1
|
Matundan HH, Jaggi U, Ghiasi H. Herpes Simplex Virus 1 Glycoproteins Differentially Regulate the Activity of Costimulatory Molecules and T Cells. mSphere 2022; 7:e0038222. [PMID: 36094100 PMCID: PMC9599263 DOI: 10.1128/msphere.00382-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Over the past 70 years, multiple approaches to develop a prophylactic or therapeutic vaccine to control herpes simplex virus (HSV) infection have failed to protect against primary infection, reactivation, or reinfection. In contrast to many RNA viruses, neither primary HSV infection nor repeated clinical recurrence elicits immune responses capable of completely preventing virus reactivation; yet the 12 known HSV-1 glycoproteins are the major inducers and targets of humoral and cell-mediated immune responses following infection. While costimulatory molecules and CD4/CD8 T cells both contribute significantly to HSV-1-induced immune responses, the specific effects of individual HSV-1 glycoproteins on CD4, CD8, CD80, and CD86 activities are not known. To determine how nine major HSV-1 glycoproteins affect T cells and costimulatory molecule function, we tested the independent effects of gB, gC, gD, gE, gG, gH, gI, gK, and gL on CD4, CD8, CD80, and CD86 promoter activities in vitro. gD, gK, and gL had a suppressive effect on CD4, CD8, CD80, and CD86 promoter activities, while gG and gH specifically suppressed CD4 promoter activity. In contrast, gB, gC, gE, and gI stimulated CD4, CD8, CD80, and CD86 promoter activities. Luminex analysis of splenocytes and bone-marrow-derived dendritic cells (BMDCs) transfected with each glycoprotein showed differing cytokine/chemokine milieus with higher responses in splenocytes than in BMDCs. Our results with the tested major HSV-1 glycoproteins suggest that costimulatory molecules and T cell responses to the nine glycoproteins can be divided into (i) stimulators (i.e., gB, gC, gE, and gI), and (ii) nonstimulators (i.e., gD, gK, and gL). Thus, consistent with our previous studies, a cocktail of select HSV-1 viral genes may induce a wider spectrum of immune responses, and thus protection, than individual genes. IMPORTANCE Currently no effective vaccine is available against herpes simplex virus (HSV) infection. Thus, there is a critical need to develop a safe and effective vaccine to prevent and control HSV infection. The development of such approaches will require an advanced understanding of viral genes. This study provides new evidence supporting an approach to maximize vaccine efficacy by using a combination of HSV genes to control HSV infection.
Collapse
Affiliation(s)
- Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC – SSB3, Los Angeles, California, USA
| | - Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC – SSB3, Los Angeles, California, USA
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC – SSB3, Los Angeles, California, USA
| |
Collapse
|
2
|
Jaggi U, Wang S, Tormanen K, Matundan H, Ljubimov AV, Ghiasi H. Role of Herpes Simplex Virus Type 1 (HSV-1) Glycoprotein K (gK) Pathogenic CD8 + T Cells in Exacerbation of Eye Disease. Front Immunol 2018; 9:2895. [PMID: 30581441 PMCID: PMC6292954 DOI: 10.3389/fimmu.2018.02895] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022] Open
Abstract
HSV-1-induced corneal scarring (CS), also broadly referred to as Herpes Stromal Keratitis (HSK), is the leading cause of infectious blindness in developed countries. It is well-established that HSK is in fact an immunopathological disease. The contribution of the potentially harmful T cell effectors that lead to CS remains an area of intense study. Although the HSV-1 gene(s) involved in eye disease is not yet known, we have demonstrated that gK, which is one of the 12 known HSV-1 glycoproteins, has a crucial role in CS. Immunization of HSV-1 infected mice with gK, but not with any other known HSV-1 glycoprotein, significantly exacerbates CS, and dermatitis. The gK-induced eye disease