1
|
Biology, evolution, and medical importance of polyomaviruses: An update. INFECTION GENETICS AND EVOLUTION 2017. [DOI: 10.1016/j.meegid.2017.06.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
2
|
Comparisons between murine polyomavirus and Simian virus 40 show significant differences in small T antigen function. J Virol 2011; 85:10649-58. [PMID: 21835797 DOI: 10.1128/jvi.05034-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although members of a virus family produce similar gene products, those products may have quite different functions. Simian virus 40 (SV40) large T antigen (LT), for example, targets p53 directly, but murine polyomavirus LT does not. SV40 small T antigen (SVST) has received considerable attention because of its ability to contribute to transformation of human cells. Here, we show that there are major differences between SVST and polyomavirus small T antigen (POLST) in their effects on differentiation, transformation, and cell survival. Both SVST and POLST induce cell cycle progression. However, POLST also inhibits differentiation of 3T3-L1 preadipocytes and C2C12 myoblasts. Additionally, POLST induces apoptosis of mouse embryo fibroblasts. SVST reduces the proapoptotic transcriptional activity of FOXO1 through phosphorylation. On the other hand, SVST complements large T antigen and Ras for the transformation of human mammary epithelial cells (HMECs), but POLST does not. Mechanistically, the differences between SVST and POLST may lie in utilization of protein phosphatase 2A (PP2A). POLST binds both Aα and Aβ scaffolding subunits of PP2A while SVST binds only Aα. Knockdown of Aβ could mimic POLST-induced apoptosis. The two small T antigens can target different proteins for dephosphorylation. POLST binds and dephosphorylates substrates, such as lipins, that SVST does not.
Collapse
|
3
|
Klucky B, Wintersberger E. Polyomavirus small T antigen transactivates genes by its ability to provoke the synthesis and the stabilization of MYC. Oncogene 2007; 26:6356-60. [PMID: 17438527 DOI: 10.1038/sj.onc.1210458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
DNA tumor viruses are capable of driving quiescent cells into the cell cycle. In case of polyomaviridae, two viral proteins, the large and the small (ST) T antigens are responsible for this outcome. ST interacts with the protein phosphatase PP2A and with chaperons of the dnaK type and leads to the transactivation of several genes, which play a role in S-phase induction. One of these is the transcription factor myelocytomatosis (MYC), which by itself is an important regulator of growth. Microarray analysis has revealed several ST-induced genes, which are also targets of MYC; hence, ST may induce these genes via MYC. Experiments shown here are in line with this assumption. MYC-regulated genes are induced by ST at later times than MYC and a MYC responsive promoter is stimulated by ST. Regulation of MYC occurs through signal transduction pathways, which are co-ordinated by PP2A suggesting that they may be targets of ST. Here, we show that this is the case as important kinases involved in these pathways appear in the active phosphorylated form in the presence of ST. Inhibition of these kinases interferes with MYC induction and inhibition of MYC activity blocks ST-mediated transactivation.
Collapse
Affiliation(s)
- B Klucky
- Division of Molecular Biology, Department of Medical Biochemistry, MFPL, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
4
|
McAllister SC, Hansen SG, Messaoudi I, Nikolich-Zugich J, Moses AV. Increased efficiency of phorbol ester-induced lytic reactivation of Kaposi's sarcoma-associated herpesvirus during S phase. J Virol 2005; 79:2626-30. [PMID: 15681463 PMCID: PMC546546 DOI: 10.1128/jvi.79.4.2626-2630.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of Kaposi's sarcoma-associated herpesvirus (KSHV) lytic genes is thought to be essential for the establishment and progression of KSHV-induced diseases. The inefficiency of lytic reactivation in various in vitro systems hampers the study of lytic genes in the context of whole virus. We report here increased expression of KSHV lytic genes and increased release of progeny virus when synchronized cultures of body cavity-based lymphoma-1 cells are treated with a phorbol ester during S phase of the cell cycle.
