cp-V124W, predicted to exhibit enhanced assembly kinetics, also first trafficked to the nucleus to accumulate at nucleoli, consistent with the hypothesis that Cp's transit to the nucleus is a strong and constitutive process. Taken together, these results provide support for the nucleus as an early-stage site of HBV capsid assembly, and provide the first dynamic evidence of cytoplasmic retention after cell division as a mechanism underpinning capsid nucleus-to-cytoplasm relocalization. IMPORTANCE Hepatitis B virus (HBV) is an enveloped, reverse-transcribing DNA virus that is a major cause of liver disease and hepatocellular carcinoma. Subcellular trafficking events underpinning HBV capsid assembly and virion egress remain poorly characterized. Here, we developed a combination of fixed and long-term (>24 h) live cell imaging technologies to study the single cell trafficking dynamics of the HBV Core Protein (Cp). We demonstrate that Cp first accumulates in the nucleus, and forms high-order structures consistent with capsids, with the predominant route of nuclear egress being relocalization to the cytoplasm during cell division in conjunction with nuclear membrane breakdown. Single cell video microscopy demonstrated unequivocally that Cp's localization to the nucleus is constitutive. This study represents a pioneering application of live cell imaging to study HBV subcellular transport, and demonstrates links between HBV Cp and the cell cycle.
Collapse
Affiliation(s)
- Sofia Romero
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nuruddin Unchwaniwala
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Edward L. Evans
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Daniel D. Loeb
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Padarath K, Deroubaix A, Kramvis A. The Complex Role of HBeAg and Its Precursors in the Pathway to Hepatocellular Carcinoma. Viruses 2023; 15:v15040857. [PMID: 37112837 PMCID: PMC10144019 DOI: 10.3390/v15040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Hepatitis B virus (HBV) is one of the seven known human oncogenic viruses and has adapted to coexist with a single host for prolonged periods, requiring continuous manipulation of immunity and cell fate decisions. The persistence of HBV infection is associated with the pathogenesis of hepatocellular carcinoma, and various HBV proteins have been implicated in promoting this persistence. The precursor of hepatitis e antigen (HBeAg), is translated from the precore/core region and is post-translationally modified to yield HBeAg, which is secreted in the serum. HBeAg is a non-particulate protein of HBV and can act as both a tolerogen and an immunogen. HBeAg can protect hepatocytes from apoptosis by interfering with host signalling pathways and acting as a decoy to the immune response. By evading the immune response and interfering with apoptosis, HBeAg has the potential to contribute to the hepatocarcinogenic potential of HBV. In particular, this review summarises the various signalling pathways through which HBeAg and its precursors can promote hepatocarcinogenesis via the various hallmarks of cancer.
Collapse
|
8
|
CRM1-spike-mediated nuclear export of hepatitis B virus encapsidated viral RNA. Cell Rep 2022; 38:110472. [PMID: 35263598 DOI: 10.1016/j.celrep.2022.110472] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/23/2022] [Accepted: 02/10/2022] [Indexed: 11/20/2022] Open
Abstract
Hepatitis B virus (HBV) is a global pathogen. We report here that the cellular CRM1 machinery can mediate nuclear export of entire HBV core (HBc) particles containing encapsidated viral RNAs. Two CRM1-mediated nuclear export signals (NESCRM1) cluster at the conformationally flexible spike tips of HBc particles. Mutant NESCRM1 capsids exhibit strongly reduced associations with CRM1 and nucleoporin358 in vivo. CRM1 and NXF1 machineries mediate nuclear export of HBc particles independently. Inhibition of nuclear export has pleiotropic consequences, including nuclear accumulation of HBc particles, a significant reduction of encapsidated viral RNAs in the cytoplasm but not in the nucleus, and barely detectable viral DNA. We hypothesize an HBV life cycle where encapsidation of the RNA pregenome can initiate early in the nucleus, whereas DNA genome maturation occurs mainly in the cytoplasm. We identified a druggable target for HBV by blocking its intracellular trafficking.
Collapse
|
9
|
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus and an important human pathogen. There are an estimated 296 million people in the world that are chronically infected by this virus, and many of them will develop severe liver diseases including hepatitis, cirrhosis and hepatocellular carcinoma (HCC). HBV is a small DNA virus that replicates via the reverse transcription pathway. In this review, we summarize the molecular pathways that govern the replication of HBV and its interactions with host cells. We also discuss viral and non-viral factors that are associated with HBV-induced carcinogenesis and pathogenesis, as well as the role of host immune responses in HBV persistence and liver pathogenesis.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| |
Collapse
|
10
|
Core Protein-Directed Antivirals and Importin β Can Synergistically Disrupt HBV Capsids. J Virol 2021; 96:e0139521. [PMID: 34705562 DOI: 10.1128/jvi.01395-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral structural proteins can have multiple activities. Antivirals that target structural proteins have potential to exhibit multiple antiviral mechanisms. Hepatitis B Virus (HBV) core protein (Cp) is involved in most stages of the viral lifecycle: it assembles into capsids, packages viral RNA, is a metabolic compartment for reverse transcription, interacts with nuclear trafficking machinery, and disassembles to release the viral genome into the nucleus. During nuclear localization, HBV capsids bind to host importins (e.g. Impβ) via Cp's C-terminal domain (CTD); the CTD is localized to the interior of the capsid and is transiently exposed on the exterior. We used HAP12 as a representative Cp Allosteric Modulators (CpAMs), a class of antivirals that inappropriately stimulates and misdirects HBV assembly and deforms capsids. CpAM impact on other aspects of the HBV lifecycle is poorly understood. We investigated how HAP12 influenced the interactions between empty or RNA-filled capsids with Impβ and trypsin in vitro. We showed that HAP12 can modulate CTD accessibility and capsid stability, depending on the saturation of HAP12-binding sites. We demonstrated that Impβ synergistically contributes to capsid disruption at high levels of HAP12 saturation, using electron microscopy to visualize disruption and rearrangement of Cp dimers into aberrant complexes. However, RNA-filled capsids resisted the destabilizing effects of HAP12 and Impβ. In summary, we show host protein-induced catalysis of capsid disruption, an unexpected additional mechanism of action for CpAMs. Potentially, untimely capsid disassembly can hamper the HBV lifecycle and also cause the virus to become vulnerable to host innate immune responses. IMPORTANCE The HBV core, an icosahedral complex of 120 copies of the homodimeric core (capsid) protein with or without packaged nucleic acid, is transported to the host nucleus by its interaction with host importin proteins. Importin-core interaction requires the core protein C-terminal domain, which is inside the capsid, to "flip" to the capsid exterior. Core-protein directed drugs that affect capsid assembly and stability have been developed recently. We show that these molecules can, synergistically with importins, disrupt capsids. This mechanism of action, synergism with host protein, has potential to disrupt the virus lifecycle and activate the innate immune system.
Collapse
|
11
|
Tian J, Li C, Li W. Entry of hepatitis B virus: going beyond NTCP to the nucleus. Curr Opin Virol 2021; 50:97-102. [PMID: 34428726 DOI: 10.1016/j.coviro.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/05/2023]
Abstract
Hepatitis B virus (HBV) infection remains a major cause of liver diseases and hepatocellular carcinoma. HBV infection begins by low-affinity attachment to hepatocytes and subsequent binding with a specific receptor sodium taurocholate cotransporting polypeptide (NTCP) on sinusoidal-basolateral side of liver parenchymal cells. Following internalization with an unclear mechanism, HBV undergoes uncoating, capsid disassembling and culminates in delivering its genome into the nucleus and forms the covalently closed circular (ccc) DNA. In this review, we briefly summarize the current understanding of HBV entry and discuss some unanswered questions along the entry pathway beyond NTCP binding into the nucleus.
Collapse
Affiliation(s)
- Ji Tian
- National Institute of Biological Science, Beijing, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Cong Li
- National Institute of Biological Science, Beijing, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Wenhui Li
- National Institute of Biological Science, Beijing, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
12
|
Wei L, Ploss A. Mechanism of Hepatitis B Virus cccDNA Formation. Viruses 2021; 13:v13081463. [PMID: 34452329 PMCID: PMC8402782 DOI: 10.3390/v13081463] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) remains a major medical problem affecting at least 257 million chronically infected patients who are at risk of developing serious, frequently fatal liver diseases. HBV is a small, partially double-stranded DNA virus that goes through an intricate replication cycle in its native cellular environment: human hepatocytes. A critical step in the viral life-cycle is the conversion of relaxed circular DNA (rcDNA) into covalently closed circular DNA (cccDNA), the latter being the major template for HBV gene transcription. For this conversion, HBV relies on multiple host factors, as enzymes capable of catalyzing the relevant reactions are not encoded in the viral genome. Combinations of genetic and biochemical approaches have produced findings that provide a more holistic picture of the complex mechanism of HBV cccDNA formation. Here, we review some of these studies that have helped to provide a comprehensive picture of rcDNA to cccDNA conversion. Mechanistic insights into this critical step for HBV persistence hold the key for devising new therapies that will lead not only to viral suppression but to a cure.
Collapse
|
13
|
Blanco-Rodriguez G, Di Nunzio F. The Viral Capsid: A Master Key to Access the Host Nucleus. Viruses 2021; 13:v13061178. [PMID: 34203080 PMCID: PMC8234750 DOI: 10.3390/v13061178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Viruses are pathogens that have evolved to hijack the cellular machinery to replicate themselves and spread to new cells. During the course of evolution, viruses developed different strategies to overcome the cellular defenses and create new progeny. Among them, some RNA and many DNA viruses require access to the nucleus to replicate their genome. In non-dividing cells, viruses can only access the nucleus through the nuclear pore complex (NPC). Therefore, viruses have developed strategies to usurp the nuclear transport machinery and gain access to the nucleus. The majority of these viruses use the capsid to manipulate the nuclear import machinery. However, the particular tactics employed by each virus to reach the host chromatin compartment are very different. Nevertheless, they all require some degree of capsid remodeling. Recent notions on the interplay between the viral capsid and cellular factors shine new light on the quest for the nuclear entry step and for the fate of these viruses. In this review, we describe the main components and function of nuclear transport machinery. Next, we discuss selected examples of RNA and DNA viruses (HBV, HSV, adenovirus, and HIV) that remodel their capsid as part of their strategies to access the nucleus and to replicate.
