1
|
Elmore SA, Rehg JE, Schoeb TR, Everitt JI, Bolon B. Pathologists' perspective on the study design, analysis, and interpretation of proliferative lesions in a lifetime rodent carcinogenicity bioassay of sucralose. Food Chem Toxicol 2024; 188:114524. [PMID: 38428799 DOI: 10.1016/j.fct.2024.114524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
Sucralose, a sugar substitute first approved for use in 1991, is a non-caloric sweetener regulated globally as a food additive. Based on numerous experimental animal studies (dating to the 1980s) and human epidemiology studies, international health agencies have determined that sucralose is safe when consumed as intended. A single lifetime rodent carcinogenicity bioassay conducted by the Ramazzini Institute (RI) reported that mice fed diets containing sucralose develop hematopoietic neoplasia, but controversy continues regarding the validity and relevance of these data for predicting health effects in humans. The present paper addresses the controversy by providing the perspective of experienced pathologists on sucralose-related animal toxicity and carcinogenicity data generally, and the RI carcinogenicity bioassay findings specifically, using results from publicly available papers and international regulatory authority decisions. In the authors' view, flaws in the design, methodology, data evaluation, and reporting of the RI carcinogenicity bioassay for sucralose diminish the value of the data as evidence that this agent represents a carcinogenic hazard to humans. This limitation will remain until the RI bioassay is repeated under Good Laboratory Practices and the design, data, and accuracy of the pathology diagnoses and interpretations are reviewed by qualified pathologists with experience in evaluating potential chemically-induced carcinogenic hazards.
Collapse
Affiliation(s)
| | - Jerold E Rehg
- Department of Pathology, Emeritus, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Trenton R Schoeb
- Department of Genetics and Animal Resources Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey I Everitt
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | | |
Collapse
|
2
|
Hochman J, Braitbard O. Life after Cleavage: The Story of a β-Retroviral (MMTV) Signal Peptide-From Murine Lymphoma to Human Breast Cancer. Viruses 2022; 14:v14112435. [PMID: 36366533 PMCID: PMC9694287 DOI: 10.3390/v14112435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
An increasing body of evidence in recent years supports an association of the betaretrovirus mouse mammary tumor virus (MMTV) with human breast cancer. This is an issue that still raises heated controversy. We have come to address this association using the signal peptide p14 of the MMTV envelope precursor protein as a key element of our strategy. In addition to its signal peptide function, p14 has some significant post endoplasmic reticulum (ER)-targeting characteristics: (1) it localizes to nucleoli where it binds key proteins (RPL5 and B23) involved (among other activities) in the regulation of nucleolar stress response, ribosome biogenesis and p53 stabilization; (2) p14 is a nuclear export factor; (3) it is expressed on the cell surface of infected cells, and as such, is amenable to, and successfully used, in preventive vaccination against experimental tumors that harbor MMTV; (4) the growth of such tumors is impaired in vivo using a combination of monoclonal anti-p14 antibodies or adoptive T-cell transfer treatments; (5) p14 is a phospho-protein endogenously phosphorylated by two different serine kinases. The phosphorylation status of the two sites determines whether p14 will function in an oncogenic or tumor-suppressing capacity; (6) transcriptional activation of genes (RPL5, ErbB4) correlates with the oncogenic potential of MMTV; (7) finally, polyclonal anti-p14 antibodies have been applied in immune histochemistry analyses of breast cancer cases using formalin fixed paraffin-embedded sections, supporting the associations of MMTV with the disease. Taken together, the above findings constitute a road map towards the diagnosis and possible prevention and treatment of MMTV-associated breast cancer.
