1
|
Temporal Viral Genome-Protein Interactions Define Distinct Stages of Productive Herpesviral Infection. mBio 2018; 9:mBio.01182-18. [PMID: 30018111 PMCID: PMC6050965 DOI: 10.1128/mbio.01182-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Herpesviruses utilize multiple mechanisms to redirect host proteins for use in viral processes and to avoid recognition and repression by the host. To investigate dynamic interactions between herpes simplex virus type 1 (HSV-1) DNA and viral and host proteins throughout infection, we developed an approach to identify proteins that associate with the infecting viral genome from nuclear entry through packaging. To accomplish this, virus stocks were prepared in the presence of ethynyl-modified nucleotides to enable covalent tagging of viral genomes after infection for analysis of viral genome-protein interactions by imaging or affinity purification. Affinity purification was combined with stable isotope labeling of amino acids in cell culture (SILAC) mass spectrometry to enable the distinction between proteins that were brought into the cell by the virus or expressed within the infected cell before or during infection. We found that input viral DNA progressed within 6 h through four temporal stages where the genomes sequentially (i) interacted with intrinsic antiviral and DNA damage response proteins, (ii) underwent a robust transcriptional switch mediated largely by ICP4, (iii) engaged in replication, repair, and continued transcription, and then (iv) transitioned to a more transcriptionally inert state engaging de novo-synthesized viral structural components while maintaining interactions with replication proteins. Using a combination of genetic, imaging, and proteomic approaches, we provide a new and temporally compressed view of the HSV-1 life cycle based on input genome-proteome dynamics. Herpesviruses are highly prevalent and ubiquitous human pathogens. Studies of herpesviruses and other viruses have previously been limited by the ability to directly study events that occur on the viral DNA throughout infection. We present a new powerful approach, which allows for the temporal investigation of viral genome-protein interactions at all phases of infection. This work has integrated many results from previous studies with the discovery of novel factors potentially involved in viral infection that may represent new antiviral targets. In addition, the study provides a new view of the HSV-1 life cycle based on genome-proteome dynamics.
Collapse
|
2
|
Tunnicliffe RB, Lockhart-Cairns MP, Levy C, Mould AP, Jowitt TA, Sito H, Baldock C, Sandri-Goldin RM, Golovanov AP. The herpes viral transcription factor ICP4 forms a novel DNA recognition complex. Nucleic Acids Res 2017; 45:8064-8078. [PMID: 28505309 PMCID: PMC5737704 DOI: 10.1093/nar/gkx419] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/03/2017] [Indexed: 11/13/2022] Open
Abstract
The transcription factor ICP4 from herpes simplex virus has a central role in regulating the gene expression cascade which controls viral infection. Here we present the crystal structure of the functionally essential ICP4 DNA binding domain in complex with a segment from its own promoter, revealing a novel homo-dimeric fold. We also studied the complex in solution by small angle X-Ray scattering, nuclear magnetic resonance and surface-plasmon resonance which indicated that, in addition to the globular domain, a flanking intrinsically disordered region also recognizes DNA. Together the data provides a rationale for the bi-partite nature of the ICP4 DNA recognition consensus sequence as the globular and disordered regions bind synergistically to adjacent DNA motifs. Therefore in common with its eukaryotic host, the viral transcription factor ICP4 utilizes disordered regions to enhance the affinity and tune the specificity of DNA interactions in tandem with a globular domain.
Collapse
Affiliation(s)
- Richard B Tunnicliffe
- Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M1 7DN, UK
| | - Michael P Lockhart-Cairns
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK.,Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0QX, UK
| | - Colin Levy
- Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M1 7DN, UK
| | - A Paul Mould
- Biomolecular Analysis Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Thomas A Jowitt
- Biomolecular Analysis Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Hilary Sito
- Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M1 7DN, UK
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Rozanne M Sandri-Goldin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697-4025, USA
| | - Alexander P Golovanov
- Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M1 7DN, UK
| |
Collapse
|
3
|
Wang X, Diao C, Yang X, Yang Z, Liu M, Li X, Tang H. ICP4-induced miR-101 attenuates HSV-1 replication. Sci Rep 2016; 6:23205. [PMID: 26984403 PMCID: PMC4794718 DOI: 10.1038/srep23205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/25/2016] [Indexed: 11/09/2022] Open
Abstract
Hepes simplex Virus type 1 (HSV-1) is an enveloped DNA virus that can cause lytic and latent infection. miRNAs post-transcriptionally regulate gene expression, and our previous work has indicated that HSV-1 infection induces miR-101 expression in HeLa cells. The present study demonstrates that HSV-1-induced miR-101 is mainly derived from its precursor hsa-mir-101-2, and the HSV-1 immediate early gene ICP4 (infected-cell polypeptide 4) directly binds to the hsa-mir-101-2 promoter to activate its expression. RNA-binding protein G-rich sequence factor 1 (GRSF1) was identified as a new target of miR-101; GRSF1 binds to HSV-1 p40 mRNA and enhances its expression, facilitating viral proliferation. Together, ICP4 induces miR-101 expression, which downregulates GRSF1 expression and attenuates the replication of HSV-1. This allows host cells to maintain a permissive environment for viral replication by preventing lytic cell death. These findings indicate that HSV-1 early gene expression modulates host miRNAs to regulate molecular defense mechanisms. This study provides novel insight into host-virus interactions in HSV-1 infection and may contribute to the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Xiangling Wang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| | - Caifeng Diao
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| | - Xi Yang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| | - Zhen Yang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| | - Min Liu
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| | - Xin Li
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| | - Hua Tang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| |
Collapse
|
4
|
Requirement of the N-terminal activation domain of herpes simplex virus ICP4 for viral gene expression. J Virol 2012; 87:1010-8. [PMID: 23135715 DOI: 10.1128/jvi.02844-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ICP4 is the major activator of herpes simplex virus (HSV) transcription. Previous studies have defined several regions of ICP4 that are important for viral gene expression, including a DNA binding domain and transactivation domains that are contained in the C-terminal and N-terminal 520 and 274 amino acids, respectively. Here we show that the N-terminal 210 amino acids of ICP4 are required for interactions with components of TFIID and mediator and, as a consequence, are necessary for the activation of viral genes. A mutant of ICP4 deleted for amino acids 30 to 210, d3-10, was unable to complement an ICP4 null virus at the level of viral replication. This was the result of a severe deficiency in viral gene and protein expression. The absence of viral gene expression coincided with a defect in the recruitment of RNA polymerase II to a representative early promoter (thymidine kinase [TK]). Affinity purification experiments demonstrated that d3-10 ICP4 was not found in complexes with components of TFIID and mediator, suggesting that the defect in RNA polymerase II (Pol II) recruitment was the result of ablated interactions between d3-10 and TFIID and mediator. Complementation assays suggested that the N-terminal and C-terminal regions of ICP4 cooperate to mediate gene expression. The complementation was the result of the formation of more functional heterodimers, which restored the ability of the d3-10-containing molecules to interact with TFIID. Together, these studies suggest that the N terminus contains a true activation domain, mediating interactions with TFIID, mediator, and perhaps other transcription factors, and that the C terminus of the molecule contains activities that augment the functions of the activation domain.