Collapse
Affiliation(s)
- Guillermo Blanco-Rodriguez
- Advanced Molecular Virology and Retroviral Dynamics Group, Department of Virology, Pasteur Institute, 75015 Paris, France;
- Immunity and Cancer Department, Curie Institute, PSL Research University, INSERM U932, 75005 Paris, France
| | - Francesca Di Nunzio
- Advanced Molecular Virology and Retroviral Dynamics Group, Department of Virology, Pasteur Institute, 75015 Paris, France;
- Correspondence:
| |
Collapse
|
14
|
Abstract
Viral hepatitis causes more deaths than tuberculosis and HIV-1 infection. Most cases are due to chronic infection with hepatitis B virus (HBV), which afflicts >250 million people. Current therapies are rarely curative, and new approaches are needed. Here, we report the discovery (by nuclear magnetic resonance) of a small molecule binder in the hydrophobic pocket in the HBV capsid. This structural element is, in an unknown manner, central in capsid envelopment. Binding of the pocket factor induces a distinct, stable conformation in the capsid, as expected for a signaling switch. This brings not only a new molecular view on the mechanism underlying capsid envelopment, but it also opens a rationale for its inhibition. Viral hepatitis is growing into an epidemic illness, and it is urgent to neutralize the main culprit, hepatitis B virus (HBV), a small-enveloped retrotranscribing DNA virus. An intriguing observation in HB virion morphogenesis is that capsids with immature genomes are rarely enveloped and secreted. This prompted, in 1982, the postulate that a regulated conformation switch in the capsid triggers envelopment. Using solid-state NMR, we identified a stable alternative conformation of the capsid. The structural variations focus on the hydrophobic pocket of the core protein, a hot spot in capsid–envelope interactions. This structural switch is triggered by specific, high-affinity binding of a pocket factor. The conformational change induced by the binding is reminiscent of a maturation signal. This leads us to formulate the “synergistic double interaction” hypothesis, which explains the regulation of capsid envelopment and indicates a concept for therapeutic interference with HBV envelopment.
Collapse
|
15
|
In vitro expression of precore proteins of hepatitis B virus subgenotype A1 is affected by HBcAg, and can affect HBsAg secretion. Sci Rep 2021; 11:8167. [PMID: 33854155 PMCID: PMC8046783 DOI: 10.1038/s41598-021-87529-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
HBeAg, a non-particulate protein of hepatitis B virus (HBV), is translated from the precore/core region as a precursor, which is post-translationally modified. Subgenotype A1 of HBV, which is a risk factor for hepatocellular carcinoma (HCC), has unique molecular characteristics in the basic core promoter/precore regions. Carriers of A1 exhibit early HBeAg loss. We sought to further characterize the precore proteins of A1 in vitro. HuH-7 cells were transfected with subgenomic constructs expressing individual precore proteins. Western blot analysis using DAKO anti-core antibody showed the expected sizes and a 1 kDa larger band for P22, P20 and P17. Using confocal microscopy, a cytoplasmic accumulation of HBeAg and precursors was observed with P25-expressing plasmid, whereas P22 localized both in the cytoplasm and nucleus. P20 and P17, which lack the carboxy end of P22 showed strong nuclear accumulation, implicating a nuclear localization signal in the N-terminal 10 amino acids. G1862T, unique to subgenotype A1, is frequently found in HBV from HCC patients. P25 with G1862T showed delayed and reduced HBeAg expression/secretion. Knock-out of core in the replication competent clones led to precore protein accumulation in the cytoplasm/perinuclear region, and decreased HBeAg secretion. Knock-out of precore proteins increased HBsAg secretion but intracellular HBsAg expression was unaffected. Over-expression of precore proteins in trans led to decreased HBsAg expression and secretion. Intracellular trafficking of HBV A1 precore proteins was followed. This was unaffected by the CMV promoter and different cell types. In the viral context, precore protein expression was affected by absence of core, and affected HBsAg expression, suggesting an interrelationship between precore proteins, HBcAg and HBsAg. This modulatory role of HBeAg and its precursors may be important in viral persistence and ultimate development of HCC.
Collapse
|
16
|
Paci G, Caria J, Lemke EA. Cargo transport through the nuclear pore complex at a glance. J Cell Sci 2021; 134:237315. [PMID: 33495357 DOI: 10.1242/jcs.247874] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bidirectional transport of macromolecules across the nuclear envelope is a hallmark of eukaryotic cells, in which the genetic material is compartmentalized inside the nucleus. The nuclear pore complex (NPC) is the major gateway to the nucleus and it regulates nucleocytoplasmic transport, which is key to processes including transcriptional regulation and cell cycle control. Accordingly, components of the nuclear transport machinery are often found to be dysregulated or hijacked in diseases. In this Cell Science at a Glance article and accompanying poster, we provide an overview of our current understanding of cargo transport through the NPC, from the basic transport signals and machinery to more emerging aspects, all from a 'cargo perspective'. Among these, we discuss the transport of large cargoes (>15 nm), as well as the roles of different cargo properties to nuclear transport, from size and number of bound nuclear transport receptors (NTRs), to surface and mechanical properties.
Collapse
Affiliation(s)
- Giulia Paci
- Biocentre, Johannes Gutenberg-University Mainz, Hans-Dieter-Hüsch-Weg 15, 555128 Mainz, Germany.,Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.,European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Joana Caria
- Biocentre, Johannes Gutenberg-University Mainz, Hans-Dieter-Hüsch-Weg 15, 555128 Mainz, Germany.,Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.,European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Edward A Lemke
- Biocentre, Johannes Gutenberg-University Mainz, Hans-Dieter-Hüsch-Weg 15, 555128 Mainz, Germany .,Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.,European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
17
|
Intracellular Trafficking of HBV Particles. Cells 2020; 9:cells9092023. [PMID: 32887393 PMCID: PMC7563130 DOI: 10.3390/cells9092023] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
The human hepatitis B virus (HBV), that is causative for more than 240 million cases of chronic liver inflammation (hepatitis), is an enveloped virus with a partially double-stranded DNA genome. After virion uptake by receptor-mediated endocytosis, the viral nucleocapsid is transported towards the nuclear pore complex. In the nuclear basket, the nucleocapsid disassembles. The viral genome that is covalently linked to the viral polymerase, which harbors a bipartite NLS, is imported into the nucleus. Here, the partially double-stranded DNA genome is converted in a minichromosome-like structure, the covalently closed circular DNA (cccDNA). The DNA virus HBV replicates via a pregenomic RNA (pgRNA)-intermediate that is reverse transcribed into DNA. HBV-infected cells release apart from the infectious viral parrticle two forms of non-infectious subviral particles (spheres and filaments), which are assembled by the surface proteins but lack any capsid and nucleic acid. In addition, naked capsids are released by HBV replicating cells. Infectious viral particles and filaments are released via multivesicular bodies; spheres are secreted by the classic constitutive secretory pathway. The release of naked capsids is still not fully understood, autophagosomal processes are discussed. This review describes intracellular trafficking pathways involved in virus entry, morphogenesis and release of (sub)viral particles.
Collapse
|
18
|
Patterson A, Zhao Z, Waymire E, Zlotnick A, Bothner B. Dynamics of Hepatitis B Virus Capsid Protein Dimer Regulate Assembly through an Allosteric Network. ACS Chem Biol 2020; 15:2273-2280. [PMID: 32662972 DOI: 10.1021/acschembio.0c00481] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
While there is an effective vaccine for Human Hepatitis B Virus (HBV), 257 million people have chronic infections for which there is no cure. The assembly process for the viral capsid is a potential therapeutic target. In order to understand the capsid assembly process, we investigated the dimeric building blocks of the capsid. To understand what blocks assembly, we took advantage of an assembly incompetent mutant dimer, Cp149-Y132A, located in the interdimer interface. This mutation leads to changes in protein dynamics throughout the structure of the dimer as measured by hydrogen-deuterium exchange mass spectrometry (HDX-MS). To further understand how the HBV capsid assembles, the homologue woodchuck HBV (WHV) capsid protein dimer (Cp) was used. WHV is more stable than HBV in HDX-MS and native mass spectrometry experiments. Because the WHV Cp assembles more rapidly into viral capsids than HBV, it was suspected that an increase in stability of the intradimer interface and/or in the contact region leads to increased assembly rates. The differences in dynamics when comparing HBV and human Cp149-Y132A as well as the differences in dynamics when comparing the HBV and WHV Cps allowed us to map an allosteric network within the HBV dimer. Through a careful comparison of structure, stability, and dynamics using four different capsid protein dimers, we conclude that protein subunit dynamics regulate HBV capsid assembly.