Collapse
Affiliation(s)
- Jacob Hochman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Correspondence: ; Tel.: +972-54-441-4370
| | - Ori Braitbard
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Department of Bioinformatics, The Faculty of Life and Health Sciences, Jerusalem College of Technology, Jerusalem 9372115, Israel
| |
Collapse
|
3
|
Parisi F, Lessi F, Menicagli M, Civita P, Liotti R, Millanta F, Freer G, Pistello M, Mazzanti CM, Poli A. Presence of a mouse mammary tumour virus-like in feline lymphomas: a preliminary study. Infect Agent Cancer 2022; 17:35. [PMID: 35739602 PMCID: PMC9219121 DOI: 10.1186/s13027-022-00449-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/11/2022] [Indexed: 01/13/2023] Open
Abstract
The mouse mammary tumour virus (MMTV) is implicated in the aetiology of murine mammary carcinomas and a variant of it, the type B leukemogenic virus, can cause murine thymic lymphomas. Interestingly, a MMTV-like virus is suspected to be involved in human breast cancer and feline mammary carcinomas. However, to date, no cases of MMTV-like sequence amplifications have been described in lymphoid neoplasms in veterinary literature. The aim of this study was to investigate the presence of env nucleotide sequences and protein 14 (p14) of a MMTV-like virus in fifty-three feline lymphoma samples. Our results show that MMTV-like sequences were detected in 5/53 tumours (9.4%): three gastrointestinal lymphomas (one B-type diffuse large, one B-type small non-cleaved, and one T-type diffuse mixed lymphoma); and two nasal lymphomas (one B-type diffuse small cleaved lymphoma and one B-type diffuse mixed lymphoma). P14 expression was detected in the cytoplasm, and rarely in nuclei, exclusively of neoplastic cells from PCR-positive tumours. The correlation between the presence of the MMTV-env like sequences (MMTVels) and p14 antigen was statistically significant in nasal lymphomas. All cats with MMTVels-positive lymphoma had a history of contact with the outdoor environment and/or catteries, and two deceased subjects shared their environment with cats that also died of lymphoma. In conclusion, this study succeeds in demonstrating the presence of MMTVels and p14 in feline lymphomas. The characterization of the immunophenotype of MMTVels-positive lymphomas could contribute to the understanding of a possible role of a MMTV-like virus in feline tumour aetiology. The significant association between the presence of the viral sequences in lymphoid tumours and their nasal localization, together with the data collected through supplementary anamnesis, should be further analysed in order to understand the epidemiology of the virus.
Collapse
Affiliation(s)
- Francesca Parisi
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | | | | | - Prospero Civita
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | | | - Francesca Millanta
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | - Giulia Freer
- Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Mauro Pistello
- Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | | | - Alessandro Poli
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy.
| |
Collapse
|
4
|
Braitbard O, Roniger M, Bar-Sinai A, Rajchman D, Gross T, Abramovitch H, La Ferla M, Franceschi S, Lessi F, Naccarato AG, Mazzanti CM, Bevilacqua G, Hochman J. A new immunization and treatment strategy for mouse mammary tumor virus (MMTV) associated cancers. Oncotarget 2018; 7:21168-80. [PMID: 26934560 PMCID: PMC5008276 DOI: 10.18632/oncotarget.7762] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/24/2016] [Indexed: 12/20/2022] Open
Abstract
Mouse Mammary Tumor Virus (MMTV) causes mammary carcinoma or lymphoma in mice. An increasing body of evidence in recent years supports its involvement also in human sporadic breast cancer. It is thus of importance to develop new strategies to impair the development, growth and metastasis of MMTV-associated cancers. The signal peptide of the envelope precursor protein of this virus: MMTV-p14 (p14) is an excellent target for such strategies, due to unique characteristics distinct from its regular endoplasmic reticulum targeting function. These include cell surface expression in: murine cancer cells that harbor the virus, human breast cancer (MCF-7) cells that ectopically express p14, as well as cultured human cells derived from an invasive ductal breast carcinoma positive for MMTV sequences. These findings support its use in signal peptide-based immune targeting. Indeed, priming and boosting mice with p14 elicits a specific anti-signal peptide immune response sufficient for protective vaccination against MMTV-associated tumors. Furthermore, passive immunization using a combination of anti-p14 monoclonal antibodies or the transfer of T-cells from immunized mice (Adoptive Cell Transfer) is also therapeutically effective. With reports demonstrating involvement of MMTV in human breast cancer, we propose the immune-mediated targeting of p14 as a strategy for prevention, treatment and diagnosis of MMTV-associated cancers.
