1
|
Simpson J, Kasson PM. Structural prediction of chimeric immunogen candidates to elicit targeted antibodies against betacoronaviruses. PLoS Comput Biol 2025; 21:e1012812. [PMID: 39908344 PMCID: PMC11809852 DOI: 10.1371/journal.pcbi.1012812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/10/2025] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Betacoronaviruses pose an ongoing pandemic threat. Antigenic evolution of the SARS-CoV-2 virus has shown that much of the spontaneous antibody response is narrowly focused rather than broadly neutralizing against even SARS-CoV-2 variants, let alone future threats. One way to overcome this is by focusing the antibody response against better-conserved regions of the viral spike protein. This has been demonstrated empirically in prior work, but we posit that systematic design tools will further potentiate antigenic focusing approaches. Here, we present a design approach to predict stable chimeras between SARS-CoV-2 and other coronaviruses, creating synthetic spike proteins that display a desired conserved region, in this case S2, and vary other regions. We leverage AlphaFold to predict chimeric structures and create a new metric for scoring chimera stability based on AlphaFold outputs. We evaluated 114 candidate spike chimeras using this approach. Top chimeras were further evaluated using molecular dynamics simulation as an intermediate validation technique, showing good stability compared to low-scoring controls. Experimental testing of five predicted-stable and two predicted-unstable chimeras confirmed 5/7 predictions, with one intermediate result. This demonstrates the feasibility of the underlying approach, which can be used to design custom immunogens to focus the immune response against a desired viral glycoprotein epitope.
Collapse
Affiliation(s)
- Jamel Simpson
- Program in Biophysics and Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Peter M. Kasson
- Program in Biophysics and Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Departments of Chemistry and Biochemistry and Biomedical Engineering, Georgia Institute of Technology, Atlanta, GeorgiaUnited States of America
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Pan X, Zhou F, Shi X, Liu Q, Yan D, Teng Q, Yuan C, Xu B, Zhang Z, Yan M, Li Z. The Generation of a H9N2 Avian Influenza Virus with HA and C3d-P29 Protein Fusions and Vaccine Development Applications. Vaccines (Basel) 2025; 13:99. [PMID: 40006646 PMCID: PMC11861068 DOI: 10.3390/vaccines13020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Maternal-derived antibody (MDA) interferes with immune responses, leading to the failure of H9N2 avian influenza vaccinations in poultry. So far, none of the commercially available H9N2 avian influenza vaccines used in poultry have been able to overcome MDA interference. METHODS To develop a vaccine that can overcome MDA interference, one or multiple copies of the minimum-binding domain (P29) from the complement protein C3d were inserted in between the signal peptide and the head domain of the hemagglutinin (HA) protein on a H9N2 avian influenza virus (A/Chicken/Shanghai/H514/2017, named H514). RESULTS The HA proteins containing P29 stimulated stronger type I interferences than wild-type HA proteins in vitro. The modified viruses with the HA proteins containing one copy of P29 (rH514-P29.1) and two copies of P29.2 (rH514-P29.2) were successfully rescued using reverse genetics. The inactivated vaccines developed with rH514-P29.1 or rH514-P29.2 induced higher and faster humoral immune responses than the vaccine developed with rH514 in specific pathogen-free (SPF) chickens. To evaluate the vaccines' efficacy in the presence of MDA and to ensure a uniform level of MDA, passively transferred antibody (PTA) was used as a model to mimic MDA in 1-day-old SPF chickens. Our results showed that the rH514-P29.2 inactivated vaccine induced significantly higher HI titers than the rH514 inactivated vaccine in the presence of PTA. More importantly, it reduced viral shedding after being challenged with H514 in the presence of PTA. CONCLUSIONS Our results suggest that vaccine antigens fused with two copies of P29 can decrease the interference of MDA on immunity in chickens. Overall, our results provide a new strategy for overcoming MDA interference.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Shanghai 200241, China; (X.P.); (F.Z.); (X.S.); (Q.L.); (D.Y.); (Q.T.); (C.Y.); (B.X.); (Z.Z.); (M.Y.)
| |
Collapse
|
3
|
Jaishwal P, Jha K, Singh SP. Revisiting the dimensions of universal vaccine with special focus on COVID-19: Efficacy versus methods of designing. Int J Biol Macromol 2024; 277:134012. [PMID: 39048013 DOI: 10.1016/j.ijbiomac.2024.134012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Even though the use of SARS-CoV-2 vaccines during the COVID-19 pandemic showed unprecedented success in a short time, it also exposed a flaw in the current vaccine design strategy to offer broad protection against emerging variants of concern. However, developing broad-spectrum vaccines is still a challenge for immunologists. The development of universal vaccines against emerging pathogens and their variants appears to be a practical solution to mitigate the economic and physical effects of the pandemic on society. Very few reports are available to explain the basic concept of universal vaccine design and development. This review provides an overview of the innate and adaptive immune responses generated against vaccination and essential insight into immune mechanisms helpful in designing universal vaccines targeting influenza viruses and coronaviruses. In addition, the characteristics, safety, and factors affecting the efficacy of universal vaccines have been discussed. Furthermore, several advancements in methods worthy of designing universal vaccines are described, including chimeric immunogens, heterologous prime-boost vaccines, reverse vaccinology, structure-based antigen design, pan-reactive antibody vaccines, conserved neutralizing epitope-based vaccines, mosaic nanoparticle-based vaccines, etc. In addition to the several advantages, significant potential constraints, such as defocusing the immune response and subdominance, are also discussed.
Collapse
Affiliation(s)
- Puja Jaishwal
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | - Kisalay Jha
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | | |
Collapse
|
4
|
Simpson J, Kasson PM. Structural prediction of chimeric immunogens to elicit targeted antibodies against betacoronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.31.526494. [PMID: 36778336 PMCID: PMC9915606 DOI: 10.1101/2023.01.31.526494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Betacoronaviruses pose an ongoing pandemic threat. Antigenic evolution of the SARS-CoV-2 virus has shown that much of the spontaneous antibody response is narrowly focused rather than broadly neutralizing against even SARS-CoV-2 variants, let alone future threats. One way to overcome this is by focusing the antibody response against better-conserved regions of the viral spike protein. Here, we present a design approach to predict stable chimeras between SARS-CoV-2 and other coronaviruses, creating synthetic spike proteins that display a desired conserved region and vary other regions. We leverage AlphaFold to predict chimeric structures and create a new metric for scoring chimera stability based on AlphaFold outputs. We evaluated 114 candidate spike chimeras using this approach. Top chimeras were further evaluated using molecular dynamics simulation as an intermediate validation technique, showing good stability compared to low-scoring controls. Experimental testing of five predicted-stable and two predicted-unstable chimeras confirmed 5/7 predictions, with one intermediate result. This demonstrates the feasibility of the underlying approach, which can be used to design custom immunogens to focus the immune response against a desired viral glycoprotein epitope.
Collapse
Affiliation(s)
- Jamel Simpson
- Program in Biophysics and Department of Biomedical Engineering, Box 800886, Charlottesville VA 22908
| | - Peter M. Kasson
- Program in Biophysics and Department of Biomedical Engineering, Box 800886, Charlottesville VA 22908
- Departments of Chemistry & Biochemistry and Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
- Department of Cell and Molecular Biology, Uppsala University, Box 256, Uppsala, Sweden
| |
Collapse
|
5
|
Meseko C, Sanicas M, Asha K, Sulaiman L, Kumar B. Antiviral options and therapeutics against influenza: history, latest developments and future prospects. Front Cell Infect Microbiol 2023; 13:1269344. [PMID: 38094741 PMCID: PMC10716471 DOI: 10.3389/fcimb.2023.1269344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
Drugs and chemotherapeutics have helped to manage devastating impacts of infectious diseases since the concept of 'magic bullet'. The World Health Organization estimates about 650,000 deaths due to respiratory diseases linked to seasonal influenza each year. Pandemic influenza, on the other hand, is the most feared health disaster and probably would have greater and immediate impact on humanity than climate change. While countermeasures, biosecurity and vaccination remain the most effective preventive strategies against this highly infectious and communicable disease, antivirals are nonetheless essential to mitigate clinical manifestations following infection and to reduce devastating complications and mortality. Continuous emergence of the novel strains of rapidly evolving influenza viruses, some of which are intractable, require new approaches towards influenza chemotherapeutics including optimization of existing anti-infectives and search for novel therapies. Effective management of influenza infections depend on the safety and efficacy of selected anti-infective in-vitro studies and their clinical applications. The outcomes of therapies are also dependent on understanding diversity in patient groups, co-morbidities, co-infections and combination therapies. In this extensive review, we have discussed the challenges of influenza epidemics and pandemics and discoursed the options for anti-viral chemotherapies for effective management of influenza virus infections.
