1
|
Li YY, Kuroki K, Shimakami T, Murai K, Kawaguchi K, Shirasaki T, Nio K, Sugimoto S, Nishikawa T, Okada H, Orita N, Takayama H, Wang Y, Thi Bich PD, Ishida A, Iwabuchi S, Hashimoto S, Shimaoka T, Tabata N, Watanabe-Takahashi M, Nishikawa K, Yanagawa H, Seiki M, Matsushima K, Yamashita T, Kaneko S, Honda M. Hepatitis B Virus Utilizes a Retrograde Trafficking Route via the Trans-Golgi Network to Avoid Lysosomal Degradation. Cell Mol Gastroenterol Hepatol 2023; 15:533-558. [PMID: 36270602 PMCID: PMC9868690 DOI: 10.1016/j.jcmgh.2022.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) infection is difficult to cure owing to the persistence of covalently closed circular viral DNA (cccDNA). We performed single-cell transcriptome analysis of newly established HBV-positive and HBV-negative hepatocellular carcinoma cell lines and found that dedicator of cytokinesis 11 (DOCK11) was crucially involved in HBV persistence. However, the roles of DOCK11 in the HBV lifecycle have not been clarified. METHODS The cccDNA levels were measured by Southern blotting and real-time detection polymerase chain reaction in various hepatocytes including PXB cells by using an HBV-infected model. The retrograde trafficking route of HBV capsid was investigated by super-resolution microscopy, proximity ligation assay, and time-lapse analysis. The downstream molecules of DOCK11 and underlying mechanism were examined by liquid chromatography-tandem mass spectrometry, immunoblotting, and enzyme-linked immunosorbent assay. RESULTS The cccDNA levels were strongly increased by DOCK11 overexpression and repressed by DOCK11 suppression. Interestingly, DOCK11 functionally associated with retrograde trafficking proteins in the trans-Golgi network (TGN), Arf-GAP with GTPase domain, ankyrin repeat, and pleckstrin homology domain-containing protein 2 (AGAP2), and ADP-ribosylation factor 1 (ARF1), together with HBV capsid, to open an alternative retrograde trafficking route for HBV from early endosomes (EEs) to the TGN and then to the endoplasmic reticulum (ER), thereby avoiding lysosomal degradation. Clinically, DOCK11 levels in liver biopsies from patients with chronic hepatitis B were significantly reduced by entecavir treatment, and this reduction correlated with HBV surface antigen levels. CONCLUSIONS HBV uses a retrograde trafficking route via EEs-TGN-ER for infection that is facilitated by DOCK11 and serves to maintain cccDNA. Therefore, DOCK11 is a potential therapeutic target to prevent persistent HBV infection.
Collapse
Affiliation(s)
- Ying-Yi Li
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kazuyuki Kuroki
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kazuhisa Murai
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Kazunori Kawaguchi
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Takayoshi Shirasaki
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Saiho Sugimoto
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Tomoki Nishikawa
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Noriaki Orita
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Hideo Takayama
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Ying Wang
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Phuong Doan Thi Bich
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Astuya Ishida
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takeshi Shimaoka
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | | | | | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Doshisha University, Kyoto, Japan
| | | | - Motoharu Seiki
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan; Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan.
| |
Collapse
|
2
|
Pérez-Vargas J, Teppa E, Amirache F, Boson B, Pereira de Oliveira R, Combet C, Böckmann A, Fusil F, Freitas N, Carbone A, Cosset FL. A fusion peptide in preS1 and the human protein disulfide isomerase ERp57 are involved in hepatitis B virus membrane fusion process. eLife 2021; 10:64507. [PMID: 34190687 PMCID: PMC8282342 DOI: 10.7554/elife.64507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Cell entry of enveloped viruses relies on the fusion between the viral and plasma or endosomal membranes, through a mechanism that is triggered by a cellular signal. Here we used a combination of computational and experimental approaches to unravel the main determinants of hepatitis B virus (HBV) membrane fusion process. We discovered that ERp57 is a host factor critically involved in triggering HBV fusion and infection. Then, through modeling approaches, we uncovered a putative allosteric cross-strand disulfide (CSD) bond in the HBV S glycoprotein and we demonstrate that its stabilization could prevent membrane fusion. Finally, we identified and characterized a potential fusion peptide in the preS1 domain of the HBV L glycoprotein. These results underscore a membrane fusion mechanism that could be triggered by ERp57, allowing a thiol/disulfide exchange reaction to occur and regulate isomerization of a critical CSD, which ultimately leads to the exposition of the fusion peptide.
Collapse
Affiliation(s)
- Jimena Pérez-Vargas
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Elin Teppa
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB) - UMR 7238, Paris, France.,Sorbonne Université, Institut des Sciences du Calcul et des Données (ISCD), Paris, France
| | - Fouzia Amirache
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Bertrand Boson
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Rémi Pereira de Oliveira
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Christophe Combet
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 - CNRS 5286 - Université Lyon 1 - Centre Léon Bérard, Lyon, France
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS-Université Lyon 1, Lyon, France
| | - Floriane Fusil
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Natalia Freitas
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB) - UMR 7238, Paris, France
| | - François-Loïc Cosset
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| |
Collapse
|
3
|
Herrscher C, Roingeard P, Blanchard E. Hepatitis B Virus Entry into Cells. Cells 2020; 9:cells9061486. [PMID: 32570893 PMCID: PMC7349259 DOI: 10.3390/cells9061486] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV), an enveloped partially double-stranded DNA virus, is a widespread human pathogen responsible for more than 250 million chronic infections worldwide. Current therapeutic strategies cannot eradicate HBV due to the persistence of the viral genome in a special DNA structure (covalently closed circular DNA, cccDNA). The identification of sodium taurocholate co-transporting polypeptide (NTCP) as an entry receptor for both HBV and its satellite virus hepatitis delta virus (HDV) has led to great advances in our understanding of the life cycle of HBV, including the early steps of infection in particular. However, the mechanisms of HBV internalization and the host factors involved in this uptake remain unclear. Improvements in our understanding of HBV entry would facilitate the design of new therapeutic approaches targeting this stage and preventing the de novo infection of naïve hepatocytes. In this review, we provide an overview of current knowledge about the process of HBV internalization into cells.
Collapse
Affiliation(s)
- Charline Herrscher
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France;
| | - Philippe Roingeard
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France;
- Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 37032 Tours, France
- Correspondence: (P.R.); (E.B.); Tel.: +33-2-3437-9646 (E.B.)
| | - Emmanuelle Blanchard
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France;
- Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 37032 Tours, France
- Correspondence: (P.R.); (E.B.); Tel.: +33-2-3437-9646 (E.B.)
| |
Collapse
|
4
|
Schulze RJ, Schott MB, Casey CA, Tuma PL, McNiven MA. The cell biology of the hepatocyte: A membrane trafficking machine. J Cell Biol 2019; 218:2096-2112. [PMID: 31201265 PMCID: PMC6605791 DOI: 10.1083/jcb.201903090] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022] Open
Abstract
The liver performs numerous vital functions, including the detoxification of blood before access to the brain while simultaneously secreting and internalizing scores of proteins and lipids to maintain appropriate blood chemistry. Furthermore, the liver also synthesizes and secretes bile to enable the digestion of food. These diverse attributes are all performed by hepatocytes, the parenchymal cells of the liver. As predicted, these cells possess a remarkably well-developed and complex membrane trafficking machinery that is dedicated to moving specific cargos to their correct cellular locations. Importantly, while most epithelial cells secrete nascent proteins directionally toward a single lumen, the hepatocyte secretes both proteins and bile concomitantly at its basolateral and apical domains, respectively. In this Beyond the Cell review, we will detail these central features of the hepatocyte and highlight how membrane transport processes play a key role in healthy liver function and how they are affected by disease.
