1
|
Ishino F, Itoh J, Irie M, Matsuzawa A, Naruse M, Suzuki T, Hiraoka Y, Kaneko-Ishino T. Retrovirus-Derived RTL9 Plays an Important Role in Innate Antifungal Immunity in the Eutherian Brain. Int J Mol Sci 2023; 24:14884. [PMID: 37834332 PMCID: PMC10573853 DOI: 10.3390/ijms241914884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Retrotransposon Gag-like (RTL) genes play a variety of essential and important roles in the eutherian placenta and brain. It has recently been demonstrated that RTL5 and RTL6 (also known as sushi-ichi retrotransposon homolog 8 (SIRH8) and SIRH3) are microglial genes that play important roles in the brain's innate immunity against viruses and bacteria through their removal of double-stranded RNA and lipopolysaccharide, respectively. In this work, we addressed the function of RTL9 (also known as SIRH10). Using knock-in mice that produce RTL9-mCherry fusion protein, we examined RTL9 expression in the brain and its reaction to fungal zymosan. Here, we demonstrate that RTL9 plays an important role, degrading zymosan in the brain. The RTL9 protein is localized in the microglial lysosomes where incorporated zymosan is digested. Furthermore, in Rtl9 knockout mice expressing RTL9ΔC protein lacking the C-terminus retroviral GAG-like region, the zymosan degrading activity was lost. Thus, RTL9 is essentially engaged in this reaction, presumably via its GAG-like region. Together with our previous study, this result highlights the importance of three retrovirus-derived microglial RTL genes as eutherian-specific constituents of the current brain innate immune system: RTL9, RTL5 and RTL6, responding to fungi, viruses and bacteria, respectively.
Collapse
Affiliation(s)
- Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (M.I.); (A.M.); (M.N.)
| | - Johbu Itoh
- Department of Pathology, School of Medicine, Tokai University, Isehara 259-1193, Japan;
| | - Masahito Irie
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (M.I.); (A.M.); (M.N.)
- Faculty of Nursing, School of Medicine, Tokai University, Isehara 259-1193, Japan
| | - Ayumi Matsuzawa
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (M.I.); (A.M.); (M.N.)
- Department of Genomic Function and Diversity, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Mie Naruse
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (M.I.); (A.M.); (M.N.)
| | - Toru Suzuki
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (T.S.); (Y.H.)
| | - Yuichi Hiraoka
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (T.S.); (Y.H.)
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Tomoko Kaneko-Ishino
- Faculty of Nursing, School of Medicine, Tokai University, Isehara 259-1193, Japan
| |
Collapse
|
2
|
Artusi S, Nadai M, Perrone R, Biasolo MA, Palù G, Flamand L, Calistri A, Richter SN. The Herpes Simplex Virus-1 genome contains multiple clusters of repeated G-quadruplex: Implications for the antiviral activity of a G-quadruplex ligand. Antiviral Res 2015; 118:123-31. [PMID: 25843424 PMCID: PMC7113899 DOI: 10.1016/j.antiviral.2015.03.016] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/03/2015] [Accepted: 03/30/2015] [Indexed: 11/23/2022]
Abstract
Guanine-rich nucleic acids can fold into G-quadruplexes, secondary structures implicated in important regulatory functions at the genomic level in humans, prokaryotes and viruses. The remarkably high guanine content of the Herpes Simplex Virus-1 (HSV-1) genome prompted us to investigate both the presence of G-quadruplex forming sequences in the viral genome and the possibility to target them with G-quadruplex ligands to obtain anti-HSV-1 effects with a novel mechanism of action. Using biophysical, molecular biology and antiviral assays, we showed that the HSV-1 genome displays multiple clusters of repeated sequences that form very stable G-quadruplexes. These sequences are mainly located in the inverted repeats of the HSV-1 genome. Treatment of HSV-1 infected cells with the G-quadruplex ligand BRACO-19 induced inhibition of virus production. BRACO-19 was able to inhibit Taq polymerase processing at G-quadruplex forming sequences in the HSV-1 genome, and decreased intracellular viral DNA in infected cells. The last step targeted by BRACO-19 was viral DNA replication, while no effect on virus entry in the cells was observed. This work, presents the first evidence of extended G-quadruplex sites in key regions of the HSV-1 genome, indicates the possibility to block viral DNA replication by G-quadruplex-ligand and therefore provides a proof of concept for the use of G-quadruplex ligands as new anti-herpetic therapeutic options.
Collapse
Affiliation(s)
- Sara Artusi
- Department of Molecular Medicine, University of Padua, via Gabelli, 63, 35121 Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, via Gabelli, 63, 35121 Padua, Italy
| | - Rosalba Perrone
- Department of Molecular Medicine, University of Padua, via Gabelli, 63, 35121 Padua, Italy
| | - Maria Angela Biasolo
- Department of Molecular Medicine, University of Padua, via Gabelli, 63, 35121 Padua, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, via Gabelli, 63, 35121 Padua, Italy
| | - Louis Flamand
- Department of Microbiology, Infectious Diseases and Immunology, Laval University, Quebec City, Quebec, Canada
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, via Gabelli, 63, 35121 Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via Gabelli, 63, 35121 Padua, Italy.
| |
Collapse
|
3
|
Nuclear targeting of human cytomegalovirus large tegument protein pUL48 is essential for viral growth. J Virol 2013; 87:6005-19. [PMID: 23514890 DOI: 10.1128/jvi.03558-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the identification of a functional nuclear localization signal (NLS) in the human cytomegalovirus (HCMV) large tegument protein pUL48 that is required for nuclear localization in transfected cells and is essential for viral growth. The NLS was mapped to pUL48 amino acid residues 284 to 302. This sequence contains a bipartite NLS comprising two clusters of basic residues (bC1 and bC2) separated by 9 amino acids. Deletion or mutation of bC1 or mutation of bC2 abrogated the nuclear localization of full-length pUL48 in transiently expressing cells, thus strongly implying a bipartite character of the NLS. Nuclear localization could be restored by fusion of a functional NLS together with enhanced green fluorescent protein (EGFP) to the N terminus of these mutants. In HCMV-infected cells, pUL48 was found in both nuclear and cytoplasmic fractions, supporting a function of the NLS during virus infection. NLS mutant viruses, generated by markerless bacterial artificial chromosome mutagenesis, were not viable in cell culture, whereas coexpression of pUL48 complemented growth of these mutants. The fusion of a functional NLS to the N terminus of pUL48 in a nonviable NLS mutant virus partially rescued the growth defect. Furthermore, the replacement of the bipartite pUL48 NLS by the monopartite pUL36 NLS of herpes simplex virus 1 supported viral growth to some extent but still revealed a severe defect in focus formation and release of infectious virus particles. Together, these results show that nuclear targeting of pUL48 is mediated by a bipartite NLS whose function is essential for HCMV growth.
Collapse
|
4
|
Nagel CH, Döhner K, Binz A, Bauerfeind R, Sodeik B. Improper tagging of the non-essential small capsid protein VP26 impairs nuclear capsid egress of herpes simplex virus. PLoS One 2012; 7:e44177. [PMID: 22952920 PMCID: PMC3432071 DOI: 10.1371/journal.pone.0044177] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/30/2012] [Indexed: 01/10/2023] Open
Abstract
To analyze the subcellular trafficking of herpesvirus capsids, the small capsid protein has been labeled with different fluorescent proteins. Here, we analyzed the infectivity of several HSV1(17(+)) strains in which the N-terminal region of the non-essential small capsid protein VP26 had been tagged at different positions. While some variants replicated with similar kinetics as their parental wild type strain, others were not infectious at all. Improper tagging resulted in the aggregation of VP26 in the nucleus, prevented efficient nuclear egress of viral capsids, and thus virion formation. Correlative fluorescence and electron microscopy showed that these aggregates had sequestered several other viral proteins, but often did not contain viral capsids. The propensity for aggregate formation was influenced by the type of the fluorescent protein domain, the position of the inserted tag, the cell type, and the progression of infection. Among the tags that we have tested, mRFPVP26 had the lowest tendency to induce nuclear aggregates, and showed the least reduction in replication when compared to wild type. Our data suggest that bona fide monomeric fluorescent protein tags have less impact on proper assembly of HSV1 capsids and nuclear capsid egress than tags that tend to dimerize. Small chemical compounds capable of inducing aggregate formation of VP26 may lead to new antiviral drugs against HSV infections.