Collapse
Affiliation(s)
- Clement Meseko
- Regional Centre for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Melvin Sanicas
- Medical and Clinical Development, Clover Biopharmaceuticals, Boston, MA, United States
| | - Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Lanre Sulaiman
- Regional Centre for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Binod Kumar
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
6
|
Behzadi MA, Stein KR, Bermúdez-González MC, Simon V, Nachbagauer R, Tortorella D. An Influenza Virus Hemagglutinin-Based Vaccine Platform Enables the Generation of Epitope Specific Human Cytomegalovirus Antibodies. Vaccines (Basel) 2019; 7:vaccines7020051. [PMID: 31207917 PMCID: PMC6630953 DOI: 10.3390/vaccines7020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/03/2022] Open
Abstract
Human cytomegalovirus (CMV) is a highly prevalent pathogen with ~60%–90% seropositivity in adults. CMV can contribute to organ rejection in transplant recipients and is a major cause of birth defects in newborns. Currently, there are no approved vaccines against CMV. The epitope of a CMV neutralizing monoclonal antibody against a conserved region of the envelope protein gH provided the basis for a new CMV vaccine design. We exploited the influenza A virus as a vaccine platform due to the highly immunogenic head domain of its hemagglutinin envelope protein. Influenza A variants were engineered by reverse genetics to express the epitope of an anti-CMV gH neutralizing antibody that recognizes native gH into the hemagglutinin antigenic Sa site. We determined that the recombinant influenza variants expressing 7, 10, or 13 residues of the anti-gH neutralizing antibody epitope were recognized and neutralized by the anti-gH antibody 10C10. Mice vaccinated with the influenza/CMV chimeric viruses induced CMV-specific antibodies that recognized the native gH protein and inhibited virus infection. In fact, the influenza variants expressing 7–13 gH residues neutralized a CMV infection at ~60% following two immunizations with variants expressing the 13 residue gH peptide produced the highest levels of neutralization. Collectively, our study demonstrates that a variant influenza virus inserted with a gH peptide can generate a humoral response that limits a CMV infection.
Collapse
Affiliation(s)
- Mohammad Amin Behzadi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kathryn R Stein
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Maria Carolina Bermúdez-González
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- The Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- The Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
7
|
Gerlach T, Elbahesh H, Saletti G, Rimmelzwaan GF. Recombinant influenza A viruses as vaccine vectors. Expert Rev Vaccines 2019; 18:379-392. [PMID: 30777467 DOI: 10.1080/14760584.2019.1582338] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Various viruses, including poxviruses, adenoviruses and vesicular stomatitis virus, have been considered as vaccine vectors for the delivery of antigens of interest in the development of vaccines against newly emerging pathogens. AREAS COVERED Here, we review results that have been obtained with influenza A viruses (IAV) as vaccine vectors. With the advent of reverse genetics technology, IAV-based recombinant vaccine candidates have been constructed that induce protective immunity to a variety of different pathogens of interest, including West Nile virus, Plasmodium falciparum and respiratory syncytial virus. The various cloning strategies to produce effective and attenuated, safe to use IAV-based viral vectors are discussed. EXPERT COMMENTARY It was concluded that IAV-based vector system has several advantages and holds promise for further development.
Collapse
Affiliation(s)
- Thomas Gerlach
- a Research Center for Emerging Infections and Zoonoses (RIZ) , University of Veterinary Medicine Hannover (TiHo) , Hannover , Germany
| | - Husni Elbahesh
- a Research Center for Emerging Infections and Zoonoses (RIZ) , University of Veterinary Medicine Hannover (TiHo) , Hannover , Germany
| | - Giulietta Saletti
- a Research Center for Emerging Infections and Zoonoses (RIZ) , University of Veterinary Medicine Hannover (TiHo) , Hannover , Germany
| | - Guus F Rimmelzwaan
- a Research Center for Emerging Infections and Zoonoses (RIZ) , University of Veterinary Medicine Hannover (TiHo) , Hannover , Germany
| |
Collapse
|
8
|
Lee YN, Hwang HS, Kim MC, Lee YT, Kim YJ, Lee FEH, Kang SM. Protection against respiratory syncytial virus by inactivated influenza virus carrying a fusion protein neutralizing epitope in a chimeric hemagglutinin. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:759-770. [PMID: 26656630 DOI: 10.1016/j.nano.2015.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/11/2015] [Accepted: 11/17/2015] [Indexed: 01/10/2023]
Abstract
UNLABELLED A desirable vaccine against respiratory syncytial virus (RSV) should induce neutralizing antibodies without eliciting abnormal T cell responses to avoid vaccine-enhanced pathology. In an approach to deliver RSV neutralizing epitopes without RSV-specific T cell antigens, we genetically engineered chimeric influenza virus expressing RSV F262-276 neutralizing epitopes in the globular head domain as a chimeric hemagglutinin (HA) protein. Immunization of mice with formalin-inactivated recombinant chimeric influenza/RSV F262-276 was able to induce RSV protective neutralizing antibodies and lower lung viral loads after challenge. Formalin-inactivated RSV immune mice showed high levels of pulmonary inflammatory cytokines, macrophages, IL-4-producing T cells, and extensive histopathology. However, RSV-specific T cell responses and enhancement of pulmonary histopathology were not observed after RSV infection of inactivated chimeric influenza/RSV F262-276. This study provides evidence that an inactivated vaccine platform of chimeric influenza/RSV virus can be developed into a safe RSV vaccine candidate without priming RSV-specific T cells and immunopathology. FROM THE CLINICAL EDITOR Respiratory syncytial virus (RSV) is a major cause of respiratory tract illness and morbidity in children. Hence, there is a need to develop an effective vaccine against this virus. In this article, the authors engineered chimeric influenza virus to express RSV neutralizing epitopes. The positive findings in in-vivo experiments provide a beginning for future clinical trials and perhaps eventual product realization.
Collapse
Affiliation(s)
- Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Animal and Plant Quarantine Agency, Gyeonggi-do, Republic of Korea
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yu-Jin Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | | | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
9
|
Biswas H, Chattopadhyaya R. Stability ofCurcuma longarhizome lectin: Role of N-linked glycosylation. Glycobiology 2015; 26:410-26. [DOI: 10.1093/glycob/cwv110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 11/17/2015] [Indexed: 01/31/2023] Open
|
10
|
Impact of glycosylation on stability, structure and unfolding of soybean agglutinin (SBA): an insight from thermal perturbation molecular dynamics simulations. Glycoconj J 2015; 32:371-84. [DOI: 10.1007/s10719-015-9601-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 11/26/2022]
|
11
|
Baker SF, Nogales A, Santiago FW, Topham DJ, Martínez-Sobrido L. Competitive detection of influenza neutralizing antibodies using a novel bivalent fluorescence-based microneutralization assay (BiFMA). Vaccine 2015; 33:3562-70. [PMID: 26044496 DOI: 10.1016/j.vaccine.2015.05.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/23/2015] [Accepted: 05/19/2015] [Indexed: 01/01/2023]
Abstract
Avian-derived influenza A zoonoses are closely monitored and may be an indication of virus strains with pandemic potential. Both successful vaccination and convalescence of influenza A virus in humans typically results in the induction of antibodies that can neutralize viral infection. To improve long-standing and new-generation methodologies for detection of neutralizing antibodies, we have employed a novel reporter-based approach that allows for multiple antigenic testing within a single sample. Central to this approach is a single-cycle infectious influenza A virus (sciIAV), where a functional hemagglutinin (HA) gene was changed to encode either the green or the monomeric red fluorescent protein (GFP and mRFP, respectively) and HA is complemented in trans by stable HA-expressing cell lines. By using fluorescent proteins with non-overlapping emission spectra, this novel bivalent fluorescence-based microneutralization assay (BiFMA) can be used to detect neutralizing antibodies against two distinct influenza isolates in a single reaction, doubling the speed of experimentation while halving the amount of sera required. Moreover, this approach can be used for the rapid identification of influenza broadly neutralizing antibodies. Importantly, this novel BiFMA can be used for any given influenza HA-pseudotyped virus under BSL-2 facilities, including highly pathogenic influenza HA isolates.
Collapse
Affiliation(s)
- Steven F Baker
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Felix W Santiago
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States.
| |
Collapse
|
12
|
Lee YN, Suk Hwang H, Kim MC, Lee YT, Cho MK, Kwon YM, Seok Lee J, Plemper RK, Kang SM. Recombinant influenza virus carrying the conserved domain of respiratory syncytial virus (RSV) G protein confers protection against RSV without inflammatory disease. Virology 2014; 476:217-225. [PMID: 25553517 DOI: 10.1016/j.virol.2014.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022]
Abstract
Respiratory syncytial virus (RSV) is one of the most important causes for viral lower respiratory tract disease in humans. There is no licensed RSV vaccine. Here, we generated recombinant influenza viruses (PR8/RSV.HA-G) carrying the chimeric constructs of hemagglutinin (HA) and central conserved-domains of the RSV G protein. PR8/RSV.HA-G virus showed lower pathogenicity without compromising immunogenicity in mice. Single intranasal inoculation of mice with PR8/RSV.HA-G induced IgG2a isotype dominant antibodies and RSV neutralizing activity. Mice with single intranasal inoculation of PR8/RSV.HA-G were protected against RSV infection as evidenced by significant reduction of lung viral loads to a detection limit upon RSV challenge. PR8/RSV.HA-G inoculation of mice did not induce pulmonary eosinophilia and inflammation upon RSV infection. These findings support a concept that recombinant influenza viruses carrying the RSV G conserved-domain can be developed as a promising RSV vaccine candidate without pulmonary disease.