Collapse
Affiliation(s)
- Shane C McAllister
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA
| | | | | | | | | |
Collapse
|
5
|
Nemethova M, Smutny M, Wintersberger E. Transactivation of E2F-regulated genes by polyomavirus large T antigen: evidence for a two-step mechanism. Mol Cell Biol 2004; 24:10986-94. [PMID: 15572699 PMCID: PMC533978 DOI: 10.1128/mcb.24.24.10986-10994.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyomavirus large T antigen transactivates a variety of genes whose products are involved in S phase induction. These genes are regulated by the E2F family of transcription factors, which are under the control of the pocket protein retinoblastoma protein and its relatives p130 and p107. The viral protein causes a dissociation of E2F-pocket protein complexes that results in transactivation of the genes. This reaction requires the N-terminal binding site for pocket proteins and the J domain that binds chaperones. We found earlier that a mutation of the zinc finger located within the C-terminal domain, a region assumed to function mainly in the replication of viral DNA, also interferes with transactivation. Here we show that binding of the histone acetyltransferase coactivator complex CBP/p300-PCAF to the C terminus correlates with the ability of large T antigen to transactivate genes. This interaction results in promoter-specific acetylation of histones. Inactive mutant proteins with changes within the C-terminal domain were nevertheless able to dissociate the E2F pocket protein complexes, indicating that this dissociation is a necessary but insufficient step in the T antigen-induced transactivation of genes. It has to be accompanied by a second step involving the T antigen-mediated recruitment of a histone acetyltransferase complex.
Collapse
Affiliation(s)
- Maria Nemethova
- Medical University of Vienna, Department of Medical Biochemistry, Division of Molecular Biology, Vienna Biocenter, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | | | | |
Collapse
|
6
|
Klucky B, Koch B, Radolf M, Steinlein P, Wintersberger E. Polyomavirus tumorantigens have a profound effect on gene expression in mouse fibroblasts. Oncogene 2004; 23:4707-21. [PMID: 15122341 DOI: 10.1038/sj.onc.1207640] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Polyomavirus (Py) large and small tumorantigens together are competent to induce S phase in growth-arrested mouse fibroblasts. The capacity of the large tumorantigen to bind the pocket proteins, pRB, p130 and p107, is important for the transactivation of DNA synthesis enzymes and the cyclins E and A, while the interference of small tumorantigen with protein phosphatase PP2A causes a destabilization of the cdk2 inhibitor p27, and thus leads to strong cyclin E- and cyclin A-dependent cdk2 activity. Py small tumorantigen, in addition, is able to transactivate cyclin A. Hence, this protein might have a much wider effect on gene expression in arrested mouse fibroblasts than hitherto suspected. This may have a profound part in the known capacity of Py to form tumors in mice. Therefore, it was interesting to gain an insight into the spectrum of transcriptional deregulation by Py tumorantigens. Accordingly, we performed microarray analysis of quiescent mouse fibroblasts in the absence and presence of small or large tumorantigen. We found that the viral proteins can induce or repress a great variety of genes beyond those involved in the S phase induction and DNA synthesis. The results of the microarray analysis were confirmed for selected genes by several methods, including real-time PCR. Interestingly, a mutation of the binding site for pocket proteins in case of LT and for PP2A in case of ST has a variable effect on the deregulation of genes by the viral proteins depending on the gene in question. In fact, some genes are transactivated by LT as well as ST completely independent of an interaction with their major cellular targets, pocket proteins and PP2A, respectively.