Collapse
Affiliation(s)
| | - Katinka Döhner
- Institute of Virology, Hanover Medical School, Hanover, Germany
| | - Anne Binz
- Institute of Virology, Hanover Medical School, Hanover, Germany
| | | | - Beate Sodeik
- Institute of Virology, Hanover Medical School, Hanover, Germany
| |
Collapse
|
5
|
The C terminus of the large tegument protein pUL36 contains multiple capsid binding sites that function differently during assembly and cell entry of herpes simplex virus. J Virol 2012; 86:3682-700. [PMID: 22258258 DOI: 10.1128/jvi.06432-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The largest tegument protein of herpes simplex virus type 1 (HSV1), pUL36, is a multivalent cross-linker between the viral capsids and the tegument and associated membrane proteins during assembly that upon subsequent cell entry releases the incoming capsids from the outer tegument and viral envelope. Here we show that pUL36 was recruited to cytosolic progeny capsids that later colocalized with membrane proteins of herpes simplex virus type 1 (HSV1) and the trans-Golgi network. During cell entry, pUL36 dissociated from viral membrane proteins but remained associated with cytosolic capsids until arrival at the nucleus. HSV1 UL36 mutants lacking C-terminal portions of increasing size expressed truncated pUL36 but could not form plaques. Cytosolic capsids of mutants lacking the C-terminal 735 of the 3,164 amino acid residues accumulated in the cytosol but did not recruit pUL36 or associate with membranes. In contrast, pUL36 lacking only the 167 C-terminal residues bound to cytosolic capsids and subsequently colocalized with viral and host membrane proteins. Progeny virions fused with neighboring cells, but incoming capsids did not retain pUL36, nor could they target the nucleus or initiate HSV1 gene expression. Our data suggest that residues 2430 to 2893 of HSV1 pUL36, containing one binding site for the capsid protein pUL25, are sufficient to recruit pUL36 onto cytosolic capsids during assembly for secondary envelopment, whereas the 167 residues of the very C terminus with the second pUL25 binding site are crucial to maintain pUL36 on incoming capsids during cell entry. Capsids lacking pUL36 are targeted neither to membranes for virus assembly nor to nuclear pores for genome uncoating.
Collapse
|
6
|
Radtke K, Kieneke D, Wolfstein A, Michael K, Steffen W, Scholz T, Karger A, Sodeik B. Plus- and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures. PLoS Pathog 2010; 6:e1000991. [PMID: 20628567 PMCID: PMC2900298 DOI: 10.1371/journal.ppat.1000991] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 06/07/2010] [Indexed: 01/26/2023] Open
Abstract
Many viruses depend on host microtubule motors to reach their destined intracellular location. Viral particles of neurotropic alphaherpesviruses such as herpes simplex virus 1 (HSV1) show bidirectional transport towards the cell center as well as the periphery, indicating that they utilize microtubule motors of opposing directionality. To understand the mechanisms of specific motor recruitment, it is necessary to characterize the molecular composition of such motile viral structures. We have generated HSV1 capsids with different surface features without impairing their overall architecture, and show that in a mammalian cell-free system the microtubule motors dynein and kinesin-1 and the dynein cofactor dynactin could interact directly with capsids independent of other host factors. The capsid composition and surface was analyzed with respect to 23 structural proteins that are potentially exposed to the cytosol during virus assembly or cell entry. Many of these proteins belong to the tegument, the hallmark of all herpesviruses located between the capsid and the viral envelope. Using immunoblots, quantitative mass spectrometry and quantitative immunoelectron microscopy, we show that capsids exposing inner tegument proteins such as pUS3, pUL36, pUL37, ICP0, pUL14, pUL16, and pUL21 recruited dynein, dynactin, kinesin-1 and kinesin-2. In contrast, neither untegumented capsids exposing VP5, VP26, pUL17 and pUL25 nor capsids covered by outer tegument proteins such as vhs, pUL11, ICP4, ICP34.5, VP11/12, VP13/14, VP16, VP22 or pUS11 bound microtubule motors. Our data suggest that HSV1 uses different structural features of the inner tegument to recruit dynein or kinesin-1. Individual capsids simultaneously accommodated motors of opposing directionality as well as several copies of the same motor. Thus, these associated motors either engage in a tug-of-war or their activities are coordinately regulated to achieve net transport either to the nucleus during cell entry or to cytoplasmic membranes for envelopment during assembly. Many viruses, particularly neurotropic alphaherpesviruses such as herpes simplex virus (HSV), require an intact microtubule network for efficient replication and pathogenesis. In living cells, host and viral cargo show rapid reversals in transport direction, suggesting that they can recruit motors of opposing directionality simultaneously. To elucidate the molecular mechanisms for specific motor-cargo recognition, it is necessary to characterize the surface of such cargos. We established a cell-free system that reconstitutes the binding of native, mammalian microtubule motors to intact tegumented HSV capsids. Our data suggest that the inbound motor dynein and the outbound motor kinesin-1 bind directly and independently of other host factors to the inner tegument that coats the capsids during cytosolic transport. Identifying viral receptors for the hosts' transport machinery will provide us on the one hand with new potential targets for antiviral therapy. On the other hand, such viral protein domains could be added to viral vectors or even to artificial nano carriers designed to deliver therapeutic genes or molecules to the nucleus or other subcellular destinations.
Collapse
Affiliation(s)
- Kerstin Radtke
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Daniela Kieneke
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - André Wolfstein
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Kathrin Michael
- Institute of Molecular Biology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Walter Steffen
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Tim Scholz
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Axel Karger
- Institute of Molecular Biology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
7
|
Herpes simplex virus tegument ICP0 is capsid associated, and its E3 ubiquitin ligase domain is important for incorporation into virions. J Virol 2009; 84:1637-40. [PMID: 19906912 DOI: 10.1128/jvi.02041-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Herpes simplex virus (HSV) immediate-early (IE) protein ICP0 is a multifunctional regulator of HSV infection. ICP0 that is present in the tegument layer has not been well characterized. Protein compositions of wild-type and ICP0 null virions were similar, suggesting that the absence of ICP0 does not grossly impair virion assembly. ICP0 has a RING finger domain with E3 ubiquitin ligase activity that is necessary for IE functions. Virions with mutations in this domain contained greatly reduced levels of tegument ICP0, suggesting that the domain influences the incorporation of ICP0. Virion ICP0 was resistant to removal by detergent and salt and was associated with capsids, features common to inner tegument proteins.
Collapse
|
8
|
Intracellular localization of the pseudorabies virus large tegument protein pUL36. J Virol 2009; 83:9641-51. [PMID: 19640985 DOI: 10.1128/jvi.01045-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Homologs of the essential large tegument protein pUL36 of herpes simplex virus 1 are conserved throughout the Herpesviridae, complex with pUL37, and form part of the capsid-associated "inner" tegument. pUL36 is crucial for transport of the incoming capsid to and docking at the nuclear pore early after infection as well as for virion maturation in the cytoplasm. Its extreme C terminus is essential for pUL36 function interacting with pUL25 on nucleocapsids to start tegumentation (K. Coller, J. Lee, A. Ueda, and G. Smith, J. Virol. 81:11790-11797, 2007). However, controversy exists about the cellular compartment in which pUL36 is added to the nascent virus particle. We generated monospecific rabbit antisera against four different regions spanning most of pUL36 of the alphaherpesvirus pseudorabies virus (PrV). By immunofluorescence and immunoelectron microscopy, we then analyzed the intracellular location of pUL36 after transient expression and during PrV infection. While reactivities of all four sera were comparable, none of them showed specific intranuclear staining during PrV infection. In immunoelectron microscopy, neither of the sera stained primary enveloped virions in the perinuclear cleft, whereas extracellular mature virus particles were extensively labeled. However, transient expression of pUL36 alone resulted in partial localization to the nucleus, presumably mediated by nuclear localization signals (NLS) whose functionality was demonstrated by fusion of the putative NLS to green fluorescent protein (GFP) and GFP-tagged pUL25. Since PrV pUL36 can enter the nucleus when expressed in isolation, the NLS may be masked during infection. Thus, our studies show that during PrV infection pUL36 is not detectable in the nucleus or on primary enveloped virions, correlating with the notion that the tegument of mature virus particles, including pUL36, is acquired in the cytosol.
Collapse
|
9
|
Abaitua F, Souto RN, Browne H, Daikoku T, O'Hare P. Characterization of the herpes simplex virus (HSV)-1 tegument protein VP1-2 during infection with the HSV temperature-sensitive mutant tsB7. J Gen Virol 2009; 90:2353-2363. [PMID: 19587138 DOI: 10.1099/vir.0.012492-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
VP1-2, encoded by the UL36 gene of herpes simplex virus (HSV), is a large structural protein, conserved across the family Herpesviridae, that is assembled into the tegument and is essential for virus replication. Current evidence indicates that VP1-2 is a central component in the tegumentation and envelopment processes and that it also possesses important roles in capsid transport and entry. However, any detailed mechanistic understanding of VP1-2 function(s) remains limited. This study characterized the replication of HSV-1 tsB7, a temperature-sensitive mutant restricted at the non-permissive temperature due to a defect in VP1-2 function. A tsB7 virus expressing green fluorescent protein-fused VP16 protein was used to track the accumulation and location of a major tegument protein. After infection at the permissive temperature and shift to the non-permissive temperature, the production of infectious virus ceased. VP1-2 accumulated in altered cytosolic clusters, together with VP16 and other virion proteins. Furthermore, correlating with the results of immunofluorescence, electron microscopy demonstrated abnormal cytosolic capsid clustering and a block in envelopment. As VP1-2 encompasses a ubiquitin-specific protease domain, the occurrence of ubiquitin-conjugated proteins during tsB7 infection was also examined at the non-permissive temperature. A striking overaccumulation was observed of ubiquitin-specific conjugates in cytoplasmic clusters, overlapping and adjacent to the VP1-2 clusters. These results are discussed in relation to the possible functions of VP1-2 in the assembly pathway and the nature of the defect in tsB7.
