1
|
Chouljenko DV, Murad YM, Lee IF, Delwar Z, Ding J, Liu G, Liu X, Bu X, Sun Y, Samudio I, Jia WWG. Targeting carcinoembryonic antigen-expressing tumors using a novel transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1. Mol Ther Oncolytics 2023; 28:334-348. [PMID: 36938544 PMCID: PMC10018392 DOI: 10.1016/j.omto.2023.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
VG2025 is a recombinant oncolytic herpes simplex virus type 1 (HSV-1) that uses transcriptional and translational dual regulation (TTDR) of critical viral genes to enhance virus safety and promote tumor-specific virus replication without reducing virulence. The TTDR platform is based on transcriptional control of the essential HSV-1 immediate-early protein ICP27 using a tumor-specific carcinoembryonic antigen (CEA) promoter, coupled with translational control of the neurovirulence factor ICP34.5 using multiple microRNA (miR)-binding sites. VG2025 further incorporates IL-12 and the IL-15/IL-15 receptor alpha subunit complex to enhance the antitumor and immune stimulatory properties of oncolytic HSVs. The TTDR strategy was verified in vitro and shown to be highly selective. Strong in vivo antitumor efficacy was observed following both intratumoral and intravenous administration. Clear abscopal and immune memory effects were also evident, indicating a robust antitumor immune response. Gene expression profiling of treated tumors revealed increased immune cell infiltration and activation of multiple immune-signaling pathways when compared with the backbone virus. Absence of neurotoxicity was verified in mice and in rhesus monkeys. Taken together, the enhanced tumor clearance, excellent safety profile, and positive correlation between CEA levels and viral replication efficiency may provide an opportunity for using biomarker-based precision medicine in oncolytic virotherapy.
Collapse
Affiliation(s)
- Dmitry V. Chouljenko
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
- Corresponding author: Dmitry V. Chouljenko, Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada.
| | - Yanal M. Murad
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - I-Fang Lee
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Zahid Delwar
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Jun Ding
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Guoyu Liu
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Xiaohu Liu
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Xuexian Bu
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Yi Sun
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Ismael Samudio
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - William Wei-Guo Jia
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| |
Collapse
|
2
|
Fan Q, Hippler DP, Yang Y, Longnecker R, Connolly SA. Multiple Sites on Glycoprotein H (gH) Functionally Interact with the gB Fusion Protein to Promote Fusion during Herpes Simplex Virus (HSV) Entry. mBio 2023; 14:e0336822. [PMID: 36629412 PMCID: PMC9973363 DOI: 10.1128/mbio.03368-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 01/12/2023] Open
Abstract
Enveloped virus entry requires fusion of the viral envelope with a host cell membrane. Herpes simplex virus 1 (HSV-1) entry is mediated by a set of glycoproteins that interact to trigger the viral fusion protein glycoprotein B (gB). In the current model, receptor-binding by gD signals a gH/gL heterodimer to trigger a refolding event in gB that fuses the membranes. To explore functional interactions between gB and gH/gL, we used a bacterial artificial chromosome (BAC) to generate two HSV-1 mutants that show a small plaque phenotype due to changes in gB. We passaged the viruses to select for restoration of plaque size and analyzed second-site mutations that arose in gH. HSV-1 gB was replaced either by gB from saimiriine herpesvirus 1 (SaHV-1) or by a mutant form of HSV-1 gB with three alanine substitutions in domain V (gB3A). To shift the selective pressure away from gB, the gB3A virus was passaged in cells expressing gB3A. Sequencing of passaged viruses identified two interesting mutations in gH, including gH-H789Y in domain IV and gH-S830N in the cytoplasmic tail (CT). Characterization of these gH mutations indicated they are responsible for the enhanced plaque size. Rather than being globally hyperfusogenic, both gH mutations partially rescued function of the specific gB version present during their selection. These sites may represent functional interaction sites on gH/gL for gB. gH-H789 may alter the positioning of a membrane-proximal flap in the gH ectodomain, whereas gH-S830 may contribute to an interaction between the gB and gH CTs. IMPORTANCE Enveloped viruses enter cells by fusing their envelope with the host cell membrane. Herpes simplex virus 1 (HSV-1) entry requires the coordinated interaction of several viral glycoproteins, including gH/gL and gB. gH/gL and gB are essential for virus replication and both proteins are targets of neutralizing antibodies. gB fuses the membranes after being activated by gH/gL, but the details of how gH/gL activates gB are not known. This study examined the gH/gL-gB interaction using HSV-1 mutants that displayed reduced virus entry due to changes in gB. The mutant viruses were grown over time to select for additional mutations that could partially restore entry. Two mutations in gH (H789Y and S830N) were identified. The positions of the mutations in gH/gL may represent sites that contribute to gB activation during virus entry.
