1
|
Fukunaga J, Nomura Y, Tanaka Y, Amano R, Tanaka T, Nakamura Y, Kawai G, Sakamoto T, Kozu T. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element. RNA (NEW YORK, N.Y.) 2013; 19:927-936. [PMID: 23709277 PMCID: PMC3683927 DOI: 10.1261/rna.037879.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
AML1 (RUNX1) is a key transcription factor for hematopoiesis that binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. Aberrations in the AML1 gene are frequently found in human leukemia. To better understand AML1 and its potential utility for diagnosis and therapy, we obtained RNA aptamers that bind specifically to the AML1 Runt domain. Enzymatic probing and NMR analyses revealed that Apt1-S, which is a truncated variant of one of the aptamers, has a CACG tetraloop and two stem regions separated by an internal loop. All the isolated aptamers were found to contain the conserved sequence motif 5'-NNCCAC-3' and 5'-GCGMGN'N'-3' (M:A or C; N and N' form Watson-Crick base pairs). The motif contains one AC mismatch and one base bulged out. Mutational analysis of Apt1-S showed that three guanines of the motif are important for Runt binding as are the three guanines of RDE, which are directly recognized by three arginine residues of the Runt domain. Mutational analyses of the Runt domain revealed that the amino acid residues used for Apt1-S binding were similar to those used for RDE binding. Furthermore, the aptamer competed with RDE for binding to the Runt domain in vitro. These results demonstrated that the Runt domain of the AML1 protein binds to the motif of the aptamer that mimics DNA. Our findings should provide new insights into RNA function and utility in both basic and applied sciences.
Collapse
Affiliation(s)
- Junichi Fukunaga
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama 362-0806, Japan
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Yusuke Nomura
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yoichiro Tanaka
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama 362-0806, Japan
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Facility for RI Research and Education, Instrumental Analysis Center, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Ryo Amano
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Taku Tanaka
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Yoshikazu Nakamura
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Gota Kawai
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Taiichi Sakamoto
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Tomoko Kozu
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama 362-0806, Japan
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
2
|
Breen KM, Thackray VG, Coss D, Mellon PL. Runt-related transcription factors impair activin induction of the follicle-stimulating hormone {beta}-subunit gene. Endocrinology 2010; 151:2669-80. [PMID: 20357224 PMCID: PMC2875819 DOI: 10.1210/en.2009-0949] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Synthesis of the FSH beta-subunit (FSHbeta) is critical for normal reproduction in mammals, and its expression within the pituitary gonadotrope is tightly regulated by activin. Here we show that Runt-related (RUNX) proteins, transcriptional regulators known to interact with TGFbeta signaling pathways, suppress activin induction of FSHbeta gene expression. Runx2 is expressed within the murine pituitary gland and dramatically represses activin-induced FSHbeta promoter activity, without affecting basal expression in LbetaT2 cells, an immortalized mouse gonadotrope cell line. This repressive effect is specific, because RUNX2 induces LHbeta transcription (with or without activin) and does not interfere with GnRH induction of either gonadotropin beta-subunit gene. Analysis of the murine FSHbeta promoter by transfection and gel shift assays reveals that RUNX2 repression localizes to a Runx-binding element at -159/-153, which is adjacent to a previously recognized region critical for activin induction. Mutation of this -153 activin-response element or, indeed, any of the five activin-responsive regions prevents activin induction and, in fact, RUNX2 suppression, instead converting RUNX2 to an activator of the FSHbeta gene. Although the Runx-binding element is required for RUNX2-mediated repression of FSHbeta induction by either activin or Smad3, confirming a functional role of this novel site, protein interactions in addition to those between RUNX2 and Smads are necessary to account for full repression of activin induction. In summary, the present study provides evidence for Runx2-mediated repression of activin-induced FSHbeta gene expression and reveals the context dependence of Runx2 action in hormonal regulation of the gonadotropin genes.
Collapse
Affiliation(s)
- Kellie M Breen
- Department of Reproductive Medicine and Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0674, USA
| | | | | | | |
Collapse
|
3
|
Bowers SR, Calero-Nieto FJ, Valeaux S, Fernandez-Fuentes N, Cockerill PN. Runx1 binds as a dimeric complex to overlapping Runx1 sites within a palindromic element in the human GM-CSF enhancer. Nucleic Acids Res 2010; 38:6124-34. [PMID: 20483917 PMCID: PMC2952845 DOI: 10.1093/nar/gkq356] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Runx1 is a developmentally regulated transcription factor that is essential for haemopoiesis. Runx1 can bind as a monomer to the core consensus sequence TGTGG, but binds more efficiently as a hetero-dimer together with the non-DNA binding protein CBFβ as a complex termed core binding factor (CBF). Here, we demonstrated that CBF can also assemble as a dimeric complex on two overlapping Runx1 sites within the palindromic sequence TGTGGCTGCCCACA in the human granulocyte macrophage colony-stimulating factor enhancer. Furthermore, we demonstrated that binding of Runx1 to the enhancer is rigidly controlled at the level of chromatin accessibility, and is dependent upon prior induction of NFAT and AP-1, which disrupt a positioned nucleosome in this region. We employed in vivo footprinting to demonstrate that, upon activation of the enhancer, both sites are efficiently occupied. In vitro binding assays confirmed that two CBF complexes can bind this site simultaneously, and transfection assays demonstrated that both sites contribute significantly to enhancer function. Computer modelling based on the Runx1/CBFβ/DNA crystal structure further revealed that two molecules of CBF could potentially bind to this class of palindromic sequence as a dimeric complex in a conformation whereby both Runx1 and CBFβ within the two CBF complexes are closely aligned.
Collapse
Affiliation(s)
- Sarion R Bowers
- Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds LS9 7TF, UK
| | | | | | | | | |
Collapse
|
4
|
t(8;21)(q22;q22) Fusion proteins preferentially bind to duplicated AML1/RUNX1 DNA-binding sequences to differentially regulate gene expression. Blood 2008; 112:1392-401. [PMID: 18511808 DOI: 10.1182/blood-2007-11-124735] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chromosome abnormalities are frequently associated with cancer development. The 8;21(q22;q22) chromosomal translocation is one of the most common chromosome abnormalities identified in leukemia. It generates fusion proteins between AML1 and ETO. Since AML1 is a well-defined DNA-binding protein, AML1-ETO fusion proteins have been recognized as DNA-binding proteins interacting with the same consensus DNA-binding site as AML1. The alteration of AML1 target gene expression due to the presence of AML1-ETO is related to the development of leukemia. Here, using a 25-bp random double-stranded oligonucleotide library and a polymerase chain reaction (PCR)-based DNA-binding site screen, we show that compared with native AML1, AML1-ETO fusion proteins preferentially bind to DNA sequences with duplicated AML1 consensus sites. This finding is further confirmed by both in vitro and in vivo DNA-protein interaction assays. These results suggest that AML1-ETO fusion proteins have a selective preference for certain AML1 target genes that contain multimerized AML1 consensus sites in their regulatory elements. Such selected regulation provides an important molecular mechanism for the dysregulation of gene expression during cancer development.
Collapse
|
5
|
Analysis of the functional relevance of a putative regulatory SNP of PDCD1, PD1.3, associated with systemic lupus erythematosus. Genes Immun 2008; 9:309-15. [PMID: 18401354 DOI: 10.1038/gene.2008.19] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study aimed to test the functional effects of the PD1.3 single nucleotide polymorphism (SNP) (rs11568821), which were proposed based on its association to systemic lupus erythematosus (SLE) susceptibility and in electrophoretic mobility shift assays (EMSA) results. We analysed transcriptional effects of the PD1.3 locus by enhancer reporter assays. Results were against the hypothesis that the PD1.3 locus acts as enhancer in transcriptional regulation of PDCD1. In addition, they excluded a differential effect of the PD1.3 alleles. EMSA results confirmed that oligonucleotides with the PD1.3 G allele bind RUNX1 but not those with the A allele. However, binding to PD1.3 G oligonucleotides was much lower than binding to positive control oligonucleotides. Criss-cross experiments showed that this was due to flanking nucleotides in the PD1.3 sequence that negatively affect RUNX1 binding. These results cast doubts on the functional relevance of the PD1.3 SNP and, together with the lack of association in several studies, put into question its role as an SLE susceptibility factor. Investigation of other PDCD1 polymorphisms is needed to uncover the possible effect of this gene on SLE susceptibility.
Collapse
|
6
|
Hines R, Boyapati A, Zhang DE. Cell type dependent regulation of multidrug resistance-1 gene expression by AML1-ETO. Blood Cells Mol Dis 2007; 39:297-306. [PMID: 17590361 PMCID: PMC2048671 DOI: 10.1016/j.bcmd.2007.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Accepted: 05/21/2007] [Indexed: 11/28/2022]
Abstract
The AML1-ETO fusion protein is generated from the 8;21 chromosome translocation that is commonly identified in acute myeloid leukemia. AML1-ETO is a DNA binding transcription factor and has been demonstrated to play a critical role in promoting leukemogenesis. Therefore, it is important to define the molecular mechanism of AML1-ETO in the regulation of gene expression. Here, we report that the effect of AML1-ETO on the promoter of multidrug resistance-1 (MDR1) gene, a known AML1-ETO target, is highly cell type specific. Besides observing repression of the MDR1 promoter in C33A and CV-1 cells as reported previously, AML1-ETO strongly activated the promoter in K562 and B210 cells. More importantly, this activation required both the AML1 and ETO portions of the fusion protein, but did not depend on the AML1 binding site in MDR1 promoter. Furthermore, results from promoter deletion analysis and chromatin immunoprecipitation assays suggested that this activation effect was likely through the influence of the general transcription machinery rather than promoter-specific factors. Based on these data, we propose that AML1-ETO may have opposing effects on gene expression depending on the various conditions of the cellular environment.
Collapse
Affiliation(s)
- Robert Hines
- Department of Molecular and Experimental Medicine, MEM-L51, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
7
|
Sørensen KD, Kunder S, Quintanilla-Martinez L, Sørensen J, Schmidt J, Pedersen FS. Enhancer mutations of Akv murine leukemia virus inhibit the induction of mature B-cell lymphomas and shift disease specificity towards the more differentiated plasma cell stage. Virology 2007; 362:179-91. [PMID: 17258785 DOI: 10.1016/j.virol.2006.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 11/22/2006] [Accepted: 12/08/2006] [Indexed: 11/22/2022]
Abstract
This study investigates the role of the proviral transcriptional enhancer for B-lymphoma induction by exogenous Akv murine leukemia virus. Infection of newborn inbred NMRI mice with Akv induced 35% plasma cell proliferations (PCPs) (consistent with plasmacytoma), 33% diffuse large B-cell lymphomas, 25% follicular B-cell lymphomas and few splenic marginal zone and small B-cell lymphomas. Deleting one copy of the 99-bp proviral enhancer sequence still allowed induction of multiple B-cell tumor types, although PCPs dominated (77%). Additional mutation of binding sites for the glucocorticoid receptor, Ets, Runx, or basic helix-loop-helix transcription factors in the proviral U3 region, however, shifted disease induction to almost exclusively PCPs, but had no major influence on tumor latency periods. Southern analysis of immunoglobulin rearrangements and ecotropic provirus integration patterns showed that many of the tumors/cell proliferations induced by each virus were polyclonal. Our results indicate that enhancer mutations weaken the ability of Akv to induce mature B-cell lymphomas prior to the plasma cell stage, whereas development of plasma cell proliferations is less dependent of viral enhancer strength.