Collapse
Affiliation(s)
- Ryan J Schulze
- Division of Gastroenterology and Hepatology, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Micah B Schott
- Division of Gastroenterology and Hepatology, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Carol A Casey
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE
- Departments of Internal Medicine and Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | | | - Mark A McNiven
- Division of Gastroenterology and Hepatology, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| |
Collapse
|
5
|
Regulatory effect of humoral milieu on the viral DNA and surface antigen expression of hepatitis B virus (HBV) in vitro. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0015-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Abstract
Hepatitis B virus is one of the smallest human pathogens, encoded by a 3,200-bp genome with only four open reading frames. Yet the virus shows a remarkable diversity in structural features, often with the same proteins adopting several conformations. In part, this is the parsimony of viruses, where a minimal number of proteins perform a wide variety of functions. However, a more important theme is that weak interactions between components as well as components with multiple conformations that have similar stabilities lead to a highly dynamic system. In hepatitis B virus, this is manifested as a virion where the envelope proteins have multiple structures, the envelope-capsid interaction is irregular, and the capsid is a dynamic compartment that actively participates in metabolism of the encapsidated genome and carries regulated signals for intracellular trafficking.
Collapse
Affiliation(s)
| | - Adam Zlotnick
- Department of Molecular and Cellular Biology, Indiana University, Bloomington, Indiana 47405;
| |
Collapse
|
7
|
Zhang Z, Zehnder B, Damrau C, Urban S. Visualization of hepatitis B virus entry - novel tools and approaches to directly follow virus entry into hepatocytes. FEBS Lett 2016; 590:1915-26. [PMID: 27149321 DOI: 10.1002/1873-3468.12202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/14/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) is a widespread human pathogen, responsible for chronic infections of ca. 240 million people worldwide. Until recently, the entry pathway of HBV into hepatocytes was only partially understood. The identification of human sodium taurocholate cotransporting polypeptide (NTCP) as a bona fide receptor of HBV has provided us with new tools to investigate this pathway in more details. Combined with advances in virus visualization techniques, approaches to directly visualize HBV cell attachment, NTCP interaction, virion internalization and intracellular transport are now becoming feasible. This review summarizes our current understanding of how HBV specifically enters hepatocytes, and describes possible visualization strategies applicable for a deeper understanding of the underlying cell biological processes.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany
| | - Benno Zehnder
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany
| | - Christine Damrau
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany.,German Center of Infectious Diseases (DZIF), Heidelberg, Germany
| |
Collapse
|
8
|
Hayes CN, Zhang Y, Makokha GN, Hasan MZ, Omokoko MD, Chayama K. Early events in hepatitis B virus infection: From the cell surface to the nucleus. J Gastroenterol Hepatol 2016; 31:302-9. [PMID: 26414381 DOI: 10.1111/jgh.13175] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2015] [Indexed: 12/12/2022]
Abstract
While most adults are able to clear acute hepatitis B virus (HBV) infection, chronic HBV infection is recalcitrant to current therapy because of the persistence of covalently closed circular DNA in the nucleus. Complete clearance of the virus in these patients is rare, and long-term therapy with interferon and/or nucleoside analogues may be required in an attempt to suppress viral replication and prevent progressive liver damage. The difficulty of establishing HBV infection in cell culture and experimental organisms has hindered efforts to elucidate details of the HBV life cycle, but it has also revealed the importance of the cellular microenvironment required for HBV binding and entry. Recent studies have demonstrated an essential role of sodium-taurocholate cotransporting polypeptide as a functional receptor in HBV infection, which has facilitated the development of novel infection systems and opened the way for more detailed understanding of the early steps of HBV infection as well as a potential new therapeutic target. However, many gaps remain in understanding of how HBV recognizes and attaches to hepatocytes prior to binding to sodium-taurocholate cotransporting polypeptide, as well as events that are triggered after binding, including entry into the cell, intracellular transport, and passage through the nuclear pore complex. This review summarizes current knowledge of the initial stages of HBV infection leading to the establishment of covalently closed circular DNA in the nucleus.
Collapse
Affiliation(s)
- C Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan.,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Yizhou Zhang
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Grace Naswa Makokha
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Md Zobaer Hasan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Magot D Omokoko
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan.,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
9
|
Liu Q, Huang J, Jia R, Wang M, Zhu D, Chen S, Liu M, Yin Z, Wang Y, Cheng A. The pregenome/C RNA of duck hepatitis B virus is not used for translation of core protein during the early phase of infection in vitro. Virus Res 2015; 196:13-9. [PMID: 25449362 DOI: 10.1016/j.virusres.2014.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
Over the course of duck hepatitis B virus (DHBV) replication, one type of RNA (pregenome/C RNA, 3.5 kb) that corresponds to the whole genome of DHBV is generated from the transcription of viral cccDNA. Previous work has proposed three functions for the pregenome/C RNA: it can serve as the pregenome and be packaged into the core protein during the process of replication, and it encodes the mRNA for both the capsid protein and the viral polymerase. However, little is known about the timing of these functions during the different stages of viral infection. In this study, a reverse transcription quantitative real-time PCR assay was developed to analyze the dynamic transcription process of the pregenome/C RNA. The dynamic expression of the core protein was investigated using an indirect immunofluorescence assay (IFA) and by western blot analysis. The generation of pregenome/C RNA began at 12 h post infection and peaked at 20 h post infection; however, the core protein was not detectable until 24h post infection. These results demonstrate that the core protein appeared approximately 12h later than the pregenome/C RNA. These results suggest that the DHBV pregenome/C RNA is not used for the translation of the viral core protein during the early stages of infection.
Collapse
Affiliation(s)
- Qiang Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China).
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China)
| | - Dekang Zhu
- Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China)
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China)
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China)
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China)
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China)
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China).
| |
Collapse
|
10
|
Regulation of hepatitis B virus infection by Rab5, Rab7, and the endolysosomal compartment. J Virol 2013; 87:6415-27. [PMID: 23536683 DOI: 10.1128/jvi.00393-13] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Despite important progress toward deciphering human hepatitis B virus (HBV) entry into host cells, many aspects of the early steps of the life cycle remained completely obscure. Following endocytosis, HBV must travel through the complex network of the endocytic pathway to reach the cell nucleus and initiate replication. In addition to guiding the viral particles to the replication site, the endosomal vesicles may play a crucial role in infection, providing the appropriate environment for virus uncoating and nucleocapsid release. In this work, we investigated the trafficking of HBV particles internalized in permissive cells. Expression of key Rab proteins, involved in specific pathways leading to different intracellular locations, was modulated in HepaRG cells, using a stable and inducible short hairpin RNA (shRNA) expression system. The trafficking properties of the newly developed cells were demonstrated by confocal microscopy and flow cytometry using specific markers. The results showed that HBV infection strongly depends on Rab5 and Rab7 expression, indicating that HBV transport from early to mature endosomes is required for a step in the viral life cycle. This may involve reduction of disulfide bond-linked envelope proteins, as alteration of the redox potential of the endocytic pathway resulted in inhibition of infection. Subcellular fractionation of HBV-infected cells showed that viral particles are further transported to lysosomes. Intriguingly, infection was not dependent on the lysosomal activity, suggesting that trafficking to this compartment is a "dead-end" route. Together, these data add to our understanding of the HBV-host cell interactions controlling the early stages of infection.
Collapse
|
11
|
Glycoprotein H and α4β1 integrins determine the entry pathway of alphaherpesviruses. J Virol 2013; 87:5937-48. [PMID: 23514881 DOI: 10.1128/jvi.03522-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses enter cells either by direct fusion at the plasma membrane or from within endosomes, depending on the cell type and receptor(s). We investigated two closely related herpesviruses of horses, equine herpesvirus type 1 (EHV-1) and EHV-4, for which the cellular and viral determinants routing virus entry are unknown. We show that EHV-1 enters equine epithelial cells via direct fusion at the plasma membrane, while EHV-4 does so via an endocytic pathway, which is dependent on dynamin II, cholesterol, caveolin 1, and tyrosine kinase activity. Exchange of glycoprotein H (gH) between EHV-1 and EHV-4 resulted in rerouting of EHV-1 to the endocytic pathway, as did blocking of α4β1 integrins on the cell surface. Furthermore, a point mutation in the SDI integrin-binding motif of EHV-1 gH also directed EHV-1 to the endocytic pathway. Cumulatively, we show that viral gH and cellular α4β1 integrins are important determinants in the choice of alphaherpesvirus cellular entry pathways.