Collapse
Affiliation(s)
- Angela Patterson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Zhongchao Zhao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Elizabeth Waymire
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
19
|
Hepatitis B Virus Core Protein Domains Essential for Viral Capsid Assembly in a Cellular Context. J Mol Biol 2020; 432:3802-3819. [PMID: 32371046 DOI: 10.1016/j.jmb.2020.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) core protein (HBc) is essential to the formation of the HBV capsid. HBc contains two domains: the N-terminal domain corresponding to residues 1-140 essential to form the icosahedral shell and the C-terminal domain corresponding to a basic and phosphorylated peptide, and required for DNA replication. The role of these two domains for HBV capsid assembly was essentially studied in vitro with HBc purified from mammalian or non-mammalian cell lysates, but their respective role in living cells remains to be clarified. We therefore investigated the assembly of the HBV capsid in Huh7 cells by combining fluorescence lifetime imaging microscopy/Förster's resonance energy transfer, fluorescence correlation spectroscopy and transmission electron microscopy approaches. We found that wild-type HBc forms oligomers early after transfection and at a sub-micromolar concentration. These oligomers are homogeneously diffused throughout the cell. We quantified a stoichiometry ranging from ~170 to ~230 HBc proteins per oligomer, consistent with the visualization of eGFP-containingHBV capsid shaped as native capsid particles by transmission electron microscopy. In contrast, no assembly was observed when HBc-N-terminal domain was expressed. This highlights the essential role of the C-terminal domain to form capsid in mammalian cells. Deletion of either the third helix or of the 124-135 residues of HBc had a dramatic impact on the assembly of the HBV capsid, inducing the formation of mis-assembled oligomers and monomers, respectively. This study shows that our approach using fluorescent derivatives of HBc is an innovative method to investigate HBV capsid formation.
Collapse
|
20
|
Wang Q, Qin Y, Zhang J, Jia L, Fu S, Wang Y, Li J, Tong S. Tracing the evolutionary history of hepadnaviruses in terms of e antigen and middle envelope protein expression or processing. Virus Res 2019; 276:197825. [PMID: 31785305 DOI: 10.1016/j.virusres.2019.197825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Hepatitis B virus (HBV) is the prototype of hepadnaviruses, which can be subgrouped into orthohepadnaviruses infecting mammals, avihehepadnaviruses of birds, metahepadnaviruses of fish, and herpetohepadnaviruses of amphibians and reptiles. The middle (M) envelope protein and e antigen are new additions in the evolution of hepadnaviruses. They are alternative translation products of the transcripts for small (S) envelope and core proteins, respectively. For HBV, e antigen is converted from precore/core protein by removal of N-terminal signal peptide followed by furin-mediated cleavage of the basic C-terminus. This study compared old and newly discovered hepadnaviruses for their envelope protein and e antigen expression or processing. The S protein of bat hepatitis B virus (BHBV) and two metahepadnaviruses is probably myristoylated, in addition to two avihepadnaviruses. While most orthohepadnaviruses express a functional M protein with N-linked glycosylation near the amino-terminus, most metahepadnaviruses and herpetohepadnaviruses probably do not. These viruses and one orthohepadnavirus, the shrew hepatitis B virus, lack an open precore region required for e antigen expression. Potential furin cleavage sites (RXXR sequence) can be found in e antigen precursors of orthohepadnaviruses and avihepadnaviruses. Despite much larger precore/core proteins of avihepadnaviruses and their limited sequence homology with those of orthohepadnaviruses, their proximal RXXR motif can be aligned with a distal RXXR motif for orthohepadnaviruses. Thus, furin or another basic endopeptidase is probably the shared enzyme for hepadnaviral e antigen maturation. A precore-derived cysteine residue is involved in forming intramolecular disulfide bond of HBV e antigen to prevent particle formation, and such a cysteine residue is conserved for both orthohepadnaviruses and avihepadnaviruses. All orthohepadnaviruses have an X gene, while all avihepadnaviruses can express the e antigen. M protein expression appears to be the most recent event in the evolution of hepadnaviruses.
Collapse
Affiliation(s)
- Qianru Wang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanli Qin
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lucy Jia
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Shuwen Fu
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yongxiang Wang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Shuping Tong
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
21
|
Mitra B, Wang J, Kim ES, Mao R, Dong M, Liu Y, Zhang J, Guo H. Hepatitis B Virus Precore Protein p22 Inhibits Alpha Interferon Signaling by Blocking STAT Nuclear Translocation. J Virol 2019; 93:e00196-19. [PMID: 31019054 PMCID: PMC6580977 DOI: 10.1128/jvi.00196-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
Antagonism of host immune defenses against hepatitis B virus (HBV) infection by the viral proteins is speculated to cause HBV persistence and the development of chronic hepatitis. The circulating hepatitis B e antigen (HBeAg, p17) is known to manipulate host immune responses to assist in the establishment of persistent viral infection, and HBeAg-positive (HBeAg+) patients respond less effectively to IFN-α therapy than do HBeAg-negative (HBeAg-) patients in clinical practice. However, the function(s) of the intracellular form of HBeAg, previously reported as the precore protein intermediate (p22) without the N-terminal signal peptide, remains elusive. Here, we report that the cytosolic p22 protein, but not the secreted HBeAg, significantly reduces interferon-stimulated response element (ISRE) activity and the expression of interferon-stimulated genes (ISGs) upon alpha interferon (IFN-α) stimulation in cell cultures. In line with this, HBeAg+ patients exhibit weaker induction of ISGs in their livers than do HBeAg- patients upon IFN-α therapy. Mechanistically, while p22 does not alter the total STAT1 or pSTAT1 levels in cells treated with IFN-α, it blocks the nuclear translocation of pSTAT1 by interacting with the nuclear transport factor karyopherin α1 through its C-terminal arginine-rich domain. In summary, our study suggests that HBV precore protein, specifically the p22 form, impedes JAK-STAT signaling to help the virus evade the host innate immune response and, thus, causes resistance to IFN therapy.IMPORTANCE Chronic hepatitis B virus (HBV) infection continues to be a major global health concern, and patients who fail to mount an efficient immune response to clear the virus will develop a life-long chronic infection that can progress to chronic active hepatitis, cirrhosis, and primary hepatocellular carcinoma. There is no definite cure for chronic hepatitis B, and alpha interferon (IFN-α) is the only available immunomodulatory drug, to which only a minority of chronic patients are responsive, with hepatitis B e antigen (HBeAg)-negative patients responding better than HBeAg-positive patients. We herein report that the intracellular HBeAg, also known as precore or p22, inhibits the antiviral signaling of IFN-α, which sheds light on the enigmatic function of precore protein in shaping HBV chronicity and provides a perspective toward areas that need to be further studied to make the current therapy better until a cure is achieved.
Collapse
Affiliation(s)
- Bidisha Mitra
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jinyu Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Elena S Kim
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Richeng Mao
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Minhui Dong
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanjie Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
22
|
Abstract
Hepatitis B virus (HBV) affects more than 257 million people globally, resulting in progressively worsening liver disease, manifesting as fibrosis, cirrhosis, and hepatocellular carcinoma. The exceptionally narrow species tropism of HBV restricts its natural hosts to humans and non-human primates, including chimpanzees, gorillas, gibbons, and orangutans. The unavailability of completely immunocompetent small-animal models has contributed to the lack of curative therapeutic interventions. Even though surrogates allow the study of closely related viruses, their host genetic backgrounds, immune responses, and molecular virology differ from those of HBV. Various different models, based on either pure murine or xenotransplantation systems, have been introduced over the past years, often making the choice of the optimal model for any given question challenging. Here, we offer a concise review of in vivo model systems employed to study HBV infection and steps in the HBV life cycle or pathogenesis.
Collapse
Affiliation(s)
| | - Catherine Cherry
- Section of Virology, Department of Medicine, Imperial College London, W2 1PGLondon, U.K
| | - Harry Gunn
- Section of Virology, Department of Medicine, Imperial College London, W2 1PGLondon, U.K
| | - Marcus Dorner
- Section of Virology, Department of Medicine, Imperial College London, W2 1PGLondon, U.K
| |
Collapse
|
23
|
Debat HJ, Ng TFF. Complete genome sequence of a divergent strain of Tibetan frog hepatitis B virus associated with a concave-eared torrent frog (Odorrana tormota). Arch Virol 2019; 164:1727-1732. [PMID: 30923967 DOI: 10.1007/s00705-019-04227-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/04/2019] [Indexed: 11/30/2022]
Abstract
Viruses of the family Hepadnaviridae are characterized by partially dsDNA circular genomes of approximately 3.2 kb, which are reverse transcribed from RNA intermediates. Hepadnaviruses have a broad host range, which includes humans (hepatitis B virus), other mammals (genus Orthohepadnavirus), and birds (genus Avihepadnavirus). The known host specificity of hepadnaviruses has been expanded by reports of new viruses infecting fish, amphibians, and reptiles. Tibetan frog hepatitis B virus (TFHBV) was recently discovered in a member of the species Nanorana parkeri (family Dicroglossidae) from Tibet. To increase our understanding of hepadnaviruses that infect amphibian hosts, we identified the full-length genome of a divergent strain, TFHBV-Ot, associated with a concave-eared torrent frog (Odorrana tormota, family Ranidae) from China by searching deep-sequencing data. TFHBV-Ot shared a genomic organization and 76.6% overall genome sequence nucleotide identity with the prototype TFHBV associated with N. parkeri (TFHBV-Np). The pairwise amino acid sequence identity between the predicted gene products of TFHBV-Ot and TFHBV-Np ranged between 63.9% and 77.9%. Multiple tissue/organ-specific RNAseq datasets suggested a broad tropism of TFHBV, including muscle, gonads and brain. In addition, we provide information about putative virus-derived small RNAs from an amphibian hepadnavirus. The results presented here expand the known genetic diversity and host range of TFHBV to Ranidae frogs, and warrant an investigation of hepadnaviral infection of amphibian brains.