occurs independently of the strain of the virus or mouse. HSV-1 mutants that lack gK are unable to efficiently infect and establish latency in neurons. HSV-1 recombinant viruses expressing two additional copies of the gK (total of three gK genes) exacerbated CS as compared with wild type HSV-1 strain McKrae that contains one copy of gK. Furthermore, we have shown that an 8mer (ITAYGLVL) within the signal sequence of gK enhanced CS in ocularly infected BALB/c mice, C57BL/6 mice, and NZW rabbits. In HSV-infected “humanized” HLA-A*0201 transgenic mice, this gK 8mer induced strong IFN-γ-producing cytotoxic CD8+ T cell responses. gK induced CS is dependent on gK binding to signal peptide peptidase (SPP). gK also binds to HSV-1 UL20, while UL20 binds GODZ (DHHC3) and these quadruple interactions are required for gK induced pathology. Thus, potential therapies might include blocking of gK-SPP, gK-UL20, UL20-GODZ interactions, or a combination of these strategies.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Department of Surgery, Center for Neurobiology and Vaccine Development, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Shaohui Wang
- Department of Surgery, Center for Neurobiology and Vaccine Development, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kati Tormanen
- Department of Surgery, Center for Neurobiology and Vaccine Development, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Harry Matundan
- Department of Surgery, Center for Neurobiology and Vaccine Development, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alexander V Ljubimov
- Eye Program, Cedars-Sinai Medical Center, and David Geffen School of Medicine, Board of Governors Regenerative Medicine Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Homayon Ghiasi
- Department of Surgery, Center for Neurobiology and Vaccine Development, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
3
|
Allen SJ, Mott KR, Ghiasi H. Overexpression of herpes simplex virus glycoprotein K (gK) alters expression of HSV receptors in ocularly-infected mice. Invest Ophthalmol Vis Sci 2014; 55:2442-51. [PMID: 24667863 DOI: 10.1167/iovs.14-14013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE We have shown previously that HSV-1 glycoprotein K (gK) exacerbates corneal scarring (CS) in mice and rabbits. Here, we investigated the relative impact of gK overexpression on host responses during primary corneal infection and latency in trigeminal ganglia (TG) of infected mice. METHODS Mice were infected ocularly with HSV-gK(3) (expressing two extra copies of gK replacing latency associated transcript [LAT]), HSV-gK(3) revertant (HSV-gK(3)R), or wild-type HSV-1 strain McKrae. Individual corneas on day 5 post infection (PI) and TG on day 28 PI were isolated and used for detection of gB DNA in the TG, HSV-1 receptors in the cornea and TG, and inflammatory infiltrates in TG. RESULTS During primary HSV-1 infection, gK overexpression resulted in altered expression of herpesvirus entry mediator (HVEM), 3-O-sulfated heparin sulfate (3-OS-HS), paired immunoglobulin-like type 2 receptor-α (PILR-α), nectin-1, and nectin-2 in cornea of BALB/c, but not C57BL/6 mice. However, gK overexpression did have an effect on 3-OS-HS, PILR-α, nectin-1, and nectin-2 expression (but not HVEM expression) in TG of C57BL/6 mice during latency. These differences did not affect the level of latency, but instead were correlated with the presence of CS. The presence of LAT increased HVEM expression and this effect was enhanced further by the presence of CS in latently-infected mice. Finally, the presence of LAT, but not overexpression of gK, affected CD4, CD8, TNF-α, Tim-3, PD-1, IL-21, IL-2, and IFN-γ expression in TG. CONCLUSIONS We demonstrate a novel link between gK exacerbation of CS and HSV-1 receptors, suggesting a gK-induced molecular route for the pathogenesis as well as selective advantage of these entry routes for the pathogen during latency-reactivation cycle.