Collapse
|
12
|
Chojnacki J, Grgacic EVL. Enveloped viral fusion: insights into the fusion of hepatitis B viruses. Future Virol 2008. [DOI: 10.2217/17460794.3.6.543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Viral fusion, the mechanism by which viruses gain entry into the host cell, is a key step in the replication cycle and an important new target in antiviral therapy and vaccine strategies owing to the conservation of the envelope domains involved and their resistance to immune pressure. The fusion domains of HIV-1 have been studied intensively resulting in the potent antiviral agent T20 and the identification of broadly neutralizing antibody epitopes for vaccine development. Another chronic disease-causing virus, HBV, requires the identification of new antiviral agents to deal with the disease burden of 350 million chronically-infected individuals worldwide, 20% of whom will develop liver cancer. The aim of this review is to bring together basic knowledge on the envelope signatures, mechanisms and strategies for the study of viral fusion and how that knowledge has been applied to the study of hepadnaviral fusion.
Collapse
Affiliation(s)
- Jakub Chojnacki
- Abteilung Virologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Elizabeth VL Grgacic
- Macfarlane Burnet Institute for Medical Research & Public Health, 85 Commercial Road, Melbourne, 3004, Australia
| |
Collapse
|
13
|
Funk A, Mhamdi M, Will H, Sirma H. Avian hepatitis B viruses: Molecular and cellular biology, phylogenesis, and host tropism. World J Gastroenterol 2007; 13:91-103. [PMID: 17206758 PMCID: PMC4065881 DOI: 10.3748/wjg.v13.i1.91] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human hepatitis B virus (HBV) and the duck hepatitis B virus (DHBV) share several fundamental features. Both viruses have a partially double-stranded DNA genome that is replicated via a RNA intermediate and the coding open reading frames (ORFs) overlap extensively. In addition, the genomic and structural organization, as well as replication and biological characteristics, are very similar in both viruses. Most of the key features of hepadnaviral infection were first discovered in the DHBV model system and subsequently confirmed for HBV. There are, however, several differences between human HBV and DHBV. This review will focus on the molecular and cellular biology, evolution, and host adaptation of the avian hepatitis B viruses with particular emphasis on DHBV as a model system.
Collapse
Affiliation(s)
- Anneke Funk
- Department of General Virology, Heinrich-Pette-Institut fur experimentelle Virologie und Immunologie an der Universitat Hamburg, PO Box 201652, Hamburg 20206, Germany
| | | | | | | |
Collapse
|
14
|
Abstract
Hepadnaviridae is a family of hepatotropic DNA viruses that is divided into the genera orthohepadnavirus of mammals and avihepadnavirus of birds. All members of this family can cause acute and chronic hepatic infection, which in the case of human hepatitis B virus (HBV) constitutes a major global health problem. Although our knowledge about the molecular biology of these highly liver-specific viruses has profoundly increased in the last two decades, the mechanisms of attachment and productive entrance into the differentiated host hepatocytes are still enigmatic. The difficulties in studying hepadnaviral entry were primarily caused by the lack of easily accessible in vitro infection systems. Thus, for more than twenty years, differentiated primary hepatocytes from the respective species were the only in vitro models for both orthohepadnaviruses (e.g. HBV) and avihepadnaviruses (e.g. duck hepatitis B virus [DHBV]). Two important discoveries have been made recently regarding HBV: (1) primary hepatocytes from tree-shrews; i.e., Tupaia belangeri, can be substituted for primary human hepatocytes, and (2) a human hepatoma cell line (HepaRG) was established that gains susceptibility for HBV infection upon induction of differentiation in vitro. A number of potential HBV receptor candidates have been described in the past, but none of them have been confirmed to function as a receptor. For DHBV and probably all other avian hepadnaviruses, carboxypeptidase D (CPD) has been shown to be indispensable for infection, although the exact role of this molecule is still under debate. While still restricted to the use of primary duck hepatocytes (PDH), investigations performed with DHBV provided important general concepts on the first steps of hepadnaviral infection. However, with emerging data obtained from the new HBV infection systems, the hope that DHBV utilizes the same mechanism as HBV only partially held true. Nevertheless, both HBV and DHBV in vitro infection systems will help to: (1) functionally dissect the hepadnaviral entry pathways, (2) perform reverse genetics (e.g. test the fitness of escape mutants), (3) titrate and map neutralizing antibodies, (4) improve current vaccines to combat acute and chronic infections of hepatitis B, and (5) develop entry inhibitors for future clinical applications.
Collapse
Affiliation(s)
- Dieter Glebe
- Institute of Medical Virology, Justus-Liebig University of Giessen, Frankfurter Strasse 107, D-35392 Giessen, Germany.
| | | |
Collapse
|
15
|
Funk A, Mhamdi M, Hohenberg H, Will H, Sirma H. pH-independent entry and sequential endosomal sorting are major determinants of hepadnaviral infection in primary hepatocytes. Hepatology 2006; 44:685-93. [PMID: 16941679 DOI: 10.1002/hep.21297] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Entry and intracellular transport of hepatitis B viruses have several unusual, largely unknown aspects. In this study, we explored the mode of virus entry using the duck hepatitis B virus (DHBV) and the primary hepatocyte infection model. Upon internalization, viral particles were enriched in an endosomal compartment, as revealed by biochemical and ultrastructural analysis. Virus-containing vesicles harbored early endosome markers. Kinetic analysis revealed time-dependent partial translocation of viral DNA from endosomes into the cytosol. This was strongly reduced by inhibition of vacuolar ATPase; (vATPase) activity with bafilomycin A1 and resulted in abortive infection and prevention of cccDNA formation. Inactivation of vATPase induced accumulation and stabilization of incoming viral particles in endosomes, presumably by blocking endosomal carrier vesicle-mediated cargo transport and sorting. Although neutralization of the endomembrane organelles alone led to stabilization of incoming viral particles, it did not inhibit virus infection. In line with this, a pH-dependent ectopic virus fusion at the plasma membrane could not be artificially induced. This provided further evidence for a pH-neutral translocation mechanism. Endosomal membrane potential was required for viral infection because cotreatment of cells with monensin partially overcame the inhibitory effect of bafilomycin A1. In conclusion, hepatitis B viral infection is mediated by a novel cellular entry mechanism with features different from that of all other known viruses.
Collapse
Affiliation(s)
- Anneke Funk
- Heinrich-Pette-Institut für experimentelle Virologie und Immunologie an der Universität Hamburg, PO Box 201652, 20206 Hamburg, Germany
| | | | | | | | | |
Collapse
|
16
|
Chojnacki J, Anderson DA, Grgacic EVL. A hydrophobic domain in the large envelope protein is essential for fusion of duck hepatitis B virus at the late endosome. J Virol 2006; 79:14945-55. [PMID: 16282493 PMCID: PMC1287569 DOI: 10.1128/jvi.79.23.14945-14955.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The duck hepatitis B virus (DHBV) envelope is comprised of two transmembrane (TM) proteins, the large (L) and the small (S), that assemble into virions and subviral particles. Secondary-structure predictions indicate that L and S have three alpha-helical, membrane-spanning domains, with TM1 predicted to act as the fusion peptide following endocytosis of DHBV into the hepatocyte. We used bafilomycin A1 during infection of primary duck hepatocytes to show that DHBV must be trafficked from the early to the late endosome for fusion to occur. Alanine substitution mutations in TM1 of L and S, which lowered TM1 hydrophobicity, were used to examine the role of TM1 in infectivity. The high hydrophobicity of the TM1 domain of L, but not of S, was shown to be essential for virus infection at a step downstream of receptor binding and virus internalization. Using wild-type and mutant synthetic peptides, we demonstrate that the hydrophobicity of this domain is required for the aggregation and the lipid mixing of phospholipid vesicles, supporting the role of TM1 as the fusion peptide. While lipid mixing occurred at pH 7, the kinetics of insertion of the fusion peptide was increased at pH 5, consistent with the location of DHBV in the late-endosome compartment and previous studies of the nonessential role of low pH for infectivity. Exchange of the TM1 of DHBV with that of hepatitis B virus yielded functional, infectious DHBV particles, suggesting that TM1 of all of the hepadnaviruses act similarly in the fusion mechanism.