Collapse
|
5
|
The N terminus and C terminus of herpes simplex virus 1 ICP4 cooperate to activate viral gene expression. J Virol 2012; 86:6862-74. [PMID: 22496239 DOI: 10.1128/jvi.00651-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infected cell polypeptide 4 (ICP4) activates transcription from most viral promoters. Two transactivation domains, one N-terminal and one C terminal, are largely responsible for the activation functions of ICP4. A mutant ICP4 molecule lacking the C-terminal activation domain (n208) efficiently activates many early genes, whereas late genes are poorly activated, and virus growth is severely impaired. The regions within the N terminus of ICP4 (amino acids 1 to 210) that contribute to activation were investigated by analysis of deletion mutants in the presence or absence of the C-terminal activation domain. The mutants were assessed for their abilities to support viral replication and to regulate gene expression. Several deletions in regions conserved in other alphaherpesviruses resulted in impaired activation and viral growth, without affecting DNA binding. The single small deletion that had the greatest effect on activation in the absence of the C terminus corresponded to a highly conserved stretch of amino acids between 81 and 96, rendering the molecule nonfunctional. However, when the C terminus was present, the same deletion had a minimal effect on activity. The amino terminus of ICP4 was predicted to be relatively disordered compared to the DNA-binding domain and the C-terminal 500 amino acids. Moreover, the amino terminus appears to be in a relatively extended conformation as determined by the hydrodynamic properties of several mutants. The data support a model where the amino terminus is an extended and possibly flexible region of the protein, allowing it to efficiently interact with multiple transcription factors at a distance from where it is bound to DNA, thereby enabling ICP4 to function as a general activator of polymerase II transcription. The C terminus of ICP4 can compensate for some of the mutations in the N terminus, suggesting that it either specifies redundant interactions or enables the amino terminus to function more efficiently.
Collapse
|
6
|
Herpes simplex virus 1 ICP4 forms complexes with TFIID and mediator in virus-infected cells. J Virol 2011; 85:5733-44. [PMID: 21450820 DOI: 10.1128/jvi.00385-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The infected cell polypeptide 4 (ICP4) of herpes simplex virus 1 (HSV-1) is a regulator of viral transcription that is required for productive infection. Since viral genes are transcribed by cellular RNA polymerase II (RNA pol II), ICP4 must interact with components of the pol II machinery to regulate viral gene expression. It has been shown previously that ICP4 interacts with TATA box-binding protein (TBP), TFIIB, and the TBP-associated factor 1 (TAF1) in vitro. In this study, ICP4-containing complexes were isolated from infected cells by tandem affinity purification (TAP). Forty-six proteins that copurified with ICP4 were identified by mass spectrometry. Additional copurifying proteins were identified by Western blot analysis. These included 11 components of TFIID and 4 components of the Mediator complex. The significance of the ICP4-Mediator interaction was further investigated using immunofluorescence and chromatin immunoprecipitation. Mediator was found to colocalize with ICP4 starting at early and continuing into late times of infection. In addition, Mediator was recruited to viral promoters in an ICP4-dependent manner. Taken together, the data suggest that ICP4 interacts with components of TFIID and Mediator in the context of viral infection, and this may explain the broad transactivation properties of ICP4.
Collapse
|
7
|
Zabierowski SE, Deluca NA. Stabilized binding of TBP to the TATA box of herpes simplex virus type 1 early (tk) and late (gC) promoters by TFIIA and ICP4. J Virol 2008; 82:3546-54. [PMID: 18216093 PMCID: PMC2268492 DOI: 10.1128/jvi.02560-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 01/10/2008] [Indexed: 11/20/2022] Open
Abstract
We have recently shown that ICP4 has a differential requirement for the general transcription factor TFIIA in vitro (S. Zabierowski and N. DeLuca, J. Virol. 78:6162-6170, 2004). TFIIA was dispensable for ICP4 activation of a late promoter (gC) but was required for the efficient activation of an early promoter (tk). An intact INR element was required for proficient ICP4 activation of the late promoter in the absence of TFIIA. Because TFIIA is known to stabilize the binding of both TATA binding protein (TBP) and TFIID to the TATA box of core promoters and ICP4 has been shown to interact with TFIID, we tested the ability of ICP4 to stabilize the binding of either TBP or TFIID to the TATA box of representative early, late, and INR-mutated late promoters (tk, gC, and gC8, respectively). Utilizing DNase I footprinting analysis, we found that ICP4 was able to facilitate TFIIA stabilized binding of TBP to the TATA box of the early tk promoter. Using mutant ICP4 proteins, the ability to stabilize the binding of TBP to both the wild-type and the INR-mutated gC promoters was located in the amino-terminal region of ICP4. When TFIID was substituted for TBP, ICP4 could stabilize the binding of TFIID to the TATA box of the wild-type gC promoter. ICP4, however, could not effectively stabilize TFIID binding to the TATA box of the INR-mutated late promoter. The additional activities of TFIIA were required to stabilize the binding of TFIID to the INR-mutated late promoter. Collectively, these data suggest that TFIIA may be dispensable for ICP4 activation of the wild-type late promoter because ICP4 can substitute for TFIIA's ability to stabilize the binding of TFIID to the TATA box. In the absence of a functional INR, ICP4 can no longer stabilize TFIID binding to the TATA box of the late promoter and requires the additional activities of TFIIA. The stabilized binding of TFIID by TFIIA may in turn allow ICP4 to more efficiently activate transcription from non-INR containing promoters.
Collapse
Affiliation(s)
- Susan E Zabierowski
- Biomedical Science Tower, Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
8
|
Sampath P, Deluca NA. Binding of ICP4, TATA-binding protein, and RNA polymerase II to herpes simplex virus type 1 immediate-early, early, and late promoters in virus-infected cells. J Virol 2008; 82:2339-49. [PMID: 18094162 PMCID: PMC2258917 DOI: 10.1128/jvi.02459-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 12/13/2007] [Indexed: 11/20/2022] Open
Abstract
The binding of herpes simplex virus type 1 ICP4, TATA-binding protein (TBP), and RNA polymerase II (polII) to the promoter regions of representative immediate-early (IE) (ICP0), early (E) (thymidine kinase [tk]), and late (L) (glycoprotein C [gC]) genes on the viral genome was examined as a function of time postinfection, viral DNA replication, cis-acting sites for TFIID in the tk and gC promoters, and genetic background of ICP4. The binding of TBP and polII to the IE ICP0 promoter was independent of the presence of ICP4, whereas the binding of TBP and polII to the tk and gC promoters occurred only when ICP4 also bound to the promoters, suggesting that the presence of ICP4 at the promoters of E and L genes in virus-infected cells is crucial for the formation of transcription complexes on these promoters. When the TATA box of the tk promoter or the initiator element (INR) of the gC promoter was mutated, a reduction in the amount of TBP and polII binding was observed. However, a reduction in the amount of ICP4 binding to the promoters was also observed, suggesting that the binding of TBP-containing complexes and ICP4 is cooperative. The binding of ICP4, TBP, and polII was also observed on the gC promoter at early times postinfection or when DNA synthesis was inhibited, suggesting that transcription complexes may be formed early on L promoters and that additional events or proteins are required for expression. The ability to form these early complexes on the gC promoter required the DNA-binding domain but in addition required the carboxyl-terminal 524 amino acids of ICP4, which is missing the virus n208. This region was not required to form TBP- and polII-containing complexes on the tk promoter. n208 activates E but not L genes during viral infection. These data suggest that a region of ICP4 may differentiate between forming TBP- and polII-containing complexes on E and L promoters.