Collapse
Affiliation(s)
- Britta Klucky
- Institute of Medical Biochemistry, Division of Molecular Biology, Medical University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
7
|
Johannessen M, Olsen PA, Sørensen R, Johansen B, Seternes OM, Moens U. A role of the TATA box and the general co-activator hTAF(II)130/135 in promoter-specific trans-activation by simian virus 40 small t antigen. J Gen Virol 2003; 84:1887-1897. [PMID: 12810884 DOI: 10.1099/vir.0.19057-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The small t antigen (st-ag) of simian virus 40 can exert pleiotropic effects on biological processes such as DNA replication, cell cycle progression and gene expression. One possible mode of achieving these effects is through stimulation of NFkappaB-responsive genes encoding growth factors, cytokines, transcription factors and cell cycle regulatory proteins. Indeed, a previous study has shown that st-ag enhanced NFkappaB-mediated transcription. This study demonstrates that promoters possessing a consensus TATA box (i.e. TATAAAAG) in the context of either NFkappaB- or Sp1-binding sites are trans-activated by st-ag. Overexpressing the general transcription factor hTAF(II)130/135, but not hTAF(II)28 or hTAF(II)80, stimulated the activity of promoters in a consensus TATA box-dependent mode. Converting the consensus TATA motif into a non-consensus TATA box strongly impaired activation by st-ag and hTAF(II)130/135. Conversely, mutating a non-consensus TATA motif into the consensus TATA box rendered the mutated promoter inducible by st-ag and hTAF(II)130/135. Mutation of the TATA box had no effect on TNFalpha- or RelA/p65-mediated induction of NFkappaB-responsive promoters, indicating a specific st-ag effect on hTAF(II)130/135. St-ag stimulated the intrinsic transcriptional activity of hTAF(II)130/135. Substitutions in the conserved HPDKGG motif in the N-terminal region or a mutation that impaired the interaction with protein phosphatase 2A abrogated the ability of st-ag to activate hTAF(II)130/135-mediated transcription. These results indicate that trans-activation of promoters by st-ag may depend on a consensus TATA motif and suggest that such promoters recruit the general transcription factor hTAF(II)130/135.
Collapse
Affiliation(s)
- Mona Johannessen
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Petter Angell Olsen
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Rita Sørensen
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Bjarne Johansen
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Ole Morten Seternes
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Ugo Moens
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
8
|
Schüchner S, Nemethova M, Belisova A, Klucky B, Holnthoner W, Wintersberger E. Transactivation of murine cyclin A by polyomavirus large and small T antigens. J Virol 2001; 75:6498-507. [PMID: 11413317 PMCID: PMC114373 DOI: 10.1128/jvi.75.14.6498-6507.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polyomavirus large and small T antigens cooperate in the induction of S phase in serum-deprived Swiss 3T3 cells. While the large T antigen is able to induce S phase-specific enzymes, we have recently shown that both T antigens contribute to the production of the cyclins E and A and that the small T antigen is essential for the induction of cyclin A-dependent cdk2 activity (S. Schüchner and E. Wintersberger, J. Virol. 73:9266-9273, 1999). Here we present our attempts to elucidate the mechanisms by which the large and the small T antigens transactivate the murine cyclin A gene. Using Swiss 3T3 cells carrying the T antigens and various mutants thereof under the hormone-inducible mouse mammary tumor virus promoter, as well as transient-cotransfection experiments with the T antigens and cyclin A promoter-luciferase reporter constructs, we found the following. The large T antigen activates the cyclin A promoter via two transcription factor binding sites, a cyclic AMP responsive element (CRE), and the major negative regulatory site called CDE-CHR. While an intact binding site for pocket proteins is required for the function of this T antigen at the CDE-CHR, its activity at the CRE is largely independent thereof. In contrast, an intact J domain and an intact zinc finger are required at both sites. The small T antigen also appears to have an influence on the cyclin A promoter through the CRE as well as the CDE-CHR. For this an interaction with protein phosphatase 2A is essential; mutation of the J domain does not totally eliminate but greatly reduces the transactivating ability.
