1
|
Adam A, Lee C, Wang T. Rational Development of Live-Attenuated Zika Virus Vaccines. Pathogens 2023; 12:194. [PMID: 36839466 PMCID: PMC9963317 DOI: 10.3390/pathogens12020194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Zika virus (ZIKV), a re-emerging mosquito-borne flavivirus, has caused outbreaks in Africa, Asia, the Pacific, and, more recently, in the Americas. ZIKV has been associated with the neurological autoimmune disorder Guillain-Barre syndrome in adults and congenital Zika syndrome in fetuses and infants, including microcephaly, spontaneous abortion, and intrauterine growth restriction. It is considered to be a major threat to global public health due to its unprecedented clinical impact on humans. Currently, there are no specific prophylactics or therapeutics available to prevent or treat ZIKV infection. The development of a safe and efficacious ZIKV vaccine remains a global health priority. Since the recent outbreak, multiple platforms have been used in the development of candidate ZIKV vaccines. The candidate vaccines have been shown to elicit strong T cell and neutralization antibody responses and protect against ZIKV infection in animal models. Some candidates have progressed successfully to clinical trials. Live-attenuated vaccines, which induce rapid and durable protective immunity, are one of the most important strategies for controlling flavivirus diseases. In this review, we discuss recent progress in the development of candidate live-attenuated ZIKV vaccines.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Christy Lee
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
2
|
Adam A, Fontes-Garfias CR, Sarathy VV, Liu Y, Luo H, Davis E, Li W, Muruato AE, Wang B, Ahatov R, Mahmoud Y, Shan C, Osman SR, Widen SG, Barrett ADT, Shi PY, Wang T. A genetically stable Zika virus vaccine candidate protects mice against virus infection and vertical transmission. NPJ Vaccines 2021; 6:27. [PMID: 33597526 PMCID: PMC7889622 DOI: 10.1038/s41541-021-00288-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
Although live attenuated vaccines (LAVs) have been effective in the control of flavivirus infections, to date they have been excluded from Zika virus (ZIKV) vaccine trials due to safety concerns. We have previously reported two ZIKV mutants, each of which has a single substitution in either envelope (E) glycosylation or nonstructural (NS) 4B P36 and displays a modest reduction in mouse neurovirulence and neuroinvasiveness, respectively. Here, we generated a ZIKV mutant, ZE4B-36, which combines mutations in both E glycosylation and NS4B P36. The ZE4B-36 mutant is stable and attenuated in viral replication. Next-generation sequence analysis showed that the attenuating mutations in the E and NS4B proteins are retained during serial cell culture passages. The mutant exhibits a significant reduction in neuroinvasiveness and neurovirulence and low infectivity in mosquitoes. It induces robust ZIKV-specific memory B cell, antibody, and T cell-mediated immune responses in type I interferon receptor (IFNR) deficient mice. ZIKV-specific T cell immunity remains strong months post-vaccination in wild-type C57BL/6 (B6) mice. Vaccination with ZE4B-36 protects mice from ZIKV-induced diseases and vertical transmission. Our results suggest that combination mutations in E glycosylation and NS4B P36 contribute to a candidate LAV with significantly increased safety but retain strong immunogenicity for prevention and control of ZIKV infection.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Camila R Fontes-Garfias
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vanessa V Sarathy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Yang Liu
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Huanle Luo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Emily Davis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Wenqian Li
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonio E Muruato
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Binbin Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Renat Ahatov
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yoseph Mahmoud
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chao Shan
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Samantha R Osman
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Steven G Widen
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Molecular Genomics Core Facility, University of Texas Medical Branch, Galveston, TX, USA
| | - Alan D T Barrett
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
3
|
Li G, Adam A, Luo H, Shan C, Cao Z, Fontes-Garfias CR, Sarathy VV, Teleki C, Winkelmann ER, Liang Y, Sun J, Bourne N, Barrett ADT, Shi PY, Wang T. An attenuated Zika virus NS4B protein mutant is a potent inducer of antiviral immune responses. NPJ Vaccines 2019; 4:48. [PMID: 31815005 PMCID: PMC6883050 DOI: 10.1038/s41541-019-0143-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