Collapse
Affiliation(s)
- Padmavathi Sampath
- E1257 Biomedical Science Tower, Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
9
|
Kuddus RH, DeLuca NA. DNA-dependent oligomerization of herpes simplex virus type 1 regulatory protein ICP4. J Virol 2007; 81:9230-7. [PMID: 17581987 PMCID: PMC1951460 DOI: 10.1128/jvi.01054-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 06/13/2007] [Indexed: 11/20/2022] Open
Abstract
The human herpes simplex virus type 1 regulatory protein ICP4 binds DNA as a dimer and forms a single protein-DNA complex (A complex) with short DNA probes. ICP4 oligomerized in a DNA-dependent manner, forming two or more protein-DNA complexes with longer DNA fragments containing a single DNA binding site. When resolved electrophoretically, one or more low-mobility DNA-protein complexes follow the fast-moving A complex. The major protein-DNA complex (B complex) formed by ICP4 with long DNA probes migrates just behind the A complex in the electric field, implying the oligomerization of ICP4 on the DNA. Binding experiments with circularly permutated DNA probes containing one ICP4 binding site revealed that about 70 bp of nonspecific DNA downstream of the cognate ICP4 binding site was required for efficient B complex formation. In addition, the C-terminal domain of ICP4 was found to be required for DNA-dependent oligomerization and B complex formation. Gel mobility shift analysis of protein-DNA complexes, combined with supershift analysis using different monoclonal antibodies, indicated that the B complex contained two ICP4 dimers. DNase I footprinting of ICP4-DNA complexes showed that one ICP4 dimer contacts the specific binding site and another ICP4 dimer contacts nonspecific DNA in the B complex. DNA-dependent oligomerization increased the affinity of ICP4 for relatively weak binding sites on large DNA molecules. The results of this study suggest how ICP4 may use multiple weak binding sites to aid in transcription activation.
Collapse
Affiliation(s)
- Ruhul H Kuddus
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
10
|
Compel P, DeLuca NA. Temperature-dependent conformational changes in herpes simplex virus ICP4 that affect transcription activation. J Virol 2003; 77:3257-68. [PMID: 12584349 PMCID: PMC149779 DOI: 10.1128/jvi.77.5.3257-3268.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The C-terminal 500 amino acids of herpes simplex virus type 1 ICP4 are required for full activator function and viral growth and are known to participate in interactions consistent with the role of ICP4 as an activator of transcription. Oligonucleotide mutagenesis was used to target stretches of amino acids that are conserved with the ICP4 analogs of other alphaherpesviruses and were also predicted to be exposed on the surface of the molecule. Seven mutants were isolated that possessed one to three amino acid changes to the residue alanine in four regions between residues 1000 and 1200. The mutants generated were analyzed first in transfection assays and subsequently after introduction into the viral genome. A number of phenotypes representing different degrees of functional impairment were observed. In transient assays conducted at 37 degrees C, mutant M2 was indistinguishable from wild-type ICP4. Mutants M6 and M7 were marginally impaired. M3, M4, and M5 were more significantly impaired but still able to activate transcription, and M1 was completely impaired. In the context of the viral genome, M1, M3, and M7 were found to be temperature sensitive for growth. All three overproduced immediate-early (IE) proteins at the nonpermissive temperature (NPT). M3 and M7 produced early but not late proteins, and M1 produced neither early nor late proteins, at the NPT. The ICP4 proteins synthesized by all of the mutants tested were able to bind to specific ICP4 binding sites in electrophoretic mobility shift experiments. However, the DNA-protein complexes formed with the ICP4 from M1, M3, or M7 produced at the NPT possessed altered mobility. These complexes were not supershifted by a monoclonal antibody that recognizes an epitope in the C terminus; however, they were supershifted by a monoclonal antibody that recognizes the N terminus. The results suggest that the mutant forms of ICP4, while able to bind to DNA, are conformationally altered at the NPT, thus impairing the ability of the protein to activate transcription to different extents. The complete lack of ICP4 function characteristic of the M1 protein, and the inability of all the mutants to attenuate IE gene expression, suggest that the mutations additionally affect functions of the N terminus to different extents.
Collapse
Affiliation(s)
- Peter Compel
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
11
|
Kim DB, Zabierowski S, DeLuca NA. The initiator element in a herpes simplex virus type 1 late-gene promoter enhances activation by ICP4, resulting in abundant late-gene expression. J Virol 2002; 76:1548-58. [PMID: 11799149 PMCID: PMC135907 DOI: 10.1128/jvi.76.4.1548-1558.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2001] [Accepted: 11/05/2001] [Indexed: 11/20/2022] Open
Abstract
The start site regions of late genes of herpes simplex virus type 1 are similar to the eukaryotic initiator sequence (Inr), have been shown to affect the levels of expression, and may also play a role in transcription activation by the viral activator ICP4. A series of linker-scanning mutations spanning the start site of transcription and several downstream mutations in the true late gC promoter were analyzed in reconstituted in vitro transcription reactions with and without ICP4, as well as in the context of the viral genome during infection. The nucleotide contacts previously found to be important for Inr function were also found to be important for optimal induction by ICP4. While the Inr had a substantial effect on the accumulation of gC RNA during infection, no other sequence downstream of the TATA box to +124 had a significant effect on levels of expression during infection. Therefore, these studies suggest that TATA box and the Inr are the only cis-acting elements required to achieve optimal expression of gC, and that the high levels of late-gene transcription may be largely due to the induction by ICP4, functioning through the Inr element.
Collapse
Affiliation(s)
- Dool-Bboon Kim
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
12
|
Affiliation(s)
- L D Bacon
- USDA Agricultural Research Service, Avian Disease and Oncology Laboratory, 3606 East Mount Hope Road, East Lansing, MI 48823, USA
| | | | | |
Collapse
|
13
|
Grondin B, DeLuca N. Herpes simplex virus type 1 ICP4 promotes transcription preinitiation complex formation by enhancing the binding of TFIID to DNA. J Virol 2000; 74:11504-10. [PMID: 11090147 PMCID: PMC112430 DOI: 10.1128/jvi.74.24.11504-11510.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infected-cell polypeptide 4 (ICP4) of herpes simplex virus type 1 (HSV-1) activates the expression of many HSV genes during infection. It functions along with the cellular general transcription factors to increase the transcription rates of genes. In this study, an HSV late promoter consisting of only a TATA box and an INR element was immobilized on a magnetic resin and incubated with nuclear extracts or purified TFIID in the presence and absence of ICP4. Analysis of the complexes formed on these promoters revealed that ICP4 increased the formation of transcription preinitiation complexes (PICs) in a TATA box-dependent manner, as determined by the presence of ICP4, TFIID, TFIIB, and polymerase II on the promoter. With both nuclear extract and purified TFIID, it was determined that ICP4 helped TFIID bind to the promoter and the TATA box. These observations differed from those for the activator Gal4-VP16. As previously observed by others, Gal4-VP16 also increased the formation of PICs without helping TFIID bind to the promoter, suggesting that ICP4 and VP16 differ in their mechanism of activation and that ICP4 functions to facilitate PIC formation at an earlier step in the formation of PICs. We also observed that the DNA binding activity of ICP4 was not sufficient to help TFIID bind to the promoter and that the region of ICP4 that was responsible for this activity is located between residues 30 and 274. Taken together these results demonstrate that a specific region of ICP4 helps TFIID bind to the TATA box and that this in turn facilitates the formation of transcription PICs.
Collapse
Affiliation(s)
- B Grondin
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
14
|
Zhi Y, Sciabica KS, Sandri-Goldin RM. Self-interaction of the herpes simplex virus type 1 regulatory protein ICP27. Virology 1999; 257:341-51. [PMID: 10329545 DOI: 10.1006/viro.1999.9698] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The herpes simplex virus type 1 (HSV-1) regulatory protein ICP27 is a nuclear phosphoprotein required for viral lytic infection, which acts partly at the posttranscriptional level to affect RNA processing and export. In the present study, we show that ICP27 can interact with itself in vivo. Immunofluorescent staining of cells expressing both an ICP27 mutant with a deletion of the major nuclear localization signal and wild-type ICP27 showed that the mutant protein was efficiently imported into the nucleus in the majority of the cotransfected cells, suggesting heterodimer formation between the wild-type and mutant proteins. Coimmunoprecipitation experiments using epitope-tagged wild-type ICP27 and a series of ICP27 mutants with deletions and insertions in important functional regions of the protein revealed that the C-terminal cysteine-histidine-rich zinc-finger-like region of ICP27 was required for the self-association. Furthermore the self-association was also shown in yeast using two-hybrid assays, and again, an intact C-terminal zinc-finger-like region was required for the interaction. This study provides biochemical evidence that ICP27 may function as a multimer in infected cells.