Collapse
Affiliation(s)
- S Schüchner
- Department of Medical Biochemistry, Division of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
9
|
Yen A, Placanica L, Bloom S, Varvayanis S. Polyomavirus small t antigen prevents retinoic acid-induced retinoblastoma protein hypophosphorylation and redirects retinoic acid-induced G0 arrest and differentiation to apoptosis. J Virol 2001; 75:5302-14. [PMID: 11333911 PMCID: PMC114935 DOI: 10.1128/jvi.75.11.5302-5314.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polyomavirus small t antigen (ST) impedes late features of retinoic acid (RA)-induced HL-60 myeloid differentiation as well as growth arrest, causing apoptosis instead. HL-60 cells were stably transfected with ST. ST slowed the cell cycle, retarding G2/M in particular. Treated with RA, the ST transfectants continued to proliferate and underwent apoptosis. ST also impeded the normally RA-induced hypophosphorylation of the retinoblastoma tumor suppressor protein consistent with failure of the cells to arrest growth. The RA-treated transfectants expressed CD11b, an early cell surface differentiation marker, but inducible oxidative metabolism, a later and more mature functional differentiation marker, was largely inhibited. Instead, the cells underwent apoptosis. ST affected significant known components of RA signaling that result in G0 growth arrest and differentiation in wild-type HL-60. ST increased the basal amount of activated ERK2, which normally increases when wild-type cells are treated with RA. ST caused increased RARalpha expression, which is normally down regulated in RA-treated wild-type cells. The effects of ST on RA-induced myeloid differentiation did not extend to monocytic differentiation and G0 arrest induced by 1,25-dihydroxy vitamin D3, whose receptor is also a member of the steroid-thyroid hormone superfamily. In this case, ST abolished the usually induced G0 arrest and retarded, but did not block, differentiation without inducing apoptosis, thus uncoupling growth arrest and differentiation. In sum, the data show that ST disrupted the normal RA-induced program of G0 arrest and differentiation, causing the cells to abort differentiation and undergo apoptosis.
Collapse
Affiliation(s)
- A Yen
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | |
Collapse
|
10
|
Polyoma virus middle t-antigen: growth factor receptor mimic. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0168-7069(01)05004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
11
|
Schüchner S, Wintersberger E. Binding of polyomavirus small T antigen to protein phosphatase 2A is required for elimination of p27 and support of S-phase induction in concert with large T antigen. J Virol 1999; 73:9266-73. [PMID: 10516035 PMCID: PMC112961 DOI: 10.1128/jvi.73.11.9266-9273.1999] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/1999] [Accepted: 08/09/1999] [Indexed: 11/20/2022] Open
Abstract
Although polyomavirus large T antigen readily transactivates S-phase-specific enzymes in serum-starved Swiss 3T3 mouse fibroblasts, it is incapable by itself to efficiently drive such cells into S phase. We describe here that this inability correlates with a weak proficiency of the viral protein to induce the synthesis of cyclin A and cyclin E and to stimulate the respective cyclin/cdk activities. Polyomavirus small T antigen, which together with the large T protein supports S-phase induction, strongly contributes to the synthesis of cyclin A. In addition, small T antigen causes a dramatic induction of cyclin A- and, together with large T antigen, of cyclin E-specific protein kinase activity. This latter function of polyomavirus small T antigen correlates with its competence to provoke the elimination of the kinase inhibitor p27(Kip1). An interaction of the small T antigen with the protein phosphatase 2A is essential for this activity. Hence, the ability to drive quiescent Swiss 3T3 cells into S phase results from the capacity of large T antigen to transactivate DNA synthesis enzymes by its interaction with retinoblastoma-type proteins and from the potential of the large and the small T antigens together to stimulate cyclin A synthesis and cyclin A- and cyclin E-dependent protein kinase activity.