Collapse
Affiliation(s)
- J Chojnacki
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | | | | |
Collapse
|
17
|
Milne RSB, Nicola AV, Whitbeck JC, Eisenberg RJ, Cohen GH. Glycoprotein D receptor-dependent, low-pH-independent endocytic entry of herpes simplex virus type 1. J Virol 2005; 79:6655-63. [PMID: 15890903 PMCID: PMC1112142 DOI: 10.1128/jvi.79.11.6655-6663.2005] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two herpes simplex virus type 1 (HSV-1) entry pathways have been described: direct fusion between the virion envelope and the plasma membrane, as seen on Vero cells, and low-pH-dependent endocytosis, as seen on CHO nectin-1 and HeLa cells. In this paper, we studied HSV entry into C10 murine melanoma cells and identified a third entry pathway for this virus. During entry into C10 cells, virion envelope glycoproteins rapidly became protected from the membrane-impermeable chemical cross-linker BS3 and from proteinase K. Protection was gD receptor dependent, and the time taken to detect protected protein was proportional to the rate of virus entry. Ultrastructural examination revealed that virions attached to the surface of C10 cells were localized to membrane invaginations, whereas those on the surface of receptor-negative B78 cells were peripherally attached. Virus entry into C10 cells was energy dependent, and intracellular enveloped virions were seen within membrane-bound vesicles consistent with endocytic entry. Entry was not inhibited by bafilomycin A1 or ammonium chloride, showing that passage of the virion through a low-pH environment was not required for infection. Resistance to similar reagents should therefore not be taken as proof of HSV entry by a nonendosomal pathway. These data define a novel gD receptor-dependent acid-independent endocytic entry pathway for HSV.
Collapse
Affiliation(s)
- Richard S B Milne
- Department of Microbiology, University of Pennsylvania, School of Dental Medicine, 215 Levy Building, 240 South 40th Street, Philadelphia, PA 19104-6002, USA.
| | | | | | | | | |
Collapse
|
18
|
Grgacic EVL, Anderson DA. St, a truncated envelope protein derived from the S protein of duck hepatitis B virus, acts as a chaperone for the folding of the large envelope protein. J Virol 2005; 79:5346-52. [PMID: 15827149 PMCID: PMC1082741 DOI: 10.1128/jvi.79.9.5346-5352.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 12/14/2004] [Indexed: 02/06/2023] Open
Abstract
Envelope proteins of hepadnaviruses undergo a unique folding mechanism which results in the posttranslational translocation of 50% of the large envelope protein (L) chains across the endoplasmic reticulum. This mechanism is essential for the eventual positioning of the receptor-binding domain on the surface of the virus particle and in duck hepatitis B virus (DHBV) is dependent on the small (S) envelope protein as part of the assembly process. In this study, we report the identification of a third envelope protein, St, derived from the S protein and carrying functions previously attributed to S. Antibody mapping and mutagenesis studies indicated St to be C terminally truncated, spanning the N-terminal transmembrane domain (TM1) plus the adjacent cysteine loop. We have previously shown that the mutation of two conserved polar residues in TM1 of S (SAA) eliminates L translocation and assembly. A plasmid expressing a functional equivalent of St was able to rescue assembly, demonstrating that this assembly defect is due to mutations of the corresponding residues in St and not in S per se. Immunofluorescence analysis showed that St directly affects L protein cellular localization. These results indicate that St acts as a viral chaperone for L folding, remaining associated with the DHBV envelope upon secretion. The presence of St at a molar ratio of half that of L suggests that it is St which regulates L translocation to 50%.
Collapse
Affiliation(s)
- Elizabeth V L Grgacic
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne 3004, Australia.
| | | |
Collapse
|
19
|
Schultz U, Grgacic E, Nassal M. Duck hepatitis B virus: an invaluable model system for HBV infection. Adv Virus Res 2005; 63:1-70. [PMID: 15530560 DOI: 10.1016/s0065-3527(04)63001-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ursula Schultz
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, D-79106 Freiburg, Germany
| | | | | |
Collapse
|
20
|
Funk A, Mhamdi M, Lin L, Will H, Sirma H. Itinerary of hepatitis B viruses: delineation of restriction points critical for infectious entry. J Virol 2004; 78:8289-300. [PMID: 15254201 PMCID: PMC446123 DOI: 10.1128/jvi.78.15.8289-8300.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Little is known about cellular determinants essential for human hepatitis B virus infection. Using the duck hepatitis B virus as a model, we first established a sensitive binding assay for both virions and subviral particles and subsequently elucidated the characteristics of the early viral entry steps. The infection itinerary was found to initiate with the attachment of viral particles to a low number of binding sites on hepatocytes (about 10(4) per cell). Virus internalization was fully accomplished in less than 3 h but was then followed by a period of unprecedented length, about 14 h, until completion of nuclear import of the viral genome. Steps subsequent to virus entry depended on both intact microtubules and their dynamic turnover but not on actin cytoskeleton. Notably, cytoplasmic trafficking of viral particles and emergence of nuclear covalently closed circular DNA requires microtubules during entry only at and for specific time periods. Taken together, these data disclose for the first time a series of steps and their kinetics that are essential for the entry of hepatitis B viruses into hepatocytes and are different from those of any other virus reported so far.
Collapse
Affiliation(s)
- Anneke Funk
- Department of General Virology, Heinrich-Pette-Institut, Hamburg, Germany
| | | | | | | | | |
Collapse
|
21
|
Lu X, Block T. Study of the early steps of the Hepatitis B Virus life cycle. Int J Med Sci 2004; 1:21-33. [PMID: 15912187 PMCID: PMC1074507 DOI: 10.7150/ijms.1.21] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 03/03/2004] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is a human pathogen, causing the serious liver disease. Despite considerable advances in the understanding of the natural history of HBV disease, most of the early steps in the virus life cycle remain unclear. Virus attachment to permissive cells, fusion and penetration through cell membranes and subsequent genome release, are largely a mystery. Current knowledge on the early steps of HBV life cycle has mostly come from molecular cloning, expression of individual genes and studies of the infection of duck hepatitis B virus (DHBV) with duck primary duck hepatocytes. However, considering of the difference of the surface protein of HBV and DHBV both in the composition and sequence, the degree to which information from DHBV applies to human HBV attachment and entry may be limited. A major obstacle to the study HBV infection is the lack of a reliable and sensitive in vitro infection system. We have found that the digestion of HBV and woodchuck hepatitis virus (WHBV) by protease V8 led to the infection of HepG2 cell, a cell line generally is refractory for their infection [Lu et al. J Virol. 1996. 70. 2277-2285 . Lu et al. Virus Research. 2001. 73(1): 27-4].. Further studies showed that a serine protease inhibitor Kazal (SPIK) was over expressed in the HepG2 cells. Therefore, it is possible that to silence the over expressed SPIK and thus to reinstate the activity of indispensable cellular proteases can result in the restoration of the susceptibility of HepG2 cells for HBV infection. The establishing a stable cell line for study of the early steps of HBV life cycle by silencing of SPIK is discussed.
Collapse
|
22
|
Cooper A, Paran N, Shaul Y. The earliest steps in hepatitis B virus infection. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:89-96. [PMID: 12873769 DOI: 10.1016/s0005-2736(03)00166-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The early steps in hepatitis B virus (HBV) infection, a human hepadnavirus, initiates from cell attachment followed by entry and delivery of the genetic information to the nucleus. Despite the fact that these steps determine the virus-related pathogenesis, their molecular basis is poorly understood. Cumulative data suggest that this process can be divided to cell attachment, endocytosis, membrane fusion and post-fusion consecutive steps. These steps are likely to be regulated by the viral envelope proteins and by the cellular membrane, receptors and extracellular matrix. In the absence of animal model for HBV, the duck hepadnavirus DHBV turned out to be a fruitful animal model. Therefore data concerning the early, post-attachment steps in hepadnaviral entry are largely based on studies performed with DHBV in primary duck liver hepatocytes. These studies are now starting to illuminate the mechanisms of hepadnavirus route of cell entry and to provide some new insights on the molecular basis of the strict species specificity of hepadnavirus infection.
Collapse
Affiliation(s)
- Arik Cooper
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
23
|
Urban S, Gripon P. Inhibition of duck hepatitis B virus infection by a myristoylated pre-S peptide of the large viral surface protein. J Virol 2002; 76:1986-90. [PMID: 11799193 PMCID: PMC135925 DOI: 10.1128/jvi.76.4.1986-1990.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have used the duck hepatitis B virus (DHBV) model to study the interference with infection by a myristoylated peptide representing an N-terminal pre-S subdomain of the large viral envelope protein. Although lacking the essential part of the carboxypeptidase D (formerly called gp180) receptor binding site, the peptide binds hepatocytes and subsequently blocks DHBV infection. Since its activity requires an amino acid sequence involved in host discrimination between DHBV and the related heron HBV (T. Ishikawa and D. Ganem, Proc. Natl. Acad. Sci. USA 92:6259-6263, 1995), we suggest that it is related to the postulated host-discriminating cofactor of infection.
Collapse
Affiliation(s)
- Stephan Urban
- Zentrum für Molekulare Biologie, Universität Heidelberg (ZMBH), 69120 Heidelberg, Germany.
| | | |
Collapse
|
24
|
Grgacic EV, Schaller H. A metastable form of the large envelope protein of duck hepatitis B virus: low-pH release results in a transition to a hydrophobic, potentially fusogenic conformation. J Virol 2000; 74:5116-22. [PMID: 10799586 PMCID: PMC110864 DOI: 10.1128/jvi.74.11.5116-5122.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have examined the structure and fusion potential of the duck hepatitis B virus (DHBV) envelope proteins by treating subviral particles with deforming agents known to release envelope proteins of viruses from a metastable to a fusion-active state. Exposure of DHBV particles to low pH triggered a major structural change in the large envelope protein (L), resulting in exposure of trypsin sites within its S domain but without affecting the same region in the small surface protein (S) subunits. This conformational change was associated with increased hydrophobicity of the particle surface, most likely arising from surface exposure of the hydrophobic first transmembrane domain (TM1). In the hydrophobic conformation, DHBV particles were able to bind to liposomes and intact cells, while in their absence these particles aggregated, resulting in viral inactivation. These results suggests that some L molecules are in a spring-loaded metastable state which, when released, exposes a previously hidden hydrophobic domain, a transition potentially representing the fusion-active state of the envelope.
Collapse
Affiliation(s)
- E V Grgacic
- Macfarlane Burnet Centre for Medical Research and Australian Centre for Hepatitis Virology, Fairfield 3078, Victoria, Australia.
| | | |
Collapse
|
25
|
Urban S, Schwarz C, Marx UC, Zentgraf H, Schaller H, Multhaup G. Receptor recognition by a hepatitis B virus reveals a novel mode of high affinity virus-receptor interaction. EMBO J 2000; 19:1217-27. [PMID: 10716922 PMCID: PMC305663 DOI: 10.1093/emboj/19.6.1217] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The duck hepatitis B virus model system was used to elucidate the characteristics of receptor (carboxypeptidase D, gp180) interaction with polypeptides representing the receptor binding site in the preS part of the large viral surface protein. We demonstrate the pivotal role of carboxypeptidase D for virus entry and show its C-domain represents the virus attachment site, which binds preS with extraordinary affinity. Combining results from surface plasmon resonance spectroscopy and two-dimensional NMR analysis we resolved the contribution of preS sequence elements to complex stability and show that receptor binding potentially occurs in two steps. Initially, a short alpha-helix in the C-terminus of the receptor binding domain facilitates formation of a primary complex. This complex is stabilized sequentially, involving approximately 60 most randomly structured amino acids preceding the helix. Thus, hepadnaviruses exhibit a novel mechanism of high affinity receptor interaction by conserving the potential to adapt structure during binding rather than to preserve it per se. We propose that this process represents an alternative strategy to escape immune surveillance and the evolutionary pressure inherent in the compact hepadnaviral genome organization.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- Carboxypeptidases/chemistry
- Carboxypeptidases/immunology
- Carboxypeptidases/isolation & purification
- Carboxypeptidases/metabolism
- Cells, Cultured
- Ducks/metabolism
- Ducks/virology
- Hepatitis B virus/chemistry
- Hepatitis B virus/drug effects
- Hepatitis B virus/metabolism
- Hepatitis B virus/physiology
- Immune Sera/immunology
- Immune Sera/pharmacology
- Kinetics
- Liver/cytology
- Liver/drug effects
- Liver/enzymology
- Liver/virology
- Molecular Sequence Data
- Mutation/genetics
- Nuclear Magnetic Resonance, Biomolecular
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/isolation & purification
- Peptide Fragments/metabolism
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Antigen/chemistry
- Receptors, Antigen/genetics
- Receptors, Antigen/metabolism
- Receptors, Virus/chemistry
- Receptors, Virus/immunology
- Receptors, Virus/isolation & purification
- Receptors, Virus/metabolism
- Solubility
- Surface Plasmon Resonance
- Thermodynamics
Collapse
Affiliation(s)
- S Urban
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg.
| | | | | | | | | | | |
Collapse
|
26
|
Breiner KM, Schaller H. Cellular receptor traffic is essential for productive duck hepatitis B virus infection. J Virol 2000; 74:2203-9. [PMID: 10666250 PMCID: PMC111701 DOI: 10.1128/jvi.74.5.2203-2209.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have investigated the mechanism of duck hepatitis B virus (DHBV) entry into susceptible primary duck hepatocytes (PDHs), using mutants of carboxypeptidase D (gp180), a transmembrane protein shown to act as the primary cellular receptor for avian hepatitis B virus uptake. The variant proteins were abundantly produced from recombinant adenoviruses and tested for the potential to functionally outcompete the endogenous wild-type receptor. Overexpression of wild-type gp180 significantly enhanced the efficiency of DHBV infection in PDHs but did not affect ongoing DHBV replication, an observation further supporting gp180 receptor function. A gp180 mutant deficient for endocytosis abolished DHBV infection, indicating endocytosis to be the route of hepadnaviral entry. With further gp180 variants, carrying mutations in the cytoplasmic domain and characterized by an accelerated turnover, the ability of gp180 to function as a DHBV receptor was found to depend on a wild-type-like sorting phenotype which largely avoids transport toward the endolysosomal compartment. Based on these data, we propose a model in which a distinct intracellular DHBV traffic to the endosome, but not beyond, is a prerequisite for completion of viral entry, i.e., for fusion and capsid release. Furthermore, the deletion of the two enzymatically active carboxypeptidase domains of gp180 did not lead to a loss of receptor function.
Collapse
Affiliation(s)
- K M Breiner
- Microbiology and Zentrum für Molekulare Biologie, Universität Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
27
|
Parker JS, Parrish CR. Cellular uptake and infection by canine parvovirus involves rapid dynamin-regulated clathrin-mediated endocytosis, followed by slower intracellular trafficking. J Virol 2000; 74:1919-30. [PMID: 10644365 PMCID: PMC111670 DOI: 10.1128/jvi.74.4.1919-1930.2000] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Canine parvovirus (CPV) is a small, nonenveloped virus that is a host range variant of a virus which infected cats and changes in the capsid protein control the ability of the virus to infect canine cells. We used a variety of approaches to define the early stages of cell entry by CPV. Electron microscopy showed that virus particles concentrated within clathrin-coated pits and vesicles early in the uptake process and that the infecting particles were rapidly removed from the cell surface. Overexpression of a dominant interfering mutant of dynamin in the cells altered the trafficking of capsid-containing vesicles. There was a 40% decrease in the number of CPV-infected cells in mutant dynamin-expressing cells, as well as a approximately 40% decrease in the number of cells in S phase of the cell cycle, which is required for virus replication. However, there was also up to 10-fold more binding of CPV to the surface of mutant dynamin-expressing cells than there was to uninduced cells, suggesting an increased receptor retention on the cell surface. In contrast, there was little difference in virus binding, virus infection rate, or cell cycle distribution between induced and uninduced cells expressing wild-type dynamin. CPV particles colocalized with transferrin in perinuclear endosomes but not with fluorescein isothiocyanate-dextran, a marker for fluid-phase endocytosis. Cells treated with nanomolar concentrations of bafilomycin A1 were largely resistant to infection when the drug was added either 30 min before or 90 min after inoculation, suggesting that there was a lag between virus entering the cell by clathrin-mediated endocytosis and escape of the virus from the endosome. High concentrations of CPV particles did not permeabilize canine A72 or mink lung cells to alpha-sarcin, but canine adenovirus type 1 particles permeabilized both cell lines. These data suggest that the CPV entry and infection pathway is complex and involves multiple vesicular components.
Collapse
Affiliation(s)
- J S Parker
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
28
|
Rodríguez-Crespo I, Núñez E, Yélamos B, Gómez-Gutiérrez J, Albar JP, Peterson DL, Gavilanes F. Fusogenic activity of hepadnavirus peptides corresponding to sequences downstream of the putative cleavage site. Virology 1999; 261:133-42. [PMID: 10441561 DOI: 10.1006/viro.1999.9823] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sequence homology between the amino-terminal region of the S protein of hepatitis B Virus (HBV) and known fusion peptides from retroviruses and paramyxoviruses led us to propose that this region might be equally involved in the initial infective steps of hepadnaviruses. In fact, we showed that a synthetic peptide corresponding to the N-terminus region of the S protein of HBV had membrane-interacting properties and was able to induce liposome fusion adopting an extended (beta-sheet) conformation (Rodríguez-Crespo et al., 1996, 1995). We describe herein studies on the interaction of peptides derived from the N-terminal region of the S protein of duck (DHBV: Met-Ser-Gly-Thr-Phe-Gly-Gly-Ile-Leu-Ala-Gly-Leu-Ile-Gly-Leu-Leu) and woodchuck hepatitis B viruses (WHV: Met-Ser-Pro-Ser-Ser-Leu-Leu-Gly-Leu-Leu-Ala-Gly-Leu-Gln-Val-Val) with liposomes. These peptides were able to induce to a different extent aggregation, lipid mixing, and leakage of internal aqueous contents from both neutral and negatively charged phospholipid vesicles in a concentration-dependent and pH-independent manner. Fluorescence depolarization of 1,6-diphenyl-1,3,5-hexatriene-labeled vesicles indicated that both peptides become inserted into the hydrophobic core of the lipid bilayer. Circular dichroism studies indicated that the DHBV peptide adopts an extended conformation in the presence of lipids, whereas the WHV peptide displays a high content of alpha-helical conformation. Therefore, these results extend our previous findings obtained for human hepatitis B virus to other members of the hepadnavirus family and suggest that this region of the S protein is important in the initial steps of the infective cycle.
Collapse
Affiliation(s)
- I Rodríguez-Crespo
- Facultad de Ciencias Químicas, Universidad Complutense, Madrid, 28040, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Urban S, Kruse C, Multhaup G. A soluble form of the avian hepatitis B virus receptor. Biochemical characterization and functional analysis of the receptor ligand complex. J Biol Chem 1999; 274:5707-15. [PMID: 10026190 DOI: 10.1074/jbc.274.9.5707] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Avian hepatitis B virus infection is initiated by the specific interaction of the extracellular preS part of the large viral envelope protein with carboxypeptidase D (gp180), the primary cellular receptor. To functionally and biochemically characterize this interaction, we purified a soluble form of duck carboxypeptidase D from a baculovirus expression system, confirmed its receptor function, and investigated the contribution of different preS sequence elements to receptor binding by surface plasmon resonance analysis. We found that preS binds duck carboxypeptidase D with a 1:1 stoichiometry, thereby inducing conformational changes but not oligomerization. The association constant of the complex was determined to be 2.2 x 10(7) M-1 at 37 degreesC, pH 7.4, with an association rate of 4.0 x 10(4) M-1 s-1 and a dissociation rate of 1.9 x 10(-3) s-1, substantiating high affinity interaction of avihepadnaviruses with their receptor carboxypeptidase D. The separately expressed receptor-binding domain, comprising about 50% of preS as defined by mutational analysis, exhibits similar constants. The domain consists of an essential element, probably responsible for the initial receptor contact and a part that contributes to complex stabilization in a conformation sensitive manner. Together with previous results from cell biological studies these data provide new insights into the initial step of hepadnaviral infection.
Collapse
Affiliation(s)
- S Urban
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
30
|
Abstract
Genome and pre-genome replication in all animal DNA viruses except poxviruses occurs in the cell nucleus (Table 1). In order to reproduce, an infecting virion enters the cell and traverses through the cytoplasm toward the nucleus. Using the cell's own nuclear import machinery, the viral genome then enters the nucleus through the nuclear pore complex. Targeting of the infecting virion or viral genome to the multiplication site is therefore an essential process in productive viral infection as well as in latent infection and transformation. Yet little is known about how infecting genomes of animal DNA viruses reach the nucleus in order to reproduce. Moreover, this nuclear locus for viral multiplication is remarkable in that the sizes and composition of the infectious particles vary enormously. In this article, we discuss virion structure, life cycle to reproduce infectious particles, viral protein's nuclear import signal, and viral genome nuclear targeting.
Collapse
Affiliation(s)
- H Kasamatsu
- Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California at Los Angeles 90095, USA
| | | |
Collapse
|
31
|
Rothmann K, Schnölzer M, Radziwill G, Hildt E, Moelling K, Schaller H. Host cell-virus cross talk: phosphorylation of a hepatitis B virus envelope protein mediates intracellular signaling. J Virol 1998; 72:10138-47. [PMID: 9811754 PMCID: PMC110552 DOI: 10.1128/jvi.72.12.10138-10147.1998] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Phosphorylation of cytosolic pre-S domains of the duck hepatitis B virus (DHBV) large envelope protein (L) was identified as a regulatory modification involved in intracellular signaling. By using biochemical and mass spectrometric analyses of phosphopeptides obtained from metabolically radiolabeled L protein, a single phosphorylation site was identified at serine 118 as part of a PX(S/T)P motif, which is strongly preferred by ERK-type mitogen-activated protein kinases (MAP kinases). ERK2 specifically phosphorylated L at serine 118 in vitro, and L phosphorylation was inhibited by a coexpressed MAP kinase-specific phosphatase. Furthermore, L phosphorylation and ERK activation were shown to be induced in parallel by various stimuli. Functional analysis with transfected cells showed that DHBV L possesses the ability to activate gene expression in trans and, by using mutations eliminating (S-->A) or mimicking (S-->D) serine phosphorylation, that this function correlates with L phosphorylation. These mutations had, however, no major effects on virus production in cell culture and in vivo, indicating that L phosphorylation and transactivation are not essential for hepadnavirus replication and morphogenesis. Together, these data suggest a role of the L protein in intracellular host-virus cross talk by varying the levels of pre-S phosphorylation in response to the state of the cell.
Collapse
Affiliation(s)
- K Rothmann
- Zentrum für Molekulare Biologie Heidelberg, D-69124 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Urban S, Breiner KM, Fehler F, Klingmüller U, Schaller H. Avian hepatitis B virus infection is initiated by the interaction of a distinct pre-S subdomain with the cellular receptor gp180. J Virol 1998; 72:8089-97. [PMID: 9733849 PMCID: PMC110146 DOI: 10.1128/jvi.72.10.8089-8097.1998] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Functionally relevant hepadnavirus-cell surface interactions were investigated with the duck hepatitis B virus (DHBV) animal model by using an in vitro infection competition assay. Recombinant DHBV pre-S polypeptides, produced in Escherichia coli, were shown to inhibit DHBV infection in a dose-dependent manner, indicating that monomeric pre-S chains were capable of interfering with virus-receptor interaction. Particle-associated pre-S was, however, 30-fold more active, suggesting that cooperative interactions enhance particle binding. An 85-amino-acid pre-S sequence, spanning about half of the DHBV pre-S chain, was characterized by deletion analysis as essential for maximal inhibition. Pre-S polypeptides from heron hepatitis B virus (HHBV) competed DHBV infection equally well despite a 50% difference in amino acid sequence and a much-reduced infectivity of HHBV for duck hepatocytes. These observations are taken to indicate (i) that the functionality of the DHBV pre-S subdomain, which interacts with the cellular receptor, is determined predominantly by a defined three-dimensional structure rather than by primary sequence elements; (ii) that cellular uptake of hepadnaviruses is a multistep process involving more than a single cellular receptor component; and (iii) that gp180, a cellular receptor candidate unable to discriminate between DHBV and HHBV, is a common component of the cellular receptor complex for avian hepadnaviruses.
Collapse
Affiliation(s)
- S Urban
- Zentrum für Molekulare Biologie, Universität Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
33
|
Breiner KM, Urban S, Schaller H. Carboxypeptidase D (gp180), a Golgi-resident protein, functions in the attachment and entry of avian hepatitis B viruses. J Virol 1998; 72:8098-104. [PMID: 9733850 PMCID: PMC110147 DOI: 10.1128/jvi.72.10.8098-8104.1998] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carboxypeptidase D (gp180), one of many candidate receptors proposed for hepatitis B viruses (HBVs), was examined and found to be the actual cellular receptor for avian HBVs. This conclusion was based on the following observations: (i) gp180 was the only host protein that bound with high affinity to the pre-S ectodomain of the large duck hepatitis B virus (DHBV) envelope protein, which is known to be essential for virus infection; (ii) a pre-S subdomain which determines physical binding to gp180 was found to coincide with a domain functionally defined in infection competition experiments as a receptor binding domain; (iii) soluble gp180, lacking the membrane anchor, efficiently inhibited DHBV infection; (iv) efficient interspecies gp180-pre-S interaction was limited to the natural hosts of avian hepadnaviruses; and (v) expression of gp180 in a heterologous hepatoma cell line mediated cellular attachment and subsequent internalization of fluorescently labeled viral particles into vesicular structures. However, gp180 expression did not render transfected heterologous cells permissive for productive infection, suggesting that a species-specific coreceptor is required for fusion to complete viral entry. In contrast to the case for known virus receptors, gp180 was not detected on the hepatocyte cell surface but was found to be concentrated in the Golgi apparatus, from where it functions by cycling to and from the plasma membrane.
Collapse
Affiliation(s)
- K M Breiner
- Zentrum für Molekulare Biologie, Universität Heidelberg, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
34
|
Abstract
Many viruses replicate in the nucleus of their animal and plant host cells. Nuclear import, export, and nucleo-cytoplasmic shuttling play a central role in their replication cycle. Although the trafficking of individual virus proteins into and out of the nucleus has been well studied for some virus systems, the nuclear transport of larger entities such as viral genomes and capsids has only recently become a subject of molecular analysis. In this review, the general concepts emerging are discussed and a survey is provided of current information on both plant and animal viruses. Summarizing the main findings in this emerging field, it is evident that most viruses that enter or exit the nucleus take advantage of the cell's nuclear import and export machinery. With a few exceptions, viruses seem to cross the nuclear envelope through the nuclear pore complexes, making use of cellular nuclear import and export signals, receptors, and transport factors. In many cases, they capitalize on subtle control systems such as phosphorylation that regulate traffic of cellular components into and out of the nucleus. The large size of viral capsids and their composition (they contain large RNA and DNA molecules for which there are few precedents in normal nuclear transport) make the processes unique and complicated. Prior capsid disassembly (or deformation) is required before entry of viral genomes and accessory proteins can occur through nuclear pores. Capsids of different virus families display diverse uncoating programs which culminate in genome transfer through the nuclear pores.
Collapse
Affiliation(s)
- G R Whittaker
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
35
|
Hild M, Weber O, Schaller H. Glucagon treatment interferes with an early step of duck hepatitis B virus infection. J Virol 1998; 72:2600-6. [PMID: 9525576 PMCID: PMC109694 DOI: 10.1128/jvi.72.4.2600-2606.1998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/1997] [Accepted: 12/12/1997] [Indexed: 02/06/2023] Open
Abstract
The effect of glucagon on the establishment of hepadnavirus infection was studied in vitro with the duck hepatitis B virus (DHBV) model. The presence of the peptide hormone throughout infection or starting up to 8 h after virus uptake resulted in a dose-dependent reduction in the levels of intra- and extracellular viral gene products and of secreted virions. Treatment with forskolin or dibutyryl-cyclic AMP, two drugs that also stimulate the cyclic AMP (cAMP) signal transduction pathway, resulted in comparable inhibition, suggesting that the inhibitor effect is related to changes in the activity of protein kinase A. In persistently infected hepatocytes, only a slight, but continuous, decrease in viral replication was observed upon prolonged drug treatment. Time course analysis, including detection of DHBV covalently closed circular (ccc) DNA templates, revealed that glucagon acts late during the establishment of infection, at a time when the virus is already internalized, but before detectable ccc DNA accumulation in the nucleus. These data suggest that nuclear import (and reimport) of DHBV DNA genomes from cytosolic capsids is subject to cAMP-mediated regulation by cellular factors responding to changes in the state of the host cell.
Collapse
Affiliation(s)
- M Hild
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Germany
| | | | | |
Collapse
|
36
|
Vihinen-Ranta M, Kalela A, Mäkinen P, Kakkola L, Marjomäki V, Vuento M. Intracellular route of canine parvovirus entry. J Virol 1998; 72:802-6. [PMID: 9420290 PMCID: PMC109439 DOI: 10.1128/jvi.72.1.802-806.1998] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The present study was designed to investigate the endocytic pathway involved in canine parvovirus (CPV) infection. Reduced temperature (18 degrees C) or the microtubule-depolymerizing drug nocodazole was found to inhibit productive infection of canine A72 cells by CPV and caused CPV to be retained in cytoplasmic vesicles as indicated by immunofluorescence microscopy. Consistent with previously published results, these data indicate that CPV enters a host cell via an endocytic route and further suggest that microtubule-dependent delivery of CPV to late endosomes is required for productive infection. Cytoplasmic microinjection of CPV particles was used to circumvent the endocytosis and membrane fusion steps in the entry process. Microinjection experiments showed that CPV particles which were injected directly into the cytoplasm, thus avoiding the endocytic pathway, were unable to initiate progeny virus production. CPV treated at pH 5.0 prior to microinjection was unable to initiate virus production, showing that factors of the endocytic route other than low pH are necessary for the initiation of infection by CPV.
Collapse
Affiliation(s)
- M Vihinen-Ranta
- Department of Biological and Environmental Science, University of Jyväskylä, Finland.
| | | | | | | | | | | |
Collapse
|
37
|
Swameye I, Schaller H. Dual topology of the large envelope protein of duck hepatitis B virus: determinants preventing pre-S translocation and glycosylation. J Virol 1997; 71:9434-41. [PMID: 9371604 PMCID: PMC230248 DOI: 10.1128/jvi.71.12.9434-9441.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The biosynthesis and topology of the large envelope protein (L protein) of hepadnaviruses was investigated using the duck hepatitis B virus (DHBV) model, which also allows the study of hepadnavirus morphogenesis in experimentally infected hepatocytes. Results from proteolysis of virus particles and from the analysis of topology and posttranslational modification of L chains synthesized in vivo or in a cell-free system both support the presence of a mixed population of L-protein molecules with their N-terminal pre-S domain located either inside or outside the virus particle. During L biosynthesis and DHBV morphogenesis, pre-S, together with the neighboring transmembrane domain (TM-I), initially remained cytoplasmically disposed and was translocated only posttranslationally. Delayed pre-S translocation into a post-endoplasmic reticulum compartment is also indicated by the absence of glycosylation at a modification-competent pre-S glycosylation site. Major features of L-protein biosynthesis and of the resulting dual topology appear to be conserved between avian and mammalian hepadnaviruses, supporting the model that pre-S domains function in part either as an internal matrix for capsid envelopment or externally as a ligand for cellular receptor binding. However, differences in the mechanisms controlling pre-S translocation were revealed by the results of mutational analyses identifying and characterizing cis-acting determinants in pre-S that delay its cotranslational translocation. Our data from DHBV demonstrate the negative influence of a cluster of positively charged amino acid residues next to TM-I, a motif that is conserved among the avian but absent from mammalian hepadnaviruses. Additional control elements, which are apparently shared between both virus groups and which may serve in chaperone binding, were mapped by deletion analysis in the central part of pre-S.
Collapse
Affiliation(s)
- I Swameye
- Zentrum für Molekulare Biologie, Universität Heidelberg, Germany
| | | |
Collapse
|
38
|
Hagelstein J, Fathinejad F, Stremmel W, Galle PR. pH-independent uptake of hepatitis B virus in primary human hepatocytes. Virology 1997; 229:292-4. [PMID: 9123873 DOI: 10.1006/viro.1996.8376] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The replication cycle of the hepatitis B virus (HBV) is still incompletely understood. In particular, the early steps of the viral life cycle, such as absorption, penetration, uncoating, and nuclear translocation require further clarification. In this study we performed infection experiments with HBV in primary human hepatocyte cultures. To further elucidate the possible mechanism of virus uptake, infection experiments were performed at different pH levels, after pretreatment of viral particles with acidic buffers and in the presence of lysosomotropic agents (chloroquine and ammonium chloride, respectively). Using a selective PCR technique which discriminates between input virus DNA and the earliest replicative form, we could demonstrate viral replication 36 hr after inoculation. HBV was taken up most efficiently at a pH of 7.4. Infection was still successful after pretreatment of viral particles at low pH and was unaffected by the presence of lysosomotropic agents. In conclusion, this suggests HBV to be a pH-independent virus.