Collapse
Affiliation(s)
- Karina Dalsgaard Sørensen
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Allé, Bldg. 130, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
8
|
Jo M, Curry TE. Luteinizing hormone-induced RUNX1 regulates the expression of genes in granulosa cells of rat periovulatory follicles. Mol Endocrinol 2006; 20:2156-72. [PMID: 16675540 PMCID: PMC1783681 DOI: 10.1210/me.2005-0512] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The LH surge induces specific transcription factors that regulate the expression of a myriad of genes in periovulatory follicles to bring about ovulation and luteinization. The present study determined 1) the localization of RUNX1, a nuclear transcription factor, 2) regulation of Runx1 mRNA expression, and 3) its potential function in rat ovaries. Up-regulation of mRNA and protein for RUNX1 is detected in preovulatory follicles after human chorionic gonadotropin (hCG) injection in gonadotropin-treated immature rats as well as after the LH surge in cycling animals by in situ hybridization and immunohistochemical and Western blot analyses. The regulation of Runx1 mRNA expression was investigated in vitro using granulosa cells from rat preovulatory ovaries. Treatments with hCG, forskolin, or phorbol 12 myristate 13-acetate stimulated Runx1 mRNA expression. The effects of hCG were reduced by inhibitors of protein kinase A, MAPK kinase, or p38 kinase, indicating that Runx1 expression is regulated by the LH-initiated activation of these signaling mediators. In addition, hCG-induced Runx1 mRNA expression was inhibited by a progesterone receptor antagonist and an epidermal growth factor receptor tyrosine kinase inhibitor, whereas amphiregulin stimulated Runx1 mRNA expression, demonstrating that the expression is mediated by the activation of the progesterone receptor and epidermal growth factor receptor. Finally, knockdown of Runx1 mRNA by small interfering RNA decreased progesterone secretion and reduced levels of mRNA for Cyp11a1, Hapln1, Mt1a, and Rgc32. The hormonally regulated expression of Runx1 in periovulatory follicles, its involvement in progesterone production, and regulation of preovulatory gene expression suggest important roles of RUNX1 in the periovulatory process.
Collapse
Affiliation(s)
- Misung Jo
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, Room MS 335, University of Kentucky, Lexington, Kentucky 40536-0298, USA.
| | | |
Collapse
|
9
|
Sørensen KD, Quintanilla-Martinez L, Kunder S, Schmidt J, Pedersen FS. Mutation of all Runx (AML1/core) sites in the enhancer of T-lymphomagenic SL3-3 murine leukemia virus unmasks a significant potential for myeloid leukemia induction and favors enhancer evolution toward induction of other disease patterns. J Virol 2004; 78:13216-31. [PMID: 15542674 PMCID: PMC524987 DOI: 10.1128/jvi.78.23.13216-13231.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SL3-3 murine leukemia virus is a potent inducer of T-lymphomas in mice. Using inbred NMRI mice, it was previously reported that a mutant of SL3-3 with all enhancer Runx (AML1/core) sites disrupted by 3-bp mutations (SL3-3dm) induces predominantly non-T-cell tumors with severely extended latency (S. Ethelberg, J. Lovmand, J. Schmidt, A. Luz, and F. S. Pedersen, J. Virol. 71:7273-7280, 1997). By use of three-color flow cytometry and molecular and histopathological analyses, we have now performed a detailed phenotypic characterization of SL3-3- and SL3-3dm-induced tumors in this mouse strain. All wild-type induced tumors had clonal T-cell receptor beta rearrangements, and the vast majority were CD3(+) CD4(+) CD8(-) T-lymphomas. Such a consistent phenotypic pattern is unusual for murine leukemia virus-induced T-lymphomas. The mutant virus induced malignancies of four distinct hematopoietic lineages: myeloid, T lymphoid, B lymphoid, and erythroid. The most common disease was myeloid leukemia with maturation. Thus, mutation of all Runx motifs in the enhancer of SL3-3 severely impedes viral T-lymphomagenicity and thereby discloses a considerable and formerly unappreciated potential of this virus for myeloid leukemia induction. Proviral enhancers with complex structural alterations (deletions, insertions, and/or duplications) were found in most SL3-3dm-induced T-lymphoid tumors and immature myeloid leukemias but not in any cases of myeloid leukemia with maturation, mature B-lymphoma, or erythroleukemia. Altogether, our results indicate that the SL3-3dm enhancer in itself promotes induction of myeloid leukemia with maturation but that structural changes may arise in vivo and redirect viral disease specificity to induction of T-lymphoid or immature myeloid leukemias, which typically develop with moderately shorter latencies.
Collapse
Affiliation(s)
- Karina Dalsgaard Sørensen
- Department of Molecular Biology, University of Aarhus, C. F. Møllers Allé, Bldg. 130, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
10
|
Liu H, Holm M, Xie XQ, Wolf-Watz M, Grundström T. AML1/Runx1 recruits calcineurin to regulate granulocyte macrophage colony-stimulating factor by Ets1 activation. J Biol Chem 2004; 279:29398-408. [PMID: 15123671 DOI: 10.1074/jbc.m403173200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acute myeloid leukemia 1 (AML1), also denoted Runx1, is a transcription factor essential for hematopoiesis, and the AML1 gene is the most common target of chromosomal translocations in human leukemias. AML1 binds to sequences present in the regulatory regions of a number of hematopoiesis-specific genes, including certain cytokines such as granulocyte macrophage colony-stimulating factor (GM-CSF) up-regulated after T cell receptor stimulation. Here we show that both subunits of the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin (CN), which is activated upon T cell receptor stimulation, interact directly with the N-terminal runt homology domain-containing part of AML1. The regulatory CN subunit binds AML1 with a higher affinity and in addition also interacts with the isolated runt homology domain. The related Runx2 transcription factor, which is essential for bone formation, also interacts with CN. A constitutively active derivative of CN is shown to activate synergistically the GM-CSF promoter/enhancer together with AML1 or Runx2. We also provide evidence that relief of the negative effect of the AML1 sites is important for Ca(2+) activation of the GM-CSF promoter/enhancer and that AML1 overexpression increases this Ca(2+) activation. Both subunits of CN interact with AML1 in coimmunoprecipitation analyses, and confocal microscopy analysis of cells expressing fluorescence-tagged protein derivatives shows that CN can be recruited to the nucleus by AML1 in vivo. Mutant analysis of the GM-CSF promoter shows that the Ets1 binding site of the promoter is essential for the synergy between AML1 and CN in Jurkat T cells. Analysis of the effects of inhibitors of the protein kinase glycogen synthase kinase-3beta and in vitro phosphorylation/dephosphorylation analysis of Ets1 suggest that glycogen synthase kinase-3beta-phosphorylated Ets1 is a target of AML1-recruited CN phosphatase at the GM-CSF promoter.
Collapse
Affiliation(s)
- Hebin Liu
- Department of Molecular Biology, Umeå University, Umeå S-901 87, Sweden
| | | | | | | | | |
Collapse
|
11
|
Denkinger DJ, Kawahara RS. Mutex: a method for simultaneous footprinting and determination of base pair specificity for transcription factor binding sites. Anal Biochem 2003; 321:142-5. [PMID: 12963067 DOI: 10.1016/s0003-2697(03)00404-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Diane J Denkinger
- Department of Pharmacology, University of Nebraska Medical Center, 986260 Nebraska Medical Center, Omaha, NE 68198-6260, USA
| | | |
Collapse
|
12
|
Li Z, Yan J, Matheny CJ, Corpora T, Bravo J, Warren AJ, Bushweller JH, Speck NA. Energetic contribution of residues in the Runx1 Runt domain to DNA binding. J Biol Chem 2003; 278:33088-96. [PMID: 12807882 DOI: 10.1074/jbc.m303973200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Core-binding factors (CBFs) are a small family of heterodimeric transcription factors that play critical roles in hematopoiesis and in the development of bone, stomach epithelium, and proprioceptive neurons. Mutations in CBF genes are found in leukemias, bone disorders, and gastric cancer. CBFs consist of a DNA-binding CBF alpha subunit and a non-DNA-binding CBF beta subunit. DNA binding and heterodimerization with CBF beta are mediated by the Runt domain in CBF alpha. Here we report an alanine-scanning mutagenesis study of the Runt domain that targeted amino acids identified by structural studies to reside at the DNA or CBF beta interface, as well as amino acids mutated in human disease. We determined the energy contributed by each of the DNA-contacting residues in the Runt domain to DNA binding both in the absence and presence of CBF beta. We propose mechanisms by which mutations in the Runt domain found in hematopoietic and bone disorders affect its affinity for DNA.
Collapse
Affiliation(s)
- Zhe Li
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
DiFronzo NL, Frieder M, Loiler SA, Pham QN, Holland CA. Duplication of U3 sequences in the long terminal repeat of mink cell focus-inducing viruses generates redundancies of transcription factor binding sites important for the induction of thymomas. J Virol 2003; 77:3326-33. [PMID: 12584358 PMCID: PMC149780 DOI: 10.1128/jvi.77.5.3326-3333.2003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of mink cell focus-inducing (MCF) viruses to induce thymomas is determined, in part, by transcriptional enhancers in the U3 region of their long terminal repeats (LTRs). To elucidate sequence motifs important for enhancer function in vivo, we injected newborn mice with MCF 1dr (supF), a weakly pathogenic, molecularly tagged (supF) MCF virus containing only one copy of a sequence that is present as two copies (known as the directly repeated [DR] sequence) in the U3 region of MCF 247 and analyzed LTRs from supF-tagged proviruses in two resulting thymomas. Tagged proviruses integrated upstream and in the reverse transcriptional orientation relative to c-myc provided the focus of our studies. These proviruses are thought to contribute to thymoma induction by enhancer-mediated deregulation of c-myc expression. The U3 region in a tagged LTR in one thymoma was cloned and sequenced. Relative to MCF 1dr (supF), the cloned U3 region contained an insertion of 140 bp derived predominantly from the DR sequence of the injected virus. The inserted sequence contains predicted binding sites for transcription factors known to regulate the U3 regions of various murine leukemia viruses. Similar constellations of binding sites were duplicated in two proviral LTRs integrated upstream from c-myc in a second thymoma. We replaced the U3 sequences in an infectious molecular clone of MCF 247 with the cloned proviral U3 sequences from the first thymoma and generated an infectious chimeric virus, MCF ProEn. When injected into neonatal AKR mice, MCF ProEn was more pathogenic than the parental virus, MCF 1dr (supF), as evidenced by the more rapid onset and higher incidence of thymomas. Molecular analyses of the resultant thymomas indicated that the U3 region of MCF ProEn was genetically stable. These data suggest that the arrangement and/or redundancy of transcription factor binding sites generated by specific U3 sequence duplications are important to the biological events mediated by MCF proviruses integrated near c-myc that contribute to transformation.