Collapse
Affiliation(s)
- Humberto J Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), X5020ICA, Córdoba, Argentina.
| | - Terry Fei Fan Ng
- College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
24
|
Nair S, Li L, Francis S, Turner WW, VanNieuwenhze M, Zlotnick A. Use of a Fluorescent Analogue of a HBV Core Protein-Directed Drug To Interrogate an Antiviral Mechanism. J Am Chem Soc 2018; 140:15261-15269. [PMID: 30375863 DOI: 10.1021/jacs.8b07988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heteroaryldihydropyrimidines (HAPs) are antiviral small molecules that enhance assembly of HBV core protein (Cp), lead to assembly of empty and defective particles, and suppress viral replication. These core protein allosteric modulators (CpAMs) bind to the pocket at the interface between two Cp dimers and strengthen interdimer interactions. To investigate the CpAM mechanism, we wanted to examine the cellular distributions of Cp and the CpAM itself. For this reason, we developed a fluorescently labeled CpAM, HAP-ALEX. In vitro, HAP-ALEX modulated assembly of purified Cp and at saturating concentrations induced formation of large structures. HAP-ALEX bound capsids and not dimers, making it a capsid-specific molecular tag. HAP-ALEX labeled HBV in transfected cells, with no detectable background with a HAP-insensitive Cp mutant. HAP-ALEX caused redistribution of Cp in a dose-dependent manner consistent with its 0.7 μM EC50, leading to formation of large puncta and an exclusively cytoplasmic distribution. HAP-ALEX colocalized with the redistributed Cp, but large puncta accumulated long before they appeared saturated with the fluorescent CpAM. CpAMs affect HBV assembly and localization; with a fluorescent CpAM both drug and target can be identified.
Collapse
Affiliation(s)
- Smita Nair
- Molecular and Cellular Biochemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Lichun Li
- Molecular and Cellular Biochemistry , Indiana University , Bloomington , Indiana 47405 , United States.,Assembly BioSciences , Carmel , Indiana 45032 , United States
| | - Samson Francis
- Assembly BioSciences , Carmel , Indiana 45032 , United States
| | - William W Turner
- Molecular and Cellular Biochemistry , Indiana University , Bloomington , Indiana 47405 , United States.,Assembly BioSciences , Carmel , Indiana 45032 , United States
| | - Michael VanNieuwenhze
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
25
|
Assembly Properties of Hepatitis B Virus Core Protein Mutants Correlate with Their Resistance to Assembly-Directed Antivirals. J Virol 2018; 92:JVI.01082-18. [PMID: 30089690 DOI: 10.1128/jvi.01082-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
The hepatitis B virus (HBV) capsid or core protein (Cp) can self-assemble to form an icosahedral capsid. It is now being pursued as a target for small-molecule antivirals that enhance the rate and extent of its assembly to yield empty and/or aberrant capsids. These small molecules are thus called core protein allosteric modulators (CpAMs). We sought to understand the physical basis of CpAM-resistant mutants and how CpAMs might overcome them. We examined the effects of two closely related CpAMs, HAP12 and HAP13, which differ by a single atom but have drastically different antiviral activities, on the assembly of wild-type Cp and three T109 mutants (T109M, T109I, and T109S) that display a range of resistances. The T109 side chain forms part of the mouth of the CpAM binding pocket. A T109 mutant that has substantial resistance even to a highly active CpAM strongly promotes normal assembly. Conversely, a mutant that weakens assembly is more susceptible to CpAMs. In crystal and cryo-electron microscopy (cryo-EM) structures of T=4 capsids with bound CpAMs, the CpAMs preferentially fit into two of four quasi-equivalent sites. In these static representations of capsid structures, T109 does not interact with the neighboring subunit. However, all-atom molecular dynamics simulations of an intact capsid show that T109 of one of the four classes of CpAM site has a hydrophobic contact with the neighboring subunit at least 40% of the time, providing a physical explanation for the mutation's ability to affect capsid stability, assembly, and sensitivity to CpAMs.IMPORTANCE The HBV core protein and its assembly into capsids have become important targets for development of core protein allosteric modulators (CpAMs) as antivirals. Naturally occurring T109 mutants have been shown to be resistant to some of these CpAMs. We found that mutation of T109 led to changes in capsid stability and recapitulated resistance to a weak CpAM, but much less so than to a strong CpAM. Examination of HBV capsid structures, determined by cryo-EM and crystallography, could not explain how T109 mutations change capsid stability and resistance. However, by mining data from a microsecond-long all-atom molecular dynamics simulation, we found that the capsid was extraordinarily flexible and that T109 can impede entry to the CpAM binding site. In short, HBV capsids are incredibly dynamic and molecular mobility must be considered in discussions of antiviral mechanisms.
Collapse
|
26
|
A Homokaryon Assay for Nucleocytoplasmic Shuttling Activity of HBV Core Protein. Methods Mol Biol 2018. [PMID: 27975307 DOI: 10.1007/978-1-4939-6700-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Hepatitis B virus (HBV) core protein (HBc) can be present in both nucleus and cytoplasm. The arginine-rich domain (ARD) at the cytoplasmic tail of HBc contains both a nuclear localization signal (NLS) and nuclear export signal (NES). We established a homokaryon assay to detect the dynamic trafficking of HBc between nucleus and cytoplasm in hepatocytes. Using immunofluorescence assay (IFA) and PEG-induced cell-cell fusion, we demonstrated that a chimeric reporter protein of SV40 large T antigen, when fused in-frame with HBc ARD, can shuttle from a donor nuclei (green) to the recipient nuclei (red) in the context of binucleated or polynucleated hybrid cells. The shuttling activity driven by HBc ARD can be measured quantitatively by this IFA method.
Collapse
|
27
|
PRMT5: A novel regulator of Hepatitis B virus replication and an arginine methylase of HBV core. PLoS One 2017; 12:e0186982. [PMID: 29065155 PMCID: PMC5655436 DOI: 10.1371/journal.pone.0186982] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/11/2017] [Indexed: 02/08/2023] Open
Abstract
In mammals, protein arginine methyltransferase 5, PRMT5, is the main type II enzyme responsible for the majority of symmetric dimethylarginine formation in polypeptides. Recent study reported that PRMT5 restricts Hepatitis B virus (HBV) replication through epigenetic repression of HBV DNA transcription and interference with encapsidation of pregenomic RNA. Here we demonstrate that PRMT5 interacts with the HBV core (HBc) protein and dimethylates arginine residues within the arginine-rich domain (ARD) of the carboxyl-terminus. ARD consists of four arginine rich subdomains, ARDI, ARDII, ARDIII and ARDIV. Mutation analysis of ARDs revealed that arginine methylation of HBc required the wild-type status of both ARDI and ARDII. Mass spectrometry analysis of HBc identified multiple potential ubiquitination, methylation and phosphorylation sites, out of which lysine K7 and arginines R150 (within ARDI) and R156 (outside ARDs) were shown to be modified by ubiquitination and methylation, respectively. The HBc symmetric dimethylation appeared to be linked to serine phosphorylation and nuclear import of HBc protein. Conversely, the monomethylated HBc retained in the cytoplasm. Thus, overexpression of PRMT5 led to increased nuclear accumulation of HBc, and vice versa, down-regulation of PRMT5 resulted in reduced levels of HBc in nuclei of transfected cells. In summary, we identified PRMT5 as a potent controller of HBc cell trafficking and function and described two novel types of HBc post-translational modifications (PTMs), arginine methylation and ubiquitination.
Collapse
|
28
|
Patel N, White SJ, Thompson RF, Bingham R, Weiß EU, Maskell DP, Zlotnick A, Dykeman E, Tuma R, Twarock R, Ranson NA, Stockley PG. HBV RNA pre-genome encodes specific motifs that mediate interactions with the viral core protein that promote nucleocapsid assembly. Nat Microbiol 2017; 2:17098. [PMID: 28628133 PMCID: PMC5495169 DOI: 10.1038/nmicrobiol.2017.98] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
Abstract
Formation of the hepatitis B virus nucleocapsid is an essential step in the viral lifecycle, but its assembly is not fully understood. We report the discovery of sequence-specific interactions between the viral pre-genome and the hepatitis B core protein that play roles in defining the nucleocapsid assembly pathway. Using RNA SELEX and bioinformatics, we identified multiple regions in the pre-genomic RNA with high affinity for core protein dimers. These RNAs form stem-loops with a conserved loop motif that trigger sequence-specific assembly of virus-like particles (VLPs) at much higher fidelity and yield than in the absence of RNA. The RNA oligos do not interact with preformed RNA-free VLPs, so their effects must occur during particle assembly. Asymmetric cryo-electron microscopy reconstruction of the T = 4 VLPs assembled in the presence of one of the RNAs reveals a unique internal feature connected to the main core protein shell via lobes of density. Biophysical assays suggest that this is a complex involving several RNA oligos interacting with the C-terminal arginine-rich domains of core protein. These core protein-RNA contacts may play one or more roles in regulating the organization of the pre-genome during nucleocapsid assembly, facilitating subsequent reverse transcription and acting as a nucleation complex for nucleocapsid assembly.
Collapse
Affiliation(s)
- Nikesh Patel
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Simon J White
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Rebecca F Thompson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard Bingham
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Eva U Weiß
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Daniel P Maskell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Adam Zlotnick
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Eric Dykeman
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Reidun Twarock
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
29
|
Chong CK, Cheng CYS, Tsoi SYJ, Huang FY, Liu F, Seto WK, Lai CL, Yuen MF, Wong DKH. Role of hepatitis B core protein in HBV transcription and recruitment of histone acetyltransferases to cccDNA minichromosome. Antiviral Res 2017; 144:1-7. [PMID: 28499864 DOI: 10.1016/j.antiviral.2017.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/12/2017] [Accepted: 05/08/2017] [Indexed: 12/16/2022]
Abstract
The hepatitis B core protein (HBc) has been suggested to interact with covalently closed circular DNA (cccDNA) and regulate hepatitis B virus (HBV) transcription. However, direct evidence is lacking. We aimed to identify the specific HBc region(s) responsible for transcription regulation and its interaction with cccDNA. Seventeen mutants with mutations at the four arginine-rich clusters of the HBc carboxyl-terminal domain (CTD) were created. The effect of HBc mutations on the levels of HBV DNA, RNA, and hepatitis B surface antigen (HBsAg) were measured. The association of cccDNA with mutant HBc and histone acetyltransferases (HATs) was assessed by chromatin immunoprecipitation (ChIP). Compared with wild-type HBc, HBc mutants with mutations in clusters III and IV resulted in a significant reduction in HBV RNA levels (all P < 0.05). HBc arginine clusters III and IV mutants also had a significantly lower levels of intracellular HBV DNA (<5% of wild-type; P < 0.001) and HBsAg (<10% of wild-type; P < 0.0001). cccDNA-ChIP assay demonstrated that HBc clusters III and IV mutants had a smaller degree of association with cccDNA (P < 0.001). In the HBc mutants, the association between HATs with cccDNA were reduced. In conclusion, HBc-CTD arginine residues at clusters III and IV play an important role in the regulation of HBV transcription as well as subsequent replication steps, likely through the reduced interaction of HBc with cccDNA and reduced acetylation of cccDNA-bound histones. These findings may provide clues to the identification of novel therapeutic targets against HBV.