Collapse
Affiliation(s)
- Y Zhi
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697-4025, USA
| | | | | |
Collapse
|
15
|
Carrozza MJ, DeLuca N. The high mobility group protein 1 is a coactivator of herpes simplex virus ICP4 in vitro. J Virol 1998; 72:6752-7. [PMID: 9658123 PMCID: PMC109883 DOI: 10.1128/jvi.72.8.6752-6757.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ICP4 is an activator of herpes simplex virus early and late gene transcription during infection and in vitro can efficiently activate the transcription of a core promoter template containing only a TATA box and an initiator element. In this study, we noted that the extent of activation by ICP4 in vitro was highly dependent on the purity of TFIID when recombinant TFIIB, TFIIE, and TFIIF were used as sources of these factors. ICP4 efficiently activated transcription with a crude TFIID fraction. However, when immunoaffinity-purified TFIID was used in place of the less pure TFIID, ICP4 activated transcription to a significantly lesser extent. This finding indicated that the crude TFIID fraction may contain additional factors that serve as coactivators of ICP4. To test this hypothesis, the crude TFIID preparation was further fractionated by gel filtration chromatography. The TFIID that eluted from the column lacked the hypothesized coactivator activity. A fraction well separated from TFIID contained an activity that when added with the TFIID fraction resulted in higher levels of transcription in the presence ICP4. Further purification of the coactivator-containing fraction resulted in the isolation of a single 30-kDa polypeptide (p30). p30 was also shown to serve as a coactivator of ICP4 with immunoaffinity-purified TFIID; however, p30 had no effect on basal transcription. Amino acid sequence analysis revealed that p30 was the high mobility group protein 1, which has been shown to facilitate the formation of higher-order DNA-protein complexes.
Collapse
Affiliation(s)
- M J Carrozza
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
16
|
Ono E, Taharaguchi S, Watanabe S, Nikami H, Shimizu Y, Kida H. Suppression of pseudorabies virus replication by a mutant form of immediate-early protein IE180 repressing the viral gene transcription. Vet Microbiol 1998; 60:107-17. [PMID: 9646443 DOI: 10.1016/s0378-1135(97)00153-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A mutant form of the immediate-early (IE) protein IE180 of pseudorabies virus (PRV), dIN454-C1081 is a strong repressor of the PRV IE gene promoter. In order to assess the antiviral potential of the IE180 mutant, HeLa cells were transformed with the mutant gene and then infected with PRV and herpes simplex virus type 1 (HSV-1). The transformed cell lines showed marked resistance to PRV infection, but were susceptible to infection with HSV-1, indicating that the IE180 mutant expressed in the stable cell line specifically inhibited PRV growth. In those cells infected with PRV, transcription of the PRV IE gene was repressed. In addition, the IE180 mutant exhibited a dominant-negative property in transient expression assay. The present results indicate that the resistance of the cells to PRV infection was due to repression of the IE gene transcription by the IE 180 mutant.
Collapse
Affiliation(s)
- E Ono
- Institute of Immunological Science, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Gene therapy is being investigated as an alternative treatment for a wide range of infectious diseases that are not amenable to standard clinical management. Approaches to gene therapy for infectious diseases can be divided into three broad categories: (i) gene therapies based on nucleic acid moieties, including antisense DNA or RNA, RNA decoys, and catalytic RNA moieties (ribozymes); (ii) protein approaches such as transdominant negative proteins and single-chain antibodies; and (iii) immunotherapeutic approaches involving genetic vaccines or pathogen-specific lymphocytes. It is further possible that combinations of the aforementioned approaches will be used simultaneously to inhibit multiple stages of the life cycle of the infectious agent.
Collapse
Affiliation(s)
- B A Bunnell
- Clinical Gene Therapy Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-1851, USA
| | | |
Collapse
|
18
|
Malik AK, Weller SK. Use of transdominant mutants of the origin-binding protein (UL9) of herpes simplex virus type 1 to define functional domains. J Virol 1996; 70:7859-66. [PMID: 8892908 PMCID: PMC190857 DOI: 10.1128/jvi.70.11.7859-7866.1996] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
UL9, the origin-binding protein of herpes simplex virus type 1, contains six sequence motifs conserved in a large superfamily of RNA and DNA helicases. Single-amino-acid substitution mutations in these motifs inactivate UL9 function in vivo (R. Martinez, L. Shao, and S. K. Weller, J. Virol. 66:6735-6746, 1992). Overexpression of wild-type UL9 is inhibitory to plaque formation in a transfection assay which measures viral plaque formation by infectious herpes simplex virus type 1 DNA. Constructs containing mutations in motif I, II, or VI exhibit even stronger inhibitory effects in the same assay and thus can be considered strong transdominant inhibitors of plaque formation by the wild-type virus. The transdominant phenotype can be relieved by introducing a second mutation in the DNA-binding domain or by deleting the N-terminal 35 amino acids of the protein. The inhibitory effects of wild-type UL9 can also be partially relieved by deletion of amino acids 292 to 404. We propose that the N-terminal 35 amino acids of UL9 and residues 292 to 404 may define new functional domains of the UL9 protein.
Collapse
Affiliation(s)
- A K Malik
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030-3205, USA
| | | |
Collapse
|
19
|
Carrozza MJ, DeLuca NA. Interaction of the viral activator protein ICP4 with TFIID through TAF250. Mol Cell Biol 1996; 16:3085-93. [PMID: 8649420 PMCID: PMC231303 DOI: 10.1128/mcb.16.6.3085] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
ICP4 of herpes simplex virus is responsible for the activation of viral transcription during infection. It also efficiently activates and represses transcription in vitro depending on the promoter context. The contacts made between ICP4 and the cellular proteins that result in activated transcription have not been identified. The inability of ICP4 to activate transcription with TATA-binding protein in place of TFIID and the requirement for an initiator element for efficient ICP-4-activated transcription suggest that coactivators, such as TBP-associated factors, are involved (B. Gu and N. DeLuca, J. Virol. 68:7953-7965, 1994). In this study we showed that ICP4 activates transcription in vitro using an immunopurified TFIID, indicating that TBP-associated factors may be a sufficient subset of coactivators for ICP4-activated transcription. Similar to results seen in vivo, the presence of the ICP4 C-terminal region (amino acids 774 to 1298) was important for activation in vitro. With epitope-tagged ICP4 molecules in immunoaffinity experiments, it was shown that the C-terminal region was also required for ICP4 to interact with TFIID present in a crude transcription factor fraction. In the same assay, ICP4 was unable to interact with the basal transcription factors, TFIIB, TFIIE, TFIIF, and TFIIH and RNA polymerase II. ICP4 could also interact with TBP, independent of the C-terminal region. However, reflective of the interaction between ICP4 and TFIID, the ICP4 C-terminal region was required for an interaction with FAF250-TBP complexes and with TAF250 alone. Therefore, the interfaces or conformation of TBP mediating the interaction between ICP4 and TBP in solution is probably masked when TBP is bound to TAF250. With a series of mutant ICP4 molecules purified from herpes simplex virus-infected cells, it was shown that ICP4 molecules that can bind DNA and interact with TAF250 could activate transcription. Taken together, these results demonstrate that ICP4 interaction with TFIID involves the TAF250 molecule and the C-terminal region of ICP4 and that this interaction is part of the mechanism by which ICP4 activates transcription.