Collapse
Affiliation(s)
- Ori Braitbard
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maayan Roniger
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Allan Bar-Sinai
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Rajchman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Gross
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hillel Abramovitch
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | - Generoso Bevilacqua
- FPS - Pisa Science Foundation, Pisa, Italy.,Department of Pathology, University of Pisa, Pisa, Italy
| | - Jacob Hochman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Feldman D, Roniger M, Bar-Sinai A, Braitbard O, Natan C, Love DC, Hanover JA, Hochman J. The signal peptide of mouse mammary tumor virus-env: a phosphoprotein tumor modulator. Mol Cancer Res 2012; 10:1077-86. [PMID: 22740636 DOI: 10.1158/1541-7786.mcr-11-0581] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mouse mammary tumor virus (MMTV) is associated primarily with mammary carcinomas and lymphomas. The signal peptide of the MMTV envelope precursor is uniquely targeted to nucleoli of cells that harbor the virus, where it can function as a nuclear export factor for intron-containing transcripts. Antibodies to this signal peptide, which we refer to as p14, were previously shown to label nucleoli in a subset of human breast cancers. To look for additional cellular functions of p14, different mutants were ectopically expressed in the MCF-7 human breast cancer cell line. This approach identified motifs responsible for its nucleolar targeting, nucleocytoplasmic shuttling, target protein (B23, nucleophosmin) binding, and phosphorylation at serine 18 and 65 both in situ and in vitro. To test the role of these phosphorylation sites, we carried out in vivo tumorigenesis studies in severe combined immunodeficient mice. The findings show that the p14-Ser65Ala mutation is associated with impaired tumorigenicity, whereas the p14-Ser18Ala mutation is associated with enhanced tumorigenicity. Microarray analysis suggests that phosphorylation at serine 18 or at serine 65 is associated with transcriptional regulation of the L5 nucleolar ribosomal protein (a p14 target) and the Erb-B signal transduction pathway. Taken together, these results show that the phosphorylation status of p14 determines whether it functions as a pro-oncogenic or antioncogenic modulator.
Collapse
Affiliation(s)
- Dafna Feldman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Bar-Sinai A, Bassa N, Fischette M, Gottesman MM, Love DC, Hanover JA, Hochman J. Mouse Mammary Tumor Virus Env–Derived Peptide Associates with Nucleolar Targets in Lymphoma, Mammary Carcinoma, and Human Breast Cancer. Cancer Res 2005; 65:7223-30. [PMID: 16103073 DOI: 10.1158/0008-5472.can-04-3879] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously shown that the leader peptide (p14) of the Env-precursor of mouse mammary tumor virus is translocated into the nucleoli of murine T cell lymphomas that harbor this virus. Using a polyclonal antibody against recombinant p14, we show here that p14 is also localized to the nucleoli of murine mammary carcinomas and some human breast cancer samples. Affinity purification studies define a number of proteins, mostly nucleolar, that bind p14. Taken together, these findings point towards a more general involvement of p14 in lymphomagenesis and mammary carcinogenesis.
Collapse
Affiliation(s)
- Allan Bar-Sinai
- Department of Cell and Animal Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
7
|
Indik S, Günzburg WH, Salmons B, Rouault F. A novel, mouse mammary tumor virus encoded protein with Rev-like properties. Virology 2005; 337:1-6. [PMID: 15914215 DOI: 10.1016/j.virol.2005.03.040] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 01/21/2005] [Accepted: 03/29/2005] [Indexed: 11/19/2022]
Abstract
We have identified a novel, multiple spliced, subgenomic mRNA species in MMTV producing cells of different origin containing an open reading frame encoding a 39-kDa Rev-like protein, Rem (regulator of expression of MMTV). An EGFP-Rem fusion protein is shown to be predominantly in the nucleolus. Further leptomycin B inhibits the nuclear export of nonspliced MMTV transcripts, implicating Rem in nuclear export by the Crm1 pathway in MMTV. Rem is thus reminiscent of the Rec protein from the related endogenous human retrovirus, HERV-K.