Live attenuated vaccines (LAVs) are one of the most important strategies to control flavivirus diseases. The flavivirus nonstructural (NS) 4B proteins are a critical component of both the virus replication complex and evasion of host innate immunity. Here we have used site-directed mutagenesis of residues in the highly conserved N-terminal and central hydrophobic regions of Zika virus (ZIKV) NS4B protein to identify candidate attenuating mutations. Three single-site mutants were generated, of which the NS4B-C100S mutant was more attenuated than the other two mutants (NS4B-C100A and NS4B-P36A) in two immunocompromised mouse models of fatal ZIKV disease. The ZIKV NS4B-C100S mutant triggered stronger type 1 interferons and interleukin-6 production, and higher ZIKV-specific CD4+ and CD8+ T-cell responses, but induced similar titers of neutralization antibodies compared with the parent wild-type ZIKV strain and a previously reported candidate ZIKV LAV with a 10-nucleotide deletion in 3'-UTR (ZIKV-3'UTR-Δ10). Vaccination with ZIKV NS4B-C100S protected mice from subsequent WT ZIKV challenge. Furthermore, either passive immunization with ZIKV NS4B-C100S immune sera or active immunization with ZIKV NS4B-C100S followed by the depletion of T cells affords full protection from lethal WT ZIKV challenge. In summary, our results suggest that the ZIKV NS4B-C100S mutant may serve as a candidate ZIKV LAV due to its attenuated phenotype and high immunogenicity.
Collapse
Affiliation(s)
- Guangyu Li
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Awadalkareem Adam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Huanle Luo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Zengguo Cao
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Camila R. Fontes-Garfias
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Vanessa V. Sarathy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Cody Teleki
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Evandro R. Winkelmann
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Nigel Bourne
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555 USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Alan D. T. Barrett
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555 USA
| |
Collapse
|
4
|
Li G, Teleki C, Wang T. Memory T Cells in Flavivirus Vaccination. Vaccines (Basel) 2018; 6:E73. [PMID: 30340377 PMCID: PMC6313919 DOI: 10.3390/vaccines6040073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/30/2022] Open
Abstract
Flaviviruses include many medically important viruses, such as Dengue virus (DENV), Japanese encephalitis (JEV), tick-borne encephalitis (TBEV), West Nile (WNV), yellow fever (YFV), and Zika viruses (ZIKV). Currently, there are licensed human vaccines for DENV, JEV, TBEV and YFV, but not for WNV or ZIKV. Memory T cells play a central role in adaptive immunity and are important for host protection during flavivirus infection. In this review, we discuss recent findings from animal models and clinical trials and provide new insights into the role of memory T cells in host protective immunity upon vaccination with the licensed flavivirus vaccines.
Collapse
Affiliation(s)
- Guangyu Li
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Cody Teleki
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
5
|
T Cell Immunity and Zika Virus Vaccine Development. Trends Immunol 2017; 38:594-605. [DOI: 10.1016/j.it.2017.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/30/2022]
|
6
|
Affiliation(s)
- Arno Müllbacher
- Division of Immunology and Genetics, John Curtin School of Medical Research, The Australian National University, Canberra City, A.C.T. 2601, Australia
| | | | | |
Collapse
|
7
|
Abstract
After a virus infects an animal, antiviral responses are generated that attempt to prevent dissemination. Interferons, antibody, complement, T and natural killer cells all contribute to the control and eradication of viral infections. Most flaviviruses, with the exception of some of the encephalitic viruses, cause acute disease and do not establish persistent infection. The outcome of flavivirus infection in an animal is determined by a balance between the speed of viral replication and spread, and the immune system response. Although many of the mechanistic details require further elucidation, flaviviruses have evolved specific tactics to evade the innate and adaptive immune response. A more thorough understanding of these principles could lead to improved models for viral pathogenesis and to strategies for the development of novel antiviral agents.
Collapse
Affiliation(s)
- Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, United States of America.
| |
Collapse
|
8
|
Abstract
The increased activity of Dengue virus in the tropical regions of the world and the recent movement of West Nile virus from the eastern to the western hemisphere emphasize the fact that vector-borne flaviviruses are medically important emerging infectious diseases. These facts warrant continued efforts to decode all facets of flavivirus immunology. This chapter reviews current understanding of the antigenic fine structure of flaviviral structural and nonstructural (NS) proteins and their involvement in B- an T-cell host responses. The virion structural glycoprotein E elicits both virus-neutralizing antibodies and antiviral Th-cell responses. Consistent with the current hypothesis of the MHC class I pathway of protein processing, immunodominant flaviviral Tc-cell epitopes mainly reside on the NS proteins. To prepare effective and inexpensive subunit vaccines, we will need to continue to better understand these structure-function relationships of flavivirus proteins.