Collapse
Affiliation(s)
- Nancy L DiFronzo
- Center for Virology and Immunology Research, Children's Research Institute, George Washington University School of Medical and Health Sciences, Washington, DC 20010, USA
| | | | | | | | | |
Collapse
|
14
|
Bäckström S, Wolf-Watz M, Grundström C, Härd T, Grundström T, Sauer UH. The RUNX1 Runt domain at 1.25A resolution: a structural switch and specifically bound chloride ions modulate DNA binding. J Mol Biol 2002; 322:259-72. [PMID: 12217689 DOI: 10.1016/s0022-2836(02)00702-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The evolutionarily conserved Runt homology domain is characteristic of the RUNX family of heterodimeric eukaryotic transcription factors, including RUNX1, RUNX2 and RUNX3. The genes for RUNX1, also termed acute myeloid leukemia protein 1, AML1, and its dimerization partner core-binding factor beta, CBFbeta, are essential for hematopoietic development and are together the most common targets for gene rearrangements in acute human leukemias. Here, we describe the crystal structure of the uncomplexed RUNX1 Runt domain at 1.25A resolution and compare its conformation to previously published structures in complex with DNA, CBFbeta or both. We find that complex formation induces significant structural rearrangements in this immunoglobulin (Ig)-like DNA-binding domain. Most pronounced is the movement of loop L11, which changes from a closed conformation in the free Runt structure to an open conformation in the CBFbeta-bound and DNA-bound forms. This transition, which we refer to as the S-switch, and accompanying structural movements that affect other parts of the Runt domain are crucial for sustained DNA binding. The closed to open transition can be induced by CBFbeta alone; suggesting that one role of CBFbeta is to trigger the S-switch and to stabilize the Runt domain in a conformation enhanced for DNA binding.A feature of the Runt domain hitherto unobserved in any Ig-like DNA-binding domain is the presence of two specifically bound chloride ions. One chloride ion is coordinated by amino acid residues that make direct DNA contact. In a series of electrophoretic mobility-shift analyses, we demonstrate a chloride ion concentration-dependent stimulation of the DNA-binding activity of Runt in the physiological range. A comparable DNA-binding stimulation was observed for negatively charged amino acid residues. This suggests a regulatory mechanism of RUNX proteins through acidic amino acid residues provided by activation domains during cooperative interaction with other transcription factors.
Collapse
Affiliation(s)
- Stefan Bäckström
- Biocrystallography Group, Umeå Centre for Molecular Pathogenesis (UCMP), Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
15
|
Mertz JA, Mustafa F, Meyers S, Dudley JP. Type B leukemogenic virus has a T-cell-specific enhancer that binds AML-1. J Virol 2001; 75:2174-84. [PMID: 11160721 PMCID: PMC114801 DOI: 10.1128/jvi.75.5.2174-2184.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Type B leukemogenic virus (TBLV) induces rapidly appearing T-cell tumors in mice. TBLV is highly related to mouse mammary tumor virus (MMTV) except that TBLV long terminal repeats (LTRs) have a deletion of negative regulatory elements and a triplication of sequences flanking the deletion. To determine if the LTR triplication represents a viral enhancer element, we inserted the triplication upstream and downstream in either orientation relative to the thymidine kinase promoter linked to the luciferase gene. These experiments showed that upregulation of reporter gene activity by the TBLV triplication was relatively orientation independent, consistent with the activity of eukaryotic enhancer elements. TBLV enhancer activity was observed in T-cell lines but not in fibroblasts, B cells, or mammary cells, suggesting that enhancer function is cell type dependent. To analyze the transcription factor binding sites that are important for TBLV enhancer function, we prepared substitution mutations in a reconstituted C3H MMTV LTR that recapitulates the deletion observed in the TBLV LTR. Transient transfections showed that a single mutation (556M) decreased TBLV enhancer activity at least 20-fold in two different T-cell lines. This mutation greatly diminished AML-1 (recently renamed RUNX1) binding in gel shift assays with a mutant oligonucleotide, whereas AML-1 binding to a wild-type TBLV oligomer was specific, as judged by competition and supershift experiments. The 556 mutation also reduced TBLV enhancer binding of two other protein complexes, called NF-A and NF-B, that did not appear to be related to c-Myb or Ets. AML-1 overexpression in a mammary cell line enhanced expression from the TBLV LTR approximately 30-fold. These data suggest that binding of AML-1 to the TBLV enhancer, likely in combination with other factors, is necessary for optimal enhancer function.
Collapse
Affiliation(s)
- J A Mertz
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
16
|
Pérez-Alvarado GC, Munnerlyn A, Dyson HJ, Grosschedl R, Wright PE. Identification of the regions involved in DNA binding by the mouse PEBP2alpha protein. FEBS Lett 2000; 470:125-30. [PMID: 10734220 DOI: 10.1016/s0014-5793(00)01296-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The polyomavirus enhancer binding protein 2alpha (PEBP2alpha) is a DNA binding transcriptional regulatory protein that binds conserved sites in the polyomavirus enhancer, mammalian type C retroviral enhancers and T-cell receptor gene enhancers. Binding of PEBP2alpha and homologous proteins to the consensus DNA sequence TGPyGGTPy is mediated through a protein domain known as the runt domain. Although recent NMR studies of DNA-bound forms of the runt domain have shown an immunoglobulin-like (Ig) fold, the identification of residues of the protein that are involved in DNA binding has been obscured by the low solubility of the runt domain. Constructs of the mouse PEBP2alphaA1 gene were generated with N- and C-terminal extensions beyond the runt homology region. The construct containing residues Asp90 to Lys225 of the sequence (PEBP2alpha90-225) yielded soluble protein. The residues that participate in DNA binding were determined by comparing the NMR spectra of free and DNA-bound PEBP2alpha90-225. Analysis of the changes in the NMR spectra of the two forms of the protein by chemical shift deviation mapping allowed the unambiguous determination of the regions that are responsible for specific DNA recognition by PEBP2alpha. Five regions in PEBP2alpha90-225 that are localized at one end of the beta-barrel were found to interact with DNA, similar to the DNA binding interactions of other Ig fold proteins.
Collapse
Affiliation(s)
- G C Pérez-Alvarado
- Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
17
|
Gu TL, Goetz TL, Graves BJ, Speck NA. Auto-inhibition and partner proteins, core-binding factor beta (CBFbeta) and Ets-1, modulate DNA binding by CBFalpha2 (AML1). Mol Cell Biol 2000; 20:91-103. [PMID: 10594012 PMCID: PMC85059 DOI: 10.1128/mcb.20.1.91-103.2000] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Core-binding factor alpha2 (CBFalpha2; otherwise known as AML1 or PEBP2alphaB) is a DNA-binding subunit in the family of core-binding factors (CBFs), heterodimeric transcription factors that play pivotal roles in multiple developmental processes in mammals, including hematopoiesis and bone development. The Runt domain in CBFalpha2 (amino acids 51 to 178) mediates DNA binding and heterodimerization with the non-DNA-binding CBFbeta subunit. Both the CBFbeta subunit and the DNA-binding protein Ets-1 stimulate DNA binding by the CBFalpha2 protein. Here we quantify and compare the extent of cooperativity between CBFalpha2, CBFbeta, and Ets-1. We also identify auto-inhibitory sequences within CBFalpha2 and sequences that modulate its interactions with CBFbeta and Ets-1. We show that sequences in the CBFalpha2 Runt domain and sequences C terminal to amino acid 214 inhibit DNA binding. Sequences C terminal to amino acid 214 also inhibit heterodimerization with the non-DNA-binding CBFbeta subunit, particularly heterodimerization off DNA. CBFbeta rescinds the intramolecular inhibition of CBFalpha2, stimulating DNA binding approximately 40-fold. In comparison, Ets-1 stimulates CBFalpha2 DNA binding 7- to 10-fold. Although the Runt domain alone is sufficient for heterodimerization with CBFbeta, sequences N terminal to amino acid 41 and between amino acids 190 and 214 are required for cooperative DNA binding with Ets-1. Cooperative DNA binding with Ets-1 is less pronounced with the CBFalpha2-CBFbeta heterodimer than with CBFalpha2 alone. These analyses demonstrate that CBFalpha2 is subject to both negative regulation by intramolecular interactions, and positive regulation by two alternative partnerships.
Collapse
Affiliation(s)
- T L Gu
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
18
|
Ethelberg S, Tzschaschel BD, Luz A, Diaz-Cano SJ, Pedersen FS, Schmidt J. Increased induction of osteopetrosis, but unaltered lymphomagenicity, by murine leukemia virus SL3-3 after mutation of a nuclear factor 1 site in the enhancer. J Virol 1999; 73:10406-15. [PMID: 10559359 PMCID: PMC113096 DOI: 10.1128/jvi.73.12.10406-10415.1999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SL3-3 is a murine leukemia virus which is only weakly bone pathogenic but highly T-cell lymphomagenic. A major pathogenic determinant is the transcriptional enhancer comprising several transcription factor binding sites, among which are three identical sites for nuclear factor 1 (NF1). We have investigated the pathogenic properties of NF1 site enhancer mutants of SL3-3. Two different mutants carrying a 3-bp mutation either in all three NF1 sites or in the central site alone were constructed and assayed in inbred NMRI mice. The wild type and both mutants induced lymphomas in all mice, with a mean latency period of 9 weeks. However, there was a considerable difference in osteopetrosis induction. Wild-type SL3-3 induced osteopetrosis in 11% of the mice (2 of 19), and the triple NF1 site mutant induced osteopetrosis in none of the mice (0 of 19), whereas the single NF1 site mutant induced osteopetrosis in 56% (10 of 18) of the mice, as determined by X-ray analysis. A detailed histological examination of the femurs of the mice was carried out and found to support this diagnosis. Thus, the NF1 sites of SL3-3 are major determinants of osteopetrosis induction, without determining lymphomagenesis. This conclusion was further supported by evaluation of the bone pathogenicity of other SL3-3 enhancer variants, the lymphomagenicity of which had been examined previously. This evaluation furthermore strongly indicated that the core sites, a second group of transcription factor binding sites in the viral enhancer, are necessary for the osteopetrosis induction potential of SL3-3.
