1
|
The Breast Cancer Protooncogenes HER2, BRCA1 and BRCA2 and Their Regulation by the iNOS/NOS2 Axis. Antioxidants (Basel) 2022; 11:antiox11061195. [PMID: 35740092 PMCID: PMC9227079 DOI: 10.3390/antiox11061195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
The expression of inducible nitric oxide synthase (iNOS; NOS2) and derived NO in various cancers was reported to exert pro- and anti-tumorigenic effects depending on the levels of expression and the tumor types. In humans, the breast cancer level of iNOS was reported to be overexpressed, to exhibit pro-tumorigenic activities, and to be of prognostic significance. Likewise, the expression of the oncogenes HER2, BRCA1, and BRCA2 has been associated with malignancy. The interrelationship between the expression of these protooncogenes and oncogenes and the expression of iNOS is not clear. We have hypothesized that there exist cross-talk signaling pathways between the breast cancer protooncogenes, the iNOS axis, and iNOS-mediated NO mutations of these protooncogenes into oncogenes. We review the molecular regulation of the expression of the protooncogenes in breast cancer and their interrelationships with iNOS expression and activities. In addition, we discuss the roles of iNOS, HER2, BRCA1/2, and NO metabolism in the pathophysiology of cancer stem cells. Bioinformatic analyses have been performed and have found suggested molecular alterations responsible for breast cancer aggressiveness. These include the association of BRCA1/2 mutations and HER2 amplifications with the dysregulation of the NOS pathway. We propose that future studies should be undertaken to investigate the regulatory mechanisms underlying the expression of iNOS and various breast cancer oncogenes, with the aim of identifying new therapeutic targets for the treatment of breast cancers that are refractory to current treatments.
Collapse
|
2
|
Haberz P, Arai M, Martinez-Yamout MA, Dyson HJ, Wright PE. Mapping the interactions of adenoviral E1A proteins with the p160 nuclear receptor coactivator binding domain of CBP. Protein Sci 2016; 25:2256-2267. [PMID: 27699893 DOI: 10.1002/pro.3059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 01/03/2023]
Abstract
Many viruses deregulate the cell and force transcription of viral genes by competing with cellular proteins for binding to the transcriptional co-activators CREB-binding protein (CBP) and p300. Through its interactions with CBP/p300 and the retinoblastoma protein, the adenovirus (AdV) early region 1A (E1A) oncoprotein hijacks the cell cycle and, in rodents, transforms the cell; the mechanistic and structural basis for these effects remain unclear. In this study we compare the affinity of protein constructs from the E1A proteins from two adenovirus serotypes, non-oncogenic AdV5 and highly oncogenic AdV12, for binding to the nuclear receptor coactivator binding domain (NCBD) of CBP. NMR spectra show that the E1A constructs from both serotypes are intrinsically disordered in the free state and that each contains three homologous binding sites for the NCBD, one in the N-terminal region and two within conserved region 1 (CR1) of E1A. The binding sites in CR1 correspond to the motifs that bind the retinoblastoma protein and the TAZ2 domain of CBP/p300. The E1A and NCBD peptides fold synergistically upon complex formation. Binding affinities determined from NMR titrations show that, although the overall affinities for AdV5 and AdV12 E1A are comparable, there are significant differences between the two E1A serotypes in the relative strength with which their constituent interaction motifs bind to the NCBD. The individual E1A interaction motifs were unable to compete effectively with p53 for binding to the NCBD and both the N-terminal region and CR1 region of E1A are required for efficient competition with p53.
Collapse
Affiliation(s)
- Peter Haberz
- Department of Integrative Structural and Computational Biology and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, 153-8902, Japan
| | - Maria A Martinez-Yamout
- Department of Integrative Structural and Computational Biology and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
3
|
Ashshi AM, El-Shemi AG, Dmitriev IP, Kashentseva EA, Curiel DT. Combinatorial strategies based on CRAd-IL24 and CRAd-ING4 virotherapy with anti-angiogenesis treatment for ovarian cancer. J Ovarian Res 2016; 9:38. [PMID: 27349517 PMCID: PMC4924320 DOI: 10.1186/s13048-016-0248-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/22/2016] [Indexed: 01/10/2023] Open
Abstract
Background A major hurdle incurrent to the human clinical application of conditionally replicative adenovirus (CRAd)-based virotherapy agents is their limited therapeutic efficacy. In this study we evaluated whether arming our previously reported Ad5/3Δ24 CRAd vector containing a 24-base pair deletion in the E1A conserved region 2, which allows selective replication within Rb-p16-deficient tumor cells, to express therapeutic genes could improve oncolytic virus potency in ovarian cancer cells. We choose to assess the therapeutic benefits achieved by virus-mediated expression of interleukin 24 (IL-24), a cytokine-like protein of the IL-10 family, and the inhibitor of growth 4 (ING4) tumor suppressor protein. Results The generated CRAd-IL24 and CRAd-ING4 vectors were tested in ovarian cancer cell lines in vitro to compare their replication, yield, and cytotoxic effects with control CRAd Ad5/3∆24 lacking the therapeutic gene. These studies showed that CRAd-IL24 infection resulted in significantly increased yield of infectious particles, which translated to a marked enhancement of virus-induced cytotoxic effects as compared to CRAd-ING4 and non-armed CRAd. Testing CRAd-IL24 and CRAd-ING4 vectors combined together did not revealed synergistic effects exceeding oncolytic potency of single CRAD-IL24 vector. Both CRAds were also tested along with anti-VEGF monoclonal antibody Avastin and showed no significant augmentation of viral cytolysis by anti-angiogenesis treatment in vitro. Conclusions Our studies validated that arming with these key immunomodulatory genes was not deleterious to virus-mediated oncolysis. These findings thus, warrant further preclinical studies of CRAd-IL24 tumoricidal efficacy in murine ovarian cancer models to establish its potential utility for the virotherapy of primary and advanced neoplastic diseases.
Collapse
Affiliation(s)
- Ahmad Mohammad Ashshi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, PO Box 7607, Holy Makkah, Saudi Arabia
| | - Adel Galal El-Shemi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, PO Box 7607, Holy Makkah, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Igor P Dmitriev
- The Division of Cancer Biology and Biologic Therapeutic Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Elena A Kashentseva
- The Division of Cancer Biology and Biologic Therapeutic Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - David T Curiel
- The Division of Cancer Biology and Biologic Therapeutic Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA.
| |
Collapse
|
4
|
Shi S, Liu K, Chen Y, Zhang S, Lin J, Gong C, Jin Q, Yang XJ, Chen R, Ji Z, Han A. Competitive Inhibition of Lysine Acetyltransferase 2B by a Small Motif of the Adenoviral Oncoprotein E1A. J Biol Chem 2016; 291:14363-14372. [PMID: 27143356 DOI: 10.1074/jbc.m115.697300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 12/26/2022] Open
Abstract
The adenovirus early region 1A (E1A) oncoprotein hijacks host cells via direct interactions with many key cellular proteins, such as KAT2B, also known as PCAF (p300/CBP associated factor). E1A binds the histone acetyltransferase (HAT) domain of KAT2B to repress its transcriptional activation. However, the molecular mechanism by which E1A inhibits the HAT activity is not known. Here we demonstrate that a short and relatively conserved N-terminal motif (cNM) in the intrinsically disordered E1A protein is crucial for KAT2B interaction, and inhibits its HAT activity through a direct competition with acetyl-CoA, but not its substrate histone H3. Molecular modeling together with a series of mutagenesis experiments suggests that the major helix of E1A cNM binds to a surface of the acetyl-CoA pocket of the KAT2B HAT domain. Moreover, transient expression of the cNM peptide is sufficient to inhibit KAT2B-specific H3 acetylation H3K14ac in vivo Together, our data define an essential motif cNM in N-terminal E1A as an acetyl-CoA entry blocker that directly associates with the entrance of acetyl-CoA binding pocket to block the HAT domain access to its cofactor.
Collapse
Affiliation(s)
- Shasha Shi
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Ke Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Yanheng Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Shijun Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Juanyu Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Chenfang Gong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Quanwen Jin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Xiang-Jiao Yang
- Goodman Cancer Centre, McGill University, and Department of Medicine, McGill University Health Center, Montreal, Quebec H3A 1A3, Canada
| | - Ruichuan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China.
| | - Zhiliang Ji
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China.
| | - Aidong Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China.
| |
Collapse
|
5
|
The Cellular Protein Complex Associated with a Transforming Region of E1A Contains c-MYC. J Virol 2015; 90:1070-9. [PMID: 26559831 DOI: 10.1128/jvi.02039-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The cell-transforming activity of human adenovirus 5 (hAd5) E1A is mediated by the N-terminal half of E1A, which interacts with three different major cellular protein complexes, p300/CBP, TRRAP/p400, and pRb family members. Among these protein interactions, the interaction of pRb family proteins with conserved region 2 (CR2) of E1A is known to promote cell proliferation by deregulating the activities of E2F family transcription factors. The functional consequences of interaction with the other two protein complexes in regulating the transforming activity of E1A are not well defined. Here, we report that the E1A N-terminal region also interacted with the cellular proto-oncoprotein c-MYC and the homolog of enhancer of yellow 2 (ENY2). Our results suggested that these proteins interacted with an essential E1A transforming domain spanning amino acid residues 26 to 35 which also interacted with TRRAP and p400. Small interfering RNA (siRNA)-mediated depletion of TRRAP reduced c-MYC interaction with E1A, while p400 depletion did not. In contrast, depletion of TRRAP enhanced ENY2 interaction with E1A, suggesting that ENY2 and TRRAP may interact with E1A in a competitive manner. The same E1A region additionally interacted with the constituents of a deubiquitinase complex consisting of USP22, ATXN7, and ATXN7L3 via TRRAP. Acute short hairpin RNA (shRNA)-mediated depletion of c-MYC reduced the E1A transforming activity, while depletion of ENY2 and MAX did not. These results suggested that the association of c-MYC with E1A may, at least partially, play a role in the E1A transformation activity, independently of MAX. IMPORTANCE The transforming region of adenovirus E1A consists of three short modules which complex with different cellular protein complexes. The mechanism by which one of the transforming modules, CR2, promotes cell proliferation, through inactivating the activities of the pRb family proteins, is better understood than the activities of the other domains. Our analysis of the E1A proteome revealed the presence of the proto-oncoprotein c-MYC and of ENY2. We mapped these interactions to a critical transforming module of E1A that was previously known to interact with the scaffolding molecule TRRAP and the E1A-binding protein p400. We showed that c-MYC interacted with E1A through TRRAP, while ENY2 interacted with it independently. The data reported here indicated that depletion of c-MYC in normal human cells reduced the transforming activity of E1A. Our result raises a novel paradigm in oncogenic transformation by a DNA viral oncogene, the E1A gene, that may exploit the activity of a cellular oncogene, the c-MYC gene, in addition to inactivation of the tumor suppressors, such as pRb.