Collapse
Affiliation(s)
- John T Roehrig
- Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Services, Fort Collins, Colorado 80521, USA
| |
Collapse
|
9
|
Abstract
Within the flavivirus family, viruses that cause natural infections of the central nervous system (CNS) principally include members of the Japanese encephalitis virus (JEV) serogroup and the tick-borne encephalitis virus (TBEV) serocomplex. The pathogenesis of diseases involves complex interactions of viruses, which differ in neurovirulence potential, and a number of host factors, which govern susceptibility to infection and the capacity to mount effective antiviral immune responses both in the periphery and within the CNS. This chapter summarizes progress in the field of flavivirus neuropathogenesis. Mosquito-borne and tickborne viruses are considered together. Flavivirus neuropathogenesis involves both neuroinvasiveness (capacity to enter the CNS) and neurovirulence (replication within the CNS), both of which can be manipulated experimentally. Neuronal injury as a result of bystander effects may be a factor during flavivirus neuropathogenesis given that microglial activation and elaboration of inflammatory mediators, including IL-1β and TNF-α, occur in the CNS during these infections and may accompany the production of nitric oxide and peroxynitrite, which can cause neurotoxicity.
Collapse
Affiliation(s)
- Thomas J Chambers
- Department of Molecular Microbiology and Immunology, St. Louis University Health Sciences Center, School of Medicine, St. Louis, Missouri 63104, USA
| | | |
Collapse
|
10
|
Brinton MA, Kurane I, Mathew A, Zeng L, Shi PY, Rothman A, Ennis FA. Immune mediated and inherited defences against flaviviruses. CLINICAL AND DIAGNOSTIC VIROLOGY 1998; 10:129-39. [PMID: 9741638 DOI: 10.1016/s0928-0197(98)00039-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Flavivirus infection elicits an abundant immune response in the host which is directed against a number of the viral proteins. Resistance to flavivirus-induced disease can also be controlled via a non-immune mechanism involving the product of a naturally occurring murine gene, Flv. OBJECTIVES To review studies that have reported the mapping of epitopes on flavivirus proteins that elicit T- or B-cell immune responses in mice or humans and to discuss a possible mechanism for flavivirus-specific genetic resistance. STUDY DESIGN Purified viral proteins and synthetic peptides were used to map B-cell epitopes. Purified proteins, vaccinia-expressed viral protein fragments and synthetic peptides were used to map T-cell epitopes. Congenic-resistant, C3H/RV and congenic susceptible, C3H/He mice and cell cultures were used to study the mechanism of genetic resistance to flavivirus infection. RESULTS T- and B-cell epitopes have been mapped to the E, NS1 and NS3 proteins of several flaviviruses. Immune responses to the C, PreM, NS2a, NS4a, and NS5 proteins have also been documented. Data suggest that the Flv gene product acts intracellularly to suppress the synthesis of viral genomic RNA. CONCLUSIONS Although flavivirus infection elicits an abundant immune response, this response is not always rapid enough to protect the host from developing encephalitis. During secondary infections both the humoral and cellular flavivirus-specific responses can confer protection. Dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS) appear to be caused by an overly vigorous immune response. In genetically resistant animals reduced production of virus results in a slower spread of the infection, which in turn allows time for the immune response to develop and to clear the infection before disease symptoms appear.