Collapse
Affiliation(s)
- S Schüchner
- Institute of Molecular Biology, University of Vienna, A-1030 Vienna, Austria
| | | |
Collapse
|
12
|
Mullane KP, Ratnofsky M, Culleré X, Schaffhausen B. Signaling from polyomavirus middle T and small T defines different roles for protein phosphatase 2A. Mol Cell Biol 1998; 18:7556-64. [PMID: 9819441 PMCID: PMC109336 DOI: 10.1128/mcb.18.12.7556] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/1998] [Accepted: 09/10/1998] [Indexed: 12/25/2022] Open
Abstract
Polyomavirus causes a broad spectrum of tumors as the result of the action of its early proteins. This work compares signaling from middle T antigen (MT), the major transforming protein, to that from small T antigen (ST). The abilities of MT mutants to promote cell cycle progression in serum-starved NIH 3T3 cells were compared. Transformation-defective mutants lacking association with SHC or with phosphatidylinositol 3-kinase (PI3-K) retained the ability to induce DNA synthesis as measured by bromodeoxyuridine incorporation. Only when both interactions were lost in the Y250F/Y315F double mutant was MT inactive. ST promoted cell cycle progression in a manner dependent on its binding of protein phosphatase 2A (PP2A). Since the Y250F/Y315F MT mutant was wild type for PP2A binding yet unable to promote cell cycle progression, while ST was capable of promoting cell cycle progression, these experiments revealed a functional difference in MT and ST signaling via PP2A. Assays testing the abilities of MT and ST to induce the c-fos promoter and to activate c-jun kinase led to the same conclusion. ST, but not Y250F/Y315F MT, was able to activate the c-fos promoter through its interaction with PP2A. In contrast, MT, but not ST, was able to activate c-jun kinase by virtue of its interaction with PP2A.
Collapse
Affiliation(s)
- K P Mullane
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
13
|
Türler H, Salomon C. Simian virus 40 as a vector: recombinant viruses expressing individual polyoma T antigens. Virus Res 1998; 54:133-45. [PMID: 9696122 DOI: 10.1016/s0168-1702(98)00021-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We constructed simian virus 40 (SV40)/polyomavirus recombinants by replacing in SV40 the T antigen coding region with polyoma early region sequences, either cDNAs encoding small, middle or large T antigen or the wild-type sequence coding all three proteins. The recombinants maintained the SV40 late region and origin of replication and were propagated in COS cells yielding recombinant virus preparations with titers of 10(6)-10(7) infectious particles per milliliter. These viruses were characterized in productive infections of COS cells by analyzing early and late mRNA levels and by following synthesis of polyoma early proteins. In the absence of viral DNA replication, i.e. in infected monkey or mouse cells, expression of the polyoma T antigens was weak. Further experiments indicated that this was mostly due to high genomic instability during amplification, to lower levels of cDNA transcripts as compared to spliced mRNA, and possibly also to lower infectivity of the recombinant virions. It remains to be determined, whether these handicaps are unique to SV40/polyoma recombinants or whether SV40 is in general inadequate as a viral vector.
Collapse
Affiliation(s)
- H Türler
- Department of Molecular Biology, University of Geneva, Genève, Switzerland.
| | | |
Collapse
|
14
|
Howes SH, Bockus BJ, Schaffhausen BS. Genetic analysis of polyomavirus large T nuclear localization: nuclear localization is required for productive association with pRb family members. J Virol 1996; 70:3581-8. [PMID: 8648692 PMCID: PMC190233 DOI: 10.1128/jvi.70.6.3581-3588.1996] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Polyomavirus large T antigen (LT) is a multifunctional nuclear protein. LT has two nuclear localization signals (NLS2), one spanning residues 189 to 195 (NLS1) and another spanning residues 280 to 286 (NLS2). Site-directed mutagenesis showed that each signal contains at least two critical residues. The possibility of connections between NLSs and adjacent phosphorylations has attracted much attention. Cytoplasmic LT (CyT) mutants were underphosphorylated, particularly at sites adjacent to NLS2. However, since a nuclear LT bearing an inactivated NLS2 was phosphorylated normally at adjacent sites, the signal was not directly required for phosphorylation. Conversely, LT could be translocated to the nucleus via NLS2 even when the adjacent phosphorylation sites were deleted. CyT was examined to probe the importance of LT localization. CyT was unable to perform LT functions related to interactions with retinoblastoma susceptibility gene (pRb) family members. Hence, CyT was unable to immortalize primary cells or to transactivate an E2F-responsive promoter. Consistent with these findings, CyT, though capable of binding pRb in vitro, did not cause relocalization of pRb in cells. Assays of transactivation of the simian virus 40 late promoter and of the human c-fos promoter showed that defects of CyT were not limited to functions dependent on pRb interactions.