Collapse
Affiliation(s)
- Qing Fan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel P. Hippler
- Department of Health Sciences, DePaul University, Chicago, Illinois, USA
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
| | - Yueqi Yang
- Yuanpei College, Peking University, Beijing, China
| | - Richard Longnecker
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sarah A. Connolly
- Department of Health Sciences, DePaul University, Chicago, Illinois, USA
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
| |
Collapse
|
3
|
Fan Q, Kopp SJ, Byskosh NC, Connolly SA, Longnecker R. Natural Selection of Glycoprotein B Mutations That Rescue the Small-Plaque Phenotype of a Fusion-Impaired Herpes Simplex Virus Mutant. mBio 2018; 9:e01948-18. [PMID: 30327436 PMCID: PMC6191544 DOI: 10.1128/mbio.01948-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein B (gB) is a conserved viral fusion protein that is required for herpesvirus entry. To mediate fusion with the cellular membrane, gB refolds from a prefusion to a postfusion conformation. We hypothesize that an interaction between the C-terminal arm and the central coiled coil of the herpes simplex virus 1 (HSV-1) gB ectodomain is critical for fusion. We previously reported that three mutations in the C-terminal arm (I671A/H681A/F683A, called gB3A) greatly reduced cell-cell fusion and that virus carrying these mutations had a small-plaque phenotype and delayed entry into cells. By serially passaging gB3A virus, we selected three revertant viruses with larger plaques. These revertant viruses acquired mutations in gB that restore the fusion function of gB3A, including gB-A683V, gB-S383F/G645R/V705I/A855V, and gB-T509M/N709H. V705I and N709H are novel mutations that map to the portion of domain V that enters domain I in the postfusion structure. S383F, G645R, and T509M are novel mutations that map to an intersection of three domains in a prefusion model of gB. We introduced these second-site mutations individually and in combination into wild-type gB and gB3A to examine the impact of the mutations on fusion and expression. V705I and A855V (a known hyperfusogenic mutation) restored the fusion function of gB3A, whereas S383F and G645R dampened fusion and T509M and N709H worked in concert to restore gB3A fusion. The results identify two regions in the gB ectodomain that modulate the fusion activity of gB, potentially by impacting intramolecular interactions and stability of the prefusion and/or postfusion gB trimer.IMPORTANCE Glycoprotein B (gB) is an essential viral protein that is conserved in all herpesviruses and is required for virus entry. gB is thought to undergo a conformational change that provides the energy to fuse the viral and cellular membranes; however, the details of this conformational change and the structure of the prefusion and intermediate conformations of gB are not known. Previously, we demonstrated that mutations in the gB "arm" region inhibit fusion and impart a small-plaque phenotype. Using serial passage of a virus carrying these mutations, we identified revertants with restored plaque size. The revertant viruses acquired novel mutations in gB that restored fusion function and mapped to two sites in the gB ectodomain. This work supports our hypothesis that an interaction between the gB arm and the core of gB is critical for gB refolding and provides details about the function of gB in herpesvirus-mediated fusion and subsequent virus entry.