Collapse
Affiliation(s)
- M J Carrozza
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | |
Collapse
|
20
|
Abstract
The herpes simplex virus ICP4 protein is required for induction of early and late viral gene transcription as well as for repression of expression of its own gene and several other viral genes. Several electrophoretic forms of ICP4 have been observed, and phosphorylation is thought to contribute to this heterogeneity and possibly to the multiple functions of ICP4. To define the complexity of the site(s) of phosphorylation of ICP4 and to initiate mapping of this site(s), we have performed two-dimensional phosphopeptide mapping of wild-type and mutant forms of ICP4 labeled in infected cells or in vitro. Wild-type ICP4 labeled in infected cells shows a complex pattern of phosphopeptides, and smaller mutant forms of ICP4 show progressively fewer phosphopeptides, arguing that multiple sites on ICP4 are phosphorylated. The serine-rich region of ICP4, residues 175 to 198, was shown to be a site for phosphorylation. Furthermore, the serine-rich region itself or the phosphorylation of this region increases phosphorylation of all phosphopeptides. A mutant ICP4 molecule lacking the serine-rich region showed low levels of phosphorylation by protein kinase A or protein kinase C in vitro. These results suggest that there may be a sequential phosphorylation of ICP4, with phosphorylation of the serine-rich region stimulating phosphorylation of the rest of the molecule. In addition, purified ICP4 showed an associated kinase activity or an autophosphorylation activity with properties different from those of protein kinase A or protein kinase C.
Collapse
Affiliation(s)
- K Xia
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
21
|
Wong KK, Chatterjee S. Adeno-associated virus based vectors as antivirals. Curr Top Microbiol Immunol 1996; 218:145-70. [PMID: 8794250 DOI: 10.1007/978-3-642-80207-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- K K Wong
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | |
Collapse
|
22
|
Samaniego LA, Webb AL, DeLuca NA. Functional interactions between herpes simplex virus immediate-early proteins during infection: gene expression as a consequence of ICP27 and different domains of ICP4. J Virol 1995; 69:5705-15. [PMID: 7637016 PMCID: PMC189430 DOI: 10.1128/jvi.69.9.5705-5715.1995] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Two of the five immediate-early gene products, ICP4 and ICP27, expressed by herpes simplex virus type 1 have profound effects on viral gene expression and are absolutely essential for virus replication. Functional interactions between ICP4 and ICP27 may contribute to establishing the program of viral gene expression that ensues during lytic infection. To evaluate this possibility, viral mutants simultaneously deleted for ICP27 and defined functional domains of ICP4 were constructed. These mutant viruses allowed a comparison of gene expression as a function of different domains of ICP4 in the presence and absence of ICP27. Gene expression in the absence of both ICP4 and ICP27 was also examined. The results of this study demonstrate a clear involvement for ICP27 in the induction of early genes, in addition to its known role in enhancing late gene expression during viral infection. In the absence of both ICP4 and ICP27, viral early gene expression, as measured by the accumulation of thymidine kinase and ICP6 messages was dramatically reduced relative to the amounts of these messages seen in the absence of only ICP4. Therefore, elevated levels of early gene expression as a consequence of ICP27 occurred in the absence of any ICP4 activity. Evidence is also presented regarding the modulation of the ICP4 repression function by ICP27. When synthesized in the absence of ICP27, a mutant ICP4 protein was impaired in its ability to repress transcription from the L/ST promoter in the context of viral infection and in vitro. This defect correlated with the loss of the ability of this mutant protein to bind to its recognition sequence when produced in infected cells in the absence of ICP27. These observations indicate that ICP27 can regulate the activity of at least one domain of the ICP4 protein as well as contribute to elevated early gene expression independently of ICP4.
Collapse
MESH Headings
- Animals
- Blotting, Southern
- Cell Nucleus/metabolism
- Chlorocebus aethiops
- DNA, Viral/analysis
- DNA, Viral/metabolism
- DNA-Binding Proteins/metabolism
- Gene Expression
- Genome, Viral
- HeLa Cells
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/growth & development
- Herpesvirus 1, Human/metabolism
- Humans
- Immediate-Early Proteins/biosynthesis
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Mutagenesis
- Promoter Regions, Genetic
- RNA, Viral/analysis
- RNA, Viral/biosynthesis
- Repressor Proteins/metabolism
- Thymidine Kinase/metabolism
- Transcription, Genetic
- Transfection
- Vero Cells
- Viral Proteins/analysis
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- L A Samaniego
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | |
Collapse
|
23
|
Gu B, Kuddus R, DeLuca NA. Repression of activator-mediated transcription by herpes simplex virus ICP4 via a mechanism involving interactions with the basal transcription factors TATA-binding protein and TFIIB. Mol Cell Biol 1995; 15:3618-26. [PMID: 7791769 PMCID: PMC230599 DOI: 10.1128/mcb.15.7.3618] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Infected-cell polypeptide 4 (ICP4) of herpes simplex virus is both a transcriptional activator and a repressor. It has been previously demonstrated that both SP1-activated transcription and USF-activated transcription are repressed by ICP4 without affecting basal transcription (B. Gu, R. Rivera-Gonzalez, C. A. Smith, and N. A. DeLuca, Proc. Natl. Acad. Sci. USA 90:9528-9532, 1993; R. Rivera-Gonzalez, A. N. Imbalzano, B. Gu, and N.A. DeLuca, Virology 202:550-564, 1994). In this study, it was found that ICP4 repressed the activation function of two other activators, VP16 and ICP4 itself, in vitro. ICP4 inhibited transcription by interfering with the formation of transcription initiation complexes without affecting transcription elongation. Repression of activator function required that an ICP4 DNA binding site was present in one orientation within approximately 45 bp 3' to the TATA box. DNA binding by ICP4 was necessary but not sufficient for repression. ICP4 has been shown to form tripartite complexes cooperatively with the TATA box-binding protein and TFIIB on DNA containing an ICP4 binding site and a TATA box (C. A. Smith, P. Bates, R. Rivera-Gonzalez, B. Gu, and N. DeLuca, J. Virol. 67:4676-4687, 1993). A region of ICP4 that enables the molecule to form tripartite complexes was also required in addition to the DNA binding domain for efficient repression. Moreover, repression was observed only when the ICP4 binding site was in a position that resulted in the formation of tripartite complexes. Together, the data suggest that ICP4 represses transcription by binding to DNA in a precise way so that it may interact with the basal transcription complex and inhibit some general step involved in the function of activators. The steps or interactions involved in transcriptional activation that are inhibited by ICP4 are discussed.
Collapse
Affiliation(s)
- B Gu
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | |
Collapse
|
24
|
Wagner EK, Guzowski JF, Singh J. Transcription of the herpes simplex virus genome during productive and latent infection. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995; 51:123-65. [PMID: 7659774 DOI: 10.1016/s0079-6603(08)60878-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- E K Wagner
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92717, USA
| | | | | |
Collapse
|
25
|
Gu B, DeLuca N. Requirements for activation of the herpes simplex virus glycoprotein C promoter in vitro by the viral regulatory protein ICP4. J Virol 1994; 68:7953-65. [PMID: 7966586 PMCID: PMC237258 DOI: 10.1128/jvi.68.12.7953-7965.1994] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
During infection with herpes simplex virus, infected-cell polypeptide 4 (ICP4) activates transcription of most herpes simplex virus genes. In the present study, the mechanism of activation of transcription by ICP4 was investigated by using a reconstituted in vitro system with fractionated and purified general transcription factors, coupled with DNA-binding assays. The templates used in the reactions included regions of the gC and thymidine kinase (tk) promoters in plasmids, and on isolated fragments, allowing for the evaluation of the potential function of naturally occurring and inserted ICP4-binding sites and elements of the core promoter. ICP4 efficiently activated transcription of the gC promoter by facilitating the formation of transcription initiation complexes. ICP4 could not substitute for any of the basal transcription factors. Moreover, TATA-binding protein (TBP) could not substitute for TFIID in activation, suggesting a requirement for TBP-associated factors. Interactions between ICP4 and DNA 3' to the start site was necessary for activation of the gC promoter. The requirement for DNA-protein contacts could be met either by the presence of an ICP4-binding site in the gC leader, by the presence of a site more than 150 nucleotides further downstream, by an inserted site that normally acts to repress transcription, or by the addition of sufficient non-site-containing DNA. The gC TATA box and start site, or initiator element (inr), were individually sufficient for activation by ICP4 and together contributed to optimal activation. In contrast to gC, the tk promoter was poorly activated in the reconstituted system. However, the tk TATA box was efficiently activated when the tk start site region was replaced with the gC inr, suggesting that activation was mediated through the inr and inr-binding proteins. In addition, mutation of the inr core resulted in a gC promoter that was very poorly activated by ICP4. The results of this and previous studies demonstrate that ICP4 activates transcription in a complex manner involving contacts with DNA 3' to the start site, TBP, TFIIB, TBP-associated factors, and possibly proteins functioning at the start site of transcription.