Collapse
Affiliation(s)
- Sariah J Allen
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Los Angeles, California, United States
| | | | | |
Collapse
|
4
|
Koelle DM, Ghiasi H. Prospects for Developing an Effective Vaccine Against Ocular Herpes Simplex Virus Infection. Curr Eye Res 2009; 30:929-42. [PMID: 16282127 DOI: 10.1080/02713680500313153] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
One of the hallmarks of herpes simplex virus (HSV) infection is the establishment of a lifelong latent infection accompanied by periods of recurrent disease. Primary HSV infections or repeated clinical recurrences do not elicit immune responses capable of completely preventing recurrences of endogenous virus. It is therefore questionable if vaccination approaches that seek to mimic the immune response to natural infection will reduce infection or disease due to an exogenous viral challenge. Approaches to the induction of protective responses by altering or enhancing both innate and adaptive immunity, using novel vaccines specifically tested in models of HSV infections of the eye, such as recombinant viral vaccine vectors and DNA vaccines, are detailed in this review.
Collapse
Affiliation(s)
- David M Koelle
- Department of Medicine, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | |
Collapse
|
5
|
Schat KA, Markowski-Grimsrud CJ. Immune responses to Marek's disease virus infection. Curr Top Microbiol Immunol 2001; 255:91-120. [PMID: 11217429 DOI: 10.1007/978-3-642-56863-3_4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- K A Schat
- Unit of Avian Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
6
|
Ghiasi H, Perng GC, Nesburn AB, Wechsler SL. Antibody-dependent enhancement of HSV-1 infection by anti-gK sera. Virus Res 2000; 68:137-44. [PMID: 10958985 DOI: 10.1016/s0168-1702(00)00165-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We previously reported that vaccination of BALB/c mice with the baculovirus expressed HSV-1 glycoprotein K (gK) or passive transfer of gK purified IgG to naive BALB/c mice causes severe exacerbation of HSV-1 induced corneal scarring following ocular challenge. In addition, a productive chronic infection, rather than a latent infection, is found in most trigeminal ganglia. These phenomena are accompanied by a very high T(H)1+T(H)2 response in the eye (Ghiasi, H., Cai, S., Nesburn, A.B., Wechsler, S.L., 1996. Vaccination with herpes simplex virus type 1 glycoprotein K impairs clearance of virus from the trigeminal ganglia resulting in chronic infection. Virology 224, 330-333; Ghiasi, H., Cai, S., Slanina, S., Nesburn, A. B., Wechsler, S.L., 1997. Nonneutralizing antibody against the glycoprotein K of herpes simplex virus type-1 exacerbates herpes simplex virus type-1-induced corneal scarring in various virus-mouse strain combinations. Invest. Ophthalmol. Vis. Sci. 38, 1213-1221; Ghiasi, H., Hofman, F.M., Cai, S., Perng, G.C., Nesburn, A.B., Wechsler, S.L., 1999. Vaccination with different HSV-1 glycoproteins induces different patterns of ocular cytokine responses following HSV-1 challenge of vaccinated mice. Vaccine 17, 2576-2582). In the studies reported here, we investigated the hypothesis that anti-gK serum produces antibody-dependent enhancement (ADE) of ocular HSV-1 infection. We found that gK vaccinated mice had significantly higher HSV-1 titers in their eyes than gD or mock-vaccinated mice and that anti-gK sera enhanced HSV-1 infection in the macrophage cell line U937. In addition, passive transfer of anti-gK sera to naive mice 24 h prior to ocular HSV-1 challenge also increased viral replication. These results were consistent with ADE of HSV-1 by sera to gK. This suggests that the severely exacerbated corneal disease seen following HSV-1 ocular challenge of gK vaccinated mice is a result of ADE. The ability of gK sera to cause harmful ADE may impact HSV-1 vaccine development.