Collapse
Affiliation(s)
- S H Howes
- Department of Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
15
|
Gjørup OV, Rose PE, Holman PS, Bockus BJ, Schaffhausen BS. Protein domains connect cell cycle stimulation directly to initiation of DNA replication. Proc Natl Acad Sci U S A 1994; 91:12125-9. [PMID: 7991595 PMCID: PMC45389 DOI: 10.1073/pnas.91.25.12125] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Polyoma large T antigen (LT) is the only viral gene product required for viral DNA replication. LT can be divided into two domains, one N-terminal (NT) spanning residues 1-260 and one C-terminal (CT) comprising approximately residues 264-785. NT is known to immortalize primary cells in a manner dependent on binding of pRB/p107. Here a CT construct comprising residues 264-785 was shown to have independent function in DNA replication. CT is entirely sufficient for driving viral DNA replication in vivo in growing mouse cells at a level approaching that of full-length LT. In contrast, CT is strikingly deficient for replication in serum-starved cells. However, this deficiency can be complemented by coexpression of NT. BrdUrd incorporation in transfected, starved cells showed that NT was sufficient for inducing S phase, suggesting a mechanism for complementation. By contrast, CT was unable to induce S phase when tested in the same assay. NT also promotes phosphorylation of sites in CT that are likely to be important for replication. Other DNA tumor virus gene products such as adenovirus E1A 12S and human papillomavirus 16 E7 could also complement CT for replication. Although NT, E1A 12S, and E7 all bind the retinoblastoma gene product (pRB) and p107, genetic analysis demonstrates an additional function, independent of that binding, is responsible for complementation.
Collapse
Affiliation(s)
- O V Gjørup
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111
| | | | | | | | | |
Collapse
|
16
|
Lehman JM, Laffin J, Friedrich TD. DNA content distribution of mouse cells following infection with polyoma virus. CYTOMETRY 1994; 16:138-43. [PMID: 7924682 DOI: 10.1002/cyto.990160207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Infection of primary to tertiary mouse embryo fibroblasts or mouse kidney cells with polyoma virus leads to stimulation of cellular DNA synthesis. When either confluent or growing mouse cells were infected, the monolayer cells were found to accumulate cells with a DNA content of S and G2/M phases of the cell cycle as assayed by flow cytometry. A similar pattern of DNA content was also observed in cells in the supernatant, which are probably cells replicating virus and dying. When compared with control cells, the infected monolayer and supernatant cells exhibited a population (5-27%) with a > G2 DNA content. The increase in DNA content of these > G2 cells was calculated to be an average of 26.7%, which is probably due to viral DNA. Polyoma contrasts with another papovavirus, SV40, which stimulates cells into DNA synthesis, with the majority of cells attaining a > G2/tetraploid DNA content, suggesting that there are differences in polyploidization between these two viruses.