Collapse
Affiliation(s)
- F Abaitua
- Marie Curie Research Institute, The Chart, Oxted RH8 0TL, Surrey, UK
| | - R N Souto
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - H Browne
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - T Daikoku
- Marie Curie Research Institute, The Chart, Oxted RH8 0TL, Surrey, UK
| | - P O'Hare
- Marie Curie Research Institute, The Chart, Oxted RH8 0TL, Surrey, UK
| |
Collapse
|
10
|
Leege T, Granzow H, Fuchs W, Klupp BG, Mettenleiter TC. Phenotypic similarities and differences between UL37-deleted pseudorabies virus and herpes simplex virus type 1. J Gen Virol 2009; 90:1560-1568. [PMID: 19297610 DOI: 10.1099/vir.0.010322-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the absence of the tegument protein pUL37, virion formation of pseudorabies virus (PrV) and herpes simplex virus type 1 (HSV-1) is severely impaired. Non-enveloped nucleocapsids accumulate in clusters in the cytoplasm, whereas only a few enveloped particles can be detected. Although a contribution of pUL37 to nuclear egress of HSV-1 has been suggested, the nuclear stages of morphogenesis are not impaired in PrV-DeltaUL37-infected cells. Moreover, HSV-1 pUL37 has been described as essential for replication, whereas PrV is able to replicate productively without pUL37, although to lower titres than wild-type virus. Thus, there may be functional differences between the respective pUL37 proteins. This study compared the phenotypes of UL37-deleted PrV and HSV-1 in parallel assays, using a novel pUL37 deletion mutant of HSV-1 strain KOS, HSV-1DeltaUL37[86-1035]. Aggregates of seemingly 'naked' nucleocapsids were present in the cytoplasm of African green monkey (Vero) or rabbit kidney (RK13) cells infected with HSV-1DeltaUL37[86-1035] or PrV-DeltaUL37. Nuclear retention of nucleocapsids was not observed in either virus. However, in contrast to PrV-DeltaUL37, HSV-1DeltaUL37[86-1035] was unable to replicate productively in, and to form plaques on, either Vero or RK13 cells. Trans-complementation of respective deletion mutants with the heterologous pUL37 did not ensue. These data demonstrate that the conserved pUL37 in HSV-1 and PrV have similar but distinct functions.
Collapse
Affiliation(s)
- Tobias Leege
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Harald Granzow
- Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Walter Fuchs
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
11
|
Abstract
Varicella-zoster virus (VZV) is a herpesvirus and is the causative agent of chicken pox (varicella) and shingles (herpes zoster). Active immunization against varicella became possible with the development of live attenuated varicella vaccine. The Oka vaccine strain was isolated in Japan from a child who had typical varicella, and it was then attenuated by serial passages in cell culture. Several manufacturers have obtained this attenuated Oka strain and, following additional passages, have developed their own vaccine strains. Notably, the vaccines Varilrix and Varivax are produced by GlaxoSmithKline Biologicals and Merck & Co., Inc., respectively. Both vaccines have been well studied in terms of safety and immunogenicity. In this study, we report the complete nucleotide sequence of the Varilrix (Oka-V(GSK)) and Varivax (Oka-V(Merck)) vaccine strain genomes. Their genomes are composed of 124,821 and 124,815 bp, respectively. Full genome annotations covering the features of Oka-derived vaccine genomes have been established for the first time. Sequence analysis indicates 36 nucleotide differences between the two vaccine strains throughout the entire genome, among which only 14 are involved in unique amino acid substitutions. These results demonstrate that, although Oka-V(GSK) and Oka-V(Merck) vaccine strains are not identical, they are very similar, which supports the clinical data showing that both vaccines are well tolerated and elicit strong immune responses against varicella.
Collapse
|
12
|
Lee JH, Vittone V, Diefenbach E, Cunningham AL, Diefenbach RJ. Identification of structural protein-protein interactions of herpes simplex virus type 1. Virology 2008; 378:347-54. [PMID: 18602131 DOI: 10.1016/j.virol.2008.05.035] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/18/2008] [Accepted: 05/31/2008] [Indexed: 11/24/2022]
Abstract
In this study we have defined protein-protein interactions between the structural proteins of herpes simplex virus type 1 (HSV-1) using a LexA yeast two-hybrid system. The majority of the capsid, tegument and envelope proteins of HSV-1 were screened in a matrix approach. A total of 40 binary interactions were detected including 9 out of 10 previously identified tegument-tegument interactions (Vittone, V., Diefenbach, E., Triffett, D., Douglas, M.W., Cunningham, A.L., and Diefenbach, R.J., 2005. Determination of interactions between tegument proteins of herpes simplex virus type 1. J. Virol. 79, 9566-9571). A total of 12 interactions involving the capsid protein pUL35 (VP26) and 11 interactions involving the tegument protein pUL46 (VP11/12) were identified. The most significant novel interactions detected in this study, which are likely to play a role in viral assembly, include pUL35-pUL37 (capsid-tegument), pUL46-pUL37 (tegument-tegument) and pUL49 (VP22)-pUS9 (tegument-envelope). This information will provide further insights into the pathways of HSV-1 assembly and the identified interactions are potential targets for new antiviral drugs.
Collapse
Affiliation(s)
- Jin H Lee
- Centre for Virus Research, The Westmead Millennium Institute, The University of Sydney and Westmead Hospital, PO Box 412 Westmead, NSW 2145, Australia
| | | | | | | | | |
Collapse
|
13
|
Comprehensive characterization of extracellular herpes simplex virus type 1 virions. J Virol 2008; 82:8605-18. [PMID: 18596102 DOI: 10.1128/jvi.00904-08] [Citation(s) in RCA: 299] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) genome is contained in a capsid wrapped by a complex tegument layer and an external envelope. The poorly defined tegument plays a critical role throughout the viral life cycle, including delivery of capsids to the nucleus, viral gene expression, capsid egress, and acquisition of the viral envelope. Current data suggest tegumentation is a dynamic and sequential process that starts in the nucleus and continues in the cytoplasm. Over two dozen proteins are assumed to be or are known to ultimately be added to virions as tegument, but its precise composition is currently unknown. Moreover, a comprehensive analysis of all proteins found in HSV-1 virions is still lacking. To better understand the implication of the tegument and host proteins incorporated into the virions, highly purified mature extracellular viruses were analyzed by mass spectrometry. The method proved accurate (95%) and sensitive and hinted at 8 different viral capsid proteins, 13 viral glycoproteins, and 23 potential viral teguments. Interestingly, four novel virion components were identified (U(L)7, U(L)23, U(L)50, and U(L)55), and two teguments were confirmed (ICP0 and ICP4). In contrast, U(L)4, U(L)24, the U(L)31/U(L)34 complex, and the viral U(L)15/U(L)28/U(L)33 terminase were undetected, as was most of the viral replication machinery, with the notable exception of U(L)23. Surprisingly, the viral glycoproteins gJ, gK, gN, and U(L)43 were absent. Analyses of virions produced by two unrelated cell lines suggest their protein compositions are largely cell type independent. Finally, but not least, up to 49 distinct host proteins were identified in the virions.
Collapse
|
14
|
Identification of a highly conserved, functional nuclear localization signal within the N-terminal region of herpes simplex virus type 1 VP1-2 tegument protein. J Virol 2008; 82:5234-44. [PMID: 18385239 DOI: 10.1128/jvi.02497-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
VP1-2 is a large structural protein assembled into the tegument compartment of the virion, conserved across the herpesviridae, and essential for virus replication. In herpes simplex virus (HSV) and pseudorabies virus, VP1-2 is tightly associated with the capsid. Studies of its assembly and function remain incomplete, although recent data indicate that in HSV, VP1-2 is recruited onto capsids in the nucleus, with this being required for subsequent recruitment of additional structural proteins. Here we have developed an antibody to characterize VP1-2 localization, observing the protein in both cytoplasmic and nuclear compartments, frequently in clusters in both locations. Within the nucleus, a subpopulation of VP1-2 colocalized with VP26 and VP5, though VP1-2-positive foci devoid of these components were observed. We note a highly conserved basic motif adjacent to the previously identified N-terminal ubiquitin hydrolase domain (DUB). The DUB domain in isolation exhibited no specific localization, but when extended to include the adjacent motif, it efficiently accumulated in the nucleus. Transfer of the isolated motif to a test protein, beta-galactosidase, conferred specific nuclear localization. Substitution of a single amino acid within the motif abolished the nuclear localization function. Deletion of the motif from intact VP1-2 abrogated its nuclear localization. Moreover, in a functional assay examining the ability of VP1-2 to complement growth of a VP1-2-ve mutant, deletion of the nuclear localization signal abolished complementation. The nuclear localization signal may be involved in transport of VP1-2 early in infection or to late assembly sites within the nucleus or, considering the potential existence of VP1-2 cleavage products, in selective localization of subdomains to different compartments.