Collapse
Affiliation(s)
- H Ghiasi
- Ophthalmology Research, Cedars-Sinai Burn and Allen Research Institute, CSMC-Davis Bldg., Room 5072, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| | | | | | | |
Collapse
|
7
|
Ong HKA, Ali AM, Omar AR, Yusoff K. Cloning and expression of the HN gene from the velogenic viscerotropic Newcastle disease virus strain AF2240 in Sf9 insect cells. Cytotechnology 2000; 32:243-51. [PMID: 19002985 PMCID: PMC3449894 DOI: 10.1023/a:1008136326756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The haemagglutinin-neuraminidase (HN) gene ofNewcastle disease virus (NDV) strain AF2240, amplifiedfrom the viral genomic RNA ( approximately 1.8 kb) was directionallycloned and inserted into a baculovirus expressionvector system. The recombinant glycoprotein expressedin Spodoptera frugiperda (Sf9) cellsshowed haemagglutinin (HA), neuraminidase (NA) andhemadsorption activities. HA activity was detected inboth extra- and intra-cellular recombinant HN(recHNAF2240) samples. In addition, both HA andhemadsorption activities were inhibited by polyclonalanti-NDV sera. Furthermore, significant expression ofthe recombinant protein was observed on the surface ofinfected cells. SDS-PAGE analysis revealed thepresence of visually distinguishable bands between the70 and 80 kDa in size that were absent in thewild-type samples. Western blot analysis showed thatthe distinct approximately 63 kDa band and a approximately 75 kDa bandcorresponded to the unglycosylated and glycosylated HNglycoprotein respectively as reported in anotherstudy. These observations indicated that the HNrecombinant protein was not only expressed on thesurface of the infected cells as well as with theviral coat protein, but also appears to be functional.
Collapse
Affiliation(s)
- H. K. A. Ong
- Department of Biochemistry and Microbiology, Universiti Putra Malaysia, 434400 Serdang, Selangor, Malaysia
| | - A. M. Ali
- Department of Biotechnology, Universiti Putra Malaysia, 434400 Serdang, Selangor, Malaysia
| | - A. R. Omar
- Department of Veterinary Pathology and Microbiology, Universiti Putra Malaysia, 434400 Serdang, Selangor, Malaysia
| | - K. Yusoff
- Department of Biochemistry and Microbiology, Universiti Putra Malaysia, 434400 Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
Sin JI, Ayyavoo V, Boyer J, Kim J, Ciccarelli RB, Weiner DB. Protective immune correlates can segregate by vaccine type in a murine herpes model system. Int Immunol 1999; 11:1763-73. [PMID: 10545480 DOI: 10.1093/intimm/11.11.1763] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A central tenet of vaccine development is to identify immune correlates of protection. Both plasmid-encoded gD as well as recombinant protein gD can protect mice from lethal herpes simplex virus (HSV) challenge. It is known that different vaccine modalities should induce different immune phenotypes. Yet, paradoxically, it is also thought that the basis for protection should rely on exploitation of vulnerabilities of the pathogen and therefore that the overlapping properties of these different vaccines would reveal insight into common immune mechanisms responsible for protection. We sought to investigate this question by comparing two different vaccine modalities in the HSV-2 mouse model. We observed that gD protein was a strong inducer of T(h)2-type immune responses, and overall antibody titers of IgG, IgE and IgA were significantly higher than those induced by plasmid gD vaccines. In contrast, the plasmid gD vaccine induced a strong T(h)1 bias. Following high-dose challenge the gD protein was most effective at providing protection. However, at lower lethal dose challenge, while both vaccines were protective with regards to survival, only the plasmid-vaccinated animals were protected from HSV-2 infection-induced morbidity. These studies suggest that these different vaccine modalities induce protection through unique non-overlapping mechanisms, supporting that vaccine correlates are associated with the types of immunogen rather than solely the pathogen.