Collapse
Affiliation(s)
- B Gu
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261
| | | |
Collapse
|
26
|
Taharaguchi S, Inoue H, Ono E, Kida H, Yamada S, Shimizu Y. Mapping of transcriptional regulatory domains of pseudorabies virus immediate-early protein. Arch Virol 1994; 137:289-302. [PMID: 7944951 DOI: 10.1007/bf01309476] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The 180 kilodalton immediate-early protein (IE180) of pseudorabies virus functions as a strong transactivator of several different promoters and also as a repressor of its own transcription. To map the functional domains of IE180, we prepared various truncated mutants and analyzed their transcriptional regulatory activities using the chloramphenicol acetyl transferase (CAT) assay. Analysis of mutants truncated from the carboxy-terminal end of the 1,460-amino acid polypeptide showed that a polypeptide possessing amino acids 1 to 1,081 retained significant functions of transactivation and autoregulation potential. On the other hand, removing amino acids 1 to 131 resulted in a complete loss of transactivation potential, indicating that the domain responsible for transactivation is located in the amino-terminal end of IE180. Additional amino-terminal truncation up to amino acid 453 did not affect the autoregulation activity, indicating that the region between amino acids 454 and 1081 has autoregulation potential.
Collapse
Affiliation(s)
- S Taharaguchi
- Department of Veterinary Hygiene and Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Gallinari P, Wiebauer K, Nardi MC, Jiricny J. Localization of a 34-amino-acid segment implicated in dimerization of the herpes simplex virus type 1 ICP4 polypeptide by a dimerization trap. J Virol 1994; 68:3809-20. [PMID: 8189519 PMCID: PMC236886 DOI: 10.1128/jvi.68.6.3809-3820.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The herpes simplex virus type 1 immediate-early protein ICP4 plays an essential role in the regulation of the expression of all viral genes. It is the major trans activator of early and late genes and also has a negative regulatory effect on immediate-early gene transcription. ICP4 is a sequence-specific DNA-binding protein and has always been purified in a dimeric form. The part of the protein that consists of the entire highly conserved region 2 and of the distal portion of region 1 retains the ability to specifically associate with DNA and to form homodimers in solution. In an attempt to map the dimerization domain of ICP4, we used a dimerization trap assay, in which we screened deletion fragments of this 217-amino-acid stretch for sequences that could confer dimerization properties on a heterologous cellular transcription factor (LFB1), which binds to its cognate DNA sequence only as a dimer. The analysis of these chimeric proteins expressed in vitro ultimately identified a stretch of 34 amino acids (343 to 376) that could still confer DNA-binding activity on the LFB1 reporter protein and thus apparently contained the ICP4 dimerization motif. Consistent with this result, a truncated ICP4 protein containing amino acids 343 to 490, in spite of the complete loss of DNA-binding activity, appeared to retain the capacity to form a heterodimer with a longer ICP4 peptide after coexpression in an in vitro translation system.
Collapse
Affiliation(s)
- P Gallinari
- Istituto di Richerche di Biologia Molecolare P. Angeletti, Pomezia, Italy
| | | | | | | |
Collapse
|
28
|
Tyler JK, Everett RD. The DNA binding domains of the varicella-zoster virus gene 62 and herpes simplex virus type 1 ICP4 transactivator proteins heterodimerize and bind to DNA. Nucleic Acids Res 1994; 22:711-21. [PMID: 8139909 PMCID: PMC307873 DOI: 10.1093/nar/22.5.711] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The product of varicella-zoster virus gene 62 (VZV 140k) is the functional counterpart of the major transcriptional regulatory protein of herpes simplex virus type 1 (HSV-1), ICP4. We have found that the purified bacterially expressed DNA binding domain of VZV 140k (residues 417-647) is a stable dimer in solution. As demonstrated by the appearance of a novel protein--DNA complex of intermediate mobility in gel retardation assays, following in vitro co-translation of a pair of differently sized VZV 140k DNA binding domain peptides, the 140k DNA binding domain peptide binds to DNA as a dimer. In addition, the DNA binding domain peptide of HSV-1 ICP4 readily heterodimerizes with the VZV 140k peptide on co-translation, indicating that HSV-1 ICP4 and VZV 140k possess very similar dimerization interfaces. It appears that only one fully wild type subunit of the dimer is sufficient to mediate sequence specific DNA recognition in certain circumstances. Co-immunoprecipitation analysis of mutant DNA binding domain peptides, co-translated with an epitope-tagged ICP4 DNA binding domain, shows that the sequence requirements for dimerization are lower than those necessary for DNA binding.
Collapse
|
29
|
Gu B, Rivera-Gonzalez R, Smith CA, DeLuca NA. Herpes simplex virus infected cell polypeptide 4 preferentially represses Sp1-activated over basal transcription from its own promoter. Proc Natl Acad Sci U S A 1993; 90:9528-32. [PMID: 8415735 PMCID: PMC47602 DOI: 10.1073/pnas.90.20.9528] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Herpes simplex virus type 1 infected cell polypeptide 4 (HSV-1 ICP4) is a multifunctional phosphoprotein that is essential for viral infection. It is both a repressor and an activator of viral gene expression depending upon the promoter. ICP4 represses transcription from its own promoter. In the present study, we used general transcription factors from HeLa cell nuclear extracts, recombinant TATA binding protein (TBP) and TFIIB, and the transcriptional activator Sp1 to reconstitute in vitro transcription for the ICP4 promoter and to examine the effects of purified ICP4 on transcription. ICP4 was able to effectively repress Sp1-induced transcription from ICP4 promoter templates that contain one or multiple Sp1 binding sites. The observed inhibition required the ICP4 binding site that spans the transcription initiation site. ICP4 did not inhibit basal transcription as inferred by its inability to inhibit transcription when (i) Sp1 was not included in transcription reactions, (ii) the templates contained no Sp1 binding sites, and (iii) TBP was used in place of TFIID in the reactions. The in vitro observations were consistent with the behavior of the same constructs expressed in cells from the herpes simplex virus type 1 genome. DNase I footprinting experiments revealed that ICP4 could co-occupy the ICP4 promoter region with TBP-TFIIB, indicating that ICP4 does not necessarily exclude these factors from binding to the TATA region. The data suggest that the repressive effects of ICP4 observed in this study result from ICP4 interfering with the interactions contributing to Sp1-induced transcription.