Collapse
Affiliation(s)
- Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, South Korea
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Min-Kyoung Cho
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Jong Seok Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; National Institute of Biological Resources, Incheon, Gyeonggi-do 404-170, South Korea
| | - Richard K Plemper
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
13
|
Ondondo BO. The influence of delivery vectors on HIV vaccine efficacy. Front Microbiol 2014; 5:439. [PMID: 25202303 PMCID: PMC4141443 DOI: 10.3389/fmicb.2014.00439] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/03/2014] [Indexed: 12/31/2022] Open
Abstract
Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies are targeting multiple variants of conserved antibody and T cell epitopic regions which would incur a huge fitness cost to the virus in the event of mutational escape. Besides immunogen design, the delivery modality is critical for vaccine potency and efficacy, and should be carefully selected in order to not only maximize transgene expression, but to also enhance the immuno-stimulatory potential to activate innate and adaptive immune systems. To date, five HIV vaccine candidates have been evaluated for efficacy and protection from acquisition was only achieved in a small proportion of vaccinees in the RV144 study which used a canarypox vector for delivery. Conversely, in the STEP study (HVTN 502) where human adenovirus serotype 5 (Ad5) was used, strong immune responses were induced but vaccination was more associated with increased risk of HIV acquisition than protection in vaccinees with pre-existing Ad5 immunity. The possibility that pre-existing immunity to a highly promising delivery vector may alter the natural course of HIV to increase acquisition risk is quite worrisome and a huge setback for HIV vaccine development. Thus, HIV vaccine development efforts are now geared toward delivery platforms which attain superior immunogenicity while concurrently limiting potential catastrophic effects likely to arise from pre-existing immunity or vector-related immuno-modulation. However, it still remains unclear whether it is poor immunogenicity of HIV antigens or substandard immunological potency of the safer delivery vectors that has limited the success of HIV vaccines. This article discusses some of the promising delivery vectors to be harnessed for improved HIV vaccine efficacy.
Collapse
Affiliation(s)
- Beatrice O Ondondo
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford Oxford, UK
| |
Collapse
|
14
|
Chanzu N, Ondondo B. Induction of Potent and Long-Lived Antibody and Cellular Immune Responses in the Genitorectal Mucosa Could be the Critical Determinant of HIV Vaccine Efficacy. Front Immunol 2014; 5:202. [PMID: 24847327 PMCID: PMC4021115 DOI: 10.3389/fimmu.2014.00202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/23/2014] [Indexed: 01/28/2023] Open
Abstract
The field of HIV prevention has indeed progressed in leaps and bounds, but with major limitations of the current prevention and treatment options, the world remains desperate for an HIV vaccine. Sadly, this continues to be elusive, because more than 30 years since its discovery there is no licensed HIV vaccine. Research aiming to define immunological biomarkers to accurately predict vaccine efficacy have focused mainly on systemic immune responses, and as such, studies defining correlates of protection in the genitorectal mucosa, the primary target site for HIV entry and seeding are sparse. Clearly, difficulties in sampling and analysis of mucosal specimens, as well as their limited size have been a major deterrent in characterizing the type (mucosal antibodies, cytokines, chemokines, or CTL), threshold (magnitude, depth, and breadth) and viral inhibitory capacity of HIV-1-specific immune responses in the genitorectal mucosa, where they are needed to immediately block HIV acquisition and arrest subsequent virus dissemination. Nevertheless, a few studies document the existence of HIV-specific immune responses in the genitorectal mucosa of HIV-infected aviremic and viremic controllers, as well as in highly exposed persistently seronegative (HEPS) individuals with natural resistance to HIV-1. Some of these responses strongly correlate with protection from HIV acquisition and/or disease progression, thus providing significant clues of the ideal components of an efficacious HIV vaccine. In this study, we provide an overview of the key features of protective immune responses found in HEPS, elite and viremic controllers, and discuss how these can be achieved through mucosal immunization. Inevitably, HIV vaccine development research will have to consider strategies that elicit potent antibody and cellular immune responses within the genitorectal mucosa or induction of systemic immune cells with an inherent potential to home and persist at mucosal sites of HIV entry.
Collapse
Affiliation(s)
- Nadia Chanzu
- Institute of Tropical and Infectious Diseases, College of Health Sciences, University of Nairobi , Nairobi , Kenya
| | - Beatrice Ondondo
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford , Oxford , UK
| |
Collapse
|
15
|
Abstract
Reverse genetics systems allow artificial generation of non-segmented and segmented negative-sense RNA viruses, like influenza viruses, entirely from cloned cDNA. Since the introduction of reverse genetics systems over a decade ago, the ability to generate ‘designer’ influenza viruses in the laboratory has advanced both basic and applied research, providing a powerful tool to investigate and characterise host–pathogen interactions and advance the development of novel therapeutic strategies. The list of applications for reverse genetics has expanded vastly in recent years. In this review, we discuss the development and implications of this technique, including the recent controversy surrounding the generation of a transmissible H5N1 influenza virus. We will focus on research involving the identification of viral protein function, development of live-attenuated influenza virus vaccines, host–pathogen interactions, immunity and the generation of recombinant influenza virus vaccine vectors for the prevention and treatment of infectious diseases and cancer.
Collapse
|
16
|
Influenza viruses expressing chimeric hemagglutinins: globular head and stalk domains derived from different subtypes. J Virol 2012; 86:5774-81. [PMID: 22398287 DOI: 10.1128/jvi.00137-12] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influenza virus hemagglutinin molecule possesses a globular head domain that mediates receptor binding and a stalk domain at the membrane-proximal region. We generated functional influenza viruses expressing chimeric hemagglutinins encompassing a variety of globular head and stalk combinations, not only from different hemagglutinin subtypes but also from different hemagglutinin phylogenetic groups. These chimeric recombinant viruses possess growth properties similar to those of wild-type influenza viruses and can be used as reagents to measure domain-specific antibodies in virological and immunological assays.
Collapse
|
17
|
Durrant LG, Pudney VA, Spendlove I. Using monoclonal antibodies to stimulate antitumor cellular immunity. Expert Rev Vaccines 2012; 10:1093-106. [PMID: 21806402 DOI: 10.1586/erv.11.33] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Monoclonal antibodies (mAbs) have an established role in current cancer therapy with seven approved for the treatment of a wide variety of tumors. The approved mAbs directly target tumor cells; however, it is becoming increasingly clear that as well as their direct effects, these mAbs can present antigens to the immune system. This stimulates long-lasting T-cell immunity, which may correlate with long-term survival. A more direct approach is to use mAbs to target antigens directly to antigen-presenting cells. One approach, ImmunoBody, which has just entered the clinic, stimulates antitumor immunity using mAbs genetically engineered to express tumor-specific T-cell epitopes. T cells not only respond via their T-cell receptors recognizing T-cell epitopes presented on MHC but are also influenced by stimulation of a wide variety of costimulatory molecules. mAbs targeting these molecules can also influence antitumor immunity. The main protagonist in this class of mAbs is ipilimumab, which has recently been shown to improve survival at 2 years in 23% of advanced melanoma patients. Combinations of mAbs targeting tumor antigens to activated antigen-presenting cells and mAbs targeting costimulatory receptors may provide effective therapy for a broad range of tumors.
Collapse
Affiliation(s)
- Lindy G Durrant
- Academic Department of Clinical Oncology, University of Nottingham, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK.
| | | | | |
Collapse
|
18
|
The immunological potency and therapeutic potential of a prototype dual vaccine against influenza and Alzheimer's disease. J Transl Med 2011; 9:127. [PMID: 21806809 PMCID: PMC3162512 DOI: 10.1186/1479-5876-9-127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/01/2011] [Indexed: 12/18/2022] Open
Abstract
Background Numerous pre-clinical studies and clinical trials demonstrated that induction of antibodies to the β-amyloid peptide of 42 residues (Aβ42) elicits therapeutic effects in Alzheimer's disease (AD). However, an active vaccination strategy based on full length Aβ42 is currently hampered by elicitation of T cell pathological autoreactivity. We attempt to improve vaccine efficacy by creating a novel chimeric flu vaccine expressing the small immunodominant B cell epitope of Aβ42. We hypothesized that in elderly people with pre-existing memory Th cells specific to influenza this dual vaccine will simultaneously boost anti-influenza immunity and induce production of therapeutically active anti-Aβ antibodies. Methods Plasmid-based reverse genetics system was used for the rescue of recombinant influenza virus containing immunodominant B cell epitopes of Aβ42 (Aβ1-7/10). Results Two chimeric flu viruses expressing either 7 or 10 aa of Aβ42 (flu-Aβ1-7 or flu-Aβ1-10) were generated and tested in mice as conventional inactivated vaccines. We demonstrated that this dual vaccine induced therapeutically potent anti-Aβ antibodies and anti-influenza antibodies in mice. Conclusion We suggest that this strategy might be beneficial for treatment of AD patients as well as for prevention of development of AD pathology in pre-symptomatic individuals while concurrently boosting immunity against influenza.