Collapse
|
15
|
Proteolytic cleavage of VP1-2 is required for release of herpes simplex virus 1 DNA into the nucleus. J Virol 2008; 82:3311-9. [PMID: 18216103 DOI: 10.1128/jvi.01919-07] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report we propose a model in which after the herpes simplex virus (HSV) capsid docks at the nuclear pore, the tegument protein attached to the capsid must be cleaved by a serine or a cysteine protease in order for the DNA to be released into the nucleus. In support of the model are the following results. (i) Exposure of cells at the time of or before infection to l-(tosylamido-2-phenyl) ethyl chloromethyl ketone (TPCK), a serine-cysteine protease inhibitor, prevents the release of viral DNA or expression of viral genes. TPCK does not block viral gene expression after entry of viral DNA into the nucleus. (ii) The tegument protein VP1-2, the product of the U(L)36 gene, is cleaved shortly after the entry of the HSV 1 (HSV-1) virion into the cell. (iii) The proteolytic cleavage of VP1-2 does not occur in cells that are infected with HSV-1 under conditions that prevent the release of the viral DNA into the nucleus. (iv) The proteolytic cleavage of VP1-2 occurs only after the capsid is attached to the nuclear pore. Thus, TPCK prevented the release of HSV-1 DNA into the nucleus when added to medium 1 hour after infection with tsB7 at 39.5 degrees C followed by a shift down to the permissive temperature. The ts lesion maps in the U(L)36 gene. At the nonpermissive temperature, the capsids accumulate at the nuclear pore but the DNA is not released into the nucleus.
Collapse
|
16
|
Identification of functional domains within the essential large tegument protein pUL36 of pseudorabies virus. J Virol 2007; 81:13403-11. [PMID: 17928337 DOI: 10.1128/jvi.01643-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Proteins of the capsid proximal tegument are involved in the transport of incoming capsids to the nucleus and secondary envelopment after nuclear egress. Homologs of the essential large capsid proximal tegument protein pUL36 are conserved within the Herpesviridae. They interact with another tegument component, pUL37, and contain a deubiquitinating activity in their N termini which, however, is not essential for virus replication. Whereas an internal deletion of 709 amino acids (aa) within the C-terminal half of the alphaherpesvirus pseudorabies virus (PrV) pUL36 does not impair its function (S. Böttcher, B. G. Klupp, H. Granzow, W. Fuchs, K. Michael, and T. C. Mettenleiter, J. Virol. 80:9910-9915, 2006), deletion of the very C terminus does (J. Lee, G. Luxton, and G. A. Smith, J. Virol. 80:12086-12094, 2006). For further characterization we deleted several predicted functional and structural motifs within PrV pUL36 and analyzed the resulting phenotypes in cell culture and a mouse infection model. Extension of the internal deletion to encompass aa 2087 to 2981 exerted only minor effects on virus replication but resulted in prolonged mean survival times of infected mice. Any additional extension did not yield viable virus. Deletion of an N-terminal region containing the deubiquitinating activity (aa 22 to 248) only slightly impaired viral replication in cell culture but slowed neuroinvasion in our mouse model, whereas a strong impairment of viral replication was observed after simultaneous removal of both nonessential domains. Absence of a region containing two predicted leucine zipper motifs (aa 748 to 991) also strongly impaired virus replication and spread. Thus, we identify several domains within the PrV UL36 protein, which, though not essential, are nevertheless important for virus replication.
Collapse
|
17
|
Mijatov B, Cunningham AL, Diefenbach RJ. Residues F593 and E596 of HSV-1 tegument protein pUL36 (VP1/2) mediate binding of tegument protein pUL37. Virology 2007; 368:26-31. [PMID: 17651773 DOI: 10.1016/j.virol.2007.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/10/2007] [Accepted: 07/03/2007] [Indexed: 11/29/2022]
Abstract
The herpes simplex virus type 1 (HSV-1) structural tegument proteins pUL36 (VP1/2) and pUL37 are essential for secondary envelopment during the egress of viral particles. Our laboratory has previously shown that HSV-1 pUL36(512-767) fragment interacts with full-length pUL37. A number of single and double amino acid changes of conserved residues in the pUL36(512-767) fragment were generated using alanine-scanning site-directed mutagenesis. The interaction of pUL36(512-767) and pUL37 was then assessed using a combination of yeast two-hybrid and coimmunoprecipitation assays. Single changes to alanine of pUL36 residues F593 and E596 impaired binding of pUL37 with the greatest effect observed for the substitution E596A. Double mutations involving either of these residues in combination with the substitution E580A essentially blocked binding of pUL37. This information will provide the basis for generation of viral mutants to further define the importance of the pUL36/pUL37 interaction in assembly of HSV-1.
Collapse
Affiliation(s)
- Branka Mijatov
- Centre For Virus Research, The Westmead Millennium Institute, The University of Sydney and Westmead Hospital, PO Box 412, Westmead, NSW 2145, Australia
| | | | | |
Collapse
|
18
|
Spatz SJ, Petherbridge L, Zhao Y, Nair V. Comparative full-length sequence analysis of oncogenic and vaccine (Rispens) strains of Marek's disease virus. J Gen Virol 2007; 88:1080-1096. [PMID: 17374751 DOI: 10.1099/vir.0.82600-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The complete DNA sequence of the Marek's disease virus serotype 1 vaccine strain CVI988 was determined and consists of 178 311 bp with an overall gene organization identical to that of the oncogenic strains. In examining open reading frames (ORFs), nine differ between vaccine and oncogenic strains. A 177 bp insertion was identified in the overlapping genes encoding the Meq, RLORF6 and 23 kDa proteins of CVI988. Three ORFs are predicted to encode truncated proteins. One, designated 49.1, overlaps the gene encoding the large tegument protein UL36 and encodes a severely truncated protein of 34 aa. The others, ORF5.5/ORF75.91 and ORF3.0/78.0, located in the repeat regions (diploid), encode a previously unidentified ORF of 52 aa and a truncated version of the virus-encoded chemokine (vIL-8), respectively. Subtle genetic changes were identified in the two ORFs encoding tegument proteins UL36 and UL49. Only one diploid ORF (ORF6.2/ORF75.6) present in the genomes of the three virulent strains is absent in the CVI988-BAC genome. Seventy non-synonymous amino acid substitutions were identified that could differentiate CVI988-BAC from all three oncogenic strains collectively. Estimates of the non-synonymous to synonymous substitution ratio (ω) indicate that CVI988 ORFs are generally under purifying selection (ω<1), whereas UL39, UL49, UL50, RLORF6 and RLORF7 (Meq) appear to evolve under relaxed selective constraints. No CVI988 ORF was found to be under positive evolutionary selection (ω≫1).
Collapse
Affiliation(s)
- Stephen J Spatz
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, GA 30605, USA
| | | | - Yuguang Zhao
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Venugopal Nair
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| |
Collapse
|
19
|
Lindner HA. Deubiquitination in virus infection. Virology 2007; 362:245-56. [PMID: 17291557 PMCID: PMC7103280 DOI: 10.1016/j.virol.2006.12.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 12/05/2006] [Accepted: 12/14/2006] [Indexed: 11/22/2022]
Abstract
Post-translational modification of proteins and peptides by ubiquitin, a highly evolutionarily conserved 76 residue protein, and ubiquitin-like modifiers has emerged as a major regulatory mechanism in various cellular activities. Eukaryotic viruses are known to modulate protein ubiquitination to their advantage in various ways. At the same time, the evidence for the importance of deubiquitination as a viral target also is growing. This review centers on known viral interactions with protein deubiquitination, on viral enzymes for which deubiquitinating activities were recently demonstrated, and on the roles of viral ubiquitin-like sequences.