Collapse
Affiliation(s)
- J M Lehman
- Department of Microbiology, Immunology and Molecular Genetics, Albany Medical College, New York 12208
| | | | | |
Collapse
|
17
|
Hengstschläger M, Knöfler M, Müllner E, Ogris E, Wintersberger E, Wawra E. Different regulation of thymidine kinase during the cell cycle of normal versus DNA tumor virus-transformed cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36723-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
18
|
Coordinated trans activation of DNA synthesis- and precursor-producing enzymes by polyomavirus large T antigen through interaction with the retinoblastoma protein. Mol Cell Biol 1994. [PMID: 7906859 DOI: 10.1128/mcb.14.3.1886] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously constructed Swiss mouse 3T3 fibroblasts producing polyomavirus large T antigen after addition of dexamethasone were used to study the transcriptional activation by the viral protein of five genes coding for enzymes involved in DNA synthesis and precursor production, namely, dihydrofolate reductase, thymidine kinase, thymidylate synthase, DNA polymerase alpha, and proliferating-cell nuclear antigen. It was found that all these genes, whose expression is stimulated at the G1/S boundary of the cell cycle after growth stimulation by serum addition, are coordinately trans activated when T antigen is induced in cells previously growth arrested by serum withdrawal. Cell lines carrying the information for a mutant form of large T antigen, in which a glutamic acid residue in the binding site for the retinoblastoma protein was changed into aspartic acid, were constructed to test the involvement of an interaction of T antigen with the retinoblastoma protein in this reaction. It was found that the mutated T protein is incapable of stimulating transcription of any one of the genes. The promoter of three of the genes (dihydrofolate reductase, thymidine kinase, and DNA polymerase alpha) unequivocally carries binding sites for transcription factor E2F, suggesting that complexes forming with this growth- and cell cycle-regulating transcription factor are the targets for T antigen. Although there is so far no evidence that thymidylate synthase and proliferating cell nuclear antigen are regulated via E2F, our data indicate that the retinoblastoma protein still is involved in the control of these genes. mRNA for E2F itself increases in amount at the G1/S border in serum-stimulated cells but not during polyomavirus T antigen-induced transcriptional activation of DNA synthesis enzymes in arrested cells.
Collapse
|
19
|
Mudrak I, Ogris E, Rotheneder H, Wintersberger E. Coordinated trans activation of DNA synthesis- and precursor-producing enzymes by polyomavirus large T antigen through interaction with the retinoblastoma protein. Mol Cell Biol 1994; 14:1886-92. [PMID: 7906859 PMCID: PMC358546 DOI: 10.1128/mcb.14.3.1886-1892.1994] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previously constructed Swiss mouse 3T3 fibroblasts producing polyomavirus large T antigen after addition of dexamethasone were used to study the transcriptional activation by the viral protein of five genes coding for enzymes involved in DNA synthesis and precursor production, namely, dihydrofolate reductase, thymidine kinase, thymidylate synthase, DNA polymerase alpha, and proliferating-cell nuclear antigen. It was found that all these genes, whose expression is stimulated at the G1/S boundary of the cell cycle after growth stimulation by serum addition, are coordinately trans activated when T antigen is induced in cells previously growth arrested by serum withdrawal. Cell lines carrying the information for a mutant form of large T antigen, in which a glutamic acid residue in the binding site for the retinoblastoma protein was changed into aspartic acid, were constructed to test the involvement of an interaction of T antigen with the retinoblastoma protein in this reaction. It was found that the mutated T protein is incapable of stimulating transcription of any one of the genes. The promoter of three of the genes (dihydrofolate reductase, thymidine kinase, and DNA polymerase alpha) unequivocally carries binding sites for transcription factor E2F, suggesting that complexes forming with this growth- and cell cycle-regulating transcription factor are the targets for T antigen. Although there is so far no evidence that thymidylate synthase and proliferating cell nuclear antigen are regulated via E2F, our data indicate that the retinoblastoma protein still is involved in the control of these genes. mRNA for E2F itself increases in amount at the G1/S border in serum-stimulated cells but not during polyomavirus T antigen-induced transcriptional activation of DNA synthesis enzymes in arrested cells.
Collapse
Affiliation(s)
- I Mudrak
- Institut für Molekularbiologie, Universität Wien, Austria
| | | | | | | |
Collapse
|
20
|
Walter G, Mumby M. Protein serine/threonine phosphatases and cell transformation. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1155:207-26. [PMID: 8395218 DOI: 10.1016/0304-419x(93)90005-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- G Walter
- Department of Pathology, University of California, San Diego, La Jolla 92093-0612
| | | |
Collapse
|
21
|
Ogris E, Rotheneder H, Mudrak I, Pichler A, Wintersberger E. A binding site for transcription factor E2F is a target for trans activation of murine thymidine kinase by polyomavirus large T antigen and plays an important role in growth regulation of the gene. J Virol 1993; 67:1765-71. [PMID: 8445710 PMCID: PMC240217 DOI: 10.1128/jvi.67.4.1765-1771.1993] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The promoter of the murine thymidine kinase gene contains a binding site for transcription factor E2F. Using cell lines (3T3-LT) conditionally expressing polyomavirus large T antigen from a hormone-responsive promoter and reporter gene constructs carrying the thymidine kinase promoter with intact or mutated E2F sites, we show that this E2F site is the target for trans activation by the viral protein. Transcription of the growth-regulated endogenous thymidine kinase gene can be activated in serum-starved, quiescent 3T3-LT cells by induction of T antigen. Activation of transcription from the thymidine kinase promoter requires an intact binding site for the retinoblastoma protein in the T antigen. The same promoter region was furthermore shown to play a major role in growth regulation of the gene. As several other DNA synthesis enzymes also carry E2F binding sites in their promoters, our observations suggest a common mechanism of growth regulation of these genes and that they all might be targets for trans activation by DNA tumor virus proteins.