Collapse
|
19
|
Martina BEE, van den Doel P, Koraka P, van Amerongen G, Spohn G, Haagmans BL, Provacia LBV, Osterhaus ADME, Rimmelzwaan GF. A recombinant influenza A virus expressing domain III of West Nile virus induces protective immune responses against influenza and West Nile virus. PLoS One 2011; 6:e18995. [PMID: 21541326 PMCID: PMC3082541 DOI: 10.1371/journal.pone.0018995] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 03/21/2011] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) continues to circulate in the USA and forms a threat to the rest of the Western hemisphere. Since methods for the treatment of WNV infections are not available, there is a need for the development of safe and effective vaccines. Here, we describe the construction of a recombinant influenza virus expressing domain III of the WNV glycoprotein E (Flu-NA-DIII) and its evaluation as a WNV vaccine candidate in a mouse model. FLU-NA-DIII-vaccinated mice were protected from severe body weight loss and mortality caused by WNV infection, whereas control mice succumbed to the infection. In addition, it was shown that one subcutaneous immunization with 105 TCID50 Flu-NA-DIII provided 100% protection against challenge. Adoptive transfer experiments demonstrated that protection was mediated by antibodies and CD4+T cells. Furthermore, mice vaccinated with FLU-NA-DIII developed protective influenza virus-specific antibody titers. It was concluded that this vector system might be an attractive platform for the development of bivalent WNV-influenza vaccines.
Collapse
|
20
|
Budding capability of the influenza virus neuraminidase can be modulated by tetherin. J Virol 2011; 85:2480-91. [PMID: 21209114 DOI: 10.1128/jvi.02188-10] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have determined that, in addition to its receptor-destroying activity, the influenza virus neuraminidase is capable of efficiently forming virus-like particles (VLPs) when expressed individually from plasmid DNA. This observation applies to both human subtypes of neuraminidase, N1 and N2. However, it is not found with every strain of influenza virus. Through gain-of-function and loss-of-function analyses, a critical determinant within the neuraminidase ectodomain was identified that contributes to VLP formation but is not sufficient to accomplish release of plasmid-derived VLPs. This sequence lies on the plasma membrane-proximal side of the neuraminidase globular head. Most importantly, we demonstrate that the antiviral restriction factor tetherin plays a role in determining the strain-specific limitations of release competency. If tetherin is counteracted by small interfering RNA knockdown or expression of the HIV anti-tetherin factor vpu, budding and release capability is bestowed upon an otherwise budding-deficient neuraminidase. These data suggest that budding-competent neuraminidase proteins possess an as-yet-unidentified means of counteracting the antiviral restriction factor tetherin and identify a novel way in which the influenza virus neuraminidase can contribute to virus release.
Collapse
|
21
|
Metheringham RL, Pudney VA, Gunn B, Towey M, Spendlove I, Durrant LG. Antibodies designed as effective cancer vaccines. MAbs 2010; 1:71-85. [PMID: 20046577 DOI: 10.4161/mabs.1.1.7492] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 11/25/2008] [Indexed: 11/19/2022] Open
Abstract
Antigen/antibody complexes can efficiently target antigen presenting cells to allow stimulation of the cellular immune response. Due to the difficulty of manufacture and their inherent instability complexes have proved inefficient cancer vaccines. However, anti-idiotypic antibodies mimicking antigens have been shown to stimulate both antibody and T cell responses. The latter are due to T cell mimotopes expressed within the complementarity-determining regions (CDRs) of antibodies that are efficiently presented to dendritic cells in vivo. Based on this observation we have designed a DNA vaccine platform called ImmunoBody, where cytotoxic T lymphocyte (CTL) and helper T cell epitopes replace CDR regions within the framework of a human IgG1 antibody. The ImmunoBody expression system has a number of design features which allow for rapid production of a wide range of vaccines. The CDR regions of the heavy and light chain have been engineered to contain unique restriction endonuclease sites, which can be easily opened, and oligonucleotides encoding the T cell epitopes inserted. The variable and constant regions of the ImmunoBody are also flanked by restriction sites, which permit easy exchange of other IgG subtypes. Here we show a range of T cell epitopes can be inserted into the ImmunoBody vector and upon immunization these T cell epitopes are efficiently processed and presented to stimulate high frequency helper and CTL responses capable of anti-tumor activity.
Collapse
Affiliation(s)
- R L Metheringham
- Scancell Limited, Department of Clinical Oncology, University of Nottingham, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
22
|
Krammer F, Schinko T, Messner P, Palmberger D, Ferko B, Grabherr R. Influenza virus-like particles as an antigen-carrier platform for the ESAT-6 epitope of Mycobacterium tuberculosis. J Virol Methods 2010; 167:17-22. [PMID: 20304011 DOI: 10.1016/j.jviromet.2010.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/02/2010] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
Various virus-like particles (VLPs) have been shown to induce cytotoxic T-cell immune response as well as B-cell immune response. This makes VLPs promising candidates for antigen-carrier platforms for various epitopes. Influenza A VLPs were produced displaying a 20 amino acid sequence from Mycobacterium tuberculosis early secretory antigenic target 6 protein (ESAT-6). As this sequence is known to comprise a potent T-cell epitope it was chosen as a model for a foreign epitope to be presented on an influenza VLP scaffold. The ESAT-6 epitope was engineered into the antigenic region B of the influenza hemagglutinin (HA) from strain A/New Caledonia/20/99. VLPs were expressed in insect cells and subjected to immunization studies in mice. High serum antibody titers detected against recombinant ESAT-6 demonstrated the feasibility of influenza A VLPs serving as an efficient platform for epitope presentation.
Collapse
Affiliation(s)
- Florian Krammer
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
23
|
Machado AV, Caetano BC, Barbosa RP, Salgado APC, Rabelo RH, Garcia CC, Bruna-Romero O, Escriou N, Gazzinelli RT. Prime and boost immunization with influenza and adenovirus encoding the Toxoplasma gondii surface antigen 2 (SAG2) induces strong protective immunity. Vaccine 2010; 28:3247-56. [PMID: 20189485 DOI: 10.1016/j.vaccine.2010.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 01/21/2010] [Accepted: 02/03/2010] [Indexed: 11/25/2022]
Abstract
In this work, we explored an original vaccination protocol using recombinant influenza and adenovirus. We constructed recombinant influenza viruses harboring dicistronic NA segments containing the surface antigen 2 (SAG2) from Toxoplasma gondii under control of the duplicated 3' promoter. Recombinant influenza viruses were able to drive the expression of the foreign SAG2 sequence in cell culture and to replicate efficiently both in cell culture and in lungs of infected mice. In addition, mice primed with recombinant influenza virus and boosted with a recombinant adenovirus encoding SAG2 elicited both humoral and cellular immune responses specific for SAG2. Moreover, when immunized animals were challenged with the cystogenic P-Br strain of T. gondii, they displayed up to 85% of reduction in parasite burden. These results demonstrate the potential use of recombinant influenza vectors harboring the dicistronic segments in the development of vaccines against infectious diseases.
Collapse
Affiliation(s)
- Alexandre V Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The antiquated system used to manufacture the currently licensed inactivated influenza virus vaccines would not be adequate during an influenza virus pandemic. There is currently a search for vaccines that can be developed faster and provide superior, long-lasting immunity to influenza virus as well as other highly pathogenic viruses and bacteria. Recombinant vectors provide a safe and effective method to elicit a strong immune response to a foreign protein or epitope. This review explores the advantages and limitations of several different vectors that are currently being tested, and highlights some of the newer viruses being used as recombinant vectors.
Collapse
|
25
|
Rimmelzwaan GF, Nieuwkoop NJ, de Mutsert G, Boon ACM, Kuiken T, Fouchier RAM, Osterhaus ADME. Attachment of infectious influenza A viruses of various subtypes to live mammalian and avian cells as measured by flow cytometry. Virus Res 2007; 129:175-81. [PMID: 17714820 DOI: 10.1016/j.virusres.2007.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 07/10/2007] [Accepted: 07/12/2007] [Indexed: 11/19/2022]
Abstract
At present there is much interest in the cell tropism and host range of influenza viruses, especially those of the H5N1 subtype. We wished to develop a method that would enable investigation of attachment of infectious virus through the interaction of the hemagglutinin molecule and live mammalian and avian cells and the subsequent infection of these cells. To this end, influenza viruses of various HA subtypes were constructed that either carry the green fluorescent protein (GFP) instead of the neuraminidase protein, or that express GFP in the cytoplasm of infected cells. The HA genes were derived from influenza viruses A/PR/8/34 (H1N1), A/Netherlands/178/95 (H3N2) and A/Vietnam/1194/04 (H5N1). Using these pairs of viruses, attachment and post-attachment events in the virus replication cycle can be distinguished. In general, the expression of NeuAc(alpha2-3)Gal or NeuAc(alpha2-6)Gal receptors on the cells tested corresponded with the attachment of the viruses that were studied with respect to predicted receptor specificity. Virus attachment was not always predictive for efficient infection of the cells.
Collapse
MESH Headings
- Animals
- Birds/virology
- Cell Line
- Flow Cytometry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza A Virus, H3N2 Subtype/physiology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/isolation & purification
- Influenza A Virus, H5N1 Subtype/physiology
- Influenza A virus/genetics
- Influenza A virus/isolation & purification
- Influenza A virus/physiology
- Orthomyxoviridae Infections/virology
- Receptors, Virus/metabolism
- Virus Attachment
- Virus Replication
Collapse
Affiliation(s)
- Guus F Rimmelzwaan
- Department of Virology, Postgraduate School Molecular Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Newly optimized reverse genetics techniques have allowed influenza researchers to generate recombinant influenza viruses expressing mutant viral proteins, as well as foreign proteins. Approaches include the insertion of noninfluenza epitopes and polypeptides into viral glycoproteins, foreign open reading frames as additional segments, and the fusion of independent proteins into viral genes encoding glycoproteins or the nonstructural protein 1. These genetically engineered viruses have been demonstrated to be good viral vectors for mounting B- and T-cell responses and are attractive candidates for vaccine development. As the molecular biology of influenza viral infection is more fully understood, influenza vectors can be concurrently manipulated to produce designed chimeric viruses, unveiling the possibility of a prosperous future with cheap, effective and safe vaccines against different human diseases.
Collapse
Affiliation(s)
- Luis Martínez-Sobrido
- Mount Sinai School of Medicine, Department of Microbiology, Emerging Pathogens Institute, 1 Gustave L Levy Place, Box #1124, NY 10029, USA
| | - Adolfo García-Sastre
- Mount Sinai School of Medicine, Department of Microbiology, Emerging Pathogens Institute & Department of Medicine, Division of Infectious Diseases, 1 Gustave L Levy Place, Box #1124, NY 10029, USA
| |
Collapse
|
27
|
Sinha S, Surolia A. Attributes of glycosylation in the establishment of the unfolding pathway of soybean agglutinin. Biophys J 2007; 92:208-16. [PMID: 16980353 PMCID: PMC1697847 DOI: 10.1529/biophysj.106.092668] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 08/29/2006] [Indexed: 11/18/2022] Open
Abstract
Soybean agglutinin (gSBA) is a tetrameric legume lectin, each of whose subunits are glycosylated. Earlier studies have shown that this protein shows exceptionally high stability in terms of free energy of unfolding when compared to other proteins from the same family. This article deals with the unfolding reactions of the nonglycosylated recombinant form of the protein rSBA and its comparison with the glycosylated counterpart gSBA. The nonglycosylated form features a lower stability when compared to the glycosylated form. Further, the unfolding pathways in the two are widely different. Although the glycosylated form undergoes a simple two-state unfolding, the nonglycosylated species unfolds via a compact monomeric intermediate that is not a molten globule. Representative isothermal and thermal denaturation profiles show that glycosylation accounts for a stabilization of approximately 9 kcal/mol of the tetramer, whereas the difference in T(m) between the two forms is 26 degrees C. Computational studies on the glycan-protein interactions at the noncanonical interface of the protein show that quite a number of hydrogen bond and hydrophobic interactions stabilize the glycoprotein tetramer.
Collapse
Affiliation(s)
- Sharmistha Sinha
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
28
|
Erratum: N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem Sci 2006. [DOI: 10.1016/j.tibs.2006.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Bot A, Smith D, Phillips B, Bot S, Bona C, Zaghouani H. Immunologic control of tumors by in vivo Fc gamma receptor-targeted antigen loading in conjunction with double-stranded RNA-mediated immune modulation. THE JOURNAL OF IMMUNOLOGY 2006; 176:1363-74. [PMID: 16424163 DOI: 10.4049/jimmunol.176.3.1363] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite the expression of non-self or neo-epitopes, many tumors such as lymphoid malignancies or cancers induced by oncogenic viruses are able to gradually overcome the immune defense mechanisms and spread. Using a preclinical model of hematological malignancy, we show that Ig-associated idiotypic determinants are recognized by the immune system in a fashion that results in immune deviation, allowing tumor progression and establishment of metastases. Using gene-targeted mice, we show that anti-idiotypic MHC class I-restricted immunity is promoted by ITAM motif (ITAM+) FcgammaR, but kept in check by ITIM motif (ITIM+) FcgammaRIIB-mediated mechanisms. In addition to interfering with the functionality of ITIM+ FcgammaR, effective anti-idiotypic and antitumoral immunity can be achieved by FcgammaR-targeted delivery of epitope in conjunction with administration of stimulatory motifs such as dsRNA, correcting the ineffective response to idiotypic epitopes. The immune process initiated by FcgammaR-mediated targeting of epitope together with dsRNA, resulted in control of tumor growth, establishment of immune memory and protection against tumors bearing antigenic variants. In summary, targeted delivery of MHC class I-restricted epitopes via ITAM+ FcgammaR, in conjunction with use of TLR-binding immune stimulatory motifs such as dsRNA, overcomes suboptimal responses to idiotypic determinants and may constitute a novel approach for the treatment of a broad range of malignancies. Finally, the results shed light on the mechanisms regulating the idiotypic network and managing the diversity associated with immune receptors.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, Neoplasm/immunology
- Cell Line
- Cross-Priming/immunology
- Epitopes, T-Lymphocyte/immunology
- Female
- Interferon-gamma/biosynthesis
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasms, Experimental/immunology
- RNA, Double-Stranded/physiology
- Receptors, IgG/deficiency
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Adrian Bot
- Alliance Pharmaceuticals, San Diego, CA 92121, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Mitra N, Sinha S, Ramya TNC, Surolia A. N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem Sci 2006; 31:156-63. [PMID: 16473013 DOI: 10.1016/j.tibs.2006.01.003] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 01/06/2006] [Accepted: 01/30/2006] [Indexed: 01/27/2023]
Abstract
Glycosylation, particularly N-linked glycosylation, profoundly affects protein folding, oligomerization and stability. The increased efficiency of folding of glycosylated proteins could be due to the chaperone-like activity of glycans, which is observed even when the glycan is not attached to the protein. Covalently linked glycans could also facilitate oligomerization by mediating inter-subunit interactions in the protein or stabilizing the oligomer in other ways. Glycosylation also affects the rate of fibril formation in prion proteins: N-glycans reduce the rate of fibril formation, and O-glycans affect the rate either way depending on factors such as position and orientation. It has yet to be determined whether there is any correlation among the sites of glycosylation and the ensuing effect in multiply glycosylated proteins. It is also not apparent whether there is a common pattern in the conservation of glycans in a related family of glycoproteins, but it is evident that glycosylation is a multifaceted post-translational modification. Indeed, glycosylation serves to "outfit" proteins for fold-function balance.
Collapse
Affiliation(s)
- Nivedita Mitra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | |
Collapse
|
31
|
Garulli B, Kawaoka Y, Castrucci MR. Mucosal and systemic immune responses to a human immunodeficiency virus type 1 epitope induced upon vaginal infection with a recombinant influenza A virus. J Virol 2004; 78:1020-5. [PMID: 14694134 PMCID: PMC368805 DOI: 10.1128/jvi.78.2.1020-1025.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The humoral and cellular immune responses in the genital mucosa likely play an important role in the prevention of sexually transmitted infections, including infection with human immunodeficiency virus type 1 (HIV-1). Here we show that vaginal infection of progesterone-treated BALB/c mice with a recombinant influenza virus bearing the immunodominant P18IIIB cytotoxic T-lymphocyte (CTL) epitope of the gp160 envelope protein from an HIV-1 IIIB isolate (P18IIIB; RIQRGPGRAFVTIGK) can induce a specific immune response in regional mucosal lymph nodes, as well as in a systemic site (the spleen). A single inoculation of mice with the recombinant influenza virus induced long-lasting (at least 5 months) antigen-specific CTL memory detectable as a rapid recall of effector CTLs upon vaginal infection with recombinant vaccinia virus expressing HIV-1 IIIB envelope gene products. Long-term antigen-specific CTL memory was also induced and maintained in distant mucosal tissues when mice were intranasally immunized with the recombinant influenza virus. These results indicate that mucosal immunization and, in particular, local vaginal immunization with recombinant influenza virus can provide strong, durable immune responses in the female genital tract of mice.
Collapse
Affiliation(s)
- Bruno Garulli
- Laboratory of Virology, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | |
Collapse
|
32
|
von Messling V, Cattaneo R. Toward novel vaccines and therapies based on negative-strand RNA viruses. Curr Top Microbiol Immunol 2004; 283:281-312. [PMID: 15298173 DOI: 10.1007/978-3-662-06099-5_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The study of negative-strand RNA viruses has suggested new strategies to produce more attenuated viruses. Reverse genetics has allowed the implementation of the strategies, and new or improved monovalent vaccines are being developed. In addition, recombinant viruses expressing foreign proteins or epitopes have been produced with the aim of developing multivalent vaccines capable of stimulating humoral and cellular immune responses against more than one pathogen. Finally, recombinant viruses that selectively enter cells expressing tumor markers or the HIV envelope protein have been engineered and shown to lyse target cells. Preclinical and clinical trials of improved and multivalent vaccines and therapeutic (oncolytic) viruses are ongoing.
Collapse
Affiliation(s)
- V von Messling
- Molecular Medicine Program, Mayo Foundation, 200 1st Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
33
|
Neumann G, Whitt MA, Kawaoka Y. A decade after the generation of a negative-sense RNA virus from cloned cDNA - what have we learned? J Gen Virol 2002; 83:2635-2662. [PMID: 12388800 DOI: 10.1099/0022-1317-83-11-2635] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Since the first generation of a negative-sense RNA virus entirely from cloned cDNA in 1994, similar reverse genetics systems have been established for members of most genera of the Rhabdo- and Paramyxoviridae families, as well as for Ebola virus (Filoviridae). The generation of segmented negative-sense RNA viruses was technically more challenging and has lagged behind the recovery of nonsegmented viruses, primarily because of the difficulty of providing more than one genomic RNA segment. A member of the Bunyaviridae family (whose genome is composed of three RNA segments) was first generated from cloned cDNA in 1996, followed in 1999 by the production of influenza virus, which contains eight RNA segments. Thus, reverse genetics, or the de novo synthesis of negative-sense RNA viruses from cloned cDNA, has become a reliable laboratory method that can be used to study this large group of medically and economically important viruses. It provides a powerful tool for dissecting the virus life cycle, virus assembly, the role of viral proteins in pathogenicity and the interplay of viral proteins with components of the host cell immune response. Finally, reverse genetics has opened the way to develop live attenuated virus vaccines and vaccine vectors.
Collapse
Affiliation(s)
- Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive West, Madison, WI 53706, USA1
| | - Michael A Whitt
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, USA2
| | - Yoshihiro Kawaoka
- CREST, Japan Science and Technology Corporation, Japan4
- Institute of Medical Science, University of Tokyo, Tokyo, Japan3
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive West, Madison, WI 53706, USA1
| |
Collapse
|
34
|
Bonaldo MC, Garratt RC, Caufour PS, Freire MS, Rodrigues MM, Nussenzweig RS, Galler R. Surface expression of an immunodominant malaria protein B cell epitope by yellow fever virus. J Mol Biol 2002; 315:873-85. [PMID: 11812154 DOI: 10.1006/jmbi.2001.5258] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The yellow fever 17D virus (YF17D) has several characteristics that are desirable for the development of new, live attenuated vaccines. We approached its development as a vector for heterologous antigens by studying the expression of a humoral epitope at the surface of the E protein based on the results of modelling its three-dimensional structure. This model indicated that the most promising insertion site is between beta-strands f and g, a site that is exposed at the external surface of the virus. The large deletion of six residues from the fg loop of the E protein from yellow fever virus, compared to tick-born encephalitis virus, leaves space at the dimer interface for a large insertion without creating steric hindrance. We have tested this hypothesis by inserting a model humoral epitope from the circumsporozoite protein of Plasmodium falciparum consisting of triple NANP repeats. Recombinant virus (17D/8) expressing this insertion flanked by two glycine residues at each end, is specifically neutralized by a monoclonal antibody to the model epitope. Furthermore, mouse antibodies raised to the recombinant virus recognize the parasite protein in an ELISA assay. Serial passage analysis confirmed the genetic stability of the insertion made in the viral genome and the resulting 17D/8 virus is significantly more attenuated in mouse neurovirulence tests than the 17DD vaccine. The fg loop belongs to the dimerization domain of the E protein and lies at the interface between monomers. This domain undergoes a low pH transition, which is related to the fusion of the viral envelope to the endosome membrane. It is conceivable that a slower rate of fusion, resulting from the insertion close to the dimer interface, may delay the onset of virus production and thereby lead to a milder infection of the host. This would account for the more attenuated phenotype of the recombinant virus in the mouse model and lower extent of replication in cultured cells. The vectorial capacity of the yellow fever virus is being further explored for the expression and presentation of other epitopes, including those mediating T-cell responses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Cell Line
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Gene Expression
- Genome, Viral
- Hydrogen-Ion Concentration
- Immunodominant Epitopes/chemistry
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Malaria/immunology
- Malaria/parasitology
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/adverse effects
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Mice
- Models, Molecular
- Molecular Sequence Data
- Neutralization Tests
- Plasmodium falciparum/chemistry
- Plasmodium falciparum/genetics
- Plasmodium falciparum/immunology
- Protein Structure, Tertiary
- Sequence Alignment
- Serial Passage
- Survival Rate
- Vaccines, Attenuated/adverse effects
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Yellow fever virus/genetics
- Yellow fever virus/isolation & purification
- Yellow fever virus/pathogenicity
- Yellow fever virus/physiology
Collapse
Affiliation(s)
- Myrna C Bonaldo
- Departamento de Bioquímica e Biologia Molecular, Fundação Oswaldo Cruz Instituto Oswaldo Cruz, Rio de Janeiro, RJ 21045-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Zheng H, Garcı́a-Sastre A. Potential applications of influenza A virus vectors as tumor vaccines. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0531-5131(01)00662-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Abstract
Reverse genetics of negative-sense RNA viruses, which enables one to generate virus entirely from cloned cDNA, has progressed rapidly over the past decade. However, despite the relative ease with which nonsegmented negative-sense RNA viruses can now be produced from plasmids, the ability to generate viruses with segmented genomes has lagged considerably, largely because of the inherent technical difficulties in providing all viral RNAs and proteins from cloned cDNA. A breakthrough in reverse genetics technology in the influenza virus field came in 1999, when we (Neumann et al., 1999, Proc. Natl. Acad. Sci. USA 96, 9345-9350) and others (Fodor et al., 1999, J. Virol. 73, 9679-9682) exploited a new approach to viral RNA production. In this review, we discuss the background for this advance, the systems that are now available for the generation of influenza viruses, and the implications of these developments for the future of virus research.
Collapse
Affiliation(s)
- G Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
37
|
Ozdarendeli A, Ku S, Rochat S, Williams GD, Senanayake SD, Brian DA. Downstream sequences influence the choice between a naturally occurring noncanonical and closely positioned upstream canonical heptameric fusion motif during bovine coronavirus subgenomic mRNA synthesis. J Virol 2001; 75:7362-74. [PMID: 11462008 PMCID: PMC114971 DOI: 10.1128/jvi.75.16.7362-7374.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2001] [Accepted: 05/16/2001] [Indexed: 11/20/2022] Open
Abstract
Mechanisms leading to subgenomic mRNA (sgmRNA) synthesis in coronaviruses are poorly understood but are known to involve a heptameric signaling motif, originally called the intergenic sequence. The intergenic sequence is the presumed crossover region (fusion site) for RNA-dependent RNA polymerase (RdRp) during discontinuous transcription, a process leading to sgmRNAs that are both 5' and 3' coterminal. In the bovine coronavirus, the major fusion site for synthesis of mRNA 5 (GGUAGAC) does not conform to the canonical motif (UC[U,C]AAAC) at three positions (underlined), yet it lies just 14 nucleotides downstream from such a sequence (UCCAAAC). The infrequently used canonical sequence, by computer prediction, is buried within the stem of a stable hairpin (-17.2 kcal/mol). Here we document the existence of this stem by enzyme probing and examine its influence and that of neighboring sequences on the unusual choice of fusion sites by analyzing transcripts made in vivo from mutated defective interfering RNA constructs. We learned that (i) mutations that were predicted to unfold the stem-loop in various ways did not switch RdRp crossover to the upstream canonical site, (ii) a totally nonconforming downstream motif resulted in no measurable transcription from either site, (iii) the canonical upstream site does not function ectopically to lend competence to the downstream noncanonical site, and (iv) altering flanking sequences downstream of the downstream noncanonical motif in ways that diminish sequence similarity with the virus genome 5' end caused a dramatic switch to the upstream canonical site. These results show that sequence elements downstream of the noncanonical site can dramatically influence the choice of fusion sites for synthesis of mRNA 5 and are interpreted as being most consistent with a mechanism of similarity-assisted RdRp strand switching during minus-strand synthesis.