Collapse
Affiliation(s)
- Stanislav Indik
- Research Institute for Virology and Biomedicine, University of Veterinary Medicine, Austria
| | | | | | | |
Collapse
|
8
|
Hoch-Marchaim H, Weiss AM, Bar-Sinai A, Fromer M, Adermann K, Hochman J. The leader peptide of MMTV Env precursor localizes to the nucleoli in MMTV-derived T cell lymphomas and interacts with nucleolar protein B23. Virology 2003; 313:22-32. [PMID: 12951018 DOI: 10.1016/s0042-6822(03)00236-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously described two nucleolar proteins, named p14 and p21, in MMTV-induced T cell lymphomas. These proteins were identified by a monoclonal antibody (M-66) generated from a nontumorigenic, immunogenic variant of S49 T cell lymphoma. While p14 was common to several MMTV-derived T cell lymphomas, p21 was found only in highly tumorigenic variants of S49 cells. Here we report that p14 is the leader peptide of the MMTV env precursor. The epitope recognized by M-66 contains a putative nuclear localization signal. Actinomycin D was found to induce redistribution of p14/p21 from the nucleolus to the nucleoplasm. p14 coimmunoprecipitated and colocalized with the cellular protein, B23. Association with B23 has been previously reported for other auxiliary nucleolar retroviral proteins, such as Rev (HIV) and Rex (HTLV).
Collapse
Affiliation(s)
- Hagit Hoch-Marchaim
- Department of Cell and Animal Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | | | | | | | | |
Collapse
|
9
|
Giffin W, Gong W, Schild-Poulter C, Haché RJ. Ku antigen-DNA conformation determines the activation of DNA-dependent protein kinase and DNA sequence-directed repression of mouse mammary tumor virus transcription. Mol Cell Biol 1999; 19:4065-78. [PMID: 10330147 PMCID: PMC104366 DOI: 10.1128/mcb.19.6.4065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) transcription is repressed by DNA-dependent protein kinase (DNA-PK) through a DNA sequence element, NRE1, in the viral long terminal repeat that is a sequence-specific DNA binding site for the Ku antigen subunit of the kinase. While Ku is an essential component of the active kinase, how the catalytic subunit of DNA-PK (DNA-PKcs) is regulated through its association with Ku is only beginning to be understood. We report that activation of DNA-PKcs and the repression of MMTV transcription from NRE1 are dependent upon Ku conformation, the manipulation of DNA structure by Ku, and the contact of Ku80 with DNA. Truncation of one copy of the overlapping direct repeat that comprises NRE1 abrogated the repression of MMTV transcription by Ku-DNA-PKcs. Remarkably, the truncated element was recognized by Ku-DNA-PKcs with affinity similar to that of the full-length element but was unable to promote the activation of DNA-PKcs. Analysis of Ku-DNA-PKcs interactions with DNA ends, double- and single-stranded forms of NRE1, and the truncated NRE1 element revealed striking differences in Ku conformation that differentially affected the recruitment of DNA-PKcs and the activation of kinase activity.
Collapse
Affiliation(s)
- W Giffin
- Departments of Medicine, Microbiology and Immunology, The Loeb Health Research Institute at the Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
10
|
Torrance H, Giffin W, Rodda DJ, Pope L, Haché RJ. Sequence-specific binding of Ku autoantigen to single-stranded DNA. J Biol Chem 1998; 273:20810-9. [PMID: 9694826 DOI: 10.1074/jbc.273.33.20810] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoid-induced transcription of mouse mammary tumor virus is repressed by Ku antigen/DNA-dependent protein kinase (DNA-PK) through a DNA sequence element (NRE1) in the viral long terminal repeat. Nuclear factors binding to the separated single strands of NRE1 have been identified that may also be important for transcriptional regulation through this element. We report the separation of the upper-stranded NRE1 binding activity in Jurkat T cell nuclear extracts into two components. One component was identified as Ku antigen. The DNA sequence preference for Ku binding to single-stranded DNA closely paralleled the sequence requirements of Ku for double-stranded DNA. Recombinant Ku bound the single, upper strand of NRE1 with an affinity that was 3-4-fold lower than its affinity for double-stranded NRE1. Sequence-specific single-stranded Ku binding occurred rapidly (t1/2 on = 2.0 min) and was exceptionally stable, with an off rate of t1/2= 68 min. While Ku70 cross-linked to the upper strand of NRE1 when Ku was bound to double-stranded and single-stranded DNAs, the Ku80 subunit only cross-linked to single-stranded NRE1. Intriguingly, addition of Mg2+ and ATP, the cofactors required for Ku helicase activity, induced the cross-linking of Ku80 to a double-stranded NRE1-containing oligonucleotide, without completely unwinding the two strands.
Collapse
Affiliation(s)
- H Torrance
- Graduate Program in Biochemistry, University of Ottawa, Loeb Institute for Medical Research, Ottawa Civic Hospital, Ottawa, Ontario K1Y 4E9, Canada
| | | | | | | | | |
Collapse
|
11
|
Willer A, Saussele S, Gimbel W, Seifarth W, Kister P, Leib-Mösch C, Hehlmann R. Two groups of endogenous MMTV related retroviral env transcripts expressed in human tissues. Virus Genes 1998; 15:123-33. [PMID: 9421877 DOI: 10.1023/a:1007910924177] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The human genome contains at least 50 copies of the human endogenous retrovirus K (HERV-K) family which is related to the mouse mammary tumor virus (MMTV). Some members have been shown to be transcriptionally active and to have large open reading frames. Using the RT-PCR method we have investigated the HERV-K env transcription pattern in several malignant tissues and in peripheral blood mononuclear cells PBMCs). Samples were derived from chronic myelogenous leukemia (CML), breast cancer, colon cancer, high and low grade non-Hodgkin's lymphomas, Hodgkin's disease, myelodysplastic syndrome, thyroid adenoma (TA) and from PBMCs of patients with breast cancer, gastric cancer, and of healthy individuals. We found abundant HERV-K env transcripts in all tissues under investigation. Using HERV-K 10 specific primers for amplification we detected in addition to transcripts with high homology to HERV-K 10 (ca. 96% homology on the amino acid level) also transcripts of low homology to HERV-K10 (ca. 71%). Interestingly, all solid tissues containing high percentages of malignant cells such as breast cancer, colon carcinoma, low and high grade non-Hodgkin's lymphomas showed exclusively HERV-K env related transcripts with low homology to HERV-K 10. In contrast, in samples containing only a low proportion of malignant cells or no malignant cells at all we observed both types of transcripts. Thus, our data suggest that the expression pattern of HERV-K elements in human cells is very heterogenous and subjected to a complex transcriptional regulation.
Collapse
Affiliation(s)
- A Willer
- III rd. Medizinische Klinik, Klinikum Mannheim, Universität Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Malarkannan S, Serwold T, Nguyen V, Sherman LA, Shastri N. The mouse mammary tumor virus env gene is the source of a CD8+ T-cell-stimulating peptide presented by a major histocompatibility complex class I molecule in a murine thymoma. Proc Natl Acad Sci U S A 1996; 93:13991-6. [PMID: 8943048 PMCID: PMC19482 DOI: 10.1073/pnas.93.24.13991] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
CD8+ cytotoxic T cells recognize their targets by the presence of unique peptide bound to a major histocompatibility complex (MHC) class I molecules on the cell surface. The MHC molecules normally display thousands of distinct peptides, making it difficult to identify individual antigenic peptides, their protein precursors, and their relative importance in the T-cell response. Here we used the EL-4 tumor-specific lacZ-inducible KZ30.6 T cell as a probe for detecting the peptide/MHC ligand that was generated in cells transfected with an EL-4 cDNA library. These expression screens allowed identification of a mouse mammary tumor virus (MMTV) transcript as the source of the antigenic peptide presented by the Kb MHC molecule. The antigenic activity was encoded within the MMTV env gene and was defined by the octapeptide ANYDFICV (AFV8). Synthetic AFV8 stimulated KZ30.6 T cells at picomolar concentrations and coeluted with one of two active peptides in HPLC-fractionated extracts of EL-4 cells. The AFV8/Kb complex was also recognized by two other EL-4-specific T cells. The results illustrate a novel strategy for identifying T-cell-stimulating antigens and suggest that the MMTV env gene and its naturally processed AFV8 peptide product can serve as a model for study of antigen processing and tumor immunotherapy.