Collapse
Affiliation(s)
- S Ethelberg
- Institute of Molecular Virology, GSF-National Research Center for Environment and Health, D-85764 Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Ning YM, Robins DM. AML3/CBFalpha1 is required for androgen-specific activation of the enhancer of the mouse sex-limited protein (Slp) gene. J Biol Chem 1999; 274:30624-30. [PMID: 10521447 DOI: 10.1074/jbc.274.43.30624] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A complex 120-base pair enhancer, derived from the mouse sex-limited protein (Slp) gene, is activated solely by the androgen receptor (AR) in specific tissues, although it contains a hormone response element recognized by several steroid receptors. The generation of this transcriptional specificity has been ascribed to the interactions of the receptor with tissue-specific nonreceptor factors bound to accessory sites within the enhancer. Protein-DNA interaction assays revealed two factors binding the 5' part of the enhancer that differ widely in abundance between cells showing AR-specific activation of the Slp element compared with those that also permit activation by glucocorticoid receptor (GR). The factor designated B formed a complex centered on the sequence TGTGGT, a core motif recognized by members of the AML/CBFalpha transcription factor family. This complex was competed by a high affinity binding site specific for AML/CBFalpha and was specifically supershifted by an antibody to AML3/CBFalpha1, placing factor B within the AML3/CBFalpha1 subclass. Interestingly, this factor was shown to bind to a second site in the 3' part of the enhancer, positioned between the two critical AR binding sites. Transfection studies revealed that AML1-ETO, a dominant-negative AML/CBFalpha construct, abrogated AR induction of the enhancer, but not of simple hormone response elements. Furthermore, overexpression of AML3/CBFalpha1 could rescue the AML1-ETO repression. Finally, glutathione S-transferase-AML/CBFalpha fusion proteins demonstrated direct interaction between AML/CBFalpha and steroid receptors. Although this interaction was equivalent between AML1/CBFalpha2 and AR or GR, AML3/CBFalpha1 showed stronger interaction with AR than with GR. These data demonstrate that AML3/CBFalpha1 is functionally required for hormonal induction of the Slp enhancer and that direct, preferential protein-protein interactions may contribute to AR-specific activation. These results demonstrate an intriguing role of AML3/CBFalpha1 in steroid- as well as tissue-specific activation of target genes.
Collapse
Affiliation(s)
- Y M Ning
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109-0618, USA
| | | |
Collapse
|
20
|
Berardi MJ, Sun C, Zehr M, Abildgaard F, Peng J, Speck NA, Bushweller JH. The Ig fold of the core binding factor alpha Runt domain is a member of a family of structurally and functionally related Ig-fold DNA-binding domains. Structure 1999; 7:1247-56. [PMID: 10545320 DOI: 10.1016/s0969-2126(00)80058-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND CBFA is the DNA-binding subunit of the transcription factor complex called core binding factor, or CBF. Knockout of the Cbfa2 gene in mice leads to embryonic lethality and a profound block in hematopoietic development. Chromosomal disruptions of the human CBFA gene are associated with a large percentage of human leukemias. RESULTS Utilizing nuclear magnetic resonance spectroscopy we have determined the three-dimensional fold of the CBFA Runt domain in its DNA-bound state, showing that it is an s-type immunoglobulin (Ig) fold. DNA binding by the Runt domain is shown to be mediated by loop regions located at both ends of the Runt domain Ig fold. A putative site for CBFB binding has been identified; the spatial location of this site provides a rationale for the ability of CBFB to modulate the affinity of the Runt domain for DNA. CONCLUSIONS Structural comparisons demonstrate that the s-type Ig fold found in the Runt domain is conserved in the Ig folds found in the DNA-binding domains of NF-kappaB, NFAT, p53, STAT-1, and the T-domain. Thus, these proteins form a family of structurally and functionally related DNA-binding domains. Unlike the other members of this family, the Runt domain utilizes loops at both ends of the Ig fold for DNA recognition.
Collapse
Affiliation(s)
- M J Berardi
- Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, VA 22906, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Martiney MJ, Rulli K, Beaty R, Levy LS, Lenz J. Selection of reversions and suppressors of a mutation in the CBF binding site of a lymphomagenic retrovirus. J Virol 1999; 73:7599-606. [PMID: 10438850 PMCID: PMC104287 DOI: 10.1128/jvi.73.9.7599-7606.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The retrovirus SL3 induces T-cell lymphomas in mice. The transcriptional enhancer in the long terminal repeat (LTR) of SL3 contains two 72-bp repeats. Each repeat contains a binding site for the transcription factor CBF (also called AML1). The CBF binding sites are called core elements. SAA is a mutant that is identical to SL3 except for the presence of a single-base-pair substitution in each of the two core elements. This mutation significantly attenuates viral lymphomagenicity. Most lymphomas that occur in SAA-infected mice contain proviruses with reversions or second-site suppressor mutations within the core element. We examined the selective pressures that might account for the predominance of the reversions and suppressor mutations in tumor proviruses by analyzing when proviruses with altered core sequences became abundant during the course of lymphomagenesis. Altered core sequences were easily detected in thymus DNAs by 4 to 6 weeks after SAA infection of mice, well before lymphomas were grossly evident. This result is consistent with the hypothesis that viruses with the core sequence alterations emerged because they replicated more effectively in mice than SAA. The number of 72-bp tandem, repeats in the viral LTR was found to vary, presumably as a consequence of reverse transcriptase slippage during polymerization. Proviruses with two repeats predominated in the thymuses of SAA- and SL3-infected mice before lymphomas developed, although LTRs with one or three repeats were also present. This suggested that two was the optimal number of 72-bp repeats for viral replication. However, in lymphomas, proviruses with three or four repeats usually predominated. This suggested that a late step in the process of lymphomagenesis led to the abundance of proviruses with additional repeats. We hypothesize that proviruses with additional 72-bp repeats endowed the cells containing them with a selective growth advantage.
Collapse
Affiliation(s)
- M J Martiney
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
22
|
Lewis AF, Stacy T, Green WR, Taddesse-Heath L, Hartley JW, Speck NA. Core-binding factor influences the disease specificity of Moloney murine leukemia virus. J Virol 1999; 73:5535-47. [PMID: 10364302 PMCID: PMC112611 DOI: 10.1128/jvi.73.7.5535-5547.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The core site in the Moloney murine leukemia virus (Moloney MLV) enhancer was previously shown to be an important determinant of the T-cell disease specificity of the virus. Mutation of the core site resulted in a significant shift in disease specificity of the Moloney virus from T-cell leukemia to erythroleukemia. We and others have since determined that a protein that binds the core site, one of the core-binding factors (CBF) is highly expressed in thymus and is essential for hematopoiesis. Here we test the hypothesis that CBF plays a critical role in mediating pathogenesis of Moloney MLV in vivo. We measured the affinity of CBF for most core sites found in MLV enhancers, introduced sites with different affinities for CBF into the Moloney MLV genome, and determined the effects of these sites on viral pathogenesis. We found a correlation between CBF affinity and the latent period of disease onset, in that Moloney MLVs with high-affinity CBF binding sites induced leukemia following a shorter latent period than viruses with lower-affinity sites. The T-cell disease specificity of Moloney MLV also appeared to correlate with the affinity of CBF for its binding site. The data support a role for CBF in determining the pathogenic properties of Moloney MLV.
Collapse
Affiliation(s)
- A F Lewis
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | |
Collapse
|
23
|
Wolf-Watz M, Xie XQ, Holm M, Grundström T, Härd T. Solution properties of the free and DNA-bound Runt domain of AML1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:251-60. [PMID: 10103057 DOI: 10.1046/j.1432-1327.1999.00269.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Runt domain is responsible for specific DNA and protein-protein interactions in a family of transcription factors which includes human AML1. Structural data on the Runt domain has not yet become available, possibly due to solubility and stability problems with expressed protein fragments. Here we describe the optimization and characterization of a 140-residue fragment, containing the Runt domain of AML1, which is suitable for structural studies. The fragment of AML1 including amino acids 46-185 [AML1 Dm(46-185)] contains a double cysteine-->serine mutation which does not affect Runt domain structure or DNA-binding affinity. Purified AML1 Dm(46-185) is soluble and optimally stable in a buffer containing 200 mm MgSO4 and 20 mm sodium phosphate at pH 6.0. Nuclear magnetic resonance and circular dichroism spectroscopy indicate that the Runt domain contains beta-sheet, but little or no alpha-helical secondary structure elements. The 45 N-terminal residues of AML1 are unstructured and removal of the N-terminal enhances sequence-specific DNA binding. The NMR spectrum of AML1 Dm(46-185) displays a favorable chemical shift dispersion and resolved NOE connectivities are readily identified, suggesting that a structure determination of this Runt domain fragment is feasible. A titration of 15N-labelled AML1 Dm(46-185) with a 14-bp cognate DNA duplex results in changes in the 15N NMR heteronuclear single quantum coherence spectrum which indicate the formation of a specific complex and structural changes in the Runt domain upon DNA binding.
Collapse
Affiliation(s)
- M Wolf-Watz
- Department of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
24
|
Martiney MJ, Levy LS, Lenz J. Suppressor mutations within the core binding factor (CBF/AML1) binding site of a T-cell lymphomagenic retrovirus. J Virol 1999; 73:2143-52. [PMID: 9971797 PMCID: PMC104459 DOI: 10.1128/jvi.73.3.2143-2152.1999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional enhancer of the lymphomagenic mouse retrovirus SL3 contains a binding site for the transcription factor core binding factor (CBF; also called AML1, PEBP2, and SEF1). The SL3 CBF binding site is called the core. It differs from the core of the weakly lymphomagenic mouse retrovirus Akv by one nucleotide (the sequences are TGTGGTTAA and TGTGGTCAA, respectively). A mutant virus called SAA that was identical to SL3 except that its core was mutated to the Akv sequence was only moderately attenuated for lymphomagenicity. In most SAA-infected mice, tumor proviruses contained either reversions of the original mutation or one of two novel core sequences. In 20% of the SAA-infected mice, tumor proviruses retained the original SAA/Akv core mutation but acquired one of two additional mutations (underlined), TGCGGTCAA or TGTGGTCTA, that generated core elements called So and T*, respectively. We tested whether the novel base changes in the So and T* cores were suppressor mutations. SL3 mutants that contained So or T* cores in place of the wild-type sequence were generated. These viruses induced T-cell lymphomas in mice more quickly than SAA. Therefore, the mutations in the So and T* cores are indeed second-site suppressor mutations. The suppressor mutations increased CBF binding in vitro and transcriptional activity of the viral long terminal repeats (LTRs) in T lymphocytes to levels comparable to those of SL3. Thus, CBF binding was increased by any of three different nucleotide changes within the sequence of the SAA core. Increased CBF binding resulted in increased LTR transcriptional activity in T cells and in increased viral lymphomagenicity.