Collapse
Affiliation(s)
- J I Sin
- Department of Pathology and Laboratory Medicine, 505 Stellar-Chance Lab, University of Pennsylvania, 422 Curie Drive, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
9
|
Sin JI, Bagarazzi M, Pachuk C, Weiner DB. DNA priming-protein boosting enhances both antigen-specific antibody and Th1-type cellular immune responses in a murine herpes simplex virus-2 gD vaccine model. DNA Cell Biol 1999; 18:771-9. [PMID: 10541436 DOI: 10.1089/104454999314917] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has previously been reported that herpes simplex virus (HSV)-2 gD DNA vaccine preferentially induces T-helper (Th) 1-type cellular immune responses, whereas the literature supports the view that subunit vaccines tend to induce potent antibody responses, supporting a Th2 bias. Here, using an HSV gD vaccine model, we investigated whether priming and boosting with a DNA or protein vaccine could induce both potent antibody and Th1-type cellular immune responses. When animals were primed with DNA and boosted with protein, both antibody and Th-cell proliferative responses were significantly enhanced. Furthermore, production of Th1-type cytokines (interleukin-2, interferon-gamma) was enhanced by DNA priming-protein boosting. In contrast, protein priming-DNA boosting produced antibody levels similar to those following protein-protein vaccination but failed to further enhance Th-cell proliferative responses or cytokine production. DNA priming-protein boosting resulted in an increased IgG2a isotype (a Th1 indicator) profile, similar to that induced by DNA-DNA vaccination, whereas protein priming-DNA boosting caused an increased IgG1 isotype (a Th2 indicator) profile similar to that seen after protein-protein vaccination. This result indicates that preferential induction of IgG1 or IgG2a isotype is determined by the type of priming vaccine used. Thus, this study suggests that HSV DNA priming-protein boosting could elicit both potent Th1-type cellular immune responses and antibody responses, both of which likely are important for protection against HSV infection.
Collapse
Affiliation(s)
- J I Sin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
10
|
Sin JI, Kim JJ, Arnold RL, Shroff KE, McCallus D, Pachuk C, McElhiney SP, Wolf MW, Pompa-de Bruin SJ, Higgins TJ, Ciccarelli RB, Weiner DB. IL-12 Gene as a DNA Vaccine Adjuvant in a Herpes Mouse Model: IL-12 Enhances Th1-Type CD4+ T Cell-Mediated Protective Immunity Against Herpes Simplex Virus-2 Challenge. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.5.2912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
IL-12 has been shown to enhance cellular immunity in vitro and in vivo. Recent reports have suggested that combining DNA vaccine approach with immune stimulatory molecules delivered as genes may significantly enhance Ag-specific immune responses in vivo. In particular, IL-12 molecules could constitute an important addition to a herpes vaccine by amplifying specific immune responses. Here we investigate the utility of IL-12 cDNA as an adjuvant for a herpes simplex virus-2 (HSV-2) DNA vaccine in a mouse challenge model. Direct i.m. injection of IL-12 cDNA induced activation of resting immune cells in vivo. Furthermore, coinjection with IL-12 cDNA and gD DNA vaccine inhibited both systemic gD-specific Ab and local Ab levels compared with gD plasmid vaccination alone. In contrast, Th cell proliferative responses and secretion of cytokines (IL-2 and IFN-γ) and chemokines (RANTES and macrophage inflammatory protein-1α) were significantly increased by IL-12 coinjection. However, the production of cytokines (IL-4 and IL-10) and chemokine (MCP-1) was inhibited by IL-12 coinjection. IL-12 coinjection with a gD DNA vaccine showed significantly better protection from lethal HSV-2 challenge compared with gD DNA vaccination alone in both inbred and outbred mice. This enhanced protection appears to be mediated by CD4+ T cells, as determined by in vivo CD4+ T cell deletion. Thus, IL-12 cDNA as a DNA vaccine adjuvant drives Ag-specific Th1 type CD4+ T cell responses that result in reduced HSV-2-derived morbidity as well as mortality.