Collapse
Affiliation(s)
- S Malarkannan
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | |
Collapse
|
13
|
Giffin W, Haché RJ. Nuclear factor binding to a DNA sequence element that represses MMTV transcription induces a structural transition and leads to the contact of single-stranded binding proteins with DNA. DNA Cell Biol 1995; 14:1025-35. [PMID: 8534369 DOI: 10.1089/dna.1995.14.1025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
NRE1 is a DNA sequence element in the long terminal repeat of mouse mammary tumor virus through which viral transcription is repressed. In addition to double-stranded DNA binding, both upper- and lower-stranded NRE1 binding activities occur in nuclear extracts. All three binding activities appear to be important for transcriptional effects. We report that occupancy of NRE1 within linear double-stranded NRE1 induces a structural transition in upstream flanking DNA that is facilitated by Mg2+. This transition was reflected by the striking DNase I sensitivity of the DNA. As Mg2+ concentration was increased, discrete DNase I hypersensitivity on one face of the DNA progressed to complete degradation of template. On the DNA face opposite the DNase I hypersensitivity, Mg2+ promoted regularly spaced cleavage by the single-strand-specific cleavage agents KMnO4 and S1 nuclease. Induction of degradation by DNase I occurred independently of MMTV sequences flanking NRE1, because nuclear extract-dependent DNase I sensitivity was conferred to an unrelated DNA fragment by introduction of a 23-bp NRE1-containing oligonucleotide. UV protein-DNA cross-linking revealed that addition of Mg2+ to a double-stranded NRE1 DNA binding assay induced conversion from a double- to a single-stranded protein-DNA cross-linking pattern. Thus, nuclear factor binding to NRE1 induces changes in DNA topology that promote the direct contact of single-stranded NRE1 binding factors with DNA.
Collapse
Affiliation(s)
- W Giffin
- Department of Medicine, University of Ottawa, Loeb Institute for Medical Research, Ottawa Civic Hospital, Ontario, Canada
| | | |
Collapse
|
14
|
Giffin W, Torrance H, Saffran H, MacLeod H, Haché R. Repression of mouse mammary tumor virus transcription by a transcription factor complex. Binding of individual components to separated DNA strands. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42278-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Held W, Shakhov AN, Izui S, Waanders GA, Scarpellino L, MacDonald HR, Acha-Orbea H. Superantigen-reactive CD4+ T cells are required to stimulate B cells after infection with mouse mammary tumor virus. J Exp Med 1993; 177:359-66. [PMID: 8093892 PMCID: PMC2190911 DOI: 10.1084/jem.177.2.359] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Superantigens are defined by their ability to stimulate a large fraction of T cells via interaction with the T cell receptor (TCR) V beta domain. Endogenous superantigens, classically termed minor lymphocyte-stimulating (Mls) antigens, were recently identified as products of open reading frames (ORF) in integrated proviral copies of mouse mammary tumor virus (MMTV). We have described an infectious MMTV homologue of the classical endogenous superantigen Mls-1a (Mtv-7). The ORF molecules of both the endogenous Mtv-7 and the infectious MMTV(SW) interact with T cells expressing the TCR V beta 6, 7, 8.1, and 9 domains. Furthermore, the COOH termini of their ORF molecules, thought to confer TCR specificity, are very similar. Since successful transport of MMTV from the site of infection in the gut to the mammary gland depends on a functional immune system, we were interested in determining the early events after and requirements for MMTV infection. We show that MMTV(SW) infection induces a massive response of V beta 6+ CDC4+ T cells, which interact with the viral ORF. Concomitantly, we observed a B cell response and differentiation that depends on both the presence and stimulation of the superantigen-reactive T cells. Furthermore, we show that B cells are the main target of the initial MMTV infection as judged by the presence of the reverse-transcribed viral genome and ORF transcripts. Thus, we suggest that MMTV infection of B cells leads to ORF-mediated B-T cell interaction, which maintains and possibly amplifies viral infection.
Collapse
Affiliation(s)
- W Held
- Ludwig Institute for Cancer Research, Lausanne Branch, Epalinges, Switzerland
| | | | | | | | | | | | | |
Collapse
|