Collapse
Affiliation(s)
- E Ogris
- Institut für Molekularbiologie, Universität Wien, Austria
| | | | | | | | | |
Collapse
|
22
|
Identification of binding sites on the regulatory A subunit of protein phosphatase 2A for the catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus. Mol Cell Biol 1992. [PMID: 1328865 DOI: 10.1128/mcb.12.11.4872] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein phosphatase 2A is composed of three subunits: the catalytic subunit C and two regulatory subunits, A and B. The A subunit consists of 15 nonidentical repeats and has a rodlike shape. It is associated with the B and C subunits as well as with the simian virus 40 small T, polyomavirus small T, and polyomavirus medium T tumor antigens. We determined the binding sites on subunit A for subunit C and tumor antigens by site-directed mutagenesis of A. Twenty-four N- and C-terminal truncations and internal deletions of A were assayed by coimmunoprecipitation for their ability to bind C and tumor antigens. It was found that C binds to repeats 11 to 15 at the C terminus of A, whereas T antigens bind to overlapping but distinct regions of the N terminus. Simian virus 40 small T binds to repeats 3 to 6, and polyomavirus small T and medium T bind to repeats 2 to 8. The data suggest cooperativity between C and T antigens in binding to A. This is most apparent for medium T antigen, which can only bind to those A subunit molecules that provide the entire binding region for the C subunit. We infer from our results that B also binds to N-terminal repeats. A model of the small T/medium T/B-A-C complexes is presented.
Collapse
|
23
|
Ruediger R, Roeckel D, Fait J, Bergqvist A, Magnusson G, Walter G. Identification of binding sites on the regulatory A subunit of protein phosphatase 2A for the catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus. Mol Cell Biol 1992; 12:4872-82. [PMID: 1328865 PMCID: PMC360420 DOI: 10.1128/mcb.12.11.4872-4882.1992] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Protein phosphatase 2A is composed of three subunits: the catalytic subunit C and two regulatory subunits, A and B. The A subunit consists of 15 nonidentical repeats and has a rodlike shape. It is associated with the B and C subunits as well as with the simian virus 40 small T, polyomavirus small T, and polyomavirus medium T tumor antigens. We determined the binding sites on subunit A for subunit C and tumor antigens by site-directed mutagenesis of A. Twenty-four N- and C-terminal truncations and internal deletions of A were assayed by coimmunoprecipitation for their ability to bind C and tumor antigens. It was found that C binds to repeats 11 to 15 at the C terminus of A, whereas T antigens bind to overlapping but distinct regions of the N terminus. Simian virus 40 small T binds to repeats 3 to 6, and polyomavirus small T and medium T bind to repeats 2 to 8. The data suggest cooperativity between C and T antigens in binding to A. This is most apparent for medium T antigen, which can only bind to those A subunit molecules that provide the entire binding region for the C subunit. We infer from our results that B also binds to N-terminal repeats. A model of the small T/medium T/B-A-C complexes is presented.
Collapse
Affiliation(s)
- R Ruediger
- Department of Pathology, University of California San Diego, La Jolla 92093
| | | | | | | | | | | |
Collapse
|