Collapse
Affiliation(s)
- Holger A Lindner
- Biotechnology Research Institute, National Research Council of Canada, 6100 Avenue Royalmount, Montreal, Quebec, Canada H4P 2R2.
| |
Collapse
|
20
|
Bucks MA, O’Regan KJ, Murphy MA, Wills JW, Courtney RJ. Herpes simplex virus type 1 tegument proteins VP1/2 and UL37 are associated with intranuclear capsids. Virology 2007; 361:316-24. [PMID: 17223150 PMCID: PMC2710585 DOI: 10.1016/j.virol.2006.11.031] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 09/13/2006] [Accepted: 11/21/2006] [Indexed: 11/28/2022]
Abstract
The assembly of the tegument of herpes simplex virus type 1 (HSV-1) is a complex process that involves a number of events at various sites within virus-infected cells. Our studies focused on determining whether tegument proteins, VP1/2 and UL37, are added to capsids located within the nucleus. Capsids were isolated from the nuclear fraction of HSV-1-infected cells and purified by rate-zonal centrifugation to separate B capsids (containing the scaffold proteins and no viral DNA) and C capsids (containing DNA and no scaffold proteins). Western blot analyses of these capsids indicated that VP1/2 associated primarily with C capsids and UL37 associated with B and C capsids. The results demonstrate that at least two of the tegument proteins of HSV-1 are associated with capsids isolated from the nuclear fraction, and these capsid-tegument protein interactions may represent initial events of the tegumentation process.
Collapse
Affiliation(s)
| | | | | | | | - Richard J. Courtney
- Corresponding author. Mailing address: Department of Microbiology and Immunology, The Pennsylvania State College of Medicine, 500 University Drive, Hershey, PA 17033 Phone: (717) 531-6521. E-mail:
| |
Collapse
|
21
|
Lee JIH, Luxton GWG, Smith GA. Identification of an essential domain in the herpesvirus VP1/2 tegument protein: the carboxy terminus directs incorporation into capsid assemblons. J Virol 2006; 80:12086-94. [PMID: 17005660 PMCID: PMC1676267 DOI: 10.1128/jvi.01184-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpesvirus tegument is a layer of viral and cellular proteins located between the capsid and envelope of the virion. The VP1/2 tegument protein is critical for the propagation of all herpesviruses examined. Using an infectious clone of the alphaherpesvirus pseudorabies virus, we have made a collection of truncation and in-frame deletion mutations within the VP1/2 gene (UL36) and examined the resulting viruses for spread between cells. We found that the majority of the VP1/2 protein either was essential for virus propagation or did not tolerate large deletions. A recently described amino-terminal deubiquitinase-encoding domain was dispensable for alphaherpesvirus propagation, but the rate of propagation in an epithelial cell line and the frequency of transport in axons of primary sensory neurons were both reduced. We mapped one essential domain to a conserved sequence at the VP1/2 carboxy terminus and demonstrated that this domain sufficient to redirect the green fluorescent protein to capsid assemblons in nuclei of infected cells.
Collapse
Affiliation(s)
- Joy I-Hsuan Lee
- Department of Microbiology-Immunology, Ward Bldg., Rm. 10-105, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
22
|
Wang J, Loveland AN, Kattenhorn LM, Ploegh HL, Gibson W. High-molecular-weight protein (pUL48) of human cytomegalovirus is a competent deubiquitinating protease: mutant viruses altered in its active-site cysteine or histidine are viable. J Virol 2006; 80:6003-12. [PMID: 16731939 PMCID: PMC1472576 DOI: 10.1128/jvi.00401-06] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show here that the high-molecular-weight protein (HMWP or pUL48; 253 kDa) of human cytomegalovirus (HCMV) is a functionally competent deubiquitinating protease (DUB). By using a suicide substrate probe specific for ubiquitin-binding cysteine proteases (DUB probe) to screen lysates of HCMV-infected cells, we found just one infected-cell-specific DUB. Characteristics of this protein, including its large size, expression at late times of infection, presence in extracellular virus particles, and reactivity with an antiserum to the HMWP, identified it as the HMWP. This was confirmed by constructing mutant viruses with substitutions in two of the putative active-site residues, Cys24Ile and His162Ala. HMWP with these mutations either failed to bind the DUB probe (C24I) or had significantly reduced reactivity with it (H162A). More compellingly, the deubiquitinating activity detected in wild-type virus particles was completely abolished in both the C24I and H162A mutants, thereby directly linking HMWP with deubiquitinating enzyme activity. Mutations in these active-site residues were not lethal to virus replication but slowed production of infectious virus relative to wild type and mutations of other conserved residues. Initial studies, by electron microscopy, of cells infected with the mutants revealed no obvious differences at late times of replication in the general appearance of the cells or in the distribution, relative numbers, or appearance of virus particles in the cytoplasm or nucleus.
Collapse
Affiliation(s)
- Jianlei Wang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
23
|
Brandt CR. The role of viral and host genes in corneal infection with herpes simplex virus type 1. Exp Eye Res 2005; 80:607-21. [PMID: 15862167 DOI: 10.1016/j.exer.2004.09.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 09/28/2004] [Indexed: 11/26/2022]
Abstract
Herpes simplex virus infection of the eye is the leading cause of blindness due to infection in the US despite the availability of several antiviral drugs. Studies with animal models have shown that three factors, innate host resistance, the host adaptive immune response, and the strain of virus interact to determine whether an infection is asymptomatic or proceeds to the development of blinding keratitis (HSK). Of these, the role of adaptive immunity has received the most attention. This work has clearly shown that stromal keratitis is an immunopathological disease, most likely due to the induction of a delayed type hypersensitivity response. Substantially less is known about the role of specific host genes in resistance to HSK. The fact that different strains of virus display different disease phenotypes indicates that viral 'virulence' genes are critical. Of the 80 plus HSV genes, few have been formally tested for their role in HSV keratitis. Most studies of virulence genes to date have focused on a single gene or protein and large changes in disease phenotypes are usually measured. Large changes in the ability to cause disease are likely to reduce the fitness of the virus, thus such studies, although useful, do not mimic the natural situation. Viral gene products are known to interact with each other, and with host proteins and these interactions are critical in determining the outcome of infection. In reality, the 'constellation' of genes encoded by each particular strain is critical, and how this constellation of genes works together and with host proteins determines the outcome of an infection. The goal of this review is to discuss the current state of knowledge regarding the role of host and viral genes in HSV keratitis. The roles of specific genes that have been shown to influence keratitis are discussed. Recent data showing that different viral genes cooperate to influence disease severity and confirming that the constellation of genes within a particular strain determines the disease phenotype are also discussed, as are the methods used to test the role of viral genes in virulence. It will become apparent that there is a paucity of information regarding the function of many viral genes in keratitis. Improving our knowledge of the role of viral genes is critical for devising more effective treatments for this disease.
Collapse
Affiliation(s)
- Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin Medical School, 6630 MSC, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
24
|
Abstract
We previously reported that herpes simplex virus type 1 (HSV-1) can activate the stress-activated protein kinases (SAPKs) p38 and JNK. In the present study, we undertook a comprehensive and comparative analysis of the requirements for viral protein synthesis in the activation of JNK and p38. Infection with the UL36 mutant tsB7 or with UV-irradiated virus indicated that both JNK and p38 activation required viral gene expression. Cycloheximide reversal or phosphonoacetic acid treatment of wild-type virus-infected cells as well as infection with the ICP4 mutant vi13 indicated that only the immediate-early class of viral proteins were required for SAPK activation. Infection with ICP4, ICP27, or ICP0 mutant viruses indicated that only ICP27 was necessary. Additionally, we determined that in the context of virus infection ICP27 was sufficient for SAPK activation and activation of the p38 targets Mnk1 and MK2 by infecting with mutants deleted for various combinations of immediate-early proteins. Specifically, the d100 (0-/4-) and d103 (4-/22-/47-) mutants activated p38 and JNK, while the d106 (4-/22-/27-/47-) and d107 (4-/27-) mutants did not. Finally, infections with a series of ICP27 mutants demonstrated that the functional domain of ICP27 required for activation was located in the region encompassing amino acids 20 to 65 near the N terminus of the protein and that the C-terminal transactivation activity of ICP27 was not necessary.