Collapse
Affiliation(s)
- Qing Fan
- Department of Microbiology-Immunology, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| | - Sarah J Kopp
- Department of Microbiology-Immunology, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| | - Nina C Byskosh
- Department of Microbiology-Immunology, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| | - Sarah A Connolly
- Department of Health Sciences, Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
| | - Richard Longnecker
- Department of Microbiology-Immunology, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
4
|
Cooper RS, Georgieva ER, Borbat PP, Freed JH, Heldwein EE. Structural basis for membrane anchoring and fusion regulation of the herpes simplex virus fusogen gB. Nat Struct Mol Biol 2018; 25:416-424. [PMID: 29728654 PMCID: PMC5942590 DOI: 10.1038/s41594-018-0060-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/28/2018] [Indexed: 11/26/2022]
Abstract
Viral fusogens merge viral and cell membranes during cell penetration. Their ectodomains drive fusion by undergoing large-scale refolding, but little is known about the functionally important regions located within or near the membrane. Here, we report the crystal structure of the full-length glycoprotein B, the fusogen from Herpes Simplex Virus, complemented by electron spin resonance measurements. The membrane-proximal (MPR), transmembrane (TMD), and cytoplasmic (CTD) domains form a uniquely folded trimeric pedestal beneath the ectodomain, which balances dynamic flexibility with extensive, stabilizing membrane interactions. Hyperfusogenic mutations within the CTD destabilize it, targeting trimeric interfaces, structural motifs, and membrane-interacting elements. Thus, we propose that the CTD trimer observed in the structure stabilizes gB in its prefusion state despite being appended to the postfusion ectodomain. Our data suggest a model for how this dynamic, membrane-dependent “clamp” controls the fusogenic refolding of gB.
Collapse
Affiliation(s)
- Rebecca S Cooper
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Elka R Georgieva
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.,National Biomedical Center for Advanced Electron Spin Resonance Technology (ACERT), Cornell University, Ithaca, NY, USA
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.,National Biomedical Center for Advanced Electron Spin Resonance Technology (ACERT), Cornell University, Ithaca, NY, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.,National Biomedical Center for Advanced Electron Spin Resonance Technology (ACERT), Cornell University, Ithaca, NY, USA
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
5
|
The UL21 Tegument Protein of Herpes Simplex Virus 1 Is Differentially Required for the Syncytial Phenotype. J Virol 2017; 91:JVI.01161-17. [PMID: 28794039 DOI: 10.1128/jvi.01161-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/04/2017] [Indexed: 12/28/2022] Open
Abstract
The initial goal of this study was to reexamine the requirement of UL21 for herpes simplex virus 1 (HSV-1) replication. Previous studies suggested that UL21 is dispensable for replication in cell cultures, but a recent report on HSV-2 challenges those findings. As was done for the HSV-2 study, a UL21-null virus was made and propagated on complementing cells to discourage selection of compensating mutations. This HSV-1 mutant was able to replicate in noncomplementing cells, even at a low multiplicity of infection (MOI), though a reduction in titer was observed. Also, increased proportions of empty capsids were observed in the cytoplasm, suggesting a role for UL21 in preventing their exit from the nucleus. Surprisingly, passage of the null mutant resulted in rapid outgrowth of syncytial (Syn) variants. This was unexpected because UL21 has been shown to be required for the Syn phenotype. However, earlier experiments made use of only the A855V syncytial mutant of glycoprotein B (gB), and the Syn phenotype can also be produced by substitutions in glycoprotein K (gK), UL20, and UL24. Sequencing of the syncytial variants revealed mutations in the gK locus, but UL21 was shown to be dispensable for UL20Syn and UL24Syn To test whether UL21 is needed only for the A855V mutant, additional gBSyn derivatives were examined in the context of the null virus, and all produced lytic rather than syncytial sites of infection. Thus, UL21 is required only for the gBSyn phenotype. This is the first example of a differential requirement for a viral protein across the four syn loci.IMPORTANCE UL21 is conserved among alphaherpesviruses, but its role is poorly understood. This study shows that HSV-1 can replicate without UL21, although the virus titers are greatly reduced. The null virus had greater proportions of empty (DNA-less) capsids in the cytoplasm of infected cells, suggesting that UL21 may play a role in retaining them in the nucleus. This is consistent with reports showing UL21 to be capsid associated and localized to the nuclei of infected cells. UL21 also appears to be needed for viral membrane activities. It was found to be required for virus-mediated cell fusion, but only for mutants that harbor syncytial mutations in gB (not variants of gK, UL20, or UL24). The machinery needed for syncytial formation is similar to that needed for direct spread of the virus through cell junctions, and these studies show that UL21 is required for cell-to-cell spread even in the absence of syncytial mutations.