Collapse
Affiliation(s)
- Jeong-Im Sin
- *Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Jong J. Kim
- *Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | | | | | | | | | | | | | | | | | | | - David B. Weiner
- *Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
11
|
Nesburn AB, Slanina S, Burke RL, Ghiasi H, Bahri S, Wechsler SL. Local periocular vaccination protects against eye disease more effectively than systemic vaccination following primary ocular herpes simplex virus infection in rabbits. J Virol 1998; 72:7715-21. [PMID: 9733807 PMCID: PMC110076 DOI: 10.1128/jvi.72.10.7715-7721.1998] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccination of experimental animals can provide efficient protection against ocular herpes simplex virus type 1 (HSV-1) challenge. Although it is suspected that local immune responses are important in protection against ocular HSV-1 infection, no definitive studies have been done to determine if local ocular vaccination would produce more efficacious protection against HSV-1 ocular challenge than systemic vaccination. To address this question, we vaccinated groups of rabbits either systemically or periocularly with recombinant HSV-2 glycoproteins B (gB2) and D (gD2) in MF59 emulsion or with live KOS (a nonneurovirulent strain of HSV-1). Three weeks after the final vaccination, all eyes were challenged with McKrae (a virulent, eye disease-producing strain of HSV-1). Systemic vaccination with either HSV-1 KOS or gB2/gD2 in MF59 did not provide significant protection against any of the four eye disease parameters measured (conjunctivitis, iritis, epithelial keratitis, and corneal clouding). In contrast, periocular vaccination with gB2/gD2 in MF59 provided significant protection against conjunctivitis and iritis, while ocular vaccination with live HSV-1 KOS provided significant protection against all four parameters. Thus, local ocular vaccination provided better protection than systemic vaccination against eye disease following ocular HSV-1 infection. Since local vaccination should produce a stronger local immune response than systemic vaccination, these results suggest that the local ocular immune response is very important in protecting against eye disease due to primary HSV-1 infection. Thus, for clinical protection against primary HSV-1-induced corneal disease, a local ocular vaccine may prove more effective than systemic vaccination.
Collapse
Affiliation(s)
- A B Nesburn
- Ophthalmology Research Laboratories, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
12
|
Ghiasi H, Nesburn AB, Wechsler SL. Vaccination with a cocktail of seven recombinantly expressed HSV-1 glycoproteins protects against ocular HSV-1 challenge more efficiently than vaccination with any individual glycoprotein. Vaccine 1996; 14:107-12. [PMID: 8852405 DOI: 10.1016/0264-410x(95)00169-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Our previous studies have shown that of seven HSV-1 glycoproteins (gB, gC, gD, gE, gG, gH and gI) individually expressed in baculovirus, vaccination with gD provides the best protection against HSV-1 challenge. To establish whether vaccination with a mixture of these seven expressed glycoproteins would provide better protection against HSV-1 challenge than vaccination with gD alone, we determined the level of protection afforded by vaccination with a cocktail of the seven expressed glycoproteins. The amount of each of the seven expressed glycoproteins in the mixture was equivalent to one-seventh the amount of gD used in the gD alone vaccination. Thus, the total amount of glycoprotein was the same for the cocktail and gD alone vaccine. For neutralizing antibody titer, delayed-type hypersensitivity (DTH), and survival following lethal challenge, no difference was observed between mice vaccinated with all seven glycoproteins and those vaccinated with gD. However, for other criteria, vaccination with all seven glycoproteins appeared to provide better protection than vaccination with gD. Following ocular challenge, virus was not detected at any time in the tears of mice vaccinated with all seven glycoproteins. In contrast, virus was detected in the tears of gD vaccinated mice for up to 3 days post challenge. Mock vaccinated mice had virus in their tears for as long as 10 days. Mice vaccinated with all seven glycoproteins had no eye disease, while gD vaccinated mice had a significant amount of blepharitis. Finally, compared to gD vaccinated mice, the mice vaccinated with all seven glycoproteins were more efficiently protected against the establishment of HSV-1 latency following ocular infection. Our results therefore suggest that while for some protective criteria there was no significant difference between vaccination with gD or seven glycoproteins, vaccination with seven glycoproteins was more efficient in protecting challenged mice against some forms of eye disease, the duration of infection and the establishment of latency.