Collapse
Affiliation(s)
- Danna Hargett
- Department of Microbiology and Immunology, 837 MEJB, University of North Carolina, Chapel Hill, North Carolina 27599-7290, USA
| | | | | |
Collapse
|
25
|
Kamen DE, Gross ST, Girvin ME, Wilson DW. Structural basis for the physiological temperature dependence of the association of VP16 with the cytoplasmic tail of herpes simplex virus glycoprotein H. J Virol 2005; 79:6134-41. [PMID: 15857998 PMCID: PMC1091672 DOI: 10.1128/jvi.79.10.6134-6141.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Critical events in the life cycle of herpes simplex virus (HSV) are the binding of cytoplasmic capsids to cellular organelles and subsequent envelopment. Work from several laboratories suggests that these events occur as a result of a network of partially redundant interactions among the capsid surface, tegument components, and cytoplasmic tails of virally encoded glycoproteins. Consistent with this model, we previously showed that tegument protein VP16 can specifically interact with the cytoplasmic tail of envelope protein gH in vitro and in vivo when fused to glutathione S-transferase and to green fluorescent protein, respectively. In both instances, this association was strikingly temperature dependent: binding occurred only at 37 degrees C and not at lower temperatures. Here we demonstrate that virally expressed full-length gH and VP16 can be coimmunoprecipitated from HSV-infected cells and that this association is also critically dependent upon the physiological temperature. To investigate the basis of this temperature requirement, we performed one- and two-dimensional nuclear magnetic resonance spectroscopy on peptides with the sequence of the gH tail. We found that the gH tail is disorganized at temperatures permissive for binding but becomes structured at lower temperatures. Furthermore, a mutated tail unable to adopt this rigid conformation binds VP16 even at 4 degrees C. We hypothesize that the gH tail is unstructured under physiological conditions in order to maximize the number of potential tegument partners with which it may associate. Being initially disordered, the gH tail may adopt one of several induced conformations as it associates with VP16 or alternative components of the tegument, maximizing redundancy during particle assembly.
Collapse
Affiliation(s)
- Douglas E Kamen
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, NY 10461, USA.
| | | | | | | |
Collapse
|
26
|
Austin RC, Lentz SR, Werstuck GH. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ 2005; 11 Suppl 1:S56-64. [PMID: 15243582 DOI: 10.1038/sj.cdd.4401451] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular disease, including ischemic heart disease, stroke, and peripheral vascular disease. Mutations in the enzymes responsible for homocysteine metabolism, particularly cystathionine beta-synthase (CBS) or 5,10-methylenetetrahydrofolate reductase (MTHFR), result in severe forms of HHcy. Additionally, nutritional deficiencies in B vitamin cofactors required for homocysteine metabolism, including folic acid, vitamin B6 (pyridoxal phosphate), and/or B12 (methylcobalamin), can induce HHcy. Studies using animal models of genetic- and diet-induced HHcy have recently demonstrated a causal relationship between HHcy, endothelial dysfunction, and accelerated atherosclerosis. Dietary enrichment in B vitamins attenuates these adverse effects of HHcy. Although oxidative stress and activation of proinflammatory factors have been proposed to explain the atherogenic effects of HHcy, recent in vitro and in vivo studies demonstrate that HHcy induces endoplasmic reticulum (ER) stress, leading to activation of the unfolded protein response (UPR). This review summarizes the current role of HHcy in endothelial dysfunction and explores the cellular mechanisms, including ER stress, that contribute to atherothrombosis.
Collapse
Affiliation(s)
- R C Austin
- Department of Pathology and Molecular Medicine, McMaster University and the Henderson Research Centre, Hamilton, Ontario, Canada.
| | | | | |
Collapse
|
27
|
Affiliation(s)
- Curtis R Brandt
- Department of Ophthalmology & Visual Sciences, University of Wisconsin Medical School, Madison, WI 53706, USA.
| |
Collapse
|
28
|
Gomi Y, Sunamachi H, Mori Y, Nagaike K, Takahashi M, Yamanishi K. Comparison of the complete DNA sequences of the Oka varicella vaccine and its parental virus. J Virol 2002; 76:11447-59. [PMID: 12388706 PMCID: PMC136748 DOI: 10.1128/jvi.76.22.11447-11459.2002] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DNA sequences of the Oka varicella vaccine virus (V-Oka) and its parental virus (P-Oka) were completed. Comparison of the sequences revealed 42 base substitutions, which led to 20 amino acid conversions and length differences in tandem repeat regions (R1, R3, and R4) and in an origin of DNA replication. Amino acid substitutions existed in open reading frames (ORFs) 6, 9A, 10, 21, 31, 39, 50, 52, 55, 59, 62, and 64. Of these, 15 base substitutions, leading to eight amino acid substitutions, were in the gene 62 region alone. Further DNA sequence analysis showed that these substitutions were specific for V-Oka and were not present in nine clinical isolates. The immediate-early gene 62 product (IE62) of P-Oka had stronger transactivational activity than the mutant IE62 contained in V-Oka in 293 and CV-1 cells. An infectious center assay of a plaque-purified clone (S7-01) from the V-Oka with 8 amino acid substitutions in ORF 62 showed smaller plaque formation and less-efficient virus-spreading activity than did P-Oka in human embryonic lung cells. Another clone (S-13) with only five substitutions in ORF 62 spread slightly faster than S7-01 but not as effectively as P-Oka. Moreover, transient luciferase assay in 293 cells showed that transactivational activities of IE62s of S7-01 and S7-13 were lower than that of P-Oka. Based on these results, it appears that amino acid substitutions in ORF 62 are responsible for virus growth and spreading from infected to uninfected cells. Furthermore, the Oka vaccine virus was completely distinguishable from P-Oka and 54 clinical isolates by seven restriction-enzyme fragment length polymorphisms that detected differences in the DNA sequence.
Collapse
Affiliation(s)
- Yasuyuki Gomi
- Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Desai P, Sexton GL, McCaffery JM, Person S. A null mutation in the gene encoding the herpes simplex virus type 1 UL37 polypeptide abrogates virus maturation. J Virol 2001; 75:10259-71. [PMID: 11581394 PMCID: PMC114600 DOI: 10.1128/jvi.75.21.10259-10271.2001] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The tegument is an integral and essential structural component of the herpes simplex virus type 1 (HSV-1) virion. The UL37 open reading frame of HSV-1 encodes a 120-kDa virion polypeptide which is a resident of the tegument. To analyze the function of the UL37-encoded polypeptide a null mutation was generated in the gene encoding this protein. In order to propagate this mutant virus, transformed cell lines that express the UL37 gene product in trans were produced. The null mutation was transferred into the virus genome using these complementing cell lines. A mutant virus designated KDeltaUL37 was isolated based on its ability to form plaques on the complementing cell line but not on nonpermissive (noncomplementing) Vero cells. This virus was unable to grow in Vero cells; therefore, UL37 encodes an essential function of the virus. The mutant virus KDeltaUL37 produced capsids containing DNA as judged by sedimentation analysis of extracts derived from infected Vero cells. Therefore, the UL37 gene product is not required for DNA cleavage or packaging. The UL37 mutant capsids were tagged with the smallest capsid protein, VP26, fused to green fluorescent protein. This fusion protein decorates the capsid shell and consequently the location of the capsid and the virus particle can be visualized in living cells. Late in infection, KDeltaUL37 capsids were observed to accumulate at the periphery of the nucleus as judged by the concentration of fluorescence around this organelle. Fluorescence was also observed in the cytoplasm in large puncta. Fluorescence at the plasma membrane, which indicated maturation and egress of virions, was observed in wild-type-infected cells but was absent in KDeltaUL37-infected cells. Ultrastructural analysis of thin sections of infected cells revealed clusters of DNA-containing capsids in the proximity of the inner nuclear membrane. Occasionally enveloped capsids were observed between the inner and outer nuclear membranes. Clusters of unenveloped capsids were also observed in the cytoplasm of KDeltaUL37-infected cells. Enveloped virions, which were observed in the cytoplasm of wild-type-infected cells, were never detected in the cytoplasm of KDeltaUL37-infected cells. Crude cell fractionation of infected cells using detergent lysis demonstrated that two-thirds of the UL37 mutant particles were associated with the nuclear fraction, unlike wild-type particles, which were predominantly in the cytoplasmic fraction. These data suggest that in the absence of UL37, the exit of capsids from the nucleus is slowed. UL37 mutant particles can participate in the initial envelopment at the nuclear membrane, although this process may be impaired in the absence of UL37. Furthermore, the naked capsids deposited in the cytoplasm are unable to progress further in the morphogenesis pathway, which suggests that UL37 is also required for egress and reenvelopment. Therefore, the UL37 gene product plays a key role in the early stages of the maturation pathway that give rise to an infectious virion.
Collapse
Affiliation(s)
- P Desai
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
30
|
King JA, Dubielzig R, Grimm D, Kleinschmidt JA. DNA helicase-mediated packaging of adeno-associated virus type 2 genomes into preformed capsids. EMBO J 2001; 20:3282-91. [PMID: 11406604 PMCID: PMC150213 DOI: 10.1093/emboj/20.12.3282] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Helicases not only catalyse the disruption of hydrogen bonding between complementary regions of nucleic acids, but also move along nucleic acid strands in a polar fashion. Here we show that the Rep52 and Rep40 proteins of adeno-associated virus type 2 (AAV-2) are required to translocate capsid-associated, single-stranded DNA genomes into preformed empty AAV-2 capsids, and that the DNA helicase function of Rep52/40 is essential for this process. Furthermore, DNase protection experiments suggest that insertion of AAV-2 genomes proceeds from the 3' end, which correlates with the 3'-->5' processivity demonstrated for the Rep52/40 helicase. A model is proposed in which capsid-immobilized helicase complexes act as molecular motors to 'pump' single-stranded DNA across the capsid boundary.