Collapse
Affiliation(s)
- J Hagelstein
- Department of Internal Medicine, University of Heidelberg, Germany
| | | | | | | |
Collapse
|
39
|
Guo JT, Pugh JC. Topology of the large envelope protein of duck hepatitis B virus suggests a mechanism for membrane translocation during particle morphogenesis. J Virol 1997; 71:1107-14. [PMID: 8995631 PMCID: PMC191162 DOI: 10.1128/jvi.71.2.1107-1114.1997] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have investigated the membrane topology of the large envelope protein of duck hepatitis B virus (DHBV) by protease protection and Western blot analysis, using monoclonal antibodies specific for the pre-S and S regions of the DHBV envelope to characterize protease-resistant polypeptides. These studies showed that DHBV L protein exhibits a mixed membrane topology similar to that of human hepatitis B virus L, with approximately half of the L molecules displaying pre-S on the surface of virus particles and the remainder with pre-S sequestered inside the virus envelope. The C-terminal region of DHBV pre-S was susceptible to protease digestion on all DHBV particle L protein, indicating that this region was externally disposed. DHBV L protein pre-S was entirely cytosolic immediately after synthesis. Our data, therefore, suggested that an intermediate form of the DHBV L molecule exists in mature envelope particles in which L is partially translocated or exists in a translocation-ready conformation. Incubation of virus particles at low pH and 37 degrees C triggered conversion of this intermediate into a fully translocated form. We have proposed a model for pre-S translocation based on our results that invokes the presence of an aqueous pore in the virus envelope, most likely created by oligomerization of transmembrane domains in the S region. The model predicts that pre-S is transported through this pore and that a loop structure is formed because the N terminus remains anchored to the inner face of the membrane. This translocation process occurs during particle morphogenesis and may also be a prerequisite to virus uncoating during infection.
Collapse
Affiliation(s)
- J T Guo
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|
40
|
Köck J, Borst EM, Schlicht HJ. Uptake of duck hepatitis B virus into hepatocytes occurs by endocytosis but does not require passage of the virus through an acidic intracellular compartment. J Virol 1996; 70:5827-31. [PMID: 8709200 PMCID: PMC190598 DOI: 10.1128/jvi.70.9.5827-5831.1996] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The infectious entry pathway of duck hepatitis B virus (DHBV) was investigated with primary duck hepatocytes. Virus uptake was measured by a selective PCR technique which allows for the detection of a successful infection without the need for viral replication or gene expression. To test whether DHBV uptake occurs by endocytosis, the effects of energy depletion were analyzed. The requirement for an acidic intracellular pH was tested with the lysosomotropic agent ammonium chloride. The data show that energy depletion prevents the uptake of DHBV into primary hepatocytes whereas ammonium chloride has no effect. From these data, we conclude that DHBV is taken up by its host cells by endocytosis. However, in contrast to that of most other enveloped viruses, escape of DHBV from the endocytotic route does not depend on an acidic intracellular compartment.
Collapse
Affiliation(s)
- J Köck
- Department of Virology, University of Ulm, Germany
| | | | | |
Collapse
|
41
|
Obert S, Zachmann-Brand B, Deindl E, Tucker W, Bartenschlager R, Schaller H. A splice hepadnavirus RNA that is essential for virus replication. EMBO J 1996; 15:2565-74. [PMID: 8665864 PMCID: PMC450189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
According to the current model of hepadnavirus gene expression, the viral envelope proteins are produced from unspliced subgenomic RNAs, in contrast to the retroviral mechanism, where the subgenomic env RNA is generated by RNA splicing. We now describe and characterize a novel duck hepatitis B virus RNA species which is derived from the RNA pregenome by loss of a 1.15 kb intron. This RNA (termed spliced L RNA) codes for the large surface protein (L protein), as does the previously described unspliced mRNA (the preS RNA); however, it differs in 5' leader sequence and promoter control. Mutational analysis indicates that the spliced L RNA is functionally important for virus replication in infected hepatocytes and ducks, but not for virus formation from transfected DNA genomes. This suggests that the newly discovered second pathway for L protein synthesis plays a distinct role in an early step in the viral life cycle.
Collapse
Affiliation(s)
- S Obert
- Zentrum für Molekulare Biologie Heidelberg (ZMBH), Universität Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- M Nassal
- Center for Molecular Biology, University of Heidelberg, Germany
| |
Collapse
|
43
|
Caselmann WH. Trans-activation of cellular genes by hepatitis B virus proteins: a possible mechanism of hepatocarcinogenesis. Adv Virus Res 1996; 47:253-302. [PMID: 8895834 DOI: 10.1016/s0065-3527(08)60737-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- W H Caselmann
- Department of Medicine II, Klinikum Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
44
|
Kenney JM, von Bonsdorff CH, Nassal M, Fuller SD. Evolutionary conservation in the hepatitis B virus core structure: comparison of human and duck cores. Structure 1995; 3:1009-19. [PMID: 8589996 DOI: 10.1016/s0969-2126(01)00237-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Hepatitis B virus is a major human pathogen which has been extensively studied, yet its structure is unknown. Cryo-electron microscopy of the viral cores expressed in Escherichia coli or isolated from infected liver provides a means for determining the structure of the hepatitis B nucleocapsid. RESULTS Using cryo-electron microscopy and three-dimensional image reconstruction, we have determined the structures of duck and human hepatitis B virus cores and find that they have similar dimer-clustered T = 3 and T = 4 icosahedral organizations. The duck virus core protein sequence differs from the human in both length and amino acid content; however, the only significant structural differences observed are the lobes of density on the lateral edges of the projecting (distal) domain of the core protein dimer. The different cores contain varying amounts of nucleic acid, but exhibit similar contacts between the core protein and the nucleic acid. Immunoelectron microscopy of intact cores has localized two epitopes on the core surface corresponding to residues 76-84 and 129-132. CONCLUSIONS The bacterial expression system faithfully reproduces the native hepatitis B virus core structure even in the absence of the complete viral genome. This confirms that proper assembly of the core is independent of genome packaging. Difference imaging and antibody binding map three sequence positions in the structure: the C terminus and the regions near amino acids 80 and 130. Finally, we suggest that the genome-core interactions and the base (proximal) domain of the core dimer are evolutionarily conserved whereas the projecting domain, which interacts with the envelope proteins, is more variable.
Collapse
Affiliation(s)
- J M Kenney
- Structural Biology Programme, EMBL, Heidelberg, Germany
| | | | | | | |
Collapse
|
45
|
Klingmüller U, Schaller H. Hepadnavirus infection requires interaction between the viral pre-S domain and a specific hepatocellular receptor. J Virol 1993; 67:7414-22. [PMID: 8230462 PMCID: PMC238206 DOI: 10.1128/jvi.67.12.7414-7422.1993] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To better define the molecules involved in the initial interaction between hepadnaviruses and hepatocytes, we performed binding and infectivity studies with the duck hepatitis B virus (DHBV) and cultured primary duck hepatocytes. In competition experiments with naturally occurring subviral particles containing DHBV surface proteins, these DNA-free particles were found to interfere with viral infectivity if used at sufficiently high concentrations. In direct binding saturation experiments with radiolabelled subviral particles, a biphasic titration curve containing a saturable component was obtained. Quantitative evaluation of both the binding and the infectivity data indicates that the duck hepatocyte presents about 10(4) high-affinity binding sites for viral and subviral particles. Binding to these productive sites may be preceded by reversible virus attachment to a large number of less specific, nonsaturable primary binding sites. To identify which of the viral envelope proteins is responsible for hepatocyte-specific attachment, subviral particles containing only one of the two DHBV surface proteins were produced in Saccharomyces cerevisiae. In infectivity competition experiments, only particles containing the large pre-S/S protein were found to markedly reduce the efficiency of DHBV infection, while particles containing the small S protein had only a minor effect. Similarly, physical binding of radiolabelled serum-derived subviral particles to primary duck hepatocytes was inhibited well only by the yeast-derived pre-S/S particles. Together, these results strongly support the notion that hepadnaviral infection is initiated by specific attachment of the pre-S domain of the large DHBV envelope protein to a limited number of hepatocellular binding sites.
Collapse
Affiliation(s)
- U Klingmüller
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, Germany
| | | |
Collapse
|
46
|
|