Collapse
Affiliation(s)
- H Ghiasi
- Ophthalmology Research, Cedars-Sinai Medical Center Research Institute, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
13
|
Griffiths CM. Overview: Biologicals and Immunologicals Baculovirus expression vectors: advances and applications. Expert Opin Ther Pat 1994. [DOI: 10.1517/13543776.4.9.1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Nesburn AB, Burke RL, Ghiasi H, Slanina S, Bahri S, Wechsler SL. Vaccine therapy for ocular herpes simplex virus (HSV) infection: periocular vaccination reduces spontaneous ocular HSV type 1 shedding in latently infected rabbits. J Virol 1994; 68:5084-92. [PMID: 8035508 PMCID: PMC236451 DOI: 10.1128/jvi.68.8.5084-5092.1994] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Periocular vaccination of rabbits with preexisting herpes simplex virus type 1 (HSV-1) latent infection with recombinant HSV-2 glycoproteins B and D (gB2 and gD2) plus adjuvant significantly reduced ocular viral shedding. Rabbits were infected in both eyes with HSV-1 strain McKrae. Following HSV-1 infection and the establishment of latency (28 days postinfection), rabbits were given a periocular subconjunctival vaccination three times at 3-week intervals. Beginning 3 weeks after the final vaccination, tear films were collected daily and cultured to detect the presence of HSV-1 and determine the spontaneous HSV-1 ocular shedding rates. Periocular vaccination increased the mean HSV-1 serum neutralizing antibody titer to fivefold above that seen in mock-vaccinated latently infected rabbits. gB enzyme-linked immunosorbent assay (ELISA) antibody titers were increased approximately 8-fold, and gD ELISA antibody titers were increased 60-fold. These increases were all statistically significant (P < 0.0001). In two independent experiments, vaccination reduced the spontaneous shedding rate by approximately 2.5-fold (P < 0.0004). In addition, the percentage of eyes that never shed virus during the 6 week postvaccination test period increased threefold (20% in controls versus 60% in vaccinated animals; P < 0.007). These results show that spontaneous ocular shedding of HSV-1 in latently infected rabbits can be significantly reduced by local periocular vaccination. This is the first report in any animal model of a successful therapeutic vaccine against recurrent HSV-1 ocular shedding. These results support the concept that development of a therapeutic vaccine for ocular HSV-1 recurrence in humans is possible.
Collapse
Affiliation(s)
- A B Nesburn
- Cedars-Sinai Medical Center, Los Angeles, California 90048
| | | | | | | | | | | |
Collapse
|
15
|
Ghiasi H, Kaiwar R, Nesburn AB, Slanina S, Wechsler SL. Expression of seven herpes simplex virus type 1 glycoproteins (gB, gC, gD, gE, gG, gH, and gI): comparative protection against lethal challenge in mice. J Virol 1994; 68:2118-26. [PMID: 8138996 PMCID: PMC236686 DOI: 10.1128/jvi.68.4.2118-2126.1994] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have constructed recombinant baculoviruses individually expressing seven of the herpes simplex virus type 1 (HSV-1) glycoproteins (gB, gC, gD, gE, gG, gH, and gI). Vaccination of mice with gB, gC, gD, gE, or gI resulted in production of high neutralizing antibody titers to HSV-1 and protection against intraperitoneal and ocular challenge with lethal doses of HSV-1. This protection was statistically significant and similar to the protection provided by vaccination with live nonvirulent HSV-1 (90 to 100% survival). In contrast, vaccination with gH produced low neutralizing antibody titers and no protection against lethal HSV-1 challenge. Vaccination with gG produced no significant neutralizing antibody titer and no protection against ocular challenge. However, gG did provide modest, but statistically significant, protection against lethal intraperitoneal challenge (75% protection). Compared with the other glycoproteins, gG and gH were also inefficient in preventing the establishment of latency. Delayed-type hypersensitivity responses to HSV-1 at day 3 were highest in gG-, gH-, and gE-vaccinated mice, while on day 6 mice vaccinated with gC, gE, and gI had the highest delayed-type hypersensitivity responses. All seven glycoproteins produced lymphocyte proliferation responses, with the highest response being seen with gG. The same five glycoproteins (gB, gC, gD, gE, and gI) that induced the highest neutralization titers and protection against lethal challenge also induced some killer cell activity. The results reported here therefore suggest that in the mouse protection against lethal HSV-1 challenge and the establishment of latency correlate best with high preexisting neutralizing antibody titers, although there may also be a correlation with killer cell activity.
Collapse
Affiliation(s)
- H Ghiasi
- Cedars-Sinai Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | | | | | | | | |
Collapse
|
16
|
Ghiasi H, Slanina S, Nesburn AB, Wechsler SL. Characterization of baculovirus-expressed herpes simplex virus type 1 glycoprotein K. J Virol 1994; 68:2347-54. [PMID: 8139020 PMCID: PMC236711 DOI: 10.1128/jvi.68.4.2347-2354.1994] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The DNA region encoding the complete herpes simplex virus type 1 (HSV-1) glycoprotein K (gK) was inserted into a baculovirus transfer vector, and recombinant viruses expressing gK were isolated. Four gK-related recombinant baculovirus-expressed peptides of 29, 35, 38, and 40 kDa were detected with polyclonal antibody to gK. The 35-, 38-, and 40-kDa species were susceptible to tunicamycin treatment, suggesting that they were glycosylated. The 38- and 40-kDa species corresponded to partially glycosylated precursor gK (pgK) and mature gK, respectively. The 29-kDa peptide probably represented a cleaved, unglycosylated peptide. The 35-kDa peptide probably represented a cleaved, glycosylated peptide that may be a precursor to pgK. Indirect immunofluorescence with polyclonal antibody to gK peptides indicated that the recombinant baculovirus-expressed gK was abundant on the surface of the insect cells in which it was expressed. Mice vaccinated with the baculovirus-expressed gK produced very low levels (< 1:10) of HSV-1 neutralizing antibody. Nonetheless, these mice were partially protected from lethal challenge with HSV-1 (75% survival). This protection was significant (P = 0.02). Despite some protection against death, gK-vaccinated mice showed no protection against the establishment of latency. Surprisingly, gK-vaccinated mice that were challenged ocularly with a stromal disease-producing strain of HSV-1 had significantly higher levels of ocular disease (herpes stromal keratitis) than did mock-vaccinated mice. In summary, this is the first report to show that vaccination with HSV-1 gK can provide protection against lethal HSV-1 challenge and that vaccination with an HSV-1 glycoprotein can significantly increase the severity of HSV-1-induced ocular disease.
Collapse
Affiliation(s)
- H Ghiasi
- Cedars-Sinai Medical Center Research Institute, Los Angeles, California 90048
| | | | | | | |
Collapse
|
17
|
Love DN, Bell CW, Pye D, Edwards S, Hayden M, Lawrence GL, Boyle D, Pye T, Whalley JM. Expression of equine herpesvirus 1 glycoprotein D by using a recombinant baculovirus. J Virol 1993; 67:6820-3. [PMID: 8411384 PMCID: PMC238125 DOI: 10.1128/jvi.67.11.6820-6823.1993] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Glycoprotein D (gD) of equine herpesvirus 1 (EHV-1) was expressed at the surface of insect cells infected by a recombinant baculovirus. EHV-1 gD was detected as multiple forms (56, 52, and 48 kDa) from 18 to 96 h postinfection. Laboratory animals inoculated with the recombinant EHV-1 gD developed neutralizing antibody responses against both EHV-1 and EHV-4.
Collapse
Affiliation(s)
- D N Love
- Department of Veterinary Pathology, University of Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|