Collapse
Affiliation(s)
- M J Martiney
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
25
|
Abstract
The immunoglobulin heavy chain (IgH) class switch recombination of B lymphocytes preferentially targets unrearranged IgH genes that have already been rendered transcriptionally active. Transcription of the germ-line IgH genes is controlled by intervening (I) regions upstream of their switch regions. The I alpha1 promoter activates transcription of the human germ-line C alpha1 gene for IgA1 and mediates the transforming growth factor (TGF)-beta1 responsiveness of this locus. Here we show that the I alpha1 promoter contains several binding sites for the AML/PEBP2/CBF family of transcription factors and that AML and Ets proteins are major regulators of the basal and TGF-beta-inducible promoter activity. Our data constitute a starting point for studies to elucidate the molecular mechanism by which TGF-beta regulates IgA production.
Collapse
Affiliation(s)
- X Q Xie
- Department of Cell and Molecular Biology, Umeå University, Sweden
| | | | | | | | | |
Collapse
|
26
|
DiFronzo NL, Holland CA. Sequence-specific and/or stereospecific constraints of the U3 enhancer elements of MCF 247-W are important for pathogenicity. J Virol 1999; 73:234-41. [PMID: 9847326 PMCID: PMC103827 DOI: 10.1128/jvi.73.1.234-241.1999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oncogenic potential of many nonacute retroviruses is dependent on the duplication of the enhancer sequences present in the unique 3' (U3) region of the long terminal repeat (LTR). In a molecular clone (MCF 247-W) of the murine leukemia virus MCF 247, a leukemogenic mink cell focus-inducing (MCF) virus, the U3 enhancer sequences are tandemly repeated in the LTR. We mutated the enhancer region of MCF 247-W to test the hypothesis that the duplicated enhancer sequences of this virus have a sequence-specific and/or a stereospecific role in enhancer function required for transformation. In one virus, we inserted 14 nucleotide bp into the novel sequence generated at the junction of the two enhancers to generate an MCF virus with an interrupted enhancer region. In the second virus, only one copy of the enhancer sequences was present. This second virus also lacked the junction sequence present between the two enhancers of MCF 247-W. Both viruses were less leukemogenic and had a longer mean latency period than MCF 247-W. These data indicate that the sequence generated at the junction of the two enhancers and/or the stereospecific arrangement of the two enhancer elements are required for the full oncogenic potential of MCF 247-W. We analyzed proviral LTRs within the c-myc locus in tumor DNAs from mice injected with the MCF virus with the interrupted enhancer region. Some of the proviral LTRs integrated upstream of c-myc contain enhancer regions that are larger than those of the injected virus. These results are consistent with the suggestion that the virus with an interrupted enhancer changes in vivo to perform its role in the transformation of T cells.
Collapse
Affiliation(s)
- N L DiFronzo
- Center for Virology, Immunology, and Infectious Disease Research, Children's National Medical Center, Washington, D.C. 20010, USA
| | | |
Collapse
|
27
|
Granger SW, Fan H. In vivo footprinting of the enhancer sequences in the upstream long terminal repeat of Moloney murine leukemia virus: differential binding of nuclear factors in different cell types. J Virol 1998; 72:8961-70. [PMID: 9765441 PMCID: PMC110313 DOI: 10.1128/jvi.72.11.8961-8970.1998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enhancer sequences in the Moloney murine leukemia virus (M-MuLV) long terminal repeat (LTR) are of considerable interest since they are crucial for virus replication and the ability of the virus to induce T lymphomas. While extensive studies have identified numerous nuclear factors that can potentially bind to M-MuLV enhancer DNA in vitro, it has not been made clear which of these factors are bound in vivo. To address this problem, we carried out in vivo footprinting of the M-MuLV enhancer in infected cells by in vivo treatment with dimethyl sulfate (DMS) followed by visualization through ligation-mediated PCR (LMPCR) and gel electrophoresis. In vivo DMS-LMPCR footprinting of the upstream LTR revealed evidence for factor binding at several previously characterized motifs. In particular, protection of guanines in the central LVb/Ets and Core sites within the 75-bp repeats was detected in infected NIH 3T3 fibroblasts, Ti-6 lymphoid cells, and thymic tumor cells. In contrast, factor binding at the NF-1 sites was found in infected fibroblasts but not in T-lymphoid cells. These results are consistent with the results of previous experiments indicating the importance of the LVb/Ets and Core sequences for many retroviruses and the biological importance especially of the NF-1 sites in fibroblasts and T-lymphoid cells. No evidence for factor binding to the glucocorticoid responsive element and LVa sites was found. Additional sites of protein binding included a region in the GC-rich sequences downstream of the 75-bp repeats (only in fibroblasts), a hypersensitive guanine on the minus strand in the LVc site (only in T-lymphoid cells), and a region upstream of the 75-bp repeats. These experiments provide concrete evidence for the differential in vivo binding of nuclear factors to the M-MuLV enhancers in different cell types.
Collapse
Affiliation(s)
- S W Granger
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, California 92697-3900, USA
| | | |
Collapse
|
28
|
Lovmand J, Sorensen AB, Schmidt J, Ostergaard M, Luz A, Pedersen FS. B-Cell lymphoma induction by akv murine leukemia viruses harboring one or both copies of the tandem repeat in the U3 enhancer. J Virol 1998; 72:5745-56. [PMID: 9621033 PMCID: PMC110375 DOI: 10.1128/jvi.72.7.5745-5756.1998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Akv is an endogenous, ecotropic murine leukemia virus (MuLV) of the AKR strain. It has served as a prototype nonpathogenic or weakly pathogenic reference virus for studies of closely related potent lymphomagenic viruses such as the T-lymphomagenic SL3-3. We here report that Akv and an Akv mutant (Akv1-99) with only one copy of the 99-bp transcriptional enhancer induce malignant lymphomas with nearly 100% incidence and mean latency periods of 12 months after injection into newborn NMRI mice. Molecular analysis of tumor DNA showed that the majority of the tumors were of the B-cell type. Sequence analysis of proviral transcriptional enhancers in DNA of B-cell lymphomas revealed conservation of the enhancer sequence, as well as a lack of sequence duplications of the Akv1-99 variant, while the repeat copy number in Akv was subject to fluctuations. In support of a B-cell specificity of the Akv enhancer, a murine plasmacytoma cell line was found to sustain three- to fivefold-higher transient transcriptional activity upon the Akv and Akv1-99 enhancers than upon the enhancer of the T-lymphomagenic SL3-3 MuLV. Thus, the overall picture is that Akv MuLV possesses a B- lymphomagenic potential and that the second copy of the 99-bp sequence seems to be of minor importance for this potential. However, in one animal the lymphomas induced by Akv1-99 were of the T-cell type. Among the 24 tumors analyzed only this one harbored a clonal proviral integration in the c-myc locus. This provirus had undergone a duplication of a 113-bp sequence of the enhancer region, partly overlapping with the 99-bp repeat of Akv, as well as a few single nucleotide alterations within and outside the repeats. Taken together with previous studies, our results suggest that T- versus B-lymphomagenic specificity of the enhancer is governed by more than one nucleotide difference and that alterations in binding sites for transcription factors of the AML1 and nuclear-factor-1 families may contribute to this specificity.
Collapse
Affiliation(s)
- J Lovmand
- Department of Molecular and Structural Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
29
|
Zaiman AL, Nieves A, Lenz J. CBF, Myb, and Ets binding sites are important for activity of the core I element of the murine retrovirus SL3-3 in T lymphocytes. J Virol 1998; 72:3129-37. [PMID: 9525638 PMCID: PMC109765 DOI: 10.1128/jvi.72.4.3129-3137.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transcriptional enhancers within the long terminal repeats of murine leukemia viruses are major determinants of the pathogenic properties of these viruses. Mutations were introduced into the adjacent binding sites for three transcription factors within the enhancer of the T-cell-lymphomagenic virus SL3-3. The sites that were tested were, in 5'-to-3' order, a binding site for core binding factor (CBF) called core II, a binding site for c-Myb, a site that binds members of the Ets family of factors, and a second CBF binding site called core I. Mutation of each site individually reduced transcriptional activity in T lymphocytes. However, mutation of the Myb and core I binding sites had larger effects than mutation of the Ets or core II site. The relative effects on transcription in T cells paralleled the effects of the same mutations on viral lymphomagenicity, consistent with the idea that the role of these sequences in viral lymphomagenicity is indeed to regulate transcription in T cells. Mutations were also introduced simultaneously into multiple sites in the SL3-3 enhancer. The inhibitory effects of these mutations indicated that the transcription factor in T cells that recognizes the core I element of SL3-3, presumably CBF, needed to synergize with one or more factors bound at the upstream sites to function. This was tested further by generating a multimer construct that contained five tandem core I elements linked to a basal long terminal repeat promoter. This construct was inactive in T cells. However, transcriptional activity was detected with a multimer construct in which the transcription factor binding sites upstream of the core were also present. These results are consistent with the hypothesis that CBF requires heterologous transcription factors bound at nearby sites to function in T cells.
Collapse
Affiliation(s)
- A L Zaiman
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
30
|
Huang X, Crute BE, Sun C, Tang YY, Kelley JJ, Lewis AF, Hartman KL, Laue TM, Speck NA, Bushweller JH. Overexpression, purification, and biophysical characterization of the heterodimerization domain of the core-binding factor beta subunit. J Biol Chem 1998; 273:2480-7. [PMID: 9442100 DOI: 10.1074/jbc.273.4.2480] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Core-binding factors (CBF) are heteromeric transcription factors essential for several developmental processes, including hematopoiesis. CBFs contain a DNA-binding CBF alpha subunit and a non-DNA binding CBF beta subunit that increases the affinity of CBF alpha for DNA. We have developed a procedure for overexpressing and purifying full-length CBF beta as well as a truncated form containing the N-terminal 141 amino acids using a novel glutaredoxin fusion expression system. Substantial quantities of the CBF beta proteins can be produced in this manner allowing for their biophysical characterization. We show that the full-length and truncated forms of CBF beta bind to a CBF alpha DNA complex with very similar affinities. Sedimentation equilibrium measurements show these proteins to be monomeric. Circular dichroism spectroscopy demonstrates that CBF beta is a mixed alpha/beta protein and NMR spectroscopy shows that the truncated and full-length proteins are structurally similar and suitable for structure determination by NMR spectroscopy.
Collapse
Affiliation(s)
- X Huang
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ethelberg S, Sørensen AB, Schmidt J, Luz A, Pedersen FS. An SL3-3 murine leukemia virus enhancer variant more pathogenic than the wild type obtained by assisted molecular evolution in vivo. J Virol 1997; 71:9796-9. [PMID: 9371648 PMCID: PMC230292 DOI: 10.1128/jvi.71.12.9796-9799.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
SL3-3 is a highly T-lymphomagenic murine retrovirus in which the transcriptional enhancer is a major oncogenic determinant. Here, we describe an SL3-3 enhancer variant that induced T-cell lymphomas in all inoculated mice with a shorter latency period than wild-type SL3-3. The enhancer repeat region of this variant contains two deletions encompassing the nuclear factor 1 binding sites in addition to an additional intact enhancer repeat element. Tumors induced by this variant were T-cell lymphomas, as indicated by T-cell receptor rearrangements, and contained the input provirus enhancer regions. The variant was the result of mutation of specific transcription factor binding sites in the viral enhancer, isolation of rare second-site enhancer variants from the resulting induced tumors, and subsequent restoration of the original first-site mutations of one such variant. We have termed this process assisted molecular evolution.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Base Sequence
- DNA, Viral
- Enhancer Elements, Genetic
- Evolution, Molecular
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Genetic Variation
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/virology
- Mice
- Molecular Sequence Data
- Proviruses
- Receptors, Antigen, T-Cell, alpha-beta/genetics
Collapse
Affiliation(s)
- S Ethelberg
- Department of Molecular and Structural Biology, University of Aarhus, Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
32
|
Ethelberg S, Lovmand J, Schmidt J, Luz A, Pedersen FS. Increased lymphomagenicity and restored disease specificity of AML1 site (core) mutant SL3-3 murine leukemia virus by a second-site enhancer variant evolved in vivo. J Virol 1997; 71:7273-80. [PMID: 9311802 PMCID: PMC192069 DOI: 10.1128/jvi.71.10.7273-7280.1997] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
SL3-3 is a highly T-lymphomagenic murine retrovirus. The major genetic determinant of disease is the transcriptional enhancer, which consists of a repeated region with densely packed binding sites for several transcription factors, including AML1 (also known as core binding factor and polyoma enhancer-binding protein 2) and nuclear factor 1 (NF1). Previously, we examined the enhancer structure of proviruses from murine tumors induced by SL3-3 with mutated AML1 (core) sites and found a few cases of second-site alterations. These consisted of deletions involving the NF1 sites and alterations in overall number of repeat elements, and they conferred increased enhancer strength in transient transcription assays. We have now tested the pathogenicity of a virus harboring one such second-site variant enhancer in inbred NMRI mice. It induced lymphomas with a 100% incidence and a significantly shorter latency than the AML1 mutant it evolved from. The enhancer structure thus represents the selection for a more tumorigenic virus variant during the pathogenic process. Sequencing of provirus from the induced tumors showed the new enhancer variant to be genetically stable. Also, Southern blotting showed that the tumors induced by the variant were T-cell lymphomas, as were the wild-type-induced lymphomas. In contrast, tumors induced by the original core/AML1 site I-II mutant appeared to be of non-T-cell origin and several proviral genomes with altered enhancer regions could be found in the tumors. Moreover, reporter constructs with the new tumor-derived variant could not be transactivated by AML1 in cotransfection experiments as could the wild type. These results emphasize the importance of both core/AML1 site I and site II for the pathogenic potential of SL3-3 and at the same time show that second-site alterations can form a viral variant with a substantial pathogenic potential although both AML1 sites I and II are nonfunctional.
Collapse
Affiliation(s)
- S Ethelberg
- Department of Molecular and Structural Biology, University of Aarhus, Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
33
|
Baum C, Itoh K, Meyer J, Laker C, Ito Y, Ostertag W. The potent enhancer activity of the polycythemic strain of spleen focus-forming virus in hematopoietic cells is governed by a binding site for Sp1 in the upstream control region and by a unique enhancer core motif, creating an exclusive target for PEBP/CBF. J Virol 1997; 71:6323-31. [PMID: 9261349 PMCID: PMC191905 DOI: 10.1128/jvi.71.9.6323-6331.1997] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The polycythemic strain of the spleen focus-forming virus (SFFVp) contains the most potent murine retroviral enhancer configuration known so far for gene expression in myeloerythroid hematopoietic cells. In the present study, we mapped two crucial elements responsible for the high activity of the SFFVp enhancer to an altered upstream control region (UCR) containing a GC-rich motif (5'-GGGCGGG-3') and to a unique enhancer core (5'-TGCGGTC-3'). Acquisition of these motifs accounts for half of the activity of the complete retroviral enhancer in hematopoietic cells, irrespective of the developmental stage or lineage. Furthermore, the UCR motif contains the major determinant for the enhancer activity of SFFVp in embryonic stem (ES) cells. Using electrophoretic mobility shift assays, we show that the UCR of SFFVp, but not of Friend murine leukemia virus, is targeted by the ubiquitous transcriptional activator, Sp1. The core motif of SFFVp creates a specific and high-affinity target for polyomavirus enhancer binding protein/core binding factor (PEBP/CBF) and excludes access of CAAT/enhancer binding protein. Cotransfection experiments with ES cells imply that PEBP/CBF cooperates with the neighboring element, LVb (the only conserved Ets consensus in the SFFVp enhancer), and that the Sp1 motif in the UCR stimulates transactivation through the Ets-PEBP interaction. Putative secondary structures of the retroviral enhancers are proposed based on these data.
Collapse
Affiliation(s)
- C Baum
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Department of Cell & Virus Genetics, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Amtoft HW, Sørensen AB, Bareil C, Schmidt J, Luz A, Pedersen FS. Stability of AML1 (core) site enhancer mutations in T lymphomas induced by attenuated SL3-3 murine leukemia virus mutants. J Virol 1997; 71:5080-7. [PMID: 9188573 PMCID: PMC191741 DOI: 10.1128/jvi.71.7.5080-5087.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Murine retrovirus SL3-3 is highly T lymphomagenic. Its pathogenic properties are determined by the transcriptional enhancer of the U3 repeat region which shows preferential activity in T cells. Within the U3 repeats, the major determinant of T-cell specificity has been mapped to binding sites for the AML1 transcription factor family (also known as the core binding factor [CBF], polyomavirus enhancer binding protein 2 [PEBP2], and SL3-3 enhancer factor 1 [SEF-1]). SL3-3 viruses with AML1 site mutations have lost a major determinant of T-cell-specific enhancer function but have been found to retain a lymphomagenic potential, although disease induction is slower than for the SL3-3 wild type. To compare the specificities and mechanisms of disease induction of wild-type and mutant viruses, we have examined lymphomas induced by mutant viruses harboring transversions of three consecutive base pairs critical to AML1 site function (B. Hallberg, J. Schmidt, A. Luz, F. S. Pedersen, and T. Grundström. J. Virol. 65:4177-4181, 1991). Our results show that the mutated AML1 sites are genetically stable during lymphomagenesis and that ecotropic provirus numbers in DNA of tumors induced by wild-type and mutant viruses fall within the same range. Moreover, proviruses were found to be integrated at the c-myc locus in similar proportions of wild-type and mutant SL3-3-induced tumors, and the mutated AML1 sites of proviruses at c-myc are unaltered. In some cases, however, including one c-myc-integrated provirus, a single-base pair change was detected in a second, weaker AML1 binding site. By DNA rearrangement analysis of the T-cell receptor beta-locus, tumors induced by the AML1 site mutants are found to be of the T-cell type. Thus, although the AML1 site mutants have weakened T-cell-specific enhancers they are T-lymphomagenic, and wild-type- and mutant-virus-induced tumor DNAs are similar with respect to the number of overall ecotropic and c-myc-integrated clonal proviruses. The SL3-3 wild-type and AML1 site mutant viruses may therefore induce disease by similar mechanisms.
Collapse
Affiliation(s)
- H W Amtoft
- Department of Molecular and Structural Biology, University of Aarhus, Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
All murine leukemia viruses (MuLVs) and related type C retroviruses contain a highly conserved binding site for the Ets family of transcription factors within the enhancer sequences in the viral long terminal repeats (LTRs). The T-cell lymphomagenic MuLV SL3-3 (SL3-3) also contains a c-Myb binding site adjacent to the Ets site. The presence of this Myb site distinguishes SL3 from most other MuLVs. We tested the importance of these two sites for the lymphomagenicity of SL3-3. Mutation of the Ets site had little effect on viral pathogenicity, as it only slightly extended the latency period to disease onset. In contrast, mutation of the Myb site strongly inhibited pathogenicity, as only a minority of the inoculated mice developed tumors in the two mouse strains that were tested. All tumors that were induced by either mutant appeared to be lymphomas, and no evidence for reversion of either mutation was detected. The effects of the Ets and Myb site mutations on transcriptional activity of the SL3 LTR were tested by inserting the viral enhancer sequences into a plasmid containing the promoter region of the c-myc gene linked to a reporter gene. Mutation the Myb site almost eliminated enhancer activity in T lymphocytes, while mutation of the Ets site had smaller effects. Thus, the effects of the enhancer mutations on transcriptional activity in T cells paralleled their effects on viral lymphomagenicity. The absence of the c-Myb site in the LTR enhancer of the weakly lymphomagenic MuLV, Akv, likely contributes to the low pathogenicity of this virus relative to SL3-3. However, Moloney MuLV also lacks the Myb site in its LTR, although it induces T-cell lymphomas with a potency similar to that of SL3-3. Thus, it appears that SL3-3 and Moloney MuLV evolved genetic determinants of T-cell lymphomagenicity that are, at least in part, distinct.
Collapse
Affiliation(s)
- A Nieves
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
36
|
Ethelberg S, Hallberg B, Lovmand J, Schmidt J, Luz A, Grundström T, Pedersen FS. Second-site proviral enhancer alterations in lymphomas induced by enhancer mutants of SL3-3 murine leukemia virus: negative effect of nuclear factor 1 binding site. J Virol 1997; 71:1196-206. [PMID: 8995642 PMCID: PMC191173 DOI: 10.1128/jvi.71.2.1196-1206.1997] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SL3-3 is a highly T-lymphomagenic murine retrovirus. Previously, mutation of binding sites in the U3 repeat region for the AML1 transcription factor family (also known as core binding factor [CBF], polyomavirus enhancer binding protein 2 [PEBP2], and SL3-3 enhancer factor 1 [SEF1]) were found to strongly reduce the pathogenicity of SL3-3 (B. Hallberg, J. Schmidt, A. Luz, F. S. Pedersen, and T. Grundström, J. Virol. 65:4177-4181, 1991). We have now examined the few cases in which tumors developed harboring proviruses that besides the AML1 (core) site mutations carried second-site alterations in their U3 repeat structures. In three distinct cases we observed the same type of alteration which involved deletions of regions known to contain binding sites for nuclear factor 1 (NF1) and the addition of extra enhancer repeat elements. In transient-expression experiments in T-lymphoid cells, these new U3 regions acted as stronger enhancers than the U3 regions of the original viruses. This suggests that the altered proviruses represent more-pathogenic variants selected for in the process of tumor formation. To analyze the proviral alterations, we generated a series of different enhancer-promoter reporter constructs. These constructs showed that the additional repeat elements are not critical for enhancer strength, whereas the NF1 sites down-regulate the level of transcription in T-lymphoid cells whether or not the AML1 (core) sites are functional. We therefore also tested SL3-3 viruses with mutated NF1 sites. These viruses have unimpaired pathogenic properties and thereby distinguish SL3-3 from Moloney murine leukemia virus.
Collapse
Affiliation(s)
- S Ethelberg
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
37
|
Wang Q, Stacy T, Miller JD, Lewis AF, Gu TL, Huang X, Bushweller JH, Bories JC, Alt FW, Ryan G, Liu PP, Wynshaw-Boris A, Binder M, Marín-Padilla M, Sharpe AH, Speck NA. The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 1996; 87:697-708. [PMID: 8929538 DOI: 10.1016/s0092-8674(00)81389-6] [Citation(s) in RCA: 514] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The CBFbeta subunit is the non-DNA-binding subunit of the heterodimeric core-binding factor (CBF). CBFbeta associates with DNA-binding CBFalpha subunits and increases their affinity for DNA. Genes encoding the CBFbeta subunit (CBFB) and one of the CBFalpha subunits (CBFA2, otherwise known as AML1) are the most frequent targets of chromosomal translocations in acute leukemias in humans. We and others previously demonstrated that homozygous disruption of the mouse Cbfa2 (AML1) gene results in embryonic lethality at midgestation due to hemorrhaging in the central nervous system and blocks fetal liver hematopoiesis. Here we demonstrate that homozygous mutation of the Cbfb gene results in the same phenotype. Our results demonstrate that the CBFbeta subunit is required for CBFalpha2 function in vivo.
Collapse
Affiliation(s)
- Q Wang
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Crute BE, Lewis AF, Wu Z, Bushweller JH, Speck NA. Biochemical and biophysical properties of the core-binding factor alpha2 (AML1) DNA-binding domain. J Biol Chem 1996; 271:26251-60. [PMID: 8824275 DOI: 10.1074/jbc.271.42.26251] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Runt domain is the DNA-binding domain defining a small family of transcription factors that are involved in important developmental processes. Developmental pathways controlled by Runt domain proteins include sex determination, neurogenesis, segmentation, and eye development in Drosophila and hematopoiesis in mammals. In addition to binding DNA, the Runt domain also mediates heterodimerization with another subunit called the core-binding factor beta (CBFbeta) subunit. In this study we overexpress the Runt domain from the mouse CBFalpha2 (AML1) protein in Escherichia coli, and purify it from the insoluble fraction. We determine the equilibrium constants for Runt domain binding to two different DNA sequences by surface plasmon resonance technology. Circular dichroism spectroscopy demonstrates that the Runt domain is a folded beta-domain with essentially no alpha-helical content. The single tryptophan residue in the CBFalpha2 Runt domain at amino acid 79 is shown by tryptophan fluorescence spectroscopy to reside in a polar environment. Finally, we demonstrate that ATP can be UV cross-linked to the Runt domain and that ATP binding is sensitive to an amino acid substitution in the putative Kinase-1a motif (P-loop).
Collapse
Affiliation(s)
- B E Crute
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | |
Collapse
|
39
|
Zaiman AL, Lenz J. Transcriptional activation of a retrovirus enhancer by CBF (AML1) requires a second factor: evidence for cooperativity with c-Myb. J Virol 1996; 70:5618-29. [PMID: 8764076 PMCID: PMC190522 DOI: 10.1128/jvi.70.8.5618-5629.1996] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transcriptional enhancer sequences within the long terminal repeats (LTRs) of murine leukemia viruses are the primary genetic determinants of the tissue specificity and potency of the oncogenic potential of these retroviruses. SL3-3 (SL3) is a murine leukemia virus that induces T-cell lymphomas. The LTR enhancer of this virus contains two binding sites for the transcription factor CBF (also called AML1 and PEBP2) that flank binding sites for c-Myb and the Ets family of factors. Using cotransfection assays in P19 cells, we report here that CBF and c-Myb cooperatively stimulate transcription from the SL3 LTR. By itself, c-Myb had no stimulatory effect on transcription. However, when cotransfected with a cDNA encoding one form of the alpha subunit of CBF called CBFalpha2-451, a level of transactivation higher than that seen with CBFalpha2-451 alone was detected. The negative regulatory domain near the carboxyl terminus of c-Myb did not affect this activity. Electrophoretic mobility shift assays indicated that CBF and c-Myb bind to DNA independently. Therefore, it appears that the cooperative stimulation of transcription by these factors occurs at a step in the process of transcription after the two factors are bound to the enhancer. Sequences near the carboxyl terminus of CBFalpha2-451 were important for cooperativity with c-Myb, consistent with previous reports that this region contains an activation domain. However, CBFalpha2-451 failed to activate transcription from a version of the SL3 LTR in which the enhancer was replaced with five tandem CBF-binding sites. Thus, it appears that transcriptional activation of the SL3 enhancer by CBF requires that an appropriate heterologous transcription factor be bound to a neighboring site in the regulatory sequences.
Collapse
Affiliation(s)
- A L Zaiman
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
40
|
Abstract
This review focuses on the roles of transcription factors in hematopoietic lineage commitment. A brief introduction to lineage commitment and asymmetric cell division is followed by a discussion of several methods used to identify transcription factors important in specifying hematopoietic cell types. Next is presented a discussion of the use of embryonic stem cells in the analysis of hematopoietic gene expression and the use of targeted gene disruption to analyze the role of transcription factors in hematopoiesis. Finally, the status of our current knowledge concerning the roles of transcription factors in the commitment to erythroid, myeloid and lymphoid cell types is summarized.
Collapse
Affiliation(s)
- J H Kehrl
- B Cell Molecular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
41
|
Zaiman AL, Lewis AF, Crute BE, Speck NA, Lenz J. Transcriptional activity of core binding factor-alpha (AML1) and beta subunits on murine leukemia virus enhancer cores. J Virol 1995; 69:2898-906. [PMID: 7707514 PMCID: PMC188987 DOI: 10.1128/jvi.69.5.2898-2906.1995] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Core binding factor (CBF), also known as polyomavirus enhancer-binding protein 2 and SL3 enhancer factor 1, is a mammalian transcription factor that binds to an element termed the core within the enhancers of the murine leukemia virus family of retroviruses. The core elements of the SL3 virus are important genetic determinants of the ability of this virus to induce T-cell lymphomas and the transcriptional activity of the viral long terminal repeat in T lymphocytes. CBF consists of two subunits, a DNA binding subunit, CBF alpha, and a second subunit, CBF beta, that stimulates the DNA binding activity of CBF alpha. One of the genes that encodes a CBF alpha subunit is AML1, also called Cbf alpha 2. This locus is rearranged by chromosomal translocations in human myeloproliferative disorders and leukemias. An exogenously expressed Cbf alpha 2-encoded subunit (CBF alpha 2-451) stimulated transcription from the SL3 enhancer in P19 and HeLa cells. Activity was mediated through the core elements. Three different isoforms of CBF beta were also tested for transcriptional activity on the SL3 enhancer. The longest form, CBF beta-187, increased the transcriptional stimulation by CBF alpha 2-451 twofold in HeLa cells, although it had no effect in P19 cells. Transcriptional activation by CBF beta required binding to the CBF alpha subunit, as a form of CBF beta that lacked binding ability, CBF beta-148, failed to increase activity. These results indicated that at least in certain cell types, the maximum activity of CBF required both subunits. They also provided support for the hypothesis that CBF is a factor in T lymphocytes that is responsible for recognition of the SL3 cores. We also examined whether CBF could distinguish a 1-bp difference between the enhancer core of SL3 and the core of the nonleukemogenic virus, Akv. This difference strongly affects transcription in T cells and leukemogenicity of SL3. However, no combination of CBF alpha and CBF beta subunits that we tested was able to distinguish the 1-bp difference in transcription assays. Thus, a complete understanding of how T cells recognize the SL3 core remains to be elucidated.
Collapse
Affiliation(s)
- A L Zaiman
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
42
|
Morrison HL, Soni B, Lenz J. Long terminal repeat enhancer core sequences in proviruses adjacent to c-myc in T-cell lymphomas induced by a murine retrovirus. J Virol 1995; 69:446-55. [PMID: 7983741 PMCID: PMC188593 DOI: 10.1128/jvi.69.1.446-455.1995] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The transcriptional enhancer in the long terminal repeat (LTR) of the T-lymphomagenic retrovirus SL3-3 differs from that of the nonleukemogenic virus Akv at several sites, including a single base pair difference in an element termed the enhancer core. Mutation of this T-A base pair to the C-G C-G sequence found in Akv significantly attenuated the leukemogenicity of SL3-3. Thus, this difference is important for viral leukemogenicity. Since Akv is an endogenous virus, this suggests that the C-G in its core is an adaptation to being minimally pathogenic. Most tumors that occurred in mice inoculated with the mutant virus, called SAA, contained proviruses with reversion or potential suppressor mutations in the enhancer core. We also found that the 72-bp tandem repeats constituting the viral enhancer could vary in number. Most tumors contained mixtures of proviruses with various numbers of 72-bp units, usually between one and four. Variation in repeat number was most likely due to recombination events involving template misalignment during viral replication. Thus, two processes during viral replication, misincorporation and recombination, combined to alter LTR enhancer structure and generate more pathogenic variants from the mutant virus. In SAA-induced tumors, enhancers of proviruses adjacent to c-myc had the largest number of core reversion or suppressor mutations of all of the viral enhancers in those tumors. This observation was consistent with the hypothesis that one function of the LTR enhancers in leukemogenesis is to activate proto-oncogenes such as c-myc.