Collapse
Affiliation(s)
- Chun Kong Chong
- Department of Medicine, The University of Hong Kong, Hong Kong
| | | | | | - Fung-Yu Huang
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Fen Liu
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
| | - Ching-Lung Lai
- Department of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
| | - Man-Fung Yuen
- Department of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong.
| | - Danny Ka-Ho Wong
- Department of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
30
|
Nuclear Import of Hepatitis B Virus Capsids and Genome. Viruses 2017; 9:v9010021. [PMID: 28117723 PMCID: PMC5294990 DOI: 10.3390/v9010021] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is an enveloped pararetrovirus with a DNA genome, which is found in an up to 36 nm-measuring capsid. Replication of the genome occurs via an RNA intermediate, which is synthesized in the nucleus. The virus must have thus ways of transporting its DNA genome into this compartment. This review summarizes the data on hepatitis B virus genome transport and correlates the finding to those from other viruses.
Collapse
|
31
|
HBV maintains electrostatic homeostasis by modulating negative charges from phosphoserine and encapsidated nucleic acids. Sci Rep 2016; 6:38959. [PMID: 27958343 PMCID: PMC5154190 DOI: 10.1038/srep38959] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022] Open
Abstract
Capsid assembly and stability of hepatitis B virus (HBV) core protein (HBc) particles depend on balanced electrostatic interactions between encapsidated nucleic acids and an arginine-rich domain (ARD) of HBc in the capsid interior. Arginine-deficient ARD mutants preferentially encapsidated spliced viral RNA and shorter DNA, which can be fully or partially rescued by reducing the negative charges from acidic residues or serine phosphorylation of HBc, dose-dependently. Similarly, empty capsids without RNA encapsidation can be generated by ARD hyper-phosphorylation in insect, bacteria, and human hepatocytes. De-phosphorylation of empty capsids by phosphatase induced capsid disassembly. Empty capsids can convert into RNA-containing capsids by increasing HBc serine de-phosphorylation. In an HBV replicon system, we observed a reciprocal relationship between viral and non-viral RNA encapsidation, suggesting both non-viral RNA and serine-phosphorylation could serve as a charge balance buffer in maintaining electrostatic homeostasis. In addition, by comparing the biochemistry assay results between a replicon and a non-replicon system, we observed a correlation between HBc de-phosphorylation and viral replication. Balanced electrostatic interactions may be important to other icosahedral particles in nature.
Collapse
|
32
|
Hepatocarcinogenesis in transgenic mice carrying hepatitis B virus pre-S/S gene with the sW172* mutation. Oncogenesis 2016. [PMID: 27918551 DOI: 10.1038/oncsis.2016.77.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Hepatitis B virus (HBV) carrying the rtA181T/sW172* mutation conferred cross-resistance to adefovir and lamivudine. Cell-based and clinical studies indicated that HBV carrying this mutation had an increased oncogenic potential. Herein, we created transgenic mouse models to study the oncogenicity of the HBV pre-S/S gene containing this mutation. Transgenic mice were generated by transfer of the HBV pre-S/S gene together with its own promoter into C57B6 mice. Four lines of mice were created. Two of them carried wild-type gene and produced high and low levels of HBV surface antigen (HBsAg) (TgWT-H and L). The other two carried the sW172* mutation with high and low intrahepatic expression levels (TgSW172*-H and L). When sacrificed 18 months after birth, none of the TgWT mice developed hepatocellular carcinoma (HCC), whereas 6/26 (23.1%) TgSW172*-H and 2/24 (8.3%) TgSW172*-L mice developed HCC (TgWT vs TgSW172*; P=0.0021). Molecular analysis of liver tissues revealed significantly increased expression of glucose-regulated protein 78 and phosphorylated extracellular signal-regulated kinases 1 in TgSW172* mice, and decreased expression of B-cell lymphoma-extra large in TgSW172*-H mice. Higher proportion of apoptotic cells was found in TgSW172*-H mice, accompanied by increased cyclin E levels, suggesting increased hepatocyte turnover. Combined analysis of complimentary DNA microarray and microRNA array identified microRNA-873-mediated reduced expression of the CUB and Sushi multiple domains 3 (CSMD3) protein, a putative tumor suppressor, in TgSW172* mice. Our transgenic mice experiments confirmed that HBV pre-S/S gene carrying the sW172* mutation had an increased oncogenic potential. Increased endoplasmic reticulum stress response, more rapid hepatocyte turnover and decreased CSMD3 expression contributed to the hepatocarcinogenesis.
Collapse
|
33
|
Hepatocarcinogenesis in transgenic mice carrying hepatitis B virus pre-S/S gene with the sW172* mutation. Oncogenesis 2016; 5:e273. [PMID: 27918551 PMCID: PMC5177775 DOI: 10.1038/oncsis.2016.77] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 10/17/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) carrying the rtA181T/sW172* mutation conferred cross-resistance to adefovir and lamivudine. Cell-based and clinical studies indicated that HBV carrying this mutation had an increased oncogenic potential. Herein, we created transgenic mouse models to study the oncogenicity of the HBV pre-S/S gene containing this mutation. Transgenic mice were generated by transfer of the HBV pre-S/S gene together with its own promoter into C57B6 mice. Four lines of mice were created. Two of them carried wild-type gene and produced high and low levels of HBV surface antigen (HBsAg) (TgWT-H and L). The other two carried the sW172* mutation with high and low intrahepatic expression levels (TgSW172*-H and L). When sacrificed 18 months after birth, none of the TgWT mice developed hepatocellular carcinoma (HCC), whereas 6/26 (23.1%) TgSW172*-H and 2/24 (8.3%) TgSW172*-L mice developed HCC (TgWT vs TgSW172* P=0.0021). Molecular analysis of liver tissues revealed significantly increased expression of glucose-regulated protein 78 and phosphorylated extracellular signal-regulated kinases 1 in TgSW172* mice, and decreased expression of B-cell lymphoma-extra large in TgSW172*-H mice. Higher proportion of apoptotic cells was found in TgSW172*-H mice, accompanied by increased cyclin E levels, suggesting increased hepatocyte turnover. Combined analysis of complimentary DNA microarray and microRNA array identified microRNA-873-mediated reduced expression of the CUB and Sushi multiple domains 3 (CSMD3) protein, a putative tumor suppressor, in TgSW172* mice. Our transgenic mice experiments confirmed that HBV pre-S/S gene carrying the sW172* mutation had an increased oncogenic potential. Increased endoplasmic reticulum stress response, more rapid hepatocyte turnover and decreased CSMD3 expression contributed to the hepatocarcinogenesis.
Collapse
|
34
|
Ni R, Zhou J, Hossain N, Chau Y. Virus-inspired nucleic acid delivery system: Linking virus and viral mimicry. Adv Drug Deliv Rev 2016; 106:3-26. [PMID: 27473931 DOI: 10.1016/j.addr.2016.07.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/02/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022]
Abstract
Targeted delivery of nucleic acids into disease sites of human body has been attempted for decades, but both viral and non-viral vectors are yet to meet our expectations. Safety concerns and low delivery efficiency are the main limitations of viral and non-viral vectors, respectively. The structure of viruses is both ordered and dynamic, and is believed to be the key for effective transfection. Detailed understanding of the physical properties of viruses, their interaction with cellular components, and responses towards cellular environments leading to transfection would inspire the development of safe and effective non-viral vectors. To this goal, this review systematically summarizes distinctive features of viruses that are implied for efficient nucleic acid delivery but not yet fully explored in current non-viral vectors. The assembly and disassembly of viral structures, presentation of viral ligands, and the subcellular targeting of viruses are emphasized. Moreover, we describe the current development of cationic material-based viral mimicry (CVM) and structural viral mimicry (SVM) in these aspects. In light of the discrepancy, we identify future opportunities for rational design of viral mimics for the efficient delivery of DNA and RNA.
Collapse
Affiliation(s)
- Rong Ni
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Junli Zhou
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Naushad Hossain
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ying Chau
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
35
|
Distinct Viral Lineages from Fish and Amphibians Reveal the Complex Evolutionary History of Hepadnaviruses. J Virol 2016; 90:7920-33. [PMID: 27334580 DOI: 10.1128/jvi.00832-16] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/17/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Hepadnaviruses (hepatitis B viruses [HBVs]) are the only animal viruses that replicate their DNA by reverse transcription of an RNA intermediate. Until recently, the known host range of hepadnaviruses was limited to mammals and birds. We obtained and analyzed the first amphibian HBV genome, as well as several prototype fish HBVs, which allow the first comprehensive comparative genomic analysis of hepadnaviruses from four classes of vertebrates. Bluegill hepadnavirus (BGHBV) was characterized from in-house viral metagenomic sequencing. The African cichlid hepadnavirus (ACHBV) and the Tibetan frog hepadnavirus (TFHBV) were discovered using in silico analyses of the whole-genome shotgun and transcriptome shotgun assembly databases. Residues in the hydrophobic base of the capsid (core) proteins, designated motifs I, II, and III, are highly conserved, suggesting that structural constraints for proper capsid folding are key to capsid protein evolution. Surface proteins in all vertebrate HBVs contain similar predicted membrane topologies, characterized by three transmembrane domains. Most striking was the fact that BGHBV, ACHBV, and the previously described white sucker hepadnavirus did not form a fish-specific monophyletic group in the phylogenetic analysis of all three hepadnaviral genes. Notably, BGHBV was more closely related to the mammalian hepadnaviruses, indicating that cross-species transmission events have played a major role in viral evolution. Evidence of cross-species transmission was also observed with TFHBV. Hence, these data indicate that the evolutionary history of the hepadnaviruses is more complex than previously realized and combines both virus-host codivergence over millions of years and host species jumping. IMPORTANCE Hepadnaviruses are responsible for significant disease in humans (hepatitis B virus) and have been reported from a diverse range of vertebrates as both exogenous and endogenous viruses. We report the full-length genome of a novel hepadnavirus from a fish and the first hepadnavirus genome from an amphibian. The novel fish hepadnavirus, sampled from bluegills, was more closely related to mammalian hepadnaviruses than to other fish viruses. This phylogenetic pattern reveals that, although hepadnaviruses have likely been associated with vertebrates for hundreds of millions of years, they have also been characterized by species jumping across wide phylogenetic distances.
Collapse
|
36
|
Chen C, Wang JCY, Pierson EE, Keifer DZ, Delaleau M, Gallucci L, Cazenave C, Kann M, Jarrold MF, Zlotnick A. Importin β Can Bind Hepatitis B Virus Core Protein and Empty Core-Like Particles and Induce Structural Changes. PLoS Pathog 2016; 12:e1005802. [PMID: 27518410 PMCID: PMC4982637 DOI: 10.1371/journal.ppat.1005802] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 07/11/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) capsids are found in many forms: immature single-stranded RNA-filled cores, single-stranded DNA-filled replication intermediates, mature cores with relaxed circular double-stranded DNA, and empty capsids. A capsid, the protein shell of the core, is a complex of 240 copies of core protein. Mature cores are transported to the nucleus by a complex that includes both importin α and importin β (Impα and Impβ), which bind to the core protein's C-terminal domains (CTDs). Here we have investigated the interactions of HBV core protein with importins in vitro. Strikingly, empty capsids and free core protein can bind Impβ without Impα. Cryo-EM image reconstructions show that the CTDs, which are located inside the capsid, can extrude through the capsid to be bound by Impβ. Impβ density localized on the capsid exterior near the quasi-sixfold vertices, suggested a maximum of 30 Impβ per capsid. However, examination of complexes using single molecule charge-detection mass spectrometry indicate that some complexes include over 90 Impβ molecules. Cryo-EM of capsids incubated with excess Impβ shows a population of damaged particles and a population of "dark" particles with internal density, suggesting that Impβ is effectively swallowed by the capsids, which implies that the capsids transiently open and close and can be destabilized by Impβ. Though the in vitro complexes with great excess of Impβ are not biological, these results have implications for trafficking of empty capsids and free core protein; activities that affect the basis of chronic HBV infection.
Collapse
Affiliation(s)
- Chao Chen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Joseph Che-Yen Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Elizabeth E. Pierson
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - David Z. Keifer
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Mildred Delaleau
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Lara Gallucci
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Christian Cazenave
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Michael Kann
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CHU de Bordeaux, Bordeaux, France
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
37
|
Zhang Z, Zehnder B, Damrau C, Urban S. Visualization of hepatitis B virus entry - novel tools and approaches to directly follow virus entry into hepatocytes. FEBS Lett 2016; 590:1915-26. [PMID: 27149321 DOI: 10.1002/1873-3468.12202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/14/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) is a widespread human pathogen, responsible for chronic infections of ca. 240 million people worldwide. Until recently, the entry pathway of HBV into hepatocytes was only partially understood. The identification of human sodium taurocholate cotransporting polypeptide (NTCP) as a bona fide receptor of HBV has provided us with new tools to investigate this pathway in more details. Combined with advances in virus visualization techniques, approaches to directly visualize HBV cell attachment, NTCP interaction, virion internalization and intracellular transport are now becoming feasible. This review summarizes our current understanding of how HBV specifically enters hepatocytes, and describes possible visualization strategies applicable for a deeper understanding of the underlying cell biological processes.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany
| | - Benno Zehnder
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany
| | - Christine Damrau
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany.,German Center of Infectious Diseases (DZIF), Heidelberg, Germany
| |
Collapse
|
38
|
Maternal-Derived Hepatitis B Virus e Antigen Alters Macrophage Function in Offspring to Drive Viral Persistence after Vertical Transmission. Immunity 2016; 44:1204-14. [PMID: 27156385 DOI: 10.1016/j.immuni.2016.04.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 12/17/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023]
Abstract
In contrast to horizontal transmission of hepatitis B virus (HBV) between adults, which often leads to self-limited acute infection, vertical transmission of HBV from mother to child often leads to chronic infection. However, the mechanisms linking vertical transmission with chronic infection are not known. We developed a mouse model to study the effect of maternal HBV infection on HBV persistence in offspring and found that HBV carried by the mother impaired CD8(+) T cell responses to HBV in her offspring, resulting in HBV persistence. This impairment of CD8(+) T cell responses was mediated by hepatic macrophages, which were predisposed by maternal HBV e antigen (HBeAg) to support HBV persistence by upregulation of inhibitory ligand PD-L1 and altered polarization upon restimulation with HBeAg. Depletion of hepatic macrophages led to CD8(+) T cell activation and HBV clearance in the offspring, raising the possibility of targeting macrophages to treat chronic HBV patients.
Collapse
|
39
|
Blondot ML, Bruss V, Kann M. Intracellular transport and egress of hepatitis B virus. J Hepatol 2016; 64:S49-S59. [PMID: 27084037 DOI: 10.1016/j.jhep.2016.02.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 12/23/2022]
Abstract
Hepatitis B virus (HBV) replicates its genomic information in the nucleus via transcription and therefore has to deliver its partially double stranded DNA genome into the nucleus. Like other viruses with a nuclear replication phase, HBV genomes are transported inside the viral capsids first through the cytoplasm towards the nuclear envelope. Following the arrival at the nuclear pore, the capsids are transported through, using classical cellular nuclear import pathways. The arrest of nuclear import at the nucleoplasmic side of the nuclear pore is unique, however, and is where the capsids efficiently disassemble leading to genome release. In the latter phase of the infection, newly formed nucleocapsids in the cytosol have to move to budding sites at intracellular membranes carrying the three viral envelope proteins. Capsids containing single stranded nucleic acid are not enveloped, in contrast to empty and double stranded DNA containing capsids. A small linear domain in the large envelope protein and two areas on the capsid surface have been mapped, where point mutations strongly block nucleocapsid envelopment. It is possible that these domains are involved in the envelope--with capsid interactions driving the budding process. Like other enveloped viruses, HBV also uses the cellular endosomal sorting complexes required for transport (ESCRT) machinery for catalyzing budding through the membrane and away from the cytosol.
Collapse
Affiliation(s)
- Marie-Lise Blondot
- Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Volker Bruss
- Institute for Virology, Helmholtz Zentrum München, Technische Universität Muenchen, Neuherberg, Germany
| | - Michael Kann
- Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; CHU de Bordeaux, Bordeaux, France.
| |
Collapse
|
40
|
Hepatitis B Virus Capsids Have Diverse Structural Responses to Small-Molecule Ligands Bound to the Heteroaryldihydropyrimidine Pocket. J Virol 2016; 90:3994-4004. [PMID: 26842475 PMCID: PMC4810570 DOI: 10.1128/jvi.03058-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/27/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Though the hepatitis B virus (HBV) core protein is an important participant in many aspects of the viral life cycle, its best-characterized activity is self-assembly into 240-monomer capsids. Small molecules that target core protein (core protein allosteric modulators [CpAMs]) represent a promising antiviral strategy. To better understand the structural basis of the CpAM mechanism, we determined the crystal structure of the HBV capsid in complex with HAP18. HAP18 accelerates assembly, increases protein-protein association more than 100-fold, and induces assembly of nonicosahedral macrostructures. In a preformed capsid, HAP18 is found at quasiequivalent subunit-subunit interfaces. In a detailed comparison to the two other extant CpAM structures, we find that the HAP18-capsid structure presents a paradox. Whereas the two other structures expanded the capsid diameter by up to 10 Å, HAP18 caused only minor changes in quaternary structure and actually decreased the capsid diameter by ∼3 Å. These results indicate that CpAMs do not have a single allosteric effect on capsid structure. We suggest that HBV capsids present an ensemble of states that can be trapped by CpAMs, indicating a more complex basis for antiviral drug design. IMPORTANCE Hepatitis B virus core protein has multiple roles in the viral life cycle-assembly, compartment for reverse transcription, intracellular trafficking, and nuclear functions-making it an attractive antiviral target. Core protein allosteric modulators (CpAMs) are an experimental class of antivirals that bind core protein. The most recognized CpAM activity is that they accelerate core protein assembly and strengthen interactions between subunits. In this study, we observe that the CpAM-binding pocket has multiple conformations. We compare structures of capsids cocrystallized with different CpAMs and find that they also affect quaternary structure in different ways. These results suggest that the capsid "breathes" and is trapped in different states by the drug and crystallization. Understanding that the capsid is a moving target will aid drug design and improve our understanding of HBV interaction with its environment.