Collapse
Affiliation(s)
- M A Brinton
- Department of Biology, Georgia State University, Atlanta 30302-4010, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Ryman KD, Xie H, Ledger TN, Campbell GA, Barrett AD. Antigenic variants of yellow fever virus with an altered neurovirulence phenotype in mice. Virology 1997; 230:376-80. [PMID: 9143294 DOI: 10.1006/viro.1997.8496] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The live-attenuated yellow fever (YF) vaccine virus, strain 17D-204, has long been known to consist of a heterologous population of virions. Gould et al. (J. Gen. Virol. 70, 1889-1894 (1989)) previously demonstrated that variant viruses exhibiting a YF wild-type-specific envelope (E) protein epitope are present at low frequency in the vaccine pool and were able to isolate representative virus variants with and without this epitope, designated 17D(+wt) and 17D(-wt), respectively. These variants were employed here in an investigation of YF virus pathogenesis in the mouse model. Both the 17D-204 parent and the 17D(+wt) variant viruses were lethal for adult outbred mice by the intracerebral route of inoculation. However, the 17D(-wt) variant was significantly attenuated (18% mortality rate) and replicated to much lower titer in the brains of infected mice. A single amino acid substitution in the envelope (E) protein at E-240 (Ala-->Val) was identified as responsible for the restricted replication of the 17D(-wt) variant in vivo. The 17D(+wt) variant has an additional second-site mutation, believed to encode a reversion to the neurovirulence phenotype of the 17D-204 parent virus. The amino acid substitution in the E protein at E-173 (Thr-->Ile) of the 17D(+wt) variant which results in the appearance of the wild-type-specific epitope or nucleotide changes in the 5' and 3' noncoding regions of the virus are proposed as a candidates.
Collapse
Affiliation(s)
- K D Ryman
- Center for Tropical Diseases, University of Texas Medical Branch at Galveston 77555, USA
| | | | | | | | | |
Collapse
|
12
|
Ali A, Igarashi A. Antigenic and genetic variations among Japanese encephalitis virus strains belonging to genotype 1. Microbiol Immunol 1997; 41:241-52. [PMID: 9130236 DOI: 10.1111/j.1348-0421.1997.tb01196.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hyperimmune antisera against four Japanese encephalitis (JE) virus strains, ThCMAr4492 and ThCMAr6793 from Thailand and Nakayama and JaGAr01 from Japan, were used to analyze the antigenic relationships among 12 Thai strains belonging to genotype 1, and two Japanese strains and one Chinese strain belonging to genotype 3. The antiserum for ThCMAr6793 significantly neutralized nine of the 12 Thai strains, none of which was significantly neutralized by antisera for the Nakayama and JaGAr01 strains. The antiserum for ThCMAr4492 neutralized only its homologous strain; therefore, ThCMAr4492 was antigenically different from all other strains. Two Thai strains (Subin and KE-093/83) were significantly less neutralized by all four of the antisera tested. In the deduced amino-acid sequence of the E protein, the 12 Thai strains revealed 100 to 98.2% identity among them and 90.0 to 98.8% identity with the published strains, respectively. Among significant amino-acid substitutions, three residues at positions E-222, E-327 and E-366 were shared by all of the Thai strains, whereas residues at E-89, E-123, E-131, E-178, E-293, E-351 and E-373 seemed to be strain-specific. The amino acids at positions E-178, E-327, E-351, E-373 and E-366 are found either in the peptides with functional T-helper cell epitopes or in the ectodomain of the E protein of other flaviviruses. These amino acids may therefore be responsible for determining the antigenic heterogeneity of these strains.
Collapse
Affiliation(s)
- A Ali
- Department of Virology, Nagasaki University, Japan
| | | |
Collapse
|
13
|
Mathews JH, Kinney RM, Roehrig JT, Barrett AD, Trent DW. Murine T-helper cell immune response to recombinant vaccinia-Venezuelan equine encephalitis virus. Vaccine 1994; 12:620-4. [PMID: 8085379 DOI: 10.1016/0264-410x(94)90266-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The T-helper (Th) cell immune response following immunization of C3H (H-2k) mice with a recombinant vaccinia (VAC) virus (TC-5A) expressing the structural proteins (capsid, E1 and E2) of the attenuated vaccine strain (TC-83) of Venezuelan equine encephalitis (VEE) virus was compared with the immune response induced in mice after immunization with TC-83 virus. TC-5A virus elicited Th cells that strongly recognized both VAC and TC-83 viruses in in vitro lymphoblastogenesis tests. Th-cell activation was associated with elevated levels of interleukin-2. TC-5A virus induced long-term humoral immunity; VEE virus-binding and neutralizing antibodies were detected in mouse sera collected from mice 16 months after a single immunization.
Collapse
Affiliation(s)
- J H Mathews
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80522
| | | | | | | | | |
Collapse
|