Collapse
Affiliation(s)
- Jason A. King
- Applied Tumour Virology Program, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
Present address: MRC Centre for Inflammation Research, Edinburgh University, Edinburgh, UK Present address: Medigene AG, Lochhamer Straße 11, D-82152 Martinsried, Germany Corresponding author e-mail:
| | - Ralf Dubielzig
- Applied Tumour Virology Program, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
Present address: MRC Centre for Inflammation Research, Edinburgh University, Edinburgh, UK Present address: Medigene AG, Lochhamer Straße 11, D-82152 Martinsried, Germany Corresponding author e-mail:
| | | | - Jürgen A. Kleinschmidt
- Applied Tumour Virology Program, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
Present address: MRC Centre for Inflammation Research, Edinburgh University, Edinburgh, UK Present address: Medigene AG, Lochhamer Straße 11, D-82152 Martinsried, Germany Corresponding author e-mail:
| |
Collapse
|
31
|
Desai PJ. A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells. J Virol 2000; 74:11608-18. [PMID: 11090159 PMCID: PMC112442 DOI: 10.1128/jvi.74.24.11608-11618.2000] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The UL36 open reading frame (ORF) encodes the largest herpes simplex virus type 1 (HSV-1) protein, a 270-kDa polypeptide designated VP1/2, which is also a component of the virion tegument. A null mutation was generated in the UL36 gene to elucidate its role in the virus life cycle. Since the UL36 gene specifies an essential function, complementing cell lines transformed for sequences encoding the UL36 ORF were made. A mutant virus, designated KDeltaUL36, that encodes a null mutation in the UL36 gene was isolated and propagated in these cell lines. When noncomplementing cells infected with KDeltaUL36 were analyzed, both terminal genomic DNA fragments and DNA-containing capsids (C capsids) were detected; therefore, UL36 is not required for cleavage or packaging of DNA. Sedimentation analysis of lysates from mutant-infected cells revealed the presence of particles that have the physical characteristics of C capsids. In agreement with this, polypeptide profiles of the mutant particles revealed an absence of the major envelope and tegument components. Ultrastructural analysis revealed the presence of numerous unenveloped DNA containing capsids in the cytoplasm of KDeltaUL36-infected cells. The UL36 mutant particles were tagged with the VP26-green fluorescent protein marker, and their movement was monitored in living cells. In KDeltaUL36-infected cells, extensive particulate fluorescence corresponding to the capsid particles was observed throughout the cytosol. Accumulation of fluorescence at the plasma membrane which indicated maturation and egress of virions was observed in wild-type-infected cells but was absent in KDeltaUL36-infected cells. In the absence of UL36 function, DNA-filled capsids are produced; these capsids enter the cytosol after traversing the nuclear envelope and do not mature into enveloped virus. The maturation and egress of the UL36 mutant particles are abrogated, possibly due to a late function of this complex polypeptide, i.e., to target capsids to the correct maturation pathway.
Collapse
Affiliation(s)
- P J Desai
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| |
Collapse
|
32
|
Cunningham C, Davison AJ, MacLean AR, Taus NS, Baines JD. Herpes simplex virus type 1 gene UL14: phenotype of a null mutant and identification of the encoded protein. J Virol 2000; 74:33-41. [PMID: 10590088 PMCID: PMC111510 DOI: 10.1128/jvi.74.1.33-41.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) gene UL14 is located between divergently transcribed genes UL13 and UL15 and overlaps the promoters for both of these genes. UL14 also exhibits a substantial overlap of its coding region with that of UL13. It is one of the few HSV-1 genes for which a phenotype and protein product have not been described. Using mass spectrometric and immunological approaches, we demonstrated that the UL14 protein is a minor component of the virion tegument of 32 kDa which is expressed late in infection. In infected cells, the UL14 protein was detected in the nucleus at discrete sites within electron-dense nuclear bodies and in the cytoplasm initially in a diffuse distribution and then at discrete sites. Some of the UL14 protein was phosphorylated. A mutant with a 4-bp deletion in the central region of UL14 failed to produce the UL14 protein and generated small plaques. The mutant exhibited an extended growth cycle at low multiplicity of infection and appeared to be compromised in efficient transit of virus particles from the infected cell. In mice injected intracranially, the 50% lethal dose of the mutant was reduced more than 30,000-fold. Recovery of the mutant from the latently infected sacral ganglia of mice injected peripherally was significantly less than that of wild-type virus, suggesting a marked defect in the establishment of, or reactivation from, latent infection.
Collapse
Affiliation(s)
- C Cunningham
- MRC Virology Unit, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 5JR, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Smith GA, Enquist LW. Construction and transposon mutagenesis in Escherichia coli of a full-length infectious clone of pseudorabies virus, an alphaherpesvirus. J Virol 1999; 73:6405-14. [PMID: 10400733 PMCID: PMC112720 DOI: 10.1128/jvi.73.8.6405-6414.1999] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A full-length clone of the 142-kb pseudorabies virus (PRV) genome was constructed as a stable F plasmid in Escherichia coli. The clone, pBecker1, was colinear with PRV-Becker genomic DNA, lacking detectable rearrangements, deletions, or inversions. The transfection of pBecker1 into susceptible eukaryotic cells resulted in productive viral infection. Virus isolated following transfection was indistinguishable from wild-type virus in a rodent model of infection and spread to retinorecipient regions of the brain following inoculation in the vitreous body of the eye. Mutagenesis of pBecker1 in E. coli with a mini-Tn5-derived transposon enabled the rapid isolation of insertion mutants, identification of essential viral genes, and simplified construction of viral revertants. The serial passage of a viral insertion mutant demonstrated the transposon insertion to be stable. However, the F-plasmid insertion present in the viral gG locus was found to undergo a spontaneous deletion following transfection into eukaryotic cells. The implications of F-plasmid insertion into the viral genome with regard to phenotype and genomic stability are discussed.
Collapse
Affiliation(s)
- G A Smith
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
34
|
Zhou ZH, Chen DH, Jakana J, Rixon FJ, Chiu W. Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 virions. J Virol 1999; 73:3210-8. [PMID: 10074174 PMCID: PMC104084 DOI: 10.1128/jvi.73.4.3210-3218.1999] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 virions were examined by electron cryomicroscopy, allowing the three-dimensional structure of the infectious particle to be visualized for the first time. The capsid shell is identical to that of B-capsids purified from the host cell nucleus, with the exception of the penton channel, which is closed. The double-stranded DNA genome is organized as regularly spaced ( approximately 26 A) concentric layers inside the capsid. This pattern suggests a spool model for DNA packaging, similar to that for some bacteriophages. The bulk of the tegument is not icosahedrally ordered. However, a small portion appears as filamentous structures around the pentons, interacting extensively with the capsid. Their locations and interactions suggest possible roles for the tegument proteins in regulating DNA transport through the penton channel and binding to cellular transport proteins during viral infection.
Collapse
Affiliation(s)
- Z H Zhou
- Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
35
|
Båtshake B, Nilsson C, Sundelin J. Structure and expression of the murine thromboxane A2 receptor gene. Biochem Biophys Res Commun 1999; 256:391-7. [PMID: 10079195 DOI: 10.1006/bbrc.1999.0345] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gene encoding the murine thromboxane A2 receptor (TP) is split into three exons and spans 6.2 kilobase pairs. Primer extension analysis revealed two transcription initiation sites located approximately 210 nucleotides 5' of the first intron. The 1.2-kb 5'-flanking region lacks typical TATA and CAAT boxes but contains several potential regulatory elements including binding sites for Sp-1, NF-kappaB, AP-2, and a glucocorticoid response element. A 192-bp murine repetitive B2 element is located in the 5'-flanking region, but did not exert a negative effect on the basal promoter activity in transient transfection experiments with reporter constructs. Ribonuclease protection assays showed expression of TP RNA in several organs including thymus, spleen, kidney, and lung. In the thymus, in situ hybridization revealed transcripts in the cortex, but not in the medulla, suggesting that thromboxane A2 may play a role in the development of T-lymphocytes.
Collapse
Affiliation(s)
- B Båtshake
- Wallenberg Neuroscience Centre, Lund University, Solvegatan 17, Lund, SE-223 62, Sweden.
| | | | | |
Collapse
|
36
|
Abstract
Genome and pre-genome replication in all animal DNA viruses except poxviruses occurs in the cell nucleus (Table 1). In order to reproduce, an infecting virion enters the cell and traverses through the cytoplasm toward the nucleus. Using the cell's own nuclear import machinery, the viral genome then enters the nucleus through the nuclear pore complex. Targeting of the infecting virion or viral genome to the multiplication site is therefore an essential process in productive viral infection as well as in latent infection and transformation. Yet little is known about how infecting genomes of animal DNA viruses reach the nucleus in order to reproduce. Moreover, this nuclear locus for viral multiplication is remarkable in that the sizes and composition of the infectious particles vary enormously. In this article, we discuss virion structure, life cycle to reproduce infectious particles, viral protein's nuclear import signal, and viral genome nuclear targeting.