Collapse
Affiliation(s)
- B Gu
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine 15261
| | | | | | | |
Collapse
|
30
|
Smith CA, Bates P, Rivera-Gonzalez R, Gu B, DeLuca NA. ICP4, the major transcriptional regulatory protein of herpes simplex virus type 1, forms a tripartite complex with TATA-binding protein and TFIIB. J Virol 1993; 67:4676-87. [PMID: 8392607 PMCID: PMC237853 DOI: 10.1128/jvi.67.8.4676-4687.1993] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The ICP4 protein of herpes simplex virus can either increase or decrease the rate of transcription mediated by RNA polymerase II, depending on the target promoter. The interplay of DNA-protein and protein-protein contacts determining ICP4 function has yet to be characterized, and consequently the molecular mechanism by which the protein acts remains unclear. ICP4 can transactivate minimal promoters containing only TATA homologies, and therefore it is reasonable to hypothesize that ICP4 works by influencing the TATA-dependent assembly of general transcription factors via specific protein-protein interactions. This study directly addresses this hypothesis by determining whether ICP4 affects the assembly of general transcription factors on templates bearing a TATA box and an ICP4-binding site. Using gel retardation and footprinting assays, we found that ICP4 forms a tripartite complex with TFIIB and either the TATA-binding protein (TBP) or TFIID. The formation of this complex was not the result of simple tripartite occupancy of the DNA but the consequence of protein-protein interactions. In the presence of all three proteins, the affinity of ICP4 and TBP for their respective binding sites was substantially increased. Using mutant derivatives of ICP4 and defective versions of promoters, we also demonstrated that the ability of ICP4 to regulate gene expression correlated with its ability to form a tripartite complex with TFIIB and TBP in vitro.
Collapse
Affiliation(s)
- C A Smith
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261
| | | | | | | | | |
Collapse
|
31
|
Abstract
A mutant allele (X25) of an essential regulatory protein, ICP4, encoded by herpes simplex virus (HSV) has been shown to have a transdominant, negative effect on the activity of the wild-type protein, resulting in the inhibition of virus growth in vitro. The X25 protein appears to exert its transdominant effect by sequestering functional ICP4 monomers into nonfunctional, heterodimeric complexes (A. Shepard, P. Tolentino, and N. A. DeLuca, 1990, J. Virol. 64, 3916-3926). In order to assess the antiviral potential of X25 in vivo, four transgenic mouse lines were generated bearing 1 to 10 copies of a DNA fragment encoding the mutant allele. Monolayers of embryonic cells prepared from each of the lines expressed the transgenic X25 protein. When challenged via the eye, every line exhibited at least some enhanced resistance to HSV infection. In the best line, transgenic animals exhibited a statistically significant (> 95% confidence) 5- to 13-fold lower eye swab titer relative to their nontransgenic littermates at Day 1 postinfection. A similar reduction in titer was observed in the trigeminal ganglia at Day 3 postinfection. These results indicate that the X25 protein is able to exert a significant antiviral effect in vivo.
Collapse
Affiliation(s)
- C A Smith
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
32
|
Friedmann T. Approaches to gene therapy of complex multigenic diseases: cancer as a model and implications for cardiovascular disease and diabetes. Ann Med 1992; 24:411-7. [PMID: 1418928 DOI: 10.3109/07853899209147847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The general concept of gene therapy is now well established and accepted by the medical, scientific and public policy communities, and is rapidly being implemented in human experimental studies. In addition to the initial models of single gene defects, target diseases have now come to include multigenic and multifactorial diseases such as human cancer, neurodegenerative diseases such as Parkinson's disease and firms of cardiovascular disease. While many conceptual and technical obstacles must still be overcome before therapy for disorders such as coronary artery disease and diabetes mellitus will easily be approached at the genetic level, the early results with several multigenic disease models gives some cause for optimism that gene therapies for even those complicated disorders will eventually become available.
Collapse
Affiliation(s)
- T Friedmann
- Center for Molecular Genetics, UCSD School of Medicine 92093
| |
Collapse
|
33
|
Chen J, Panagiotidis C, Silverstein S. Multimerization of ICP0, a herpes simplex virus immediate-early protein. J Virol 1992; 66:5598-602. [PMID: 1323713 PMCID: PMC289122 DOI: 10.1128/jvi.66.9.5598-5602.1992] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
ICP0, a herpes simplex virus immediate-early gene product, is a highly phosphorylated nuclear protein that is a potent activator of virus and host genes. Using biochemical and genetic assays employing plasmids encoding mutant forms of ICP0 and a recombinant adenovirus that expresses ICP0, we mutant forms of ICP0 and a recombinant adenovirus that expresses ICP0, we provide evidence that the protein multimerizes. Some mutant forms of ICP0 were transdominant and interfered with activation of a target reporter gene or with complementation of an ICP0-minus virus.
Collapse
Affiliation(s)
- J Chen
- Department of Microbiology, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
34
|
Bentivoglio CM, Zhu J, Cole CN. Mechanisms of interference with simian virus 40 (SV40) DNA replication by trans-dominant mutants of SV40 large T antigen. J Virol 1992; 66:4209-19. [PMID: 1318402 PMCID: PMC241224 DOI: 10.1128/jvi.66.7.4209-4219.1992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mutations at multiple sites within the simian virus 40 (SV40) early region yield large T antigens which interfere trans dominantly with the replicative activities of wild-type T antigen. A series of experiments were conducted to study possible mechanisms of interference with SV40 DNA replication caused by these mutant T antigens. First, the levels of wild-type T antigen expression in cells cotransfected with wild-type and mutant SV40 DNAs were examined; approximately equal levels of wild-type T antigen were seen, regardless of whether the cotransfected mutant was trans dominant or not. Second, double mutants that contained the mutation of inA2827, a strong trans-dominant mutation with a 12-bp linker inserted at the position encoding amino acid 520, and various mutations in other parts of the large-T-antigen coding region were constructed. The trans-dominant interference of inA2827 was not affected by second mutations within the p105Rb binding site or the amino or carboxy terminus of large T antigen. Mutation of the nuclear localization signal partially reduced the trans dominance of inA2827. The large T antigen of mutant inA2815 contains an insertion of 4 amino acids at position 168 of large T; this T antigen fails to bind SV40 DNA but is not trans dominant for DNA replication. The double mutant containing the mutations of both inA2815 and in A2827 was not trans dominant. The large T antigen of dlA2433 lacks amino acids 587 to 589, was unstable, and failed to bind p53. Combining the dlA2433 mutation with the inA2827 mutation also reversed the trans dominance completely, but the effect of the dlA2433 mutation on trans dominance can be explained by the instability of this double mutant protein. In addition, we examined several mutants with conservative point mutations in the DNA binding domain and found that most of them were not trans dominant. The implications of the results of these experiments on possible mechanisms of trans dominance are discussed.
Collapse
Affiliation(s)
- C M Bentivoglio
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
| | | | | |
Collapse
|
35
|
Feinberg MB, Trono D. Intracellular immunization: trans-dominant mutants of HIV gene products as tools for the study and interruption of viral replication. AIDS Res Hum Retroviruses 1992; 8:1013-22. [PMID: 1503816 DOI: 10.1089/aid.1992.8.1013] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- M B Feinberg
- Department of Medicine, University of California, San Francisco
| | | |
Collapse
|
36
|
Wong KK, Chatterjee S. Controlling herpes simplex virus infections: is intracellular immunization the way of the future? Curr Top Microbiol Immunol 1992; 179:159-74. [PMID: 1499349 DOI: 10.1007/978-3-642-77247-4_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- K K Wong
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010-0269
| | | |
Collapse
|
37
|
Zhu XX, Papavassiliou AG, Stunnenburg HG, Silverstein S. Transactivation by herpes simplex virus proteins ICP4 and ICP0 in vaccinia virus infected cells. Virology 1991; 184:67-78. [PMID: 1651605 DOI: 10.1016/0042-6822(91)90822-s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vaccinia virus recombinants containing the sequences from herpes simplex virus type 1 (HSV-1) encoding the immediate early (IE)(alpha) proteins ICP4 and ICP0, under the control of a mutated vaccinia virus 11K late promoter, were constructed. A cDNA copy of the gene encoding ICPO and an ICP4-encoding genomic segment were each inserted into the vaccinia virus genome at the thymidine kinase (TK) locus by homologous recombination. Steady-state analyses revealed that RNAs homologous to the IE-0 and IE-4 sequences accumulated in cells infected by recombinants with the kinetics of a typical vaccinia late mRNA. Western blot analyses demonstrated that the expression level of both ICPO and ICP4, produced by the recombinant viruses, was comparable to that in HSV-1-infected cells at late times postinfection. Both proteins synthesized in cells infected by the recombinants were located in the nucleus as revealed by immunofluorescence. Although in vitro studies reveal that extracts from vaccinia-virus-infected cells lose the ability to transcribe genes that contain RNA polymerase II promoters (Puckett and Moss (1983), Cell 35, 441-448) both ICPO and ICP4 expressed by the recombinant viruses can transactivate plasmids containing a reporter gene driven by the promoters for the HSV-1 TK and glycoprotein C genes. Nuclear extracts prepared from cells infected with the vaccinia virus vector expressing ICP4 exhibited sequence-specific DNA-binding activity.
Collapse
Affiliation(s)
- X X Zhu
- Department of Microbiology, Columbia University, New York, New York 10032
| | | | | | | |
Collapse
|
38
|
Smith IL, Sekulovich RE, Hardwicke MA, Sandri-Goldin RM. Mutations in the activation region of herpes simplex virus regulatory protein ICP27 can be trans dominant. J Virol 1991; 65:3656-66. [PMID: 1645788 PMCID: PMC241377 DOI: 10.1128/jvi.65.7.3656-3666.1991] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) immediate-early protein ICP27 is an essential regulatory protein which is required for virus replication. Transfection experiments have demonstrated that ICP27 along with the HSV-1 transactivators ICP4 and ICP0 can positively regulate the expression of some late HSV-1 target plasmids and can negatively regulate the expression of some immediate-early and early target plasmids. We previously showed that mutants defective in the activation of a late target plasmid mapped to the carboxy-terminal half of the protein, whereas mutants defective in the repression of an early target plasmid mapped within the C-terminal 78 amino acids of ICP27 (M. A. Hardwicke, P. J. Vaughan, R. E. Sekulovich, R. O'Conner, and R. M. Sandri-Goldin, J. Virol. 63:4590-4602, 1989). In this study, we cotransfected ICP27 activator and repressor mutants along with wild-type ICP27 plasmid to determine whether these mutants could interfere with the wild-type activities. Mutants which were defective only in the activation function were dominant to the wild-type protein and inhibited the activation of the late target plasmid pVP5-CAT, whereas mutants defective in the repressor function did not inhibit either the activation of pVP5-CAT or the repression of the early target plasmid pTK-CAT. Furthermore, cell lines which stably carried three different activator mutants were impaired in their ability to support the growth of wild-type HSV-1 strain KOS, resulting in virus yields 5- to 40-fold lower than in control cells. The defect in virus replication appeared to stem from a decrease in the expression of HSV-1 late gene products during infection as measured by steady-state mRNA levels and by immunoprecipitation analysis of specific polypeptides. These results indicate that ICP27 activator mutations specifically interfere with the activation function of the protein both in transfection and during infection. Moreover, these results suggest that the repressor region may be important for binding of the polypeptide, since mutations in this region did not interfere with the activities of wild-type ICP27 and therefore presumably could not compete for binding.
Collapse
Affiliation(s)
- I L Smith
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine 92717
| | | | | | | |
Collapse
|
39
|
Gao M, Knipe DM. Potential role for herpes simplex virus ICP8 DNA replication protein in stimulation of late gene expression. J Virol 1991; 65:2666-75. [PMID: 1850040 PMCID: PMC240625 DOI: 10.1128/jvi.65.5.2666-2675.1991] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have identified a trans-dominant mutant form of the herpes simplex virus (HSV) DNA-binding protein ICP8 which inhibits viral replication. When expressed by the V2.6 cell line, the mutant gene product inhibited wild-type HSV production by 50- to 150-fold when the multiplicity of infection was less than 5. Production of HSV types 1 and 2 but not production of pseudorabies virus was inhibited in V2.6 cells. The inhibitory effect was not due solely to the high levels of expression, because the levels of expression were comparable to those in the permissive wild-type ICP8-expressing S-2 cell line. Experiments designed to define the block in viral production in V2.6 cells demonstrated (i) that viral alpha and beta gene expression was comparable in the different cell lines, (ii) that viral DNA replication proceeded but was reduced to approximately 20% of the control cell level, and (iii) that late gene expression was similar to that in cells in which viral DNA replication was completely blocked. Genetic experiments indicated that the mutant gene product inhibits normal functions of ICP8. Thus, ICP8 may play distinct roles in replication of viral DNA and in stimulation of late gene expression. The dual roles of ICP8 in these two processes could provide a mechanism for controlling the transition from viral DNA synthesis to late gene expression during the viral growth cycle.
Collapse
Affiliation(s)
- M Gao
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
40
|
Shepard AA, DeLuca NA. A second-site revertant of a defective herpes simplex virus ICP4 protein with restored regulatory activities and impaired DNA-binding properties. J Virol 1991; 65:787-95. [PMID: 1846199 PMCID: PMC239818 DOI: 10.1128/jvi.65.2.787-795.1991] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A mutant of herpes simplex virus type 1, vi12, encodes a DNA-binding- and transactivation-deficient ICP4 polypeptide. Because of the mutation, the vi12 virus does not grow on Vero cells but must be propagated on cells that express complementing levels of wild-type ICP4 (E5 cells). A pseudorevertant of vi12, designated pri12, was isolated on the basis of the restored ability to replicate on Vero cells. In addition to the original i12 insertion mutation at amino acid 320, the ICP4 molecule expressed from pri12 possesses an alanine to valine substitution at amino acid 342 within the ICP4 gene. The infectivity of pri12 on Vero cells as measured by burst size is elevated by 5 orders of magnitude relative to that observed for vi12, reflecting the restored ability of the mutant ICP4 molecule possessing the alanine to valine substitution to activate transcription and thus support viral replication. Despite the restored regulatory activities of the pri12 ICP4 molecule, the ability of the pseudorevertant ICP4 molecule to form a high-affinity, specific interaction with the consensus binding site was still impaired relative to that of wild-type ICP4. This observation suggests that the in vitro-measured DNA-binding properties of ICP4 may not reflect the functional interactions occurring in vivo that mediate transcriptional activation.
Collapse
Affiliation(s)
- A A Shepard
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
41
|
Shepard AA, DeLuca NA. Activities of heterodimers composed of DNA-binding- and transactivation-deficient subunits of the herpes simplex virus regulatory protein ICP4. J Virol 1991; 65:299-307. [PMID: 1845890 PMCID: PMC240517 DOI: 10.1128/jvi.65.1.299-307.1991] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Two mutant strains (vi12 and vi13) of herpes simplex virus that contain insertion mutations in the sequences that encode the DNA-binding domain of viral regulatory protein ICP4 were generated. Both mutations disrupted specific DNA binding and resulted in transcriptionally inactive molecules; however, the ability of the mutant proteins to form dimers was retained. The mutant proteins formed heterodimers with an ICP4 deletion mutant (X25) that is nonfunctional but retains the ability to bind to consensus sites. Significantly elevated levels of early (E or beta) and "leaky late" (beta gamma or gamma 1) gene expression were observed upon coexpression of the insertion mutant and X25 ICP4 polypeptides. While the heterodimers composed of the vi13 and X25 peptides possessed DNA-binding activity, those composed of vi12 and X25 did not, indicating that DNA binding by the heterodimers may not be required for restored activity. Despite significant levels of early gene expression and viral DNA synthesis in vi12-infected X25 cells, true late (gamma 2) mRNA was not synthesized. This indicates that the structural requirements for ICP4 induction of different classes of viral genes may be different.
Collapse
Affiliation(s)
- A A Shepard
- Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts 02115
| | | |
Collapse
|