Collapse
|
6
|
Andrusiak MG, Vandenbosch R, Dick FA, Park DS, Slack RS. LXCXE-independent chromatin remodeling by Rb/E2f mediates neuronal quiescence. Cell Cycle 2013; 12:1416-23. [PMID: 23574720 DOI: 10.4161/cc.24527] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neuronal survival is dependent upon the retinoblastoma family members, Rb1 (Rb) and Rb2 (p130). Rb is thought to regulate gene repression, in part, through direct recruitment of chromatin modifying enzymes to its conserved LXCXE binding domain. We sought to examine the mechanisms that Rb employs to mediate cell cycle gene repression in terminally differentiated cortical neurons. Here, we report that Rb loss converts chromatin at the promoters of E2f-target genes to an activated state. We established a mouse model system in which Rb-LXCXE interactions could be induciblely disabled. Surprisingly, this had no effect on survival or gene silencing in neuronal quiescence. Absence of the Rb LXCXE-binding domain in neurons is compatible with gene repression and long-term survival, unlike Rb deficiency. Finally, we are able to show that chromatin activation following Rb deletion occurs at the level of E2fs. Blocking E2f-mediated transcription downstream of Rb loss is sufficient to maintain chromatin in an inactive state. Taken together our results suggest a model whereby Rb-E2f interactions are sufficient to maintain gene repression irrespective of LXCXE-dependent chromatin remodeling.
Collapse
Affiliation(s)
- Matthew G Andrusiak
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | |
Collapse
|
7
|
Shiama N. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol 2012; 7:230-6. [PMID: 17708951 DOI: 10.1016/s0962-8924(97)01048-9] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Studies on the mechanisms through which the oncogene products of DNA tumour viruses subvert the physiological processes that control cell proliferation have yielded many important insights into the mammalian cell cycle. In the case of the adenovirus E1a oncoprotein, a number of distinct protein domains are required for it to exert its growth-promoting effects. These domains allow E1a to associate physically with and inactivate cellular proteins that normally restrain proliferation. Recently, a group of E1a-interacting proteins discovered in part through studies on viral oncoproteins has become a major focus of research activity. Members of this family, known as p300/CBP, function to regulate transcription and chromatin, and thereby enable diverse signals, particularly those that facilitate differentiation, to be integrated and coordinated with gene expression. Furthermore, accumulating evidence connects genes encoding p300/CBP with diseases such as cancer.
Collapse
|
8
|
Berhane S, Aresté C, Ablack JN, Ryan GB, Blackbourn DJ, Mymryk JS, Turnell AS, Steele JC, Grand RJA. Adenovirus E1A interacts directly with, and regulates the level of expression of, the immunoproteasome component MECL1. Virology 2011; 421:149-58. [PMID: 22018786 DOI: 10.1016/j.virol.2011.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 07/29/2011] [Accepted: 09/27/2011] [Indexed: 10/16/2022]
Abstract
Proteasomes represent the major non-lysosomal mechanism responsible for the degradation of proteins. Following interferon γ treatment 3 proteasome subunits are replaced producing immunoproteasomes. Adenovirus E1A interacts with components of the 20S and 26S proteasome and can affect presentation of peptides. In light of these observations we investigated the relationship of AdE1A to the immunoproteasome. AdE1A interacts with the immunoproteasome subunit, MECL1. In contrast, AdE1A binds poorly to the proteasome β2 subunit which is replaced by MECL1 in the conversion of proteasomes to immunoproteasomes. Binding sites on E1A for MECL1 correspond to the N-terminal region and conserved region 3. Furthermore, AdE1A causes down-regulation of MECL1 expression, as well as LMP2 and LMP7, induced by interferon γ treatment during Ad infections or following transient transfection. Consistent with previous reports AdE1A reduced IFNγ-stimulated STAT1 phosphorylation which appeared to be responsible for its ability to reduce expression of immunoproteasome subunits.
Collapse
Affiliation(s)
- Sarah Berhane
- Cancer Research UK, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Deregulation of the cell cycle is of paramount importance during adenovirus infection. Adenovirus normally infects quiescent cells and must initiate the cell cycle in order to propagate itself. The pRb family of proteins controls entry into the cell cycle by interacting with and repressing transcriptional activation by the E2F transcription factors. The viral E1A proteins indirectly activate E2F-dependent transcription and cell cycle entry, in part, by interacting with pRb and family members to free the E2Fs. We report here that an E1A 13S isoform can unexpectedly activate E2F-responsive gene expression independently of binding to the pRb family of proteins. We demonstrate that E1A binds to E2F/DP-1 complexes through a direct interaction with DP-1. E1A appears to utilize this binding to recruit itself to E2F-regulated promoters, and this allows the E1A 13S protein, but not the E1A 12S protein, to activate transcription independently of interaction with pRb. Importantly, expression of E1A 13S, but not E1A 12S, led to significant enhancement of E2F4 occupancy of E2F sites of two E2F-regulated promoters. These observations identify a novel mechanism by which adenovirus deregulates the cell cycle and suggest that E1A 13S may selectively activate a subset of E2F-regulated cellular genes during infection.
Collapse
|
10
|
Opposing oncogenic activities of small DNA tumor virus transforming proteins. Trends Microbiol 2011; 19:174-83. [PMID: 21330137 DOI: 10.1016/j.tim.2011.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 01/04/2011] [Accepted: 01/12/2011] [Indexed: 01/10/2023]
Abstract
The E1A gene of species C human adenovirus is an intensely investigated model viral oncogene that immortalizes primary cells and mediates oncogenic cell transformation in cooperation with other viral or cellular oncogenes. Investigations using E1A proteins have illuminated important paradigms in cell proliferation and about the functions of cellular proteins such as the retinoblastoma protein. Studies with E1A have led to the unexpected discovery that E1A also suppresses cell transformation and oncogenesis. Here, I review our current understanding of the transforming and tumor-suppressive functions of E1A, and how E1A studies led to the discovery of a related tumor-suppressive function in benign human papillomaviruses. The potential role of these opposing functions in viral replication in epithelial cells is also discussed.
Collapse
|
11
|
Abstract
Over 50 years of polyomavirus research has produced a wealth of insights into not only general biologic processes in mammalian cells, but also, how conditions can be altered and signaling systems tweaked to produce transformation phenotypes. In the past few years three new members (KIV, WUV, and MCV) have joined two previously known (JCV and BKV) human polyomaviruses. In this review, we present updated information on general virologic features of these polyomaviruses in their natural host, concentrating on the association of MCV with human Merkel cell carcinoma. We further present a discussion on advances made in SV40 as the prototypic model, which has and will continue to inform our understanding about viruses and cancer.
Collapse
Affiliation(s)
- Ole Gjoerup
- Cancer Virology Program, Hillman Cancer Research Pavilion, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | |
Collapse
|
12
|
Structural basis for subversion of cellular control mechanisms by the adenoviral E1A oncoprotein. Proc Natl Acad Sci U S A 2009; 106:13260-5. [PMID: 19651603 DOI: 10.1073/pnas.0906770106] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The adenovirus early region 1A (E1A) oncoprotein mediates cell transformation by deregulating host cellular processes and activating viral gene expression by recruitment of cellular proteins that include cyclic-AMP response element binding (CREB) binding protein (CBP)/p300 and the retinoblastoma protein (pRb). While E1A is capable of independent interaction with CBP/p300 or pRb, simultaneous binding of both proteins is required for maximal biological activity. To obtain insights into the mechanism by which E1A hijacks the cellular transcription machinery by competing with essential transcription factors for binding to CBP/p300, we have determined the structure of the complex between the transcriptional adaptor zinc finger-2 (TAZ2) domain of CBP and the conserved region-1 (CR1) domain of E1A. The E1A CR1 domain is unstructured in the free state and upon binding folds into a local helical structure mediated by an extensive network of intermolecular hydrophobic contacts. By NMR titrations, we show that E1A efficiently competes with the N-terminal transactivation domain of p53 for binding to TAZ2 and that pRb interacts with E1A at 2 independent sites located in CR1 and CR2. We show that pRb and the CBP TAZ2 domain can bind simultaneously to the CR1 site of E1A to form a ternary complex and propose a structural model for the pRb:E1A:CBP complex on the basis of published x-ray data for homologous binary complexes. These observations reveal the molecular basis by which E1A inhibits p53-mediated transcriptional activation and provide a rationale for the efficiency of cellular transformation by the adenoviral E1A oncoprotein.
Collapse
|
13
|
Adenovirus transforming protein E1A induces c-Myc in quiescent cells by a novel mechanism. J Virol 2009; 83:4810-22. [PMID: 19279113 DOI: 10.1128/jvi.02145-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously we showed that the E1A binding proteins p300 and CBP negatively regulate c-Myc in quiescent cells and that binding of E1A to p300 results in the induction of c-Myc and thereby induction of S phase. We demonstrated that p300 and HDAC3 cooperate with the transcription factor YY1 at an upstream YY1 binding site and repress the Myc promoter. Here we show that the small E1A protein induces c-Myc by interfering with the protein-protein interaction between p300, YY1, and HDAC3. Wild-type E1A but not the E1A mutants that do not bind to p300 interfered in recruitment of YY1, p300, and HDAC3 to the YY1 binding site. As E1A started to accumulate after infection, it transiently associated with promoter-bound p300. Subsequently, YY1, p300, and HDAC3 began to dissociate from the promoter. Later in infection, E1A dissociated from the promoter as well as p300, YY1, and HDAC3. Removal of HDAC3 from the promoter correlated with increased acetylation of Myc chromatin and induction. In vivo E1A stably associated with p300 and dissociated YY1 and HDAC3 from the trimolecular complex. In vitro protein-protein interaction studies indicated that E1A initially binds to the p300-YY1-HDAC3 complex, briefly associates with it, and then dissociates the complex, recapitulating somewhat the in vivo situation. Thus, E1A binding to the C-terminal region of p300 disrupts the important corepressor function provided by p300 in repressing c-Myc. Our results reveal a novel mechanism by which a viral oncoprotein activates c-Myc in quiescent cells and raise the possibility that the oncoproteins encoded by the small-DNA tumor viruses may use this mechanism to induce c-Myc, which may be critical for cell transformation.
Collapse
|
14
|
How the Rb tumor suppressor structure and function was revealed by the study of Adenovirus and SV40. Virology 2009; 384:274-84. [PMID: 19150725 DOI: 10.1016/j.virol.2008.12.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 12/08/2008] [Indexed: 12/14/2022]
Abstract
The review recounts the history of how the study of the DNA tumor viruses including polyoma, SV40 and Adenovirus brought key insights into the structure and function of the Retinoblastoma protein (Rb). Knudsen's model of the two-hit hypothesis to explain patterns of hereditary and sporadic retinoblastoma provided the foundation for the tumor suppressor hypothesis that ultimately led to the cloning of the Rb gene. The discovery that SV40 and Adenovirus could cause tumors when inoculated into animals was startling not only because SV40 had contaminated the poliovirus vaccine and Adenovirus was a common cause of viral induced pneumonia but also because they provided an opportunity to study the genetics and biochemistry of cancer. Studies of mutant forms of these viruses led to the identification of the E1A and Large T antigen (LT) oncogenes and their small transforming elements including the Adenovirus Conserved Regions (CR), the SV40 J domain and the LxCxE motif. The immunoprecipitation studies that initially revealed the size and ultimately the identity of cellular proteins that could bind to these transforming elements were enabled by the widespread development of highly specific monoclonal antibodies against E1A and LT. The identification of Rb as an E1A and LT interacting protein quickly led to the cloning of p107, p130, p300, CBP, p400 and TRRAP and the concept that viral transformation was due, at least in part, to the perturbation of the function of normal cellular proteins. In addition, studies on the ability of E1A to transactivate the Adenovirus E2 promoter led to the cloning of the heterodimeric E2F and DP transcription factor and recognition that Rb repressed transcription of cellular genes required for cell cycle entry and progression. More recent studies have revealed how E1A and LT combine the activity of Rb and the other cellular associated proteins to perturb expression of many genes during viral infection and tumor formation.
Collapse
|
15
|
Pelka P, Ablack JNG, Torchia J, Turnell AS, Grand RJA, Mymryk JS. Transcriptional control by adenovirus E1A conserved region 3 via p300/CBP. Nucleic Acids Res 2009; 37:1095-106. [PMID: 19129215 PMCID: PMC2651774 DOI: 10.1093/nar/gkn1057] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human adenovirus type 5 (HAdV-5) E1A 13S oncoprotein is a potent regulator of gene expression and is used extensively as a model for transcriptional activation. It possesses two independent transcriptional activation domains located in the N-terminus/conserved region (CR) 1 and CR3. The protein acetyltransferase p300 was previously identified by its association with the N-terminus/CR1 portion of E1A and this association is required for oncogenic transformation by E1A. We report here that transcriptional activation by 13S E1A is inhibited by co-expression of sub-stoichiometric amounts of the smaller 12S E1A isoform, which lacks CR3. Transcriptional inhibition by E1A 12S maps to the N-terminus and correlates with the ability to bind p300/CBP, suggesting that E1A 12S is sequestering this limiting factor from 13S E1A. This is supported by the observation that the repressive effect of E1A 12S is reversed by expression of exogenous p300 or CBP, but not by a CBP mutant lacking actyltransferase activity. Furthermore, we show that transcriptional activation by 13S E1A is greatly reduced by siRNA knockdown of p300 and that CR3 binds p300 independently of the well-characterized N-terminal/CR1-binding site. Importantly, CR3 is also required to recruit p300 to the adenovirus E4 promoter during infection. These results identify a new functionally significant interaction between E1A CR3 and the p300/CBP acetyltransferases, expanding our understanding of the mechanism by which this potent transcriptional activator functions.
Collapse
Affiliation(s)
- Peter Pelka
- Department of Oncology, The University of Western Ontario, London Regional Cancer Centre, London, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
16
|
Zheng YG, Wu J, Chen Z, Goodman M. Chemical regulation of epigenetic modifications: opportunities for new cancer therapy. Med Res Rev 2008; 28:645-87. [PMID: 18271058 DOI: 10.1002/med.20120] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetics is concerned about heritable changes in gene expression without alteration of the coding sequence. Epigenetic modification of chromatin includes methylation of genomic DNA as well as post-translational modification of chromatin-associated proteins, in particular, histones. The spectrum of histone and non-histone modifications ranges from the addition of relatively small groups such as methyl, acetyl and phosphoryl groups to the attachment of larger moieties such as poly(ADP-ribose) and small proteins ubiquitin or small ubiquitin-like modifier (SUMO). The combinatorial nature of DNA methylation and histone modifications constitutes a significant pathway of epigenetic regulation and considerably extends the information potential of the genetic code. Chromatin modification has emerged as a new fundamental mechanism for gene transcriptional activity control associated with many cellular processes like proliferation, growth, and differentiation. Also it is increasingly recognized that epigenetic modifications constitute important regulatory mechanisms for the pathogenesis of malignant transformations. We review here the recent progress in the development of chemical inhibitors/activators that target different chromatin modifying enzymes. Such potent natural or synthetic modulators can be utilized to establish the quantitative contributions of epigenetic modifications in DNA regulated pathways including transcription, replication, recombination and repair, as well as provide leads for developing new cancer therapeutics.
Collapse
Affiliation(s)
- Yujun George Zheng
- Department of Chemistry, Georgia State University, PO Box 4098, Atlanta, Georgia 30302-4098, USA.
| | | | | | | |
Collapse
|
17
|
Nesic D, Grumont R, Gerondakis S. The nuclear factor-kappaB and p53 pathways function independently in primary cells and transformed fibroblasts responding to genotoxic damage. Mol Cancer Res 2008; 6:1193-203. [PMID: 18583526 DOI: 10.1158/1541-7786.mcr-07-2125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With nuclear factor-kappaB (NF-kappaB) and p53 functions generally having disparate outcomes for cell survival and cell division, understanding how these pathways are coordinated following a common activation signal such as DNA damage has important implications for cancer therapy. Conflicting reports concerning NF-kappaB and p53 interplay in different cell line models prompted a reexamination of this issue using mouse primary thymocytes and embryonic fibroblasts, plus fibroblasts transformed by E1A12S. Here, we report that following the treatment of these cells with a range of stress stimuli, p53 and NF-kappaB were found to regulate cell cycling and survival independently.
Collapse
Affiliation(s)
- Dobrila Nesic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | | | | |
Collapse
|
18
|
Zhao LJ, Subramanian T, Chinnadurai G. Inhibition of transcriptional activation and cell proliferation activities of adenovirus E1A by the unique N-terminal domain of CtBP2. Oncogene 2008; 27:5214-22. [PMID: 18490918 DOI: 10.1038/onc.2008.162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The 243-residue E1A protein of adenovirus induces cellular proliferation, at least partly by regulating the transcription of cellular genes. This E1A function requires E1A N-terminal region and conserved regions 1 and 2 (CR1 and CR2), which interact with histone acetyl transferases, p400 chromatin-modifying complex and the Rb family proteins. A PLDLS motif at the E1A C-terminal (CR4) region, interacts with the C-terminal binding proteins (CtBP1 and CtBP2), and antagonizes some E1A functions. In this report, we discovered that the transcriptional activation function of E1A was specifically repressed by a short N-terminal domain unique to CtBP2. The CtBP2-mediated repression of E1A transcriptional activation activity is independent of histone deacetylases, which can be recruited by CtBP1/2 proteins to inhibit transcription. Fusion of the CtBP2 N-terminal 20 residues to the E1A C-terminal region rendered E1A to be inactive in transcriptional activation without interfering with E1A's ability to interact with major cofactors such as pRb, p400 and p300. Substitution of the N-terminal domain of CtBP1 for the CtBP2 domain in E1A-CtBP2 fusion partially restored the transactivation activity of E1A. In a cell-proliferation model utilizing primary baby rat kidney cells and retrovirally expressed E1A, the ability of E1A to induce cellular proliferation was strongly inhibited when the CtBP2 N-terminal region was fused to E1A. These results are consistent with a hypothesis that CtBP2 may inhibit E1A induced cell proliferation by antagonizing the transcriptional activation function controlled by the N-terminal region of E1A.
Collapse
Affiliation(s)
- L-J Zhao
- Institute for Molecular Virology, Saint Louis University Health Sciences Center, Doisy Research Center, St Louis, MO 63104, USA
| | | | | |
Collapse
|
19
|
VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat Cell Biol 2008; 10:361-9. [PMID: 18297059 DOI: 10.1038/ncb1699] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 01/28/2008] [Indexed: 11/08/2022]
Abstract
Germline von Hippel-Lindau tumour suppressor gene (VHL) mutations cause renal cell carcinomas, haemangioblastomas and phaeochromocytomas in humans. Mutations in VHL also occur in sporadic renal cell carcinomas. The protein encoded by VHL, VHL, is part of the ubiquitin ligase that downregulates the heterodimeric transcription factor Hif under well-oxygenated conditions. Here we show that acute VHL inactivation causes a senescent-like phenotype in vitro and in vivo. This phenotype was independent of p53 and Hif but dependent on the retinoblastoma protein (Rb) and the SWI2/SNF2 chromatin remodeller p400. Rb activation occurred through a decrease in Skp2 messenger RNA, which resulted in the upregulation of p27 in a Hif-independent fashion. Our results suggest that senescence induced by VHL inactivation is a tumour-suppressive mechanism that must be overcome to develop VHL-associated neoplasias.
Collapse
|
20
|
Liu X, Marmorstein R. Structure of the retinoblastoma protein bound to adenovirus E1A reveals the molecular basis for viral oncoprotein inactivation of a tumor suppressor. Genes Dev 2008; 21:2711-6. [PMID: 17974914 DOI: 10.1101/gad.1590607] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The adenovirus (Ad) E1A (Ad-E1A) oncoprotein mediates cell transformation, in part, by displacing E2F transcription factors from the retinoblastoma protein (pRb) tumor suppressor. In this study we determined the crystal structure of the pRb pocket domain in complex with conserved region 1 (CR1) of Ad5-E1A. The structure and accompanying biochemical studies reveal that E1A-CR1 binds at the interface of the A and B cyclin folds of the pRb pocket domain, and that both E1A-CR1 and the E2F transactivation domain use similar conserved nonpolar residues to engage overlapping sites on pRb, implicating a novel molecular mechanism for pRb inactivation by a viral oncoprotein.
Collapse
Affiliation(s)
- Xin Liu
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
21
|
|
22
|
Miller DL, Myers CL, Rickards B, Coller HA, Flint SJ. Adenovirus type 5 exerts genome-wide control over cellular programs governing proliferation, quiescence, and survival. Genome Biol 2007; 8:R58. [PMID: 17430596 PMCID: PMC1896011 DOI: 10.1186/gb-2007-8-4-r58] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 10/20/2006] [Accepted: 04/12/2007] [Indexed: 02/05/2023] Open
Abstract
The effects of the adenovirus Ad5 on basic host cell programs, such as cell-cycle regulation, were studied in a microarray analysis of human fibroblasts. About 2,000 genes were up- or down-regulated after Ad5 infection and Ad5 infection was shown to induce reversal of the quiescence program and recapitulation of the core serum response. Background Human adenoviruses, such as serotype 5 (Ad5), encode several proteins that can perturb cellular mechanisms that regulate cell cycle progression and apoptosis, as well as those that mediate mRNA production and translation. However, a global view of the effects of Ad5 infection on such programs in normal human cells is not available, despite widespread efforts to develop adenoviruses for therapeutic applications. Results We used two-color hybridization and oligonucleotide microarrays to monitor changes in cellular RNA concentrations as a function of time after Ad5 infection of quiescent, normal human fibroblasts. We observed that the expression of some 2,000 genes, about 10% of those examined, increased or decreased by a factor of two or greater following Ad5 infection, but were not altered in mock-infected cells. Consensus k-means clustering established that the temporal patterns of these changes were unexpectedly complex. Gene Ontology terms associated with cell proliferation were significantly over-represented in several clusters. The results of comparative analyses demonstrate that Ad5 infection induces reversal of the quiescence program and recapitulation of the core serum response, and that only a small subset of the observed changes in cellular gene expression can be ascribed to well characterized functions of the viral E1A and E1B proteins. Conclusion These findings establish that the impact of adenovirus infection on host cell programs is far greater than appreciated hitherto. Furthermore, they provide a new framework for investigating the molecular functions of viral early proteins and information relevant to the design of conditionally replicating adenoviral vectors.
Collapse
Affiliation(s)
- Daniel L Miller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Laboratory of Genetics, University of Wisconsin, 425-G Henry Mall, Madison, Wisconsin 53706, USA
| | - Chad L Myers
- Lewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA
- Department of Computer Science, Princeton University, Princeton, New Jersey 08544, USA
| | - Brenden Rickards
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Hilary A Coller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - S Jane Flint
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
23
|
Shen L, Zeng S, Chen J, Zhong M, Yang H, Yao R, Shen H. E1A inhibits the proliferation of human cervical cancer cells (HeLa cells) by apoptosis induction through activation of HER-2/Neu/Caspase-3 pathway. Med Oncol 2007; 25:222-8. [PMID: 18488161 DOI: 10.1007/s12032-007-9007-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 08/23/2007] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This study is to investigate the inhibitory effect of E1A gene on the cell proliferation of HeLa cells and its mechanism related to apoptosis. METHODS MTT assay and soft agar colony formation assay were employed to justify the inhibition activity of E1A on the proliferation of HeLa cells transfected with E1A gene. Western Blot, RT-PCR and Real-time quantitative RT-PCR were used to detect the gene expression of E1A, HER-2/Neu and Caspase-3 in HeLa cells, respectively. The Caspase-3 activity was monitored by ApoAlert Caspase-3 Assay. The redistribution of cell cycles and apoptosis of HeLa cells regulated by E1A expression were evaluated by flow cytometry. RESULTS E1A expression significantly inhibits the cell proliferation and anchorage-independent cell growth of HeLa, with the respective highest inhibition rate of 40.7% and 43.4% (P < 0.01). HER-2/Neu expression in HeLa was significantly down-regulated by E1A, while the protein expression and activity of Caspase-3 was up-regulated by E1A expression. Flow cytometry revealed that E1A transfection in HeLa increased the cell number at G1 stage and simultaneously decreased the cell number at S stage. E1A transfection induced 8.71% of HeLa cells at apoptosis status. CONCLUSIONS E1A significantly inhibits the cell proliferation of HeLa by the apoptosis induction through HER-2/Neu/Caspase-3 pathway. These results encourage us to continue an in-vivo study and preclinical development of LPD-E1A as a novel gene therapeutic agent for human cervical cancer.
Collapse
Affiliation(s)
- Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Pelka P, Scimè A, Mandalfino C, Joch M, Abdulla P, Whyte P. Adenovirus E1A proteins direct subcellular redistribution of Nek9, a NimA-related kinase. J Cell Physiol 2007; 212:13-25. [PMID: 17443675 DOI: 10.1002/jcp.20983] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A monoclonal antibody raised against adenovirus E1A-associated cellular proteins recognized Nek9, a NimA-related protein kinase. Subcellular fractionation and immunofluorescence indicated that Nek9 was primarily cytoplasmic with a small portion located in the nucleus whereas E1A was primarily nuclear. Although co-immunoprecipitation experiments indicated that nuclear Nek9 interacted, directly or indirectly, with E1A, the major effect of E1A was to diminish the amount of Nek9 in the nucleus suggesting that E1A alters the subcellular distribution of Nek9 and that the interaction is transient. A Nek9 deletion mutant lacking a central RCC1-like domain interacted stably with E1A and accumulated in the nucleus in the presence of E1A, possibly representing an intermediate stage of the normally transient Nek9/E1A interaction. The interaction of Nek9 with E1A was dependent on the N-terminal sequences of E1A. Attempts to stably overexpress either Nek9 or the kinase-inactive mutant in various cell lines were unsuccessful; however, the presence of E1A allowed stable overexpression of both proteins. These results suggest that E1A disrupts a nuclear function of Nek9.
Collapse
Affiliation(s)
- Peter Pelka
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
In contrast to genetic aberrations, epigenetic aberrations can be reversed by the use of histone acetyltransferase (HAT), histone deacetylase (HDAC), SIRT, or histone methyltransferase (HMT) inhibitors. A well-known HDACi, suberoylanilide hydroxamic acid, has been recently approved for the treatment of cutaneous T cell lymphoma, and a number of HDACi are in clinical trials as anticancer drugs. In addition, HDACi could be useful in antimalarial and antifungal therapies and can reactivate the HIV-1 expression in latent cellular reservoirs, thus suggesting the use in a combination therapy with highly active antiretroviral therapy. HDACi have also been reported to have anti-inflammatory effects through inhibition of cytokines and key transcription factors, and to ameliorate the phenotypes in animal models of neurological disorders. HDACi can also reactivate the gamma-globin gene for the treatment of beta-thalassaemia, and recently were shown to relieve morphological and functional effects of muscular dystrophia. Dysfunction of HAT enzymes is also often associated with several diseases, including cancer; thus, the HATi can represent new chemical entities for the development of new drugs. Only a few HMTi have been described to date, but these small molecules could be a useful scaffold to discovering new highly active and enzyme-selective compounds to develop as therapeutics.
Collapse
Affiliation(s)
- Antonello Mai
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Studi Farmaceutici, Università di Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
| |
Collapse
|
26
|
Nguyên TLA, de Walque S, Veithen E, Dekoninck A, Martinelli V, de Launoit Y, Burny A, Harrod R, Van Lint C. Transcriptional regulation of the bovine leukemia virus promoter by the cyclic AMP-response element modulator tau isoform. J Biol Chem 2007; 282:20854-67. [PMID: 17526487 DOI: 10.1074/jbc.m703060200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bovine leukemia virus (BLV) expression is controlled at the transcriptional level through three Tax(BLV)-responsive elements (TxREs) responsive to the viral transactivator Tax(BLV). The cAMP-responsive element (CRE)-binding protein (CREB) has been shown to interact with CRE-like sequences present in the middle of each of these TxREs and to play critical transcriptional roles in both basal and Tax(BLV)-transactivated BLV promoter activity. In this study, we have investigated the potential involvement of the cAMP-response element modulator (CREM) in BLV transcriptional regulation, and we have demonstrated that CREM proteins were expressed in BLV-infected cells and bound to the three BLV TxREs in vitro. Chromatin immunoprecipitation assays using BLV-infected cell lines demonstrated in the context of chromatin that CREM proteins were recruited to the BLV promoter TxRE region in vivo. Functional studies, in the absence of Tax(BLV), indicated that ectopic CREMtau protein had a CRE-dependent stimulatory effect on BLV promoter transcriptional activity. Cross-link of the B-cell receptor potentiated CREMtau transactivation of the viral promoter. Further experiments supported the notion that this potentiation involved CREMtau Ser-117 phosphorylation and recruitment of CBP/p300 to the BLV promoter. Although CREB and Tax(BLV) synergistically transactivated the BLV promoter, CREMtau repressed this Tax(BLV)/CREB synergism, suggesting that a modulation of the level of Tax(BLV) transactivation through opposite actions of CREB and CREMtau could facilitate immune escape and allow tumor development.
Collapse
Affiliation(s)
- Thi Lien-Anh Nguyên
- Institut de Biologie et de Médecine Moléculaires, Laboratoire de Virologie Moléculaire, Université Libre de Bruxelles, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Flinterman MB, Mymryk JS, Klanrit P, Yousef AF, Lowe SW, Caldas C, Gäken J, Farzaneh F, Tavassoli M. p400 function is required for the adenovirus E1A-mediated suppression of EGFR and tumour cell killing. Oncogene 2007; 26:6863-74. [PMID: 17486071 PMCID: PMC4591001 DOI: 10.1038/sj.onc.1210497] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have recently shown that E1A protein of human adenovirus downregulates epidermal growth factor receptor (EGFR) expression and induces apoptosis in head and neck (HNSCC) and lung cancer cells independently of their p53 status. E1A has five isoforms of which the major ones E1A12S and E1A13S regulate transcription of cellular genes by binding to transcriptional modulators such as pRB, CtBP, p300 and p400. In this study, we have identified E1A12S isoform to have the highest effect on EGFR suppression and induction of apoptosis in HNSCC cells. Similar to Ad5, E1A12S from human adenovirus types 2, 3, 9 and 12 suppressed EGFR, whereas E1A12S of adenovirus types 4 and 40 had no effect on EGFR expression. Using deletion mutants of E1A12S we have shown that interaction of E1A with p400, but not p300 or pRB, is required for EGFR suppression and apoptosis. Inhibition of p400 by short hairpin RNA confirmed that HNSCC cells with reduced p400 expression were less sensitive to E1A-induced suppression of EGFR and apoptosis. p300 function was shown to be dispensable, as cells expressing E1A mutants that are unable to bind p300, or p300 knockout cells, remained sensitive to E1A-induced apoptosis. In summary, this study identifies p400 as an important mediator of E1A-induced downregulation of EGFR and apoptosis.
Collapse
Affiliation(s)
- MB Flinterman
- Head and Neck Oncology Group, King’s College London, London, UK
| | - JS Mymryk
- Departments of Oncology and Microbiology and Immunology, London Regional Cancer Center, University of Western Ontario, London, Ontario, Canada
| | - P Klanrit
- Head and Neck Oncology Group, King’s College London, London, UK
| | - AF Yousef
- Departments of Oncology and Microbiology and Immunology, London Regional Cancer Center, University of Western Ontario, London, Ontario, Canada
| | - SW Lowe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - C Caldas
- Department of Oncology, Cancer Genomics Program, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - J Gäken
- Department of Haematological and Molecular Medicine, King’s College London, London, UK
| | - F Farzaneh
- Department of Haematological and Molecular Medicine, King’s College London, London, UK
| | - M Tavassoli
- Head and Neck Oncology Group, King’s College London, London, UK
| |
Collapse
|
28
|
Vachtenheim J, Sestáková B, Tuhácková Z. Inhibition of MITF transcriptional activity independent of targeting p300/CBP coactivators. ACTA ACUST UNITED AC 2007; 20:41-51. [PMID: 17250547 DOI: 10.1111/j.1600-0749.2006.00354.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microphthalmia-associated transcription factor (MITF) activates the expression of melanocyte-specific markers and promotes the survival of embryonic, adult and malignant melanocytes. Although numerous MITF-dependent downstream genes have been identified, the mechanisms by which the MITF activity is coregulated remain elusive. Here we used a non-melanocytic cell line U2-OS as a model in which MITF evokes transcription of a paradigmatic MITF target tyrosinase and show that the adenoviral E1A protein represses the MITF-driven transcription in these cells. The E1A CR1 domain (which alone is insufficient to bind p300) was sufficient for repression, while the N-terminus, through which E1A binds the p300/CBP proteins and other coactivators, was unable to repress. Correspondingly, CR1 inhibited colony formation of MITF-positive, but not MITF-negative, melanoma cells. The repression by CR1 was largely independent of the PCAF-binding motif, previously recognized to be necessary for suppression of muscle-specific enhancer. Interestingly, CR1 conferred transcriptional competence to the MITF-CR1 chimera in which the MITF portion was rendered transcription-deficient. Moreover, MITF mutants defective in binding to p300/CBP in vivo still activated transcription, further supporting a p300/CBP-independent coactivation of MITF targets. MITF is amplified in a subset of melanomas and is thought to be required for sustained proliferation of malignant melanocytes. Our results suggest that understanding how CR1 represses Mitf activity may reveal a route to melanoma therapy.
Collapse
Affiliation(s)
- Jiri Vachtenheim
- Laboratory of Molecular Biology, University Hospital, Third Medical Faculty, Charles University Prague, Czech Republic.
| | | | | |
Collapse
|
29
|
Miura TA, Cook JL, Potter TA, Ryan S, Routes JM. The interaction of adenovirus E1A with p300 family members modulates cellular gene expression to reduce tumorigenicity. J Cell Biochem 2007; 100:929-40. [PMID: 17063489 DOI: 10.1002/jcb.21057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The use of adenovirus serotype 2 or 5 (Ad2/5) E1A as therapy for human malignancy requires an understanding of the mechanisms involved in E1A-induced tumor suppression. The prevailing use of E1A in the treatment of human malignancy stresses the non-immunologically mediated, anti-tumorigenic activities of E1A. However, the capacity of E1A to elicit a NK-cell and T-cell anti-tumor immune response and to sensitize tumor cells to lysis by immune effector molecules utilized by NK cells and T cells is also an important component of the anti-tumorigenic activity of E1A. This immune-mediated anti-tumorigenic activity of E1A is not shared by functionally similar viral oncoproteins such as the human papillomavirus type 16 (HPV16) E7 oncoprotein and is dependent on the capacity of E1A to interact with transcriptional coadapter, p300. To further define the molecular mechanisms whereby E1A reduces tumorigenicity, we compared total cellular gene expression in H4 cells, a human fibrosarcoma cell line, to gene expression in H4 cells stably expressing E1A, E7, or mutant forms of E1A that do not bind p300. The expression of E1A, but not E7, in H4 cells modulated the expression of cellular genes that may promote apoptosis, enhance immunogenicity and reduce tumor cell metastasis. The difference in the ability of E1A and E7 to modulate the expression of cellular genes that may influence tumorigenicity was largely attributable to distinct interactions of E1A and E7 with p300. Results of this study will be useful in designing novel strategies to augment the anti-tumorigenic activities of E1A.
Collapse
Affiliation(s)
- Tanya A Miura
- Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO, USA
| | | | | | | | | |
Collapse
|
30
|
Wu Y, Zhang X, Salmon M, Lin X, Zehner ZE. TGFbeta1 regulation of vimentin gene expression during differentiation of the C2C12 skeletal myogenic cell line requires Smads, AP-1 and Sp1 family members. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:427-39. [PMID: 17270292 PMCID: PMC1855268 DOI: 10.1016/j.bbamcr.2006.11.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 11/22/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
Vimentin exhibits a complex pattern of developmental and tissue-specific expression regulated by such growth factors as TGFbeta1, PDGF, FGF, EGF and cytokines. Vimentin is expressed in the more migratory, mesenchymal cell and its expression is often down-regulated to make way for tissue-specific intermediate filaments proteins such as desmin in muscle. Here, we suggest a mechanism to explain how TGFbeta1 contributes to the up-regulation of vimentin expression while blocking myogenesis. TGFbeta1 binds to serine/threonine kinase receptors resulting in the phosphorylation of Smad2 and Smad3, followed by formation of a heteromeric complex with Smad4. The translocation of this complex to the nucleus modulates transcription of selected genes such as vimentin. However, the vimentin gene lacks a consensus TGFbeta1 response element. By transient transfection analysis of vimentin's various promoter elements fused to the CAT reporter gene, we have determined that tandem AP-1 sites surrounded by GC-boxes are required for TGFbeta1 induction. Mutations within this region eliminated the ability of Smad3 to induce reporter gene expression. DNA precipitation and ChIP assays suggest that c-Jun, c-Fos, Smad3 and Sp1/Sp3 interact over this region, but this interaction changes during myogenesis with TGFbeta1 induction.
Collapse
Affiliation(s)
- Yongzhong Wu
- Department of Biochemistry and the Massey Cancer Center, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond VA 23298-0614
| | - Xueping Zhang
- Department of Biochemistry and the Massey Cancer Center, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond VA 23298-0614
| | - Morgan Salmon
- Department of Biochemistry and the Massey Cancer Center, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond VA 23298-0614
| | - Xia Lin
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030
| | - Zendra E. Zehner
- Department of Biochemistry and the Massey Cancer Center, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond VA 23298-0614
| |
Collapse
|
31
|
Molloy D, Mapp KL, Webster R, Gallimore PH, Grand RJA. Acetylation at a lysine residue adjacent to the CtBP binding motif within adenovirus 12 E1A causes structural disruption and limited reduction of CtBP binding. Virology 2006; 355:115-26. [PMID: 16919702 DOI: 10.1016/j.virol.2006.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 01/09/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
C-terminal binding protein (CtBP) has been shown to bind to a highly conserved five-amino-acid motif (PXDLS) located very close to the C-terminus of adenovirus early region 1A proteins. It has also been demonstrated that amino acids C-terminal and N-terminal to this original proposed binding site contribute to the interaction. However, conflicting evidence has been presented to show that acetylation of an adjacent lysine residue in Ad5E1A may or may not influence binding. It has now been demonstrated here that acetylation of a lysine, equivalent to position 261 in Ad12 E1A and position 285 in Ad5E1A, in a synthetic peptide disrupts the binding to CtBP1 and CtBP2 and alters the K(i) of the peptide, indicative of a reduction in the affinity of the peptide for CtBP1 and CtBP2, but only to a rather limited extent (less than 2-fold). The solution structures of synthetic peptides equivalent to wild-type and acetylated forms of the Ad12 E1A peptide have been determined by proton NMR spectroscopy. The wild-type form of the peptide adopts a series of beta-turns over the region Val(254)-Arg(262). Within the acetylated isoform, the beta-turn conformation is less extensive, Val(260)-Arg(262) adopting a random confirmation. We conclude that secondary structure (beta-turns) and an appropriate series of amino acid side chains over an extended binding site (PXDLSXK) are necessary for recognition by CtBP, acetylation of lysine interfering with both of these features, but not to such an extent as to totally inhibit interaction. Moreover, it is possible that the beta-turn conformation at the C-terminus of AdE1A contributes to binding to alpha importin and nuclear import. Acetylation of lysine (261) could disrupt interaction through structural destabilization as well as charge neutralization and subsequent nuclear localization.
Collapse
Affiliation(s)
- David Molloy
- Thames Valley University, Faculty of Health and Human Sciences, Walpole House 18-20 Bond Street, Ealing, London, W5 5AA, UK
| | | | | | | | | |
Collapse
|
32
|
Zhao LJ, Subramanian T, Chinnadurai G. Changes in C-terminal binding protein 2 (CtBP2) corepressor complex induced by E1A and modulation of E1A transcriptional activity by CtBP2. J Biol Chem 2006; 281:36613-23. [PMID: 17023432 DOI: 10.1074/jbc.m603550200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-terminal region of adenovirus E1A interacts with histone acetyl transferases (HATs) such as p300, P/CAF, and GCN5. The C-terminal region interacts with the transcriptional corepressors CtBP1 and CtBP2. The functional significance of co-recruitment of HATs and CtBPs by E1A is not well understood. In this study, we have shown that E1A enhanced acetylation of CtBP2 by recruitment of p300 to the CtBP2 complex. Additionally, E1A also displaced the histone methyltransferase G9a and the E-box repressor ZEB from the CtBP2 complex through the C-terminal CtBP-binding domain. A transcriptional activation function encoded by the E1A N-terminal region was efficiently inhibited by CtBP2 but not by a mutant with an N-terminal deletion or by a mutant deficient in interaction with E1A. Two isoforms of CtBP1 (CtBP1-L and CtBP1-S) poorly inhibited transcriptional activity of the E1A N-terminal region. Thus, the N-terminal domain of CtBP2 may contribute a unique transcriptional regulatory activity of CtBP2. Our results provide new insights by which CtBP might modulate the biochemical activities of E1A.
Collapse
Affiliation(s)
- Ling-Jun Zhao
- Institute for Molecular Virology, Saint Louis University Health Sciences Center, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
33
|
Kwok RPS, Liu XT, Smith GD. Distribution of co-activators CBP and p300 during mouse oocyte and embryo development. Mol Reprod Dev 2006; 73:885-94. [PMID: 16596650 DOI: 10.1002/mrd.20440] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
cAMP response element binding protein (CREB)-binding protein (CBP) and p300 are two structurally related transcriptional co-activators that activate expression of many eukaryotic genes. Current dogma would suggest that these transcriptional co-activators have similar mechanisms of transcription regulation. Studies of CBP or p300 homozygotic mouse mutants indicate that normal embryogenesis requires the existence of both factors. However, whether this is indicative of a dosage effect of these two proteins, or whether these proteins play different roles in mouse embryo development is not clear. Here we demonstrated that both factors are first found in the cytoplasm of oocytes within primordial follicles, and that they enter into the oocyte nucleus at different stages of oocyte growth, suggesting that they may play different roles in gene expression during oocyte growth and development. Consistent with this model, in the pre-implantation mouse embryos, from the two-cell stage to the blastocyst stage, the localizations of CBP and p300 are different, at times opposite, indicating that CBP and p300 also have different functions in early mouse embryogenesis.
Collapse
Affiliation(s)
- Roland P S Kwok
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
34
|
Baluchamy S, Sankar N, Navaraj A, Moran E, Thimmapaya B. Relationship between E1A binding to cellular proteins, c-myc activation and S-phase induction. Oncogene 2006; 26:781-7. [PMID: 16862175 DOI: 10.1038/sj.onc.1209825] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We recently showed that p300/CREB-binding protein (CBP) plays an important role in maintaining cells in G0/G1 phase by keeping c-myc in a repressed state. Consistent with this, adenovirus E1A oncoprotein induces c-myc in a p300-dependent manner, and the c-myc induction is linked to S-phase induction. The induction of S phase by E1A is dependent on its binding to and inactivating several host proteins including p300/CBP. To determine whether there is a correlation between the host proteins binding to the N-terminal region of E1A, activation of c-myc and induction of S phase, we assayed the c-myc and S-phase induction in quiescent human cells by infecting them with Ad N-terminal E1A mutants with mutations that specifically affect binding to different chromatin-associated proteins including pRb, p300, p400 and p300/CBP-associated factor (PCAF). We show that the mutants that failed to bind to p300 or pRb were severely defective for c-myc and S-phase induction. The induction of c-myc and S phase was only moderately affected when E1A failed to bind to p400. Furthermore, analysis of the E1A mutants that fail to bind to p300, and both p300 and PCAF suggests that PCAF may also play a role in c-myc repression, and that the two chromatin-associated proteins may repress c-myc independently. In summary, these results suggest that c-myc deregulation by E1A through its interaction with these chromatin-associated proteins is an important step in the E1A-mediated cell cycle deregulation and possibly in cell transformation.
Collapse
Affiliation(s)
- S Baluchamy
- Department of Microbiology-Immunology Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
35
|
Jennings-Gee JE, Tsuji Y, Pietsch EC, Moran E, Mymryk JS, Torti FM, Torti SV. Coordinate Inhibition of Cytokine-mediated Induction of Ferritin H, Manganese Superoxide Dismutase, and Interleukin-6 by the Adenovirus E1A Oncogene. J Biol Chem 2006; 281:16428-35. [PMID: 16611629 DOI: 10.1074/jbc.m600038200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Adenovirus E1A sensitizes cells to the cytotoxic action of tumor necrosis factor alpha (TNF-alpha). This effect has been attributed to direct blockade of NF-kappaB activation, as well as to increased activation of components of the apoptotic pathway and decreases in inhibitors of apoptosis. In this report we evaluated the mechanism by which E1A modulates the expression of the cytokine-inducible cytoprotective genes manganese superoxide dismutase (MnSOD), interleukin-6 (IL-6), and ferritin heavy chain (FH). We observed that E1A blocks induction of MnSOD, IL-6, and FH by TNF-alpha or IL-1alpha. Because NF-kappaB plays a role in cytokine-dependent induction of MnSOD, IL-6, and FH, we assessed the effect of E1A on NF-kappaB in cells treated with TNF. IkappaB, the inhibitor of NF-kappaB, was degraded similarly in the presence and absence of E1A. TNF induced a quantitatively and temporally equivalent activation of NF-kappaB in control and E1A-transfected cells. However, TNF-dependent acetylation of NF-kappaB was diminished in cells expressing E1A. E1A mutants unable to bind p400 or the Rb family proteins were still capable of repressing TNF-dependent induction of FH. However, mutants of E1A that abrogated binding of p300/CBP blocked the ability of E1A to repress TNF-dependent induction of FH. These results suggest that p300/CBP is a critical control point in NF-kappaB-dependent transcriptional regulation of cytoprotective genes by cytokines.
Collapse
Affiliation(s)
- Jamie E Jennings-Gee
- Department of Biochemistry, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Kim JH, Yang CK, Stallcup MR. Downstream signaling mechanism of the C-terminal activation domain of transcriptional coactivator CoCoA. Nucleic Acids Res 2006; 34:2736-50. [PMID: 16717280 PMCID: PMC1464418 DOI: 10.1093/nar/gkl361] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/08/2006] [Accepted: 04/24/2006] [Indexed: 12/03/2022] Open
Abstract
The coiled-coil coactivator (CoCoA) is a transcriptional coactivator for nuclear receptors and enhances nuclear receptor function by the interaction with the bHLH-PAS domain (AD3) of p160 coactivators. The C-terminal activation domain (AD) of CoCoA possesses strong transactivation activity and is required for the coactivator function of CoCoA with nuclear receptors. To understand how CoCoA AD transmits its activating signal to the transcription machinery, we defined specific subregions, amino acid motifs and protein binding partners involved in the function of CoCoA AD. The minimal transcriptional AD was mapped to approximately 91 C-terminal amino acids and consists of acidic, serine/proline-rich and phenylalanine-rich subdomains. Transcriptional activation by the CoCoA AD was p300-dependent, and p300 interacted physically and functionally with CoCoA AD and was recruited to a promoter by the interaction with CoCoA AD. The FYDVASAF motif in the CoCoA AD was critical for the transcriptional activity of CoCoA AD, the interaction of CoCoA with p300, the coactivator function of CoCoA for estrogen receptor alpha and GRIP1 and the transcriptional synergy among coactivators GRIP1, CARM1, p300 and CoCoA. Taken together these data extend our understanding of the mechanism of downstream signaling by the essential C-terminal AD of the nuclear receptor coactivator CoCoA; they indicate that p300 is a functionally important interaction partner of CoCoA AD and that their interaction potentiates transcriptional activation by the p160 coactivator complex.
Collapse
Affiliation(s)
- Jeong Hoon Kim
- Department of Biochemistry and Molecular Biology, University of Southern California Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
37
|
Inche AG, La Thangue NB. Chromatin control and cancer-drug discovery: realizing the promise. Drug Discov Today 2006; 11:97-109. [PMID: 16533707 DOI: 10.1016/s1359-6446(05)03691-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recent years have seen major advances in elucidating the complexity of chromatin and its role as an epigenetic regulator of gene expression in eukaryotes. We now have a basic understanding of chromatin control and the enzymatic modifications that impart diverse regulatory cues to the functional activity of the genome. Most importantly, although research into chromatin has uncovered fascinating insights into the control of gene expression, it has also generated a large body of information that is being harnessed to develop new therapeutic modalities for treating cancer. Here, we discuss recent advances that support the contention that future generations of chromatin-modulating drugs will provide a significant group of new, mechanism-based therapeutics for cancer.
Collapse
Affiliation(s)
- Adam G Inche
- Division of Medical Sciences, University of Oxford, OX3 9DU, UK
| | | |
Collapse
|
38
|
Gordon S, Akopyan G, Garban H, Bonavida B. Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene 2006; 25:1125-42. [PMID: 16314846 DOI: 10.1038/sj.onc.1209080] [Citation(s) in RCA: 575] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ubiquitous transcription factor Yin Yang 1 (YY1) is known to have a fundamental role in normal biologic processes such as embryogenesis, differentiation, replication, and cellular proliferation. YY1 exerts its effects on genes involved in these processes via its ability to initiate, activate, or repress transcription depending upon the context in which it binds. Mechanisms of action include direct activation or repression, indirect activation or repression via cofactor recruitment, or activation or repression by disruption of binding sites or conformational DNA changes. YY1 activity is regulated by transcription factors and cytoplasmic proteins that have been shown to abrogate or completely inhibit YY1-mediated activation or repression; however, these mechanisms have not yet been fully elucidated. Since expression and function of YY1 are known to be intimately associated with progression through phases of the cell cycle, the physiologic significance of YY1 activity has recently been applied to models of tumor biology. The majority of the data are consistent with the hypothesis that YY1 overexpression and/or activation is associated with unchecked cellular proliferation, resistance to apoptotic stimuli, tumorigenesis and metastatic potential. Studies involving hematopoetic tumors, epithelial-based tumors, endocrine organ malignancies, hepatocellular carcinoma, and retinoblastoma support this hypothesis. Molecular mechanisms that have been investigated include YY1-mediated downregulation of p53 activity, interference with poly-ADP-ribose polymerase, alteration in c-myc and nuclear factor-kappa B (NF-kappaB) expression, regulation of death genes and gene products, and differential YY1 binding in the presence of inflammatory mediators. Further, recent findings implicate YY1 in the regulation of tumor cell resistance to chemotherapeutics and immune-mediated apoptotic stimuli. Taken together, these findings provide strong support of the hypothesis that YY1, in addition to its regulatory roles in normal biologic processes, may possess the potential to act as an initiator of tumorigenesis and may thus serve as both a diagnostic and prognostic tumor marker; furthermore, it may provide an effective target for antitumor chemotherapy and/or immunotherapy.
Collapse
Affiliation(s)
- S Gordon
- Department of Surgery Division of Transplantation, Dumont-UCLA Transplant Center, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
39
|
Sun HJ, Xu X, Wang XL, Wei L, Li F, Lu J, Huang BQ. Transcription factors Ets2 and Sp1 act synergistically with histone acetyltransferase p300 in activating human interleukin-12 p40 promoter. Acta Biochim Biophys Sin (Shanghai) 2006; 38:194-200. [PMID: 16518544 DOI: 10.1111/j.1745-7270.2006.00147.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
There has been considerable interest in researching the regulatory mechanisms that control the synthesis of interleukin (IL)-12, which plays a central role in the differentiation of T-helper-1 cells. In this study, we performed a series of transient transfection experiments designed to elucidate the functional relationship between the IL-12 promoter-specific transcription factors (Ets2 and Sp1) and histone acetylation modification in IL-12 regulation mediated by p300 and various histone deacetylases (HDACs). Results presented in this report demonstrated that the transcription factors Ets2 and Sp1 acted synergistically with p300 to activate the human IL-12 promoter. The histone acetyltransferase (HAT) activity of p300 was required for this synergic effect, because the adenovirus E1A protein inhibited the synergy. Conversely, HDACs repressed the synergic effect of transcription factors and histone acetylation on the activation of IL-12, while p300 was able to rectify it. These data indicated that Ets2 and Sp1 worked concertedly and synergistically with p300 in the regulation of human IL-12 expression.
Collapse
Affiliation(s)
- Hai-Jing Sun
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Stoff-Khalili MA, Rivera AA, Le LP, Stoff A, Everts M, Contreras JL, Chen D, Teng L, Rots MG, Haisma HJ, Rocconi RP, Bauerschmitz GJ, Rein DT, Yamamoto M, Siegal GP, Dall P, Michael Mathis J, Curiel DT. Employment of liver tissue slice analysis to assay hepatotoxicity linked to replicative and nonreplicative adenoviral agents. Cancer Gene Ther 2006; 13:606-18. [PMID: 16410819 DOI: 10.1038/sj.cgt.7700934] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Whereas virotherapy has emerged as a novel and promising approach for neoplastic diseases, appropriate model systems have hampered preclinical evaluation of candidate conditionally replicative adenovirus agents (CRAds) with respect to liver toxicity. This is due to the inability of human viral agents to cross species. We have recently shown the human liver tissue slice model to be a facile means to validate adenoviral replication. On this basis, we sought to determine whether our ex vivo liver tissue slice model could be used to assess CRAd-mediated liver toxicity. We analyzed and compared the toxicity of a conditionally replicative adenovirus (AdDelta24) to that of a replication incompetent adenovirus (Adnull [E1-]) in mouse and human liver tissue slices. To accomplish this, we examined the hepatic apoptosis expression profile by DNA microarray analyses, and compared these results to extracellular release of aminotransferase enzymes, along with direct evidence of apoptosis by caspase-3 immunhistochemical staining and TUNEL assays. Human and mouse liver tissue slices demonstrated a marked increase in extracellular release of aminotransferase enzymes on infection with AdDelta24 compared to Adnull. AdDelta24-mediated liver toxicity was further demonstrated by apoptosis induction, as detected by caspase-3 immunohistochemical staining, TUNEL assay and microarray analysis. In conclusion, concordance of CRAd-mediated apoptosis in both the human and the mouse liver tissue slice models was demonstrated, despite the limited replication ability of CRAds in mouse liver slices. The results of this study, defining the CRAd-mediated apoptosis gene expression profiles in human and mouse liver, may lay a foundation for preclinical liver toxicity analysis of CRAd agents.
Collapse
Affiliation(s)
- M A Stoff-Khalili
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-2172, USA, and Department of Plastic and Reconstructive Surgery, Dreifaltigkeits-Hospital, Wesseling, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Turnell AS, Stewart GS, Grand RJA, Rookes SM, Martin A, Yamano H, Elledge SJ, Gallimore PH. The APC/C and CBP/p300 cooperate to regulate transcription and cell-cycle progression. Nature 2005; 438:690-5. [PMID: 16319895 DOI: 10.1038/nature04151] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 08/17/2005] [Indexed: 11/08/2022]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a multicomponent E3 ubiquitin ligase that, by targeting protein substrates for 26S proteasome-mediated degradation through ubiquitination, coordinates the temporal progression of eukaryotic cells through mitosis and the subsequent G1 phase of the cell cycle. Other functions of the APC/C are, however, less well defined. Here we show that two APC/C components, APC5 and APC7, interact directly with the coactivators CBP and p300 through protein-protein interaction domains that are evolutionarily conserved in adenovirus E1A. This interaction stimulates intrinsic CBP/p300 acetyltransferase activity and potentiates CBP/p300-dependent transcription. We also show that APC5 and APC7 suppress E1A-mediated transformation in a CBP/p300-dependent manner, indicating that these components of the APC/C may be targeted during cellular transformation. Furthermore, we establish that CBP is required in APC/C function; specifically, gene ablation of CBP by RNA-mediated interference markedly reduces the E3 ubiquitin ligase activity of the APC/C and the progression of cells through mitosis. Taken together, our results define discrete roles for the APC/C-CBP/p300 complexes in growth regulation.
Collapse
Affiliation(s)
- Andrew S Turnell
- Cancer Research UK Institute for Cancer Studies, The Medical School, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Adenovirus continues to be an important model system for investigating basic aspects of cell biology. Interactions of several cellular proteins with E1A conserved regions (CR) 1 and 2, and inhibition of apoptosis by E1B proteins are required for oncogenic transformation. CR2 binds RB family members, de-repressing E2F transcription factors, thus activating genes required for cell cycling. E1B-19K is a BCL2 homolog that binds and inactivates proapoptotic BAK and BAX. E1B-55K binds p53, inhibiting its transcriptional activation function. In productively infected cells, E1B-55K and E4orf6 assemble a ubiquitin ligase with cellular proteins Elongins B and C, Cullin 5 and RBX1 that polyubiquitinates p53 and one or more subunits of the MRN complex involved in DNA double-strand break repair, directing them to proteosomal degradation. E1A CR3 activates viral transcription by interacting with the MED23 Mediator subunit, stimulating preinitiation complex assembly on early viral promoters and probably also the rate at which they initiate transcription. The viral E1B-55K/E4orf6 ubiquitin ligase is also required for efficient viral late protein synthesis in many cell types, but the mechanism is not understood. E1A CR1 binds several chromatin-modifying complexes, but how this contributes to stimulation of cellular DNA synthesis and transformation is not clear. E1A CR4 binds the CtBP corepressor, but the mechanism by which this modulates the frequency of transformation remains to be determined. Clearly, adenovirus has much left to teach us about fundamental cellular processes.
Collapse
Affiliation(s)
- Arnold J Berk
- Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, University of California, Los Angeles (UCLA), 90095-1570, USA.
| |
Collapse
|
43
|
Routes JM, Ryan S, Morris K, Takaki R, Cerwenka A, Lanier LL. Adenovirus serotype 5 E1A sensitizes tumor cells to NKG2D-dependent NK cell lysis and tumor rejection. ACTA ACUST UNITED AC 2005; 202:1477-82. [PMID: 16314433 PMCID: PMC2213342 DOI: 10.1084/jem.20050240] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The expression of the Adenovirus serotype 5 (Ad5) E1A oncogene sensitizes tumor cells to natural killer (NK) cell–mediated killing and tumor rejection in vivo. These effects are dependent on the ability of E1A to bind the transcriptional coadaptor protein p300. To test the hypothesis that E1A up-regulates ligands recognized by the NKG2D-activating receptor, we stably transfected the highly tumorigenic mouse fibrosarcoma cell line MCA-205 with Ad5-E1A or a mutant form of E1A that does not interact with p300 (E1A-Δp300). Ad5-E1A, but not E1A-Δp300, up-regulated the expression of the NKG2D ligand retinoic acid early inducible (RAE)-1, but not murine ULBP-like transcript 1, another NKG2D ligand, in four independently derived MCA-205 transfectants. The up-regulation of RAE-1 by E1A targeted MCA-205 tumor cells to lysis by NK cells, resulting in NKG2D-dependent tumor rejection in vivo. Moreover, the up-regulation of NKG2D ligands by E1A was not limited to mouse tumor cells, as E1A also increased the expression of NKG2D ligands on primary baby mouse kidney cells, human MB435S breast cancer cells, and human H4 fibrosarcoma cells.
Collapse
Affiliation(s)
- John M Routes
- Integrated Department of Immunology, National Jewish Medical and Research Center and the University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Deng Q, Li Y, Tedesco D, Liao R, Fuhrmann G, Sun P. The ability of E1A to rescue ras-induced premature senescence and confer transformation relies on inactivation of both p300/CBP and Rb family proteins. Cancer Res 2005; 65:8298-307. [PMID: 16166306 DOI: 10.1158/0008-5472.can-05-0054] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In primary cells, oncogenic ras induces a stable growth arrest known as premature senescence. Ras-induced premature senescence is considered as a tumor-suppressing defense response that needs to be bypassed before oncogenic potential ras can be revealed. To gain insights into the mechanism of senescence bypass during oncogenic transformation, we dissected the activities of an adenoviral oncoprotein E1A, which is capable of overcoming ras-induced senescence. Our results have indicated that the senescence bypassing activity resides in the NH2 terminus and requires both Rb-binding and p300/CBP-binding functions of E1A. Although interference with the p16(INK4A)/Rb pathway or inactivation of p300/CBP alone did not lead to senescence bypass, these two types of genetic alterations complemented the Rb-binding defective and the p300/CBP-binding defective mutants of E1A, respectively, to rescue premature senescence. Therefore, genetic alterations disrupting the p16(INK4A)/Rb pathway or the p300/CBP functions both contribute to the bypass of senescence. We further showed that p300/CBP were essential for ras-induced p53 activity, providing a potential mechanism underlying the important role of p300/CBP in senescence. Furthermore, p300/CBP inactivation led to cellular transformation in cooperation with the p300/CBP-binding defective E1A mutants, MDM2 and Ha-RasV12. These results have shown that p300 and CBP are integral components of the pathway that mediates ras-induced senescence. The critical role of p300 and CBP in the senescence response that limits the oncogenic potential of ras has provided a mechanistic basis for the tumor-suppressing function of these proteins.
Collapse
Affiliation(s)
- Qingdong Deng
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 91037, USA
| | | | | | | | | | | |
Collapse
|
45
|
Medina DJ, Sheay W, Osman M, Goodell L, Martin J, Rabson AB, Strair RK. Adenovirus infection and cytotoxicity of primary mantle cell lymphoma cells. Exp Hematol 2005; 33:1337-47. [PMID: 16263418 DOI: 10.1016/j.exphem.2005.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 06/29/2005] [Accepted: 07/11/2005] [Indexed: 02/03/2023]
Abstract
Mantle cell lymphoma (MCL) is a distinct form of non-Hodgkin's lymphoma (NHL) derived from CD5+ B cells. MCL cells overexpress cyclin D1 as a consequence of translocation of the gene into the immunoglobulin heavy-chain gene locus. MCL is an aggressive form of NHL with frequent relapses after standard-dose chemotherapy. In this context, a variety of novel therapies for patients with MCL have been investigated. In this study, we use an expanded panel of attenuated adenoviruses to study adenovirus-mediated cytotoxicity of MCL cells. Our results demonstrate: 1) adenovirus infection of MCL cells despite the absence of receptor/coreceptor molecules known to be important for adenovirus infection of other cells types; 2) cytotoxicity of MCL cells after infection with specific adenovirus mutants; 3) a high degree of cytotoxicity after infection of some patient samples with viruses lacking the E1B 19k "antiapoptotic" gene; and 4) cytotoxicity after infection with viruses containing mutations in E1A pRb or p300 binding. The extent of cytotoxicity with the panel of viruses demonstrated interpatient variability, but 100% cytotoxicity, as determined by molecular analysis, was detected in some samples. These studies provide the foundation for: 1) the development of adenoviruses as cytotoxic agents for MCL and 2) analyses of key regulatory pathways operative in MCL cells.
Collapse
Affiliation(s)
- Daniel J Medina
- The Cancer Institute of New Jersey, Department of Medicine, Biomedical Center, Lund University, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
46
|
Sun H, Lu J, Xu X, Jin S, Wang X, Wei L, Dong M, Huang B. Histone acetyltransferase activity of p300 enhances the activation of IL-18 promoter. J Cell Biochem 2005; 94:566-72. [PMID: 15543578 DOI: 10.1002/jcb.20194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Interleukin-18 (IL-18), an important regulator of innate and acquired immune responses expressed from a variety of cell types, is a pleiotropic cytokine in the development of T helper type 1 (Thl) cells. The p300/CBP (CREB-binding protein) coactivator proteins are important histone acetyltransferases (HATs) that regulate the transcription of many genes. Whether p300/CBP play a role in the IL-18 expression has not been investigated previously. In this study, we analyzed the roles of p300 in the regulation of mouse IL-18 by using RT-PCR and a series of co-transfection studies. We showed that p300 had a stimulating effect on the endogenous IL-18 mRNA synthesis and on the activity of IL-18 p1 promoter. The results also showed that IL-18 p1 promoter activity was enhanced by p300 in a dose-dependent manner. Moreover, the p300-mediated activation function can be suppressed by the adenovirus E1A protein, which inhibits the HAT function of p300. Also, a mutation in p300 HAT region abolished the effect of p300 on IL-18 activation. These data further indicate that the acetylase activity of p300 was indispensable to its function. Furthermore, we found that p300 was able to enhance the effect of the transcription factor c-Fos on activation of the IL-18 promoter. Data presented in this paper implicate important roles of p300 in the transcriptional regulation of IL-18.
Collapse
Affiliation(s)
- Haijing Sun
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lu J, Sun H, Wang X, Liu C, Xu X, Li F, Huang B. Interleukin-12 p40 promoter activity is regulated by the reversible acetylation mediated by HDAC1 and p300. Cytokine 2005; 31:46-51. [PMID: 15869883 DOI: 10.1016/j.cyto.2005.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 02/25/2005] [Accepted: 03/23/2005] [Indexed: 11/19/2022]
Abstract
Interleukin-12 (IL-12) is a heterodimeric cytokine produced by macrophages in response to intracellular pathogens. The importance of IL-12 in generation of Th1 response against human pathogens has been characterized. The coactivator p300 is an important histone acetyltransferase (HAT) and has been implicated in the regulation of many genes. Histone deacetylases (HDACs) regulate gene transcription through deacetylation of histones. Whether the reversible histone acetylation/deacetylation modification participates in the regulation of IL-12 p40 transcription expression has not been investigated before. In this study, we analyzed the roles of HDAC1 and p300 in the regulation of human IL-12 p40. Co-transfection studies showed that HDAC1 had a repressing effect on the activity of IL-12 p40 promoter. Contrarily, p300 was able to reinforce the C/EBPbeta-mediated activation of IL-12 p40 and it counteracted the HDAC1-mediated repression of the IL-12 promoter. Chromatin immunoprecipitation tests (ChIP) revealed that p300 had a stimulating effect on the acetylation of the histone H3 at IL-12 p40 promoter. In addition, we showed that p300 had a physical interaction with C/EBPbeta and can enhance acetylation of C/EBPbeta. Data presented in this paper indicate that the reversible histone acetylation/deacetylation modification plays an important role in the transcriptional regulation of IL-12.
Collapse
Affiliation(s)
- Jun Lu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Rasti M, Grand RJA, Mymryk JS, Gallimore PH, Turnell AS. Recruitment of CBP/p300, TATA-binding protein, and S8 to distinct regions at the N terminus of adenovirus E1A. J Virol 2005; 79:5594-605. [PMID: 15827174 PMCID: PMC1082771 DOI: 10.1128/jvi.79.9.5594-5605.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The N-terminal region of the adenovirus (Ad) 12S E1A gene product targets several cellular proteins that are essential for the induction of S phase, cellular immortalization, cellular transformation, transcriptional repression, and transcriptional activation. The precise binding sites for these proteins, however, remain to be resolved. We therefore undertook an extensive site-directed mutagenesis approach to generate specific point mutants and to precisely map the binding sites for CBP, p300, TATA-binding protein (TBP), S4, S8, hGcn5, P/CAF, and Ran within the first 30 amino acids of the Ad5 12S E1A protein. We determined that although common residues within the N-terminal region can form partial binding sites for these proteins, point mutants were also generated that could discriminate between binding sites. These data indicate that AdE1A can target each of these proteins individually through distinct binding sites. It was evident, however, that the mutation of specific hydrophobic residues typically had the greatest effect upon AdE1A's ability to bind individual partners. Indeed, the mutation of L at positions 19 and 20 eliminated the ability of AdE1A to interact with any of the N-terminal binding proteins studied here. Interestingly, although TBP and S8 or CBP/p300 can exist as functional complexes, RNA interference revealed that the recruitment of either TBP, S8, or CBP/p300 to AdE1A was not dependent upon the expression of the other proteins. These data further indicate that AdE1A can target individual partner proteins in vivo and that it does not necessarily recruit these proteins indirectly as components of larger macromolecular complexes. Finally, we took advantage of the fine-mapping data to ascertain which proteins were targeted during the transformation process. Consistent with previous studies, CBP/p300 was found to be targeted by AdE1A during this process, although our data suggest that binding to other N-terminal proteins is also important for transformation.
Collapse
Affiliation(s)
- Mozhgan Rasti
- Cancer Research U.K. Institute for Cancer Studies, The Medical School, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
Samuelson AV, Narita M, Chan HM, Jin J, de Stanchina E, McCurrach ME, Narita M, Fuchs M, Livingston DM, Lowe SW. p400 Is Required for E1A to Promote Apoptosis. J Biol Chem 2005; 280:21915-23. [PMID: 15741165 DOI: 10.1074/jbc.m414564200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adenovirus E1A oncoprotein promotes proliferation and transformation by binding cellular proteins, including members of the retinoblastoma protein family, the p300/CREB-binding protein transcriptional coactivators, and the p400-TRRAP chromatin-remodeling complex. E1A also promotes apoptosis, in part, by engaging the ARF-p53 tumor suppressor pathway. We show that E1A induces ARF and p53 and promotes apoptosis in normal fibroblasts by physically associating with the retinoblastoma protein and a p400-TRRAP complex and that its interaction with p300 is largely dispensable for these effects. We further show that E1A increases p400 expression and, conversely, that suppression of p400 using stable RNA interference reduces the levels of ARF, p53, and apoptosis in E1A-expressing cells. Therefore, whereas E1A inactivates the retinoblastoma protein, it requires p400 to efficiently promote cell death. These results identify p400 as a regulator of the ARF-p53 pathway and a component of the cellular machinery that couples proliferation to cell death.
Collapse
Affiliation(s)
- Andrew V Samuelson
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Shao Y, Lu J, Zhang G, Liu C, Huang B. Histone acetyltransferase p300 promotes the activation of human WT1 promoter and intronic enhancer. Arch Biochem Biophys 2005; 436:62-8. [PMID: 15752709 DOI: 10.1016/j.abb.2005.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 01/07/2005] [Indexed: 11/22/2022]
Abstract
The Wilms' tumor gene-1 (WT1) encodes a zinc finger protein involved in gene regulation during kidney, gonad, and heart development. In addition to its promoter, a 258 bp intronic enhancer is required for tissue-specific expression of WT1 gene. p300 is a histone acetyltransferase (HAT) and exerts essential functions in gene regulation. Here, we show that p300 increased the expression of endogenous WT1 mRNA and promoted the activation of the WT1 promoter and intronic enhancer. The results also revealed that the adenovirus E1A repressed the p300 function, while the p300-binding defective E1A delta 2-36 did not, and p300 HAT activity was important for its function since p300 mutant with the HAT domain deleted partially abrogated its ability to activate the WT1 promoter and intronic enhancer. Furthermore, p300 and c-Myb synergistically activated the expression of WT1 gene. This study revealed that p300 and its HAT activity were involved in regulation of WT1 transcription.
Collapse
Affiliation(s)
- Yangguang Shao
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | | | |
Collapse
|