Collapse
Affiliation(s)
- H L Morrison
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
43
|
Chen H, Yoshimura FK. Identification of a region of a murine leukemia virus long terminal repeat with novel transcriptional regulatory activities. J Virol 1994; 68:3308-16. [PMID: 8151791 PMCID: PMC236821 DOI: 10.1128/jvi.68.5.3308-3316.1994] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The 93-bp region downstream of the enhancer (DEN) in the long terminal repeat (LTR) of the mink cell focus-forming virus (MCF13) has been shown to be important for transcriptional activation and viral lymphomagenicity (J. C. Tupper, H. Chen, E. F. Hays, G. C. Bristol, and F. K. Yoshimura, J. Virol. 66:7080-7088, 1992). In this report, we have further explored the role of the DEN region in transcriptional activation. We observed that it has enhancer-like abilities as well as some unique LTR properties. Transcriptional activation by the DEN region involved interactions with enhancer sequences that were either synergistic or additive, depending on the cell type. The most intriguing property of the DEN region is its ability to induce transcription in activated T cells. This activity is unique for the LTR in that no other LTR region can do this. We also examined the role of the DEN region in retroviral lymphomagenesis. We cloned and sequenced proviral LTRs integrated upstream of the cellular c-myc gene from DNA obtained from thymic tumors induced by DEN region deletion mutant viruses in AKR mice. We determined that for transcriptional activation of the c-myc proto-oncogene, enhancer sequences can substitute for the DEN region. This study identifies the significance of non-enhancer sequences in the LTR for the oncogenesis of the MCF13 retrovirus.
Collapse
Affiliation(s)
- H Chen
- Department of Biological Structure, School of Medicine, University of Washington, Seattle 98195
| | | |
Collapse
|
44
|
Regulation of the T-cell receptor delta enhancer by functional cooperation between c-Myb and core-binding factors. Mol Cell Biol 1994. [PMID: 8264615 DOI: 10.1128/mcb.14.1.473] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A T-cell-specific transcriptional enhancer lies within the J delta 3-C delta intron of the human T-cell receptor (TCR) delta gene. The 30-bp minimal enhancer element denoted delta E3 carries a core sequence (TGTGGTTT) that binds a T-cell-specific factor, and that is necessary but not sufficient for transcriptional activation. Here we demonstrate that the transcription factor c-Myb regulates TCR delta enhancer activity through a binding site in delta E3 that is adjacent to the core site. Both v-Myb and c-Myb bind specifically to delta E3. The Myb site is necessary for enhancer activity, because a mutation that eliminates Myb binding abolishes transcriptional activation by the delta E3 element and by the 370-bp TCR delta enhancer. Transfection of cells with a c-Myb expression construct upregulates delta E3 enhancer activity, whereas treatment of cells with an antisense c-myb oligonucleotide inhibits delta E3 enhancer activity. Since intact Myb and core sites are both required for delta E3 function, our data argue that c-Myb and core binding factors must cooperate to mediate transcriptional activation through delta E3. Efficient cooperation depends on the relative positioning of the Myb and core sites, since only one of two overlapping Myb sites within delta E3 is functional and alterations of the distance between this site and the core site disrupt enhancer activity. Cooperative regulation by c-Myb and core-binding factors is likely to play an important role in the control of gene expression during T-cell development.
Collapse
|
45
|
Hernandez-Munain C, Krangel MS. Regulation of the T-cell receptor delta enhancer by functional cooperation between c-Myb and core-binding factors. Mol Cell Biol 1994; 14:473-83. [PMID: 8264615 PMCID: PMC358397 DOI: 10.1128/mcb.14.1.473-483.1994] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A T-cell-specific transcriptional enhancer lies within the J delta 3-C delta intron of the human T-cell receptor (TCR) delta gene. The 30-bp minimal enhancer element denoted delta E3 carries a core sequence (TGTGGTTT) that binds a T-cell-specific factor, and that is necessary but not sufficient for transcriptional activation. Here we demonstrate that the transcription factor c-Myb regulates TCR delta enhancer activity through a binding site in delta E3 that is adjacent to the core site. Both v-Myb and c-Myb bind specifically to delta E3. The Myb site is necessary for enhancer activity, because a mutation that eliminates Myb binding abolishes transcriptional activation by the delta E3 element and by the 370-bp TCR delta enhancer. Transfection of cells with a c-Myb expression construct upregulates delta E3 enhancer activity, whereas treatment of cells with an antisense c-myb oligonucleotide inhibits delta E3 enhancer activity. Since intact Myb and core sites are both required for delta E3 function, our data argue that c-Myb and core binding factors must cooperate to mediate transcriptional activation through delta E3. Efficient cooperation depends on the relative positioning of the Myb and core sites, since only one of two overlapping Myb sites within delta E3 is functional and alterations of the distance between this site and the core site disrupt enhancer activity. Cooperative regulation by c-Myb and core-binding factors is likely to play an important role in the control of gene expression during T-cell development.
Collapse
Affiliation(s)
- C Hernandez-Munain
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
46
|
Sørensen AB, Duch M, Jørgensen P, Pedersen FS. Amplification and sequence analysis of DNA flanking integrated proviruses by a simple two-step polymerase chain reaction method. J Virol 1993; 67:7118-24. [PMID: 8230434 PMCID: PMC238173 DOI: 10.1128/jvi.67.12.7118-7124.1993] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We describe a two-step polymerase chain reaction method that can be used for the amplification of cellular DNA sequences adjacent to an integrated retroviral provirus. The technique involves a partly degenerate, arbitrary primer that will hybridize in the provirus-flanking cellular DNA. By using this primer in combination with a biotinylated provirus-specific primer, a provirus-cellular DNA junction fragment can be isolated from the nonspecific amplification products by using streptavidin-coated magnetic beads. A second amplification employing a nested provirus-specific primer and a biotinylated nondegenerate primer derived from the partly degenerate primer followed by purification with streptavidin-coated beads enhances the specificity and the efficiency of recovery of a fragment(s) containing the unknown flanking sequences. In addition to being relevant in studies of viral integration sites, the method should be generally useful to analyze DNA sequences either upstream or downstream from a known sequence.
Collapse
Affiliation(s)
- A B Sørensen
- Department of Molecular Biology, University of Aarhus, Denmark
| | | | | | | |
Collapse
|
47
|
Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol Cell Biol 1993. [PMID: 8413232 DOI: 10.1128/mcb.13.10.6336] [Citation(s) in RCA: 319] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The AML1 gene on chromosome 21 is disrupted in the (8;21)(q22;q22) translocation associated with acute myelogenous leukemia and encodes a protein with a central 118-amino-acid domain with 69% homology to the Drosophila pair-rule gene, runt. We demonstrate that AML-1 is a DNA-binding protein which specifically interacts with a sequence belonging to the group of enhancer core motifs, TGT/cGGT. Electrophoretic mobility shift analysis of cell extracts identified two AML-1-containing protein-DNA complexes whose electrophoretic mobilities were slower than those of complexes formed with AML-1 produced in vitro. Mixing of in vitro-produced AML-1 with cell extracts prior to gel mobility shift analysis resulted in the formation of higher-order complexes. Deletion mutagenesis of AML-1 revealed that the runt homology domain mediates both sequence-specific DNA binding and protein-protein interactions. The hybrid product, AML-1/ETO, which results from the (8;21) translocation and retains the runt homology domain, both recognizes the AML-1 consensus sequence and interacts with other cellular proteins.
Collapse
|
48
|
Thornell A, Holm M, Grundström T. Purification of SEF1 proteins binding to transcriptional enhancer elements active in T lymphocytes. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80632-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
49
|
Meyers S, Downing JR, Hiebert SW. Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol Cell Biol 1993; 13:6336-45. [PMID: 8413232 PMCID: PMC364692 DOI: 10.1128/mcb.13.10.6336-6345.1993] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The AML1 gene on chromosome 21 is disrupted in the (8;21)(q22;q22) translocation associated with acute myelogenous leukemia and encodes a protein with a central 118-amino-acid domain with 69% homology to the Drosophila pair-rule gene, runt. We demonstrate that AML-1 is a DNA-binding protein which specifically interacts with a sequence belonging to the group of enhancer core motifs, TGT/cGGT. Electrophoretic mobility shift analysis of cell extracts identified two AML-1-containing protein-DNA complexes whose electrophoretic mobilities were slower than those of complexes formed with AML-1 produced in vitro. Mixing of in vitro-produced AML-1 with cell extracts prior to gel mobility shift analysis resulted in the formation of higher-order complexes. Deletion mutagenesis of AML-1 revealed that the runt homology domain mediates both sequence-specific DNA binding and protein-protein interactions. The hybrid product, AML-1/ETO, which results from the (8;21) translocation and retains the runt homology domain, both recognizes the AML-1 consensus sequence and interacts with other cellular proteins.
Collapse
Affiliation(s)
- S Meyers
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | | |
Collapse
|
50
|
Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Mol Cell Biol 1993. [PMID: 8497254 DOI: 10.1128/mcb.13.6.3324] [Citation(s) in RCA: 274] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moloney murine leukemia virus causes thymic leukemias when injected into newborn mice. A major determinant of the thymic disease specificity of Moloney virus genetically maps to the conserved viral core motif in the Moloney virus enhancer. Point mutations introduced into the core site significantly shifted the disease specificity of the Moloney virus from thymic leukemia to erythroid leukemia (N.A. Speck, B. Renjifo, E. Golemis, T.N. Fredrickson, J.W. Hartley, and N. Hopkins, Genes Dev. 4:233-242, 1990). We previously reported the purification of core-binding factors (CBF) from calf thymus nuclei (S. Wang and N.A. Speck, Mol. Cell. Biol. 12:89-102, 1992). CBF binds to core sites in murine leukemia virus and T-cell receptor enhancers. Affinity-purified CBF contains multiple polypeptides. In this study, we sequenced five tryptic peptides from two of the bovine CBF proteins and isolated three cDNA clones from a mouse thymus cDNA library encoding three of the tryptic peptides from the bovine proteins. The cDNA clones, which we call CBF beta p22.0, CBF beta p21.5, and CBF beta p17.6, encode three highly related but distinct proteins with deduced molecular sizes of 22.0, 21.5, and 17.6 kDa that appear to be translated from multiply spliced mRNAs transcribed from the same gene. CBF beta p22.0, CBF beta p21.5, and CBF beta p17.6 do not by themselves bind the core site. However, CBF beta p22.0 and CBF beta p21.5 form a complex with DNA-binding CBF alpha subunits and as a result decrease the rate of dissociation of the CBF protein-DNA complex. Association of the CBF beta subunits does not extend the phosphate contacts in the binding site. We propose that CBF beta is a non-DNA-binding subunit of CBF and does not contact DNA directly.
Collapse
|