Collapse
Affiliation(s)
- H Kasamatsu
- Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California at Los Angeles 90095, USA
| | | |
Collapse
|
37
|
Morrison EE, Wang YF, Meredith DM. Phosphorylation of structural components promotes dissociation of the herpes simplex virus type 1 tegument. J Virol 1998; 72:7108-14. [PMID: 9696804 PMCID: PMC109932 DOI: 10.1128/jvi.72.9.7108-7114.1998] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of phosphorylation in the dissociation of structural components of the herpes simplex virus type 1 (HSV-1) tegument was investigated, using an in vitro assay. Addition of physiological concentrations of ATP and magnesium to wild-type virions in the presence of detergent promoted the release of VP13/14 and VP22. VP1/2 and the UL13 protein kinase were not significantly solubilized. However, using a virus with an inactivated UL13 protein, we found that the release of VP22 was severely impaired. Addition of casein kinase II (CKII) to UL13 mutant virions promoted VP22 release. Heat inactivation of virions or addition of phosphatase inhibited the release of both proteins. Incorporation of radiolabeled ATP into the assay demonstrated the phosphorylation of VP1/2, VP13/14, VP16, and VP22. Incubation of detergent-purified, heat-inactivated capsid-tegument with recombinant kinases showed VP1/2 phosphorylation by CKII, VP13/14 phosphorylation by CKII, protein kinase A (PKA), and PKC, VP16 phosphorylation by PKA, and VP22 phosphorylation by CKII and PKC. Proteolytic mapping and phosphoamino acid analysis of phosphorylated VP22 correlated with previously published work. The phosphorylation of virion-associated VP13/14, VP16, and VP22 was demonstrated in cells infected in the presence of cycloheximide. Use of equine herpesvirus 1 in the in vitro release assay resulted in the enhanced release of VP10, the homolog of HSV-1 VP13/14. These results suggest that the dissociation of major tegument proteins from alphaherpesvirus virions in infected cells may be initiated by phosphorylation events mediated by both virion-associated and cellular kinases.
Collapse
Affiliation(s)
- E E Morrison
- Molecular Medicine Unit, University of Leeds, St. James University Hospital, Leeds LS9 7TF, United Kingdom
| | | | | |
Collapse
|
38
|
Smith CC, Aurelian L. The large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) is associated with the virion tegument and has PK activity. Virology 1997; 234:235-42. [PMID: 9268154 DOI: 10.1006/viro.1997.8645] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The large subunit of herpes simplex virus type 2 (HSV-2) ribonucleotide reductase (ICP10) was identified in sucrose gradient-purified HSV-2 virions by immunoprecipitation/immunoblotting with antibody specific for the protein kinase (PK) domain. Immunoblotting of individual gradient fractions indicated that ICP10 cosediments with the major capsid protein and the highest virus titers. ICP10 was not labeled by iodination of purified virions, indicating that it is not located on the virion surface. After envelope glycoproteins were removed by detergent treatment, ICP10 was associated with capsid-tegument particles and became sensitive to trypsin digestion. The capsid-tegument-associated ICP10 was phosphorylated and had PK activity in vitro and on Immobilon membranes. A mutant ICP10 protein deleted in the PK domain (p95) was also associated with purified virions (ICP10deltaPK virus) but it lacked PK activity. The data indicate that ICP10 is contained within the tegument component where it retains intrinsic PK activity.
Collapse
Affiliation(s)
- C C Smith
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore 21201, USA
| | | |
Collapse
|
39
|
Sathananthan B, Rødahl E, Ekberg T, Langeland N, Haarr L. Two-dimensional gel analysis of [35S]methionine labelled and phosphorylated proteins present in virions and light particles of herpes simplex virus type 1, and detection of potentially new structural proteins. Virus Res 1996; 46:1-18. [PMID: 9029773 DOI: 10.1016/s0168-1702(96)01371-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cells infected with herpes simplex virus (HSV) synthesize both infectious viruses and non-infectious light particles (L-particles). The latter contain the envelope and tegument components of the virions, but lack virus capsid and DNA. Electrophoresis in SDS-polyacrylamide gels (SDS-PAGE) has been used extensively for analysis of structural proteins in virions and L-particles. Two-dimensional (2-D) gel electrophoresis, however has a markedly higher resolution, and in the present work we have used this technique to study both [35S]methionine labelled and phosphorylated structural proteins in virions and L-particles. Proteins were assigned to the tegument or the envelope by the analysis of L-particles. Localization of structural proteins was also determined by stepwise solubilization in the presence of the neutral detergent NP-40 and NaCl, and by isolation of capsids from nuclei of infected cells. Different steps in posttranslational modification can be detected by 2-D gel electrophoresis such that a single polypeptide may appear as several spots. This was most clearly observed for some of the HSV-encoded glycoproteins which were shown to exist in multiple forms in the virion. Some polypeptides apparently not identified previously were either capsid associated, or localized in the tegument or envelope. The degrees of phosphorylation in L-particles and virions are almost identical for some proteins, but markedly different for others. Thus, glycoprotein E of HSV-1 is for the first time shown to be phosphorylated, and most heavily so in virions. The IE VMW)110 protein represents a group of proteins which are more phosphorylated in L-particles than in virions. Attempts are made to correlate the proteins detected by 2-D analysis with those previously separated by SDS-PAGE.
Collapse
Affiliation(s)
- B Sathananthan
- Bergen High Technology Centre, University of Bergen, Norway
| | | | | | | | | |
Collapse
|
40
|
Park CG, Lee SY, Kandala G, Lee SY, Choi Y. A novel gene product that couples TCR signaling to Fas(CD95) expression in activation-induced cell death. Immunity 1996; 4:583-91. [PMID: 8673705 DOI: 10.1016/s1074-7613(00)80484-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cross-linking the TCR in T cell hybridomas induces cell apoptosis following activation. This activation-induced apoptosis has been used as a model for clonal deletion of thymocytes or peripheral T cells. Anti-TCR-induced apoptosis of T cell hybridomas requires de novo macromolecular synthesis, including up-regulation of Fas and FasL. The Fas-FasL interaction then activates the apoptosis program. To study apoptosis-specific signaling processes, we generated a mutant T cell hybridoma line defective in induction of apoptosis, but competent to induce activation, upon TCR triggering. Subsequently, we cloned the gene TDAG51, which restored activation-induced apoptosis when transfected into the mutant cell line, and showed that TDAG51 expression was required for Fas expression. Thus, TDAG51 plays an essential role in induction of apoptosis by coupling TCR stimulation to Fas expression.
Collapse
Affiliation(s)
- C G Park
- Howard Hughes Medical Institute, Rockefeller University, New York 10021, USA
| | | | | | | | | |
Collapse
|
41
|
KIRISAWA R, KOBAYASHI T, KAWAKAMI Y, IWAI H. Nucleotide Sequences of Open Reading Frames 1,24 and 71 of an Attenuated Equine Herpesvirus-1. J Equine Sci 1996. [DOI: 10.1294/jes.7.79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Rikio KIRISAWA
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069, Japan
| | - Tsutomu KOBAYASHI
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069, Japan
| | - Yoshimi KAWAKAMI
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069, Japan
| | - Hiroshi IWAI
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069, Japan
| |
Collapse
|
42
|
|
43
|
Haarr L, Skulstad S. The herpes simplex virus type 1 particle: structure and molecular functions. Review article. APMIS 1994; 102:321-46. [PMID: 8024735 DOI: 10.1111/j.1699-0463.1994.tb04882.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review is a summary of our present knowledge with respect to the structure of the virion of herpes simplex virus type 1. The virion consists of a capsid into which the DNA is packaged, a tegument and an external envelope. The protein compositions of the structures outside the genome are described as well as the functions of individual proteins. Seven capsid proteins are identified, and two of them are mainly present in precursors of mature DNA-containing capsids. The protein components of the 150 hexamers and 12 pentamers in the icosahedral capsid are known. These capsomers all have a central channel and are connected by Y-shaped triplexes. In contrast to the capsid, the tegument has a less defined structure in which 11 proteins have been identified so far. Most of them are phosphorylated. Eleven virus-encoded glycoproteins are present in the envelope, and there may be a few more membrane proteins not yet identified. Functions of these glycoproteins include attachment to and penetration of the cellular membrane. The structural proteins, their functions, coding genes and localizations are listed in table form.
Collapse
Affiliation(s)
- L Haarr
- National Centre for Research in Virology, University of Bergen, Norway
| | | |
Collapse
|