Collapse
Affiliation(s)
- A Ozdarendeli
- Department of Microbiology, University of Tennessee, College of Veterinary Medicine, Knoxville, Tennessee 37996-0845, USA
| | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- A García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| |
Collapse
|
39
|
Nakajima S, Nobusawa E, Nakajima K. Variation in response among individuals to antigenic sites on the HA protein of human influenza virus may be responsible for the emergence of drift strains in the human population. Virology 2000; 274:220-31. [PMID: 10936103 DOI: 10.1006/viro.2000.0453] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eight convalescent human sera obtained from patients aged 3 to 14 years old, who were infected with influenza A(H3N2) virus during the 1990/1991 influenza season, were characterized by a binding assay with chimeric hemagglutinin (HA) proteins between influenza virus A/Aichi/2/68 and A/Kamata/14/91(H3N2) strains. These sera did not recognize the HA protein of the A/Aichi/2/68 strain but recognized that of the A/Kamata/14/91 strain. The binding assay revealed that these sera recognized only the HA1 domain of A/Kamata/14/91 HA protein. A further assay of the binding of these sera to the chimeric proteins of the HA1 domain revealed that three sera (A-1, A-2, and A-3) from very young patients bound only to region 150-170 (site B1) and one serum (Y-1) bound to regions 96-150 (site A) and 96-170 (sites A and B1). These four sera showed reduced hemagglutination inhibition (HI) activity with the 203v2 strain, a monoclonal variant of the A/Kamata/14/91 strain with two amino acid changes in the HA protein at antigenic sites A and B1. The other four sera (Y-2, G-1, G-2, and A-4) bound to regions 1-96 (site C/E), 96-150 (site A), 96-170 (sites A and B1), and 170-200 (site B2), two of which further bound to region 240-306 (site C); these sera were all fully reactive with the 203v2 strain. All eight sera showed reduced HI reactivity to a drift strain A/Aichi/4/93. Amino acid changes of the A/Aichi/4/93 strain from the A/Kamata/14/91 strain were located at antigenic sites A, B1, B2, and C. We propose a possible model for the emergence of a drift strain A/Aichi/4/93 from an A/Kamata/14/91-like strain by sequential changes during reinfections of individuals starting from A-1-like, next to Y-1-like, and then to Y-2-like populations.
Collapse
MESH Headings
- Adolescent
- Amino Acid Sequence
- Amino Acids
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/immunology
- Antigenic Variation/genetics
- Antigenic Variation/immunology
- COS Cells
- Cell Line
- Child
- Child, Preschool
- Dogs
- Evolution, Molecular
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunoglobulin G/immunology
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza, Human/epidemiology
- Influenza, Human/immunology
- Influenza, Human/virology
- Japan/epidemiology
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Recombinant Proteins/immunology
Collapse
Affiliation(s)
- S Nakajima
- Department of Microbiology, National Institute of Public Health, Shirokanedai, Minato-ku, Tokyo 108-8638, Japan.
| | | | | |
Collapse
|
40
|
Neumann G, Kawaoka Y. Genetic engineering of influenza and other negative-strand RNA viruses containing segmented genomes. Adv Virus Res 2000; 53:265-300. [PMID: 10582103 DOI: 10.1016/s0065-3527(08)60352-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- G Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison 53706, USA
| | | |
Collapse
|
41
|
Lee KH, Seong BL. Current status for influenza control. BIOTECHNOL BIOPROC E 1999. [DOI: 10.1007/bf02931921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Gonzalo RM, Rodríguez D, García-Sastre A, Rodríguez JR, Palese P, Esteban M. Enhanced CD8+ T cell response to HIV-1 env by combined immunization with influenza and vaccinia virus recombinants. Vaccine 1999; 17:887-92. [PMID: 10067695 DOI: 10.1016/s0264-410x(98)00274-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
With the aim to determine if immunization with two different live recombinant viral vectors could lead to an enhancement of the cellular immune response to HIV-1 antigens, we have characterized the CD8+ T cell response elicited against the V3 loop epitope from HIV-1 env protein in Balb/c mice immunized with either: a recombinant influenza virus (Flu-Env) expressing the V3 loop epitope from HIV-1 strain IIIB, a vaccinia virus recombinant (VV-Env) expressing the complete HIV-1-IIIB env protein, or a combination of both. The CD8+ T cell response, measured by the ELISPOT assay, in animals primed with Flu-Env and boosted with VV-Env was 5 to 6 times higher than in animals inoculated with either Flu-Env or VV-Env alone. Similar results were obtained with recombinant viruses expressing the V3 loop epitope or the complete env protein, respectively, from the MN strain of HIV-1. Our results indicate that the use of two different live vectors for priming and boosting has a synergistic effect on the immune response against HIV-1, and could represent a novel vaccination strategy against AIDS.
Collapse
Affiliation(s)
- R M Gonzalo
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, (CSIC), Campus Universidad Autónoma, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Staczek J, Gilleland HE, Gilleland LB, Harty RN, García-Sastre A, Engelhardt OG, Palese P. A chimeric influenza virus expressing an epitope of outer membrane protein F of Pseudomonas aeruginosa affords protection against challenge with P. aeruginosa in a murine model of chronic pulmonary infection. Infect Immun 1998; 66:3990-4. [PMID: 9673294 PMCID: PMC108472 DOI: 10.1128/iai.66.8.3990-3994.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ability of a chimeric influenza virus containing, within the antigenic B site of its hemagglutinin, an 11-amino-acid (AEGRAINRRVE) insert from the peptide 10 epitope of outer membrane (OM) protein F of Pseudomonas aeruginosa to serve as a protective vaccine against P. aeruginosa was tested by using the murine chronic pulmonary infection model. Mice immunized with the chimeric virus developed antibodies that reacted in an enzyme-linked immunosorbent assay with peptide 10, with purified protein F, and with whole cells of various immunotype strains of P. aeruginosa but failed to react with a protein F-deficient strain of P. aeruginosa. The chimeric-virus antisera reacted specifically with protein F alone when immunoblotted against proteins extracted from cell envelopes of each of the seven Fisher-Devlin immunotype strains and had significantly greater in vitro opsonic activity for P. aeruginosa than did antisera from wild-type influenza virus-immunized mice. Subsequent to intratracheal challenge with agar-encased cells of P. aeruginosa, chimeric-virus-immunized mice developed significantly fewer severe lung lesions than did control mice immunized with the wild-type influenza virus. Furthermore, the chimeric influenza virus-immunized group had a significantly smaller percentage of mice with >5 x 10(3) CFU of P. aeruginosa in their lungs upon bacterial quantitation than did the control group. These data indicate that chimeric influenza viruses expressing epitopes of OM protein F warrant continued development as vaccines to prevent pulmonary infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- J Staczek
- Department of Microbiology and Immunology, Louisiana State University Medical Center, School of Medicine in Shreveport, Shreveport, Louisiana 71130-3932, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Recent studies on the recognition of antigens by CD4+ and CD8+ T cells have revealed new ways of preparing efficient T-cell vaccines. Here, Constantin Bona and colleagues discuss several approaches for the development of T-cell vaccines, with applications ranging from the induction of protective immunity against intracellular parasites to the development of therapeutic agents against autoimmune disorders, allergic diseases and cancer.
Collapse
Affiliation(s)
- C A Bona
- Mount Sinai School of Medicine, Dept of Microbiology, New York, NY 10029, USA.
| | | | | |
Collapse
|
45
|
Ernst W, Grabherr R, Wegner D, Borth N, Grassauer A, Katinger H. Baculovirus surface display: construction and screening of a eukaryotic epitope library. Nucleic Acids Res 1998; 26:1718-23. [PMID: 9512544 PMCID: PMC147480 DOI: 10.1093/nar/26.7.1718] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The baculovirus expression system was utilized to serve as a tool for ligand selection, demonstrating the applicability of the system to the generation and screening of eukaryotic expression libraries. The HIV-1-gp41 epitope 'ELDKWA', specific for the neutralizing human mAb 2F5, was inserted into the antigenic site B of influenza virus hemagglutinin and expressed on the surface of baculovirus infected insect cells. In order to improve the antigenicity of the epitope within the hemagglutinin, and therefore enhance the specific binding of 2F5, we inserted three additional, random amino acids adjacent to the epitope. This pool of hemagglutinin genes was directly cloned into the baculovirus Ac-omega. To identify distinct proteins displayed on the cellular surface, we developed a screening protocol to select for specific binding capacity of individual viral clones. Using fluorescence activated cell sorting (FACS) we isolated a baculovirus clone displaying the epitope with markedly increased binding capacity out of a pool of 8000 variants in only one sorting step. Binding properties of the identified ligand were examined by FACS performing a competition assay.
Collapse
Affiliation(s)
- W Ernst
- Insitute of Applied Microbiology, University of Agriculture, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
46
|
Mueller S, Wimmer E. Expression of foreign proteins by poliovirus polyprotein fusion: analysis of genetic stability reveals rapid deletions and formation of cardioviruslike open reading frames. J Virol 1998; 72:20-31. [PMID: 9420196 PMCID: PMC109345 DOI: 10.1128/jvi.72.1.20-31.1998] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/1997] [Accepted: 09/16/1997] [Indexed: 02/05/2023] Open
Abstract
Using a strategy developed by R. Andino, D. Silvera, S. D. Suggett, P. I. Achacoso, C. J. Miller, D. Baltimore, and M. B. Feinberg (Science 265:1448-1451, 1994), we constructed recombinant polioviruses by fusing the open reading frame (ORF) of the green fluorescent protein gene (gfp) of Aequorea victoria or the gag gene (encoding p17-p24) of human immunodeficiency virus type 1 (HIV-1) to the N terminus of the poliovirus polyprotein. All poliovirus expression vectors constructed by us and those obtained from Andino et al. were found to be severely impaired in viral replication and genetically unstable. Upon replication, inserted sequences were rapidly deleted as early as the first growth cycle in HeLa cells. However, the vector viruses did not readily revert to the wild-type sequence but rather retained some of the insert plus the artificial 3Cpro/3CDpro cleavage site, engineered between the heterologous sequence and the poliovirus polyprotein, to give rise to genotypes reminiscent of cardioviruses. These virus variants that carry a small leader polypeptide were now relatively stable, and they grew better than their progenitor strains. Reverse transcription followed by PCR and sequence analysis of the genomic RNAs reproducibly revealed a few preferred genotypes among the isolated deletion variants. The remaining truncated inserts were retained through subsequent passages. In the immediate vicinity of the deletion borders, we observed short direct sequence repeats that we propose are involved in aligning RNA strands for illegitimate (nonhomologous) RNA recombination during minus-strand synthesis. On the basis of our results, which are at variance with published data, the utility of poliovirus vectors to express proteins > 10 kDa in size through fusion with the polyprotein needs to be reevaluated.
Collapse
Affiliation(s)
- S Mueller
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, 11794, USA.
| | | |
Collapse
|
47
|
Smith AD, Geisler SC, Chen AA, Resnick DA, Roy BM, Lewi PJ, Arnold E, Arnold GF. Human rhinovirus type 14:human immunodeficiency virus type 1 (HIV-1) V3 loop chimeras from a combinatorial library induce potent neutralizing antibody responses against HIV-1. J Virol 1998; 72:651-9. [PMID: 9420270 PMCID: PMC109419 DOI: 10.1128/jvi.72.1.651-659.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In an effort to develop a useful AIDS vaccine or vaccine component, we have generated a combinatorial library of chimeric viruses in which the sequence IGPGRAFYTTKN from the V3 loop of the MN strain of human immunodeficiency virus type 1 (HIV-1) is displayed in many conformations on the surface of human rhinovirus 14 (HRV14). The V3 loop sequence was inserted into a naturally immunogenic site of the cold-causing HRV14, bridged by linkers consisting of zero to three randomized amino acids on each side. The library of chimeric viruses obtained was subjected to a variety of immunoselection schemes to isolate viruses that provided the most useful presentations of the V3 loop sequence for potential use in a vaccine against HIV. The utility of the presentations was assessed by measures of antigenicity and immunogenicity. Most of the immunoselected chimeras examined were potently neutralized by each of the four different monoclonal anti-V3 loop antibodies tested. Seven of eight chimeric viruses were able to elicit neutralizing antibody responses in guinea pigs against the MN and ALA-1 strains of HIV-1. Three of the chimeras elicited HIV neutralization titers that exceeded those of all but a small number of previously described HIV immunogens. These results indicate that HRV14:HIV-1 chimeras may serve as useful immunogens for stimulating immunity against HIV-1. This method can be used to flexibly reconstruct varied immunogens on the surface of a safe and immunogenic vaccine vehicle.
Collapse
Affiliation(s)
- A D Smith
- Center for Advanced Biotechnology and Medicine and Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Sweet TM, Maassab HF, Coelingh K, Herlocher ML. Creation of amantadine resistant clones of influenza type A virus using a new transfection procedure. J Virol Methods 1997; 69:103-11. [PMID: 9504756 DOI: 10.1016/s0166-0934(97)00145-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
M2, the spliced segment of the matrix (M) gene of influenza A virus, is an integral membrane protein which functions as an ion channel both when the virus is in the host endosome and during protein processing in the trans-Golgi network. Amantadine inhibits replication of influenza A virus by blocking the activity of this ion channel. Reverse genetics were used to generate amantadine resistant virus mutants by introducing mutations into the M gene of cold adapted (ca) A/AA/6/60, an amantadine sensitive virus. The site directed mutagenesis involved substitutions at amino acids 27, 30 and 31, sites hypothesized to be responsible for resistance to this drug in several other influenza A viruses. This M gene was then transfected into wt A/AA/6/60, an amantadine sensitive virus, via electroporation. The desired transfectants were selected for replication in the presence of amantadine. Using this newly devised reverse genetics system to rescue a mutated gene in its homologous wild type background not only establishes the identity of amino acid mutations necessary for the establishment of amantadine resistance but will also allow us to study other mutations in the M gene without gene constellation effects. Resistance to amantadine in wt A/AA/6/60 can also occur naturally if the viruses are grown in the presence of amantadine. These spontaneously generated resistant clones contained point mutations at amino acid 30 or 31 of M2.
Collapse
Affiliation(s)
- T M Sweet
- University of Michigan, School of Public Health, Department of Epidemiology, Ann Arbor 48109-2029, USA
| | | | | | | |
Collapse
|
49
|
Scannevin RH, Murakoshi H, Rhodes KJ, Trimmer JS. Identification of a cytoplasmic domain important in the polarized expression and clustering of the Kv2.1 K+ channel. J Cell Biol 1996; 135:1619-32. [PMID: 8978827 PMCID: PMC2133974 DOI: 10.1083/jcb.135.6.1619] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The voltage-sensitive K+ channel Kv2.1 has a polarized and clustered distribution in neurons. To investigate the basis for this localization, we expressed wild-type Kv2.1 and two COOH-terminal truncation mutants, delta C318 and delta C187, in polarized epithelial MDCK cells. These functional channel proteins had differing subcellular localization, in that while both wild-type Kv2.1 and delta C187 localized to the lateral membrane in high density clusters, delta C318 was expressed uniformly on both apical and lateral membranes. A chimeric protein containing the hemagglutinin protein from influenza virus and the region of Kv2.1 that differentiates the two truncation mutants (amino acids 536-666) was also expressed in MDCK cells, where it was found in high density clusters similar to those observed for Kv2.1. Polarized expression and clustering of Kv2.1 correlates with detergent solubility, suggesting that interaction with the detergent insoluble cytoskeleton may be necessary for proper localization of this channel.
Collapse
Affiliation(s)
- R H Scannevin
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook 11794, USA
| | | | | | | |
Collapse
|
50
|
Mebatsion T, Schnell MJ, Cox JH, Finke S, Conzelmann KK. Highly stable expression of a foreign gene from rabies virus vectors. Proc Natl Acad Sci U S A 1996; 93:7310-4. [PMID: 8692989 PMCID: PMC38980 DOI: 10.1073/pnas.93.14.7310] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A reverse genetics approach was applied to generate a chimeric nonsegmented negative strand RNA virus, rabies virus (RV) of the Rhabdoviridae family, that expresses a foreign protein. DNA constructs containing the entire open reading frame of the bacterial chloramphenicol acetyltransferase (CAT) gene and an upstream RV cistron border sequence were inserted either into the nontranslated pseudogene region of a full-length cDNA copy of the RV genome or exchanged with the pseudogene region. After intracellular T7 RNA polymerase-driven expression of full-length antigenome RNA transcripts and RV nucleoprotein, phosphoprotein and polymerase from transfected plasmids, RVs transcribing novel monocistronic mRNAs and expressing CAT at high levels, were recovered. The chimeric viruses possessed the growth characteristics of standard RV and were genetically stable upon serial cell culture passages. CAT activity was still observed in cell cultures infected with viruses passaged for more than 25 times. Based on the unprecedented stability of the chimeric RNA genomes, which is most likely due to the structure of the rhabdoviral ribonucleoprotein complex, we predict the successful future use of recombinant rhabdovirus vectors for displaying foreign antigens or delivering therapeutic genes.
Collapse
Affiliation(s)
- T Mebatsion
- Department of Clinical Virology, Federal Research Centre for Virus Diseases of Animals, Tübingen, Germany
| | | | | | | | | |
Collapse
|