Collapse
|
6
|
Niazy N, Temme S, Bocuk D, Giesen C, König A, Temme N, Ziegfeld A, Gregers TF, Bakke O, Lang T, Eis-Hübinger AM, Koch N. Misdirection of endosomal trafficking mediated by herpes simplex virus-encoded glycoprotein B. FASEB J 2017; 31:1650-1667. [PMID: 28119397 DOI: 10.1096/fj.201600521r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 01/01/2017] [Indexed: 01/01/2023]
Abstract
Herpes simplex virus (HSV)-encoded glycoprotein B (gB) is the most abundant protein in the viral envelope and promotes fusion of the virus with the cellular membrane. In the present study, we found that gB impacts on the major histocompatibility complex (MHC)-II pathway of antigen presentation by fostering homotypic fusion of early endosomes and trapping MHC-II molecules in these altered endosomes. By using an overexpression approach, we demonstrated that transient expression of gB induces giant vesicles of early endosomal origin, which contained Rab5, early endosomal antigen 1 (EEA1), and large amounts of MHC-II molecules [human leukocyte antigen (HLA)-DR, and HLA-DM], but no CD63. In HSV-1-infected and stably transfected cell lines that expressed lower amounts of gB, giant endosomes were not observed, but strongly increased amounts of HLA-DR and HLA-DM were found in EEA1+ early endosomes. We used these giant vesicles as a model system and revealed that gB interacts with Rab5 and EEA1, and that gB-induced homotypic fusion of early endosomes to giant endosomes requires phosphatidylinositol 3-phosphate, the activity of soluble N-ethylmaleimide-sensitive factor attachment protein receptors, and the cytosolic gB sequence 889YTQVPN894 We conclude that gB expression alters trafficking of molecules of the HLA-II processing pathway, which leads to increased retention of MHC-II molecules in early endosomal compartments, thereby intercepting antigen presentation.-Niazy, N., Temme, S., Bocuk, D., Giesen, C., König, A., Temme, N., Ziegfeld, A., Gregers, T. F., Bakke, O., Lang, T., Eis-Hübinger, A. M., Koch, N. Misdirection of endosomal trafficking mediated by herpes simplex virus-encoded glycoprotein B.
Collapse
Affiliation(s)
- Naima Niazy
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Sebastian Temme
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany;
| | - Derya Bocuk
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Carmen Giesen
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Angelika König
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Nadine Temme
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Angelique Ziegfeld
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Tone F Gregers
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Thorsten Lang
- Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | | | - Norbert Koch
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Syncytial Mutations Do Not Impair the Specificity of Entry and Spread of a Glycoprotein D Receptor-Retargeted Herpes Simplex Virus. J Virol 2016; 90:11096-11105. [PMID: 27707922 DOI: 10.1128/jvi.01456-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
Membrane fusion, which is the key process for both initial cell entry and subsequent lateral spread of herpes simplex virus (HSV), requires the four envelope glycoproteins gB, gD, gH, and gL. Syncytial mutations, predominantly mapped to the gB and gK genes, confer hyperfusogenicity on HSV and cause multinucleated giant cells, termed syncytia. Here we asked whether interaction of gD with a cognate entry receptor remains indispensable for initiating membrane fusion of syncytial strains. To address this question, we took advantage of mutant viruses whose viral entry into cells relies on the uniquely specific interaction of an engineered gD with epidermal growth factor receptor (EGFR). We introduced selected syncytial mutations into gB and/or gK of the EGFR-retargeted HSV and found that these mutations, especially when combined, enabled formation of extensive syncytia by human cancer cell lines that express the target receptor; these syncytia were substantially larger than the plaques formed by the parental retargeted HSV strain. We assessed the EGFR dependence of entry and spread separately by using direct entry and infectious center assays, respectively, and we found that the syncytial mutations did not override the receptor specificity of the retargeted viruses at either stage. We discuss the implications of these results for the development of more effective targeted oncolytic HSV vectors. IMPORTANCE Herpes simplex virus (HSV) is investigated not only as a human pathogen but also as a promising agent for oncolytic virotherapy. We previously showed that both the initial entry and subsequent lateral spread of HSV can be retargeted to cells expressing tumor-associated antigens by single-chain antibodies fused to a receptor-binding-deficient envelope glycoprotein D (gD). Here we introduced syncytial mutations into the gB and/or gK gene of gD-retargeted HSVs to determine whether viral tropism remained dependent on the interaction of gD with the target receptor. Entry and spread profiles of the recombinant viruses indicated that gD retargeting does not abolish the hyperfusogenic activity of syncytial mutations and that these mutations do not eliminate the dependence of HSV entry and spread on a specific gD-receptor interaction. These observations suggest that syncytial mutations may be valuable for increasing the tumor-specific spreading of retargeted oncolytic HSV vectors.