Collapse
|
41
|
Zlotnick A, Venkatakrishnan B, Tan Z, Lewellyn E, Turner W, Francis S. Core protein: A pleiotropic keystone in the HBV lifecycle. Antiviral Res 2015; 121:82-93. [PMID: 26129969 DOI: 10.1016/j.antiviral.2015.06.020] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022]
Abstract
Hepatitis B Virus (HBV) is a small virus whose genome has only four open reading frames. We argue that the simplicity of the virion correlates with a complexity of functions for viral proteins. We focus on the HBV core protein (Cp), a small (183 residue) protein that self-assembles to form the viral capsid. However, its functions are a little more complicated than that. In an infected cell Cp modulates almost every step of the viral lifecycle. Cp is bound to nuclear viral DNA and affects its epigenetics. Cp correlates with RNA specificity. Cp assembles specifically on a reverse transcriptase-viral RNA complex or, apparently, nothing at all. Indeed Cp has been one of the model systems for investigation of virus self-assembly. Cp participates in regulation of reverse transcription. Cp signals completion of reverse transcription to support virus secretion. Cp carries both nuclear localization signals and HBV surface antigen (HBsAg) binding sites; both of these functions appear to be regulated by contents of the capsid. Cp can be targeted by antivirals - while self-assembly is the most accessible of Cp activities, we argue that it makes sense to engage the broader spectrum of Cp function. This article forms part of a symposium in Antiviral Research on "From the discovery of the Australia antigen to the development of new curative therapies for hepatitis B: an unfinished story."
Collapse
Affiliation(s)
- Adam Zlotnick
- Molecular & Cellular Biology, Indiana University, Bloomington, IN, United States.
| | | | - Zhenning Tan
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - Eric Lewellyn
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - William Turner
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - Samson Francis
- Molecular & Cellular Biology, Indiana University, Bloomington, IN, United States; Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| |
Collapse
|
42
|
Abstract
DNA viruses undertake their replication within the cell nucleus, and therefore they must first deliver their genome into the nucleus of their host cells. Thus, trafficking across the nuclear envelope is at the basis of DNA virus infections. Nuclear transport of molecules with diameters up to 39 nm is a tightly regulated process that occurs through the nuclear pore complex (NPC). Due to the enormous diversity of virus size and structure, each virus has developed its own strategy for entering the nucleus of their host cells, with no two strategies alike. For example, baculoviruses target their DNA-containing capsid to the NPC and subsequently enter the nucleus intact, while the hepatitis B virus capsid crosses the NPC but disassembles at the nuclear side of the NPC. For other viruses such as herpes simplex virus and adenovirus, although both dock at the NPC, they have each developed a distinct mechanism for the subsequent delivery of their genome into the nucleus. Remarkably, other DNA viruses, such as parvoviruses and human papillomaviruses, access the nucleus through an NPC-independent mechanism. This review discusses our current understanding of the mechanisms used by DNA viruses to deliver their genome into the nucleus, and further presents the experimental evidence for such mechanisms.
Collapse
Affiliation(s)
- Nikta Fay
- Department of Zoology, University of British Columbia Vancouver, BC, Canada
| | - Nelly Panté
- Department of Zoology, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
43
|
Kim J, Wu J. A theoretical study of SRPK interaction with the flexible domains of hepatitis B capsids. Biophys J 2015; 107:1453-61. [PMID: 25229152 DOI: 10.1016/j.bpj.2014.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/27/2014] [Accepted: 07/15/2014] [Indexed: 12/22/2022] Open
Abstract
Hepatitis B virus (HBV) controls genome encapsidation and reverse transcription from a single-stranded RNA to a double-stranded DNA through the flexible C-terminal domain (CTD) of the capsid proteins. Although the microscopic structure of the nucleocapsid plays a critical role in the life cycle of HBV, the location of CTD residues at different stages of viral replication remains poorly understood. In this work, we report the radial distributions of individual amino-acid residues of the CTD tails for both empty and RNA-containing HBV capsids by using a coarse-grained model for the key biological components and the classical density functional theory. The density functional theory calculations reveal substantial exposure of the CTD residues outside the capsid, in particular when it is devoid of any nucleic materials. The outermost layer of the capsid surface mainly consists of residues from (170)Ser-(175)Arg of the CTD tails, i.e., the serine-arginine protein kinase binding motif. The theoretical description corroborates recent in vitro studies that show a transient CTD distribution captured by serine-arginine protein kinase binding. We have also investigated the nucleocapsid structural changes due to phosphorylation of serine residues and shown a correlation between the CTD location and the internal distribution of RNA segments.
Collapse
Affiliation(s)
- Jehoon Kim
- Department of Chemical and Environmental Engineering, University of California, Riverside, California
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California.
| |
Collapse
|
44
|
Regulation of multiple stages of hepadnavirus replication by the carboxyl-terminal domain of viral core protein in trans. J Virol 2014; 89:2918-30. [PMID: 25540387 DOI: 10.1128/jvi.03116-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Mutational analyses have indicated that the carboxyl-terminal domain (CTD) of hepadnavirus core protein and its state of phosphorylation are critical for multiple steps in viral replication. Also, CTD interacts with host proteins in a phosphorylation state-dependent manner. To ascertain the role of CTD in viral replication without perturbing its sequence and the role of CTD-host interactions, CTD of the human hepatitis B virus (HBV) or duck hepatitis B virus (DHBV) core protein, either the wild type (WT) or with alanine or glutamic acid/aspartic acid substitutions at the phosphorylation sites, was expressed in cells replicating DHBV with the WT core protein. A dramatic decrease in phosphorylation of the DHBV core protein (DHBc) was observed when the WT and most HBV core protein CTD (HCTD) variants were coexpressed in trans, which was accompanied by a profound reduction of viral core DNA and, in particular, the double-stranded DNA. One HCTD variant that failed to change DHBc phosphorylation also had no effect on DHBV core DNA. All WT and variant HCTDs and DHBc CTDs (DCTDs) decreased the DHBV covalently closed circular (CCC) DNA. Identification of CTD-host interactions indicated that CDK2 binding by CTD may mediate its inhibitory effect on DHBc phosphorylation and reverse transcription via competition with DHBc for the host kinase, whereas importin α binding by CTD may contribute to inhibition of CCC DNA production by competitively blocking the nuclear import of viral nucleocapsids. These results suggest the possibility of blocking multiple steps of viral replication, especially CCC DNA formation, via inhibition of CTD functions. IMPORTANCE Mutational analyses have suggested that the carboxyl-terminal domain (CTD) of hepadnavirus core protein is critical for viral replication. However, results from mutational analyses are open to alternative interpretations. Also, how CTD affects virus replication remains unclear. In this study, we took an alternative approach to mutagenesis by overexpressing CTD alone in cells replicating the virus with the wild-type core protein to determine the roles of CTD in viral replication. Our results revealed that CTD can inhibit multiple stages of viral replication, and its effects may be mediated at least in part through specific host interactions. They suggest that CTD, or its mimics, may have therapeutic potential. Furthermore, our experimental approach should be broadly applicable as a complement to mutagenesis for studying protein functions and interactions while at the same time providing a means to identify the relevant interacting factors.
Collapse
|
45
|
Recombinant adeno-associated virus utilizes host cell nuclear import machinery to enter the nucleus. J Virol 2014; 88:4132-44. [PMID: 24478436 DOI: 10.1128/jvi.02660-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Recombinant adeno-associated viral (rAAV) vectors have garnered much promise in gene therapy applications. However, widespread clinical use has been limited by transduction efficiency. Previous studies suggested that the majority of rAAV accumulates in the perinuclear region of cells, presumably unable to traffic into the nucleus. rAAV nuclear translocation remains ill-defined; therefore, we performed microscopy, genetic, and biochemical analyses in vitro in order to understand this mechanism. Lectin blockade of the nuclear pore complex (NPC) resulted in inhibition of nuclear rAAV2. Visualization of fluorescently labeled particles revealed that rAAV2 localized to importin-β-dense regions of cells in late trafficking steps. Additionally, small interfering RNA (siRNA) knockdown of importin-β partially inhibited rAAV2 nuclear translocation and inhibited transduction by 50 to 70%. Furthermore, coimmunopreciptation (co-IP) analysis revealed that capsid proteins from rAAV2 could interact with importin-β and that this interaction was sensitive to the small GTPase Ran. More importantly, mutations to key basic regions in the rAAV2 capsid severely inhibited interactions with importin-β. We tested several other serotypes and found that the extent of importin-β interaction varied, suggesting that different serotypes may utilize alternative import proteins for nuclear translocation. Co-IP and siRNA analyses were used to investigate the role of other karyopherins, and the results suggested that rAAV2 may utilize multiple import proteins for nuclear entry. Taken together, our results suggest that rAAV2 interacts with importin-β alone or in complex with other karyopherins and enters the nucleus via the NPC. These results may lend insight into the design of novel AAV vectors that have an enhanced nuclear entry capability and transduction potential. IMPORTANCE Use of recombinant adeno-associated viral (rAAV) vectors for gene therapy applications is limited by relatively low transduction efficiency, in part due to cellular barriers that hinder successful subcellular trafficking to the nucleus, where uncoating and subsequent gene expression occur. Nuclear translocation of rAAV has been regarded as a limiting step for successful transduction but it remains ill-defined. We explored potential nuclear entry mechanisms for rAAV2 and found that rAAV2 can utilize the classical nuclear import pathway, involving the nuclear pore complex, the small GTPase Ran, and cellular karyopherins. These results could lend insight into the rational design of novel rAAV vectors that can more efficiently translocate to the nucleus, which may lead to more efficient transduction.
Collapse
|
46
|
Nucleic acid chaperone activity associated with the arginine-rich domain of human hepatitis B virus core protein. J Virol 2013; 88:2530-43. [PMID: 24352445 DOI: 10.1128/jvi.03235-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Hepatitis B virus (HBV) DNA replication occurs within the HBV icosahedral core particles. HBV core protein (HBc) contains an arginine-rich domain (ARD) at its carboxyl terminus. This ARD domain of HBc 149-183 is known to be important for viral replication but not known to have a structure. Recently, nucleocapsid proteins of several viruses have been shown to contain nucleic acid chaperone activity, which can facilitate structural rearrangement of viral genome. Major features of nucleic acid chaperones include highly basic amino acid residues and flexible protein structure. To test the nucleic acid chaperone hypothesis for HBc ARD, we first used the disassembled full-length HBc from Escherichia coli to analyze the nucleic acid annealing and strand displacement activities. To exclude the potential contamination of chaperones from E. coli, we designed synthetic HBc ARD peptides with different lengths and serine phosphorylations. We demonstrated that HBc ARD peptide can behave like a bona fide nucleic acid chaperone and that the chaperone activity depends on basic residues of the ARD domain. The loss of chaperone activity by arginine-to-alanine substitutions in the ARD can be rescued by restoring basic residues in the ARD. Furthermore, the chaperone activity is subject to regulation by phosphorylation and dephosphorylation at the HBc ARD. Interestingly, the HBc ARD can enhance in vitro cleavage activity of RNA substrate by a hammerhead ribozyme. We discuss here the potential significance of the HBc ARD chaperone activity in the context of viral DNA replication, in particular, at the steps of primer translocations and circularization of linear replicative intermediates. IMPORTANCE Hepatitis B virus is a major human pathogen. At present, no effective treatment can completely eradicate the virus from patients with chronic hepatitis B. We report here a novel chaperone activity associated with the viral core protein. Our discovery could lead to a new drug design for more effective treatment against hepatitis B virus in the future.
Collapse
|
47
|
Katen SP, Tan Z, Chirapu SR, Finn MG, Zlotnick A. Assembly-directed antivirals differentially bind quasiequivalent pockets to modify hepatitis B virus capsid tertiary and quaternary structure. Structure 2013; 21:1406-16. [PMID: 23871485 DOI: 10.1016/j.str.2013.06.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 05/19/2013] [Accepted: 06/12/2013] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) is a major cause of liver disease. Assembly of the HBV capsid is a critical step in virus production and an attractive target for new antiviral therapies. We determined the structure of HBV capsid in complex with AT-130, a member of the phenylpropenamide family of assembly effectors. AT-130 causes tertiary and quaternary structural changes but does not disrupt capsid structure. AT-130 binds a hydrophobic pocket that also accommodates the previously characterized heteroaryldihydropyrimidine compounds but favors a unique quasiequivalent location on the capsid surface. Thus, this pocket is a promiscuous drug-binding site and a likely target for different assembly effectors with a broad range of mechanisms of activity. That AT-130 successfully decreases virus production by increasing capsid assembly rate without disrupting capsid structure delineates a paradigm in antiviral design, that disrupting reaction timing is a viable strategy for assembly effectors of HBV and other viruses.
Collapse
Affiliation(s)
- Sarah P Katen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | |
Collapse
|
48
|
Guo Y, Kang W, Lei X, Li Y, Xiang A, Liu Y, Zhao J, Zhang J, Yan Z. Hepatitis B viral core protein disrupts human host gene expression by binding to promoter regions. BMC Genomics 2012; 13:563. [PMID: 23088787 PMCID: PMC3484065 DOI: 10.1186/1471-2164-13-563] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 10/15/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The core protein (HBc) of hepatitis B virus (HBV) has been implicated in the malignant transformation of chronically-infected hepatocytes and displays pleiotropic functions, including RNA- and DNA-binding activities. However, the mechanism by which HBc interacts with the human genome to exert effects on hepatocyte function remains unknown. This study investigated the distribution of HBc binding to promoters in the human genome and evaluated its effects on the related genes' expression. RESULTS Whole-genome chromatin immunoprecipitation microarray (ChIP-on-chip) analysis was used to identify HBc-bound human gene promoters. Gene Ontology and pathway analyses were performed on related genes. The quantitative polymerase chain reaction assay was used to verify ChIP-on-chip results. Five novel genes were selected for luciferase reporter assay evaluation to assess the influence of HBc promoter binding. The HBc antibody immunoprecipitated approximately 3100 human gene promoters. Among these, 1993 are associated with known biological processes, and 2208 regulate genes with defined molecular functions. In total, 1286 of the related genes mediate primary metabolic processes, and 1398 encode proteins with binding activity. Sixty-four of the promoters regulate genes related to the mitogen-activated protein kinase (MAPK) pathways, and 41 regulate Wnt/beta-catenin pathway genes. The reporter gene assay indicated that HBc binding up-regulates proto-oncogene tyrosine-protein kinase (SRC), type 1 insulin-like growth factor receptor (IGF1R), and neurotrophic tyrosine kinase receptor 2 (NTRK2), and down-regulates v-Ha-ras Harvey rat sarcoma viral oncogene (HRAS). CONCLUSION HBc has the ability to bind a large number of human gene promoters, and can disrupt normal host gene expression. Manipulation of the transcriptional profile in HBV-infected hepatocytes may represent a key pathogenic mechanism of HBV infection.
Collapse
Affiliation(s)
- Yanhai Guo
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032, China
| | - Wei Kang
- Department of Clinical Laboratory, Affiliated Hospital of Xi’an Medical University, Xi’an, 710077, China
| | - Xiaoying Lei
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032, China
| | - Yongnian Li
- Department of Infectious Diseases, 323 Hospital, Xi’an, 710000, China
| | - An Xiang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032, China
| | - Yonglan Liu
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032, China
| | - Jinrong Zhao
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032, China
| | - Ju Zhang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032, China
| | - Zhen Yan
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032, China
| |
Collapse
|
49
|
Cyclin-dependent kinase 2 phosphorylates s/t-p sites in the hepadnavirus core protein C-terminal domain and is incorporated into viral capsids. J Virol 2012; 86:12237-50. [PMID: 22951823 DOI: 10.1128/jvi.01218-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Phosphorylation of the hepadnavirus core protein C-terminal domain (CTD) is important for viral RNA packaging, reverse transcription, and subcellular localization. Hepadnavirus capsids also package a cellular kinase. The identity of the host kinase that phosphorylates the core CTD or gets packaged remains to be resolved. In particular, both the human hepatitis B virus (HBV) and duck hepatitis B virus (DHBV) core CTDs harbor several conserved serine/threonine-proline (S/T-P) sites whose phosphorylation state is known to regulate CTD functions. We report here that the endogenous kinase in the HBV capsids was blocked by chemical inhibitors of the cyclin-dependent kinases (CDKs), in particular, CDK2 inhibitors. The kinase phosphorylated the HBV CTD at the serine-proline (S-P) sites. Furthermore, we were able to detect CDK2 in purified HBV capsids by immunoblotting. Purified CDK2 phosphorylated the S/T-P sites of the HBV and DHBV CTD in vitro. Inhibitors of CDKs, of CDK2 in particular, decreased both HBV and DHBV CTD phosphorylation in vivo. Moreover, CDK2 inhibitors blocked DHBV CTD phosphorylation, specifically at the S/T-P sites, in a mammalian cell lysate. These results indicate that cellular CDK2 phosphorylates the functionally critical S/T-P sites of the hepadnavirus core CTD and is incorporated into viral capsids.
Collapse
|
50
|
Chen C, Wang JCY, Zlotnick A. A kinase chaperones hepatitis B virus capsid assembly and captures capsid dynamics in vitro. PLoS Pathog 2011; 7:e1002388. [PMID: 22114561 PMCID: PMC3219723 DOI: 10.1371/journal.ppat.1002388] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/04/2011] [Indexed: 12/14/2022] Open
Abstract
The C-terminal domain (CTD) of Hepatitis B virus (HBV) core protein is involved in regulating multiple stages of the HBV lifecycle. CTD phosphorylation correlates with pregenomic-RNA encapsidation during capsid assembly, reverse transcription, and viral transport, although the mechanisms remain unknown. In vitro, purified HBV core protein (Cp183) binds any RNA and assembles aggressively, independent of phosphorylation, to form empty and RNA-filled capsids. We hypothesize that there must be a chaperone that binds the CTD to prevent self-assembly and nonspecific RNA packaging. Here, we show that HBV capsid assembly is stalled by the Serine Arginine protein kinase (SRPK) binding to the CTD, and reactivated by subsequent phosphorylation. Using the SRPK to probe capsids, solution and structural studies showed that SRPK bound to capsid, though the CTD is sequestered on the capsid interior. This result indicates transient CTD externalization and suggests that capsid dynamics could be crucial for directing HBV intracellular trafficking. Our studies illustrate the stochastic nature of virus capsids and demonstrate the appropriation of a host protein by a virus for a non-canonical function. A virus particle is a molecular machine that has evolved to self-assemble within the confines of a living cell. For hepatitis B virus (HBV), outside of a cell, the self-assembly process is very aggressive and consequently not specific for viral RNA. Here we show that HBV takes advantage of a host protein, SRPK, which acts like a molecular chaperone, to prevent the HBV core protein from binding RNA and to prevent the core protein from assembling at the wrong time and place. At the right time, SRPK can be removed in a regulated reaction to allow assembly. Once a virus is assembled, it must traffic to the right intracellular locale. Using SRPK, we show that HBV cores can transiently expose a segment of protein, normally inside the virus, that carries a signal for transport to the host nucleus. This is the first example we know of where a virus repurposes an enzyme for an alternative function. This sort of interplay between virus and host, where the virus hijacks and repurposes host proteins, is likely to be a common feature of viral infection.
Collapse
Affiliation(s)
- Chao Chen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Joseph Che-Yen Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|