Collapse
|
8
|
Oliver SL, Yang E, Arvin AM. Varicella-Zoster Virus Glycoproteins: Entry, Replication, and Pathogenesis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2016; 3:204-215. [PMID: 28367398 DOI: 10.1007/s40588-016-0044-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Varicella-zoster virus (VZV), an alphaherpesvirus that causes chicken pox (varicella) and shingles (herpes zoster), is a medically important pathogen that causes considerable morbidity and, on occasion, mortality in immunocompromised patients. Herpes zoster can afflict the elderly with a debilitating condition, postherpetic neuralgia, triggering severe, untreatable pain for months or years. The lipid envelope of VZV, similar to all herpesviruses, contains numerous glycoproteins required for replication and pathogenesis. PURPOSE OF REVIEW To summarize the current knowledge about VZV glycoproteins and their roles in cell entry, replication and pathogenesis. RECENT FINDINGS The functions for some VZV glycoproteins are known, such as gB, gH and gL in membrane fusion, cell-cell fusion regulation, and receptor binding properties. However, the molecular mechanisms that trigger or mediate VZV glycoproteins remains poorly understood. SUMMARY VZV glycoproteins are central to successful replication but their modus operandi during replication and pathogenesis remain elusive requiring further mechanistic based studies.
Collapse
Affiliation(s)
- Stefan L Oliver
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, 94305-5208
| | - Edward Yang
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, 94305-5208
| | - Ann M Arvin
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, 94305-5208
| |
Collapse
|
9
|
Herpesvirus gB: A Finely Tuned Fusion Machine. Viruses 2015; 7:6552-69. [PMID: 26690469 PMCID: PMC4690880 DOI: 10.3390/v7122957] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/15/2015] [Accepted: 11/27/2015] [Indexed: 01/03/2023] Open
Abstract
Enveloped viruses employ a class of proteins known as fusogens to orchestrate the merger of their surrounding envelope and a target cell membrane. Most fusogens accomplish this task alone, by binding cellular receptors and subsequently catalyzing the membrane fusion process. Surprisingly, in herpesviruses, these functions are distributed among multiple proteins: the conserved fusogen gB, the conserved gH/gL heterodimer of poorly defined function, and various non-conserved receptor-binding proteins. We summarize what is currently known about gB from two closely related herpesviruses, HSV-1 and HSV-2, with emphasis on the structure of the largely uncharted membrane interacting regions of this fusogen. We propose that the unusual mechanism of herpesvirus fusion could be linked to the unique architecture of gB.
Collapse
|
10
|
Mutations in Pseudorabies Virus Glycoproteins gB, gD, and gH Functionally Compensate for the Absence of gL. J Virol 2015; 90:2264-72. [PMID: 26656712 DOI: 10.1128/jvi.02739-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Entry of herpesviruses depends on the combined action of viral glycoprotein B (gB) and the heterodimeric gH/gL complex, which are activated by binding of the virion to specific cellular receptors. While gB carries signatures of a bona fide fusion protein, efficient membrane fusion requires gH/gL. However, although gB and gH/gL are essential for entry, the alphaherpesvirus pseudorabies virus (PrV) is capable of limited cell-to-cell spread in the absence of gL. To understand gH/gL function in more detail, the limited spread of PrV-ΔgL was used for reversion analyses by serial cell culture passages. In a first experiment, an infectious gL-negative mutant in which gL function was replaced by generation of a gD-gH hybrid protein was isolated (B. G. Klupp and T. C. Mettenleiter, J Virol 73:3014-3022, 1999). In a second, independent experiment PrV-ΔgLPassB4.1, which also replicated productively without gL, was isolated. Sequence analysis revealed mutations in gH but also in gB and gD. In a transfection-based fusion assay, two amino acid substitutions in the N-terminal part of gH(B4.1) (L(70)P and W(103)R) were found to be sufficient to compensate for lack of gL, while mutations present in gB(B4.1) enhanced fusogenicity. Coexpression of gB(B4.1) with the homologous gH(B4.1) resulted in strongly increased syncytium formation, which was further augmented by truncation of the gB(B4.1) C-terminal 29 amino acids. Nevertheless, gH was still required for membrane fusion. Surprisingly, coexpression of gD(B4.1) blocked syncytium formation in the fusion assays, which could be attributed to a V(106)A substitution within the ectodomain of gD(B4.1). IMPORTANCE In contrast to many other enveloped viruses, herpesviruses rely on the concerted action of four viral glycoproteins for membrane fusion during infectious entry. Although the highly conserved gB shows signatures of a fusion protein, for fusion induction it requires the gH/gL complex, whose role is still elusive. Here we demonstrated fusion activation by gH in the absence of gL after reversion analysis of gL-deleted pseudorabies virus. This gL-independent fusion activity depended on single amino acid exchanges affecting the gL-binding domain in gH, increasing fusogenicity in gB and allowing negative fusion regulation by gD. Thus, our results provide novel information on the interplay in the fusion machinery of herpesviruses.
Collapse
|
11
|
Interplay between the Herpes Simplex Virus 1 gB Cytodomain and the gH Cytotail during Cell-Cell Fusion. J Virol 2015; 89:12262-72. [PMID: 26401042 DOI: 10.1128/jvi.02391-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Herpesvirus entry into cells is mediated by the viral fusogen gB, which is thought to refold from the prefusion to the postfusion form in a series of large conformational changes that energetically couple refolding to membrane fusion. In contrast to most viral fusogens, gB requires a conserved heterodimer, gH/gL, as well as other nonconserved proteins. In a further mechanistic twist, gB-mediated cell-cell fusion appears restricted by its intraviral or cytoplasmic domain (cytodomain) because mutations within it result in a hyperfusogenic phenotype. Here, we characterized a panel of hyperfusogenic HSV-1 gB cytodomain mutants and show that they are fully functional in cell-cell fusion at shorter coincubation times and at lower temperatures than those for wild-type (WT) gB, which suggests that these mutations reduce the kinetic energy barrier to fusion. Despite this, the mutants require both gH/gL and gD. We confirm previous observations that the gH cytotail is an essential component of the cell-cell fusion mechanism and show that the N-terminal portion of the gH cytotail is critical for this process. Moreover, the fusion levels achieved by all gB constructs, WT and mutant, were proportionate to the length of the gH cytotail. Putting these results together, we propose that the gH cytotail, in addition to the gH/gL ectodomain, plays an essential role in gB activation, potentially acting as a "wedge" to release the gB cytodomain "clamp" and enable gB activation. IMPORTANCE Herpesviruses infect their hosts for life and cause a substantial disease burden. Herpes simplex viruses cause oral and genital sores as well as rare yet severe encephalitis and a panoply of ocular ailments. Infection initiates when the viral envelope fuses with the host cell membrane in a process orchestrated by the viral fusogen gB, assisted by the viral glycoproteins gH, gL, and gD and a cellular gD receptor. This process is more complicated than that of most other viruses and is subject to multiple regulatory inputs. Antiviral and vaccine development would benefit from a detailed mechanistic knowledge of this process and how it is regulated.
Collapse
|
12
|
Böhm SW, Backovic M, Klupp BG, Rey FA, Mettenleiter TC, Fuchs W. A replication defect of pseudorabies virus induced by targeted α-helix distortion in the syntaxin-like bundle of glycoprotein H (V275P) is corrected by an adjacent compensatory mutation (V271A). J Gen Virol 2015; 96:2349-2354. [PMID: 25908778 DOI: 10.1099/vir.0.000161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycoprotein gH is essential for herpesvirus-induced membrane fusion during entry and cell-to-cell spread. Structural analyses of gH homologues revealed a conserved syntaxin-like bundle motif composed of three α-helices. Previous studies showed that targeted disruption of any of these helices strongly impaired maturation, cell surface expression and fusion activity of pseudorabies virus gH, as well as formation and spread of infectious virus. After passaging of one corresponding mutant (pPrV-gH-V275P) these replication defects were widely corrected by an adjacent spontaneous amino acid substitution (V271A). Although the doubly mutated gH was still non-functional in fusion assays, its targeted reinsertion into the cloned virus genome (pPrV-gH-V275P-V271A) led to a 200-fold increase in plaque sizes and 10,000-fold higher virus titres, compared with pPrV-gH-V275P. Thus, our results demonstrate that structural requirements for gH function in in vitro assays and virus replication are different, and that minor amounts of mature gH in virions are sufficient for productive replication.
Collapse
Affiliation(s)
- Sebastian W Böhm
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Marija Backovic
- Institut Pasteur, Unité de Virologie Structurale, Département de Virologie and CNRS Unité de Recherche Associée 3015, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Barbara G Klupp
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Felix A Rey
- Institut Pasteur, Unité de Virologie Structurale, Département de Virologie and CNRS Unité de Recherche Associée 3015, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Thomas C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Walter Fuchs
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
13
|
Abstract
ABSTRACT Enveloped viruses encode proteins that can induce cell fusion to allow spread of infection without exposure to immune surveillance. In this review, we discuss cell fusion events caused by neurotropic α-herpesviruses. Syncytia (large, multinucleated cells) are clinically indicative of α herpesvirus infections, and peripheral neuropathies are clinical hallmarks. We examine the viral and cellular factors required for cell fusion, as well as mutations which confer a more aggressive ‘hypersyncytial’ phenotype. Finally, we consider the causes of fusion events in infected neurons, and the implications for neuronal dysfunction and pathophysiology.
Collapse
Affiliation(s)
- Anthony E Ambrosini
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Lynn W Enquist
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
14
|
The Epstein-Barr virus (EBV) glycoprotein B cytoplasmic C-terminal tail domain regulates the energy requirement for EBV-induced membrane fusion. J Virol 2014; 88:11686-95. [PMID: 25100836 DOI: 10.1128/jvi.01349-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The entry of enveloped viruses into host cells is preceded by membrane fusion, which in Epstein-Barr virus (EBV) is thought to be mediated by the refolding of glycoprotein B (gB) from a prefusion to a postfusion state. In our current studies, we characterized a gB C-terminal tail domain (CTD) mutant truncated at amino acid 843 (gB843). This truncation mutant is hyperfusogenic as monitored by syncytium formation and in a quantitative fusion assay and is dependent on gH/gL for fusion activity. gB843 can rescue the fusion function of other glycoprotein mutants that have null or decreased fusion activity in epithelial and B cells. In addition, gB843 requires less gp42 and gH/gL for fusion, and can function in fusion at a lower temperature than wild-type gB, indicating a lower energy requirement for fusion activation. Since a key step in fusion is the conversion of gB from a prefusion to an active postfusion state by gH/gL, gB843 may access this activated gB state more readily. Our studies indicate that the gB CTD may participate in the fusion function by maintaining gB in an inactive prefusion form prior to activation by receptor binding. Importance: Diseases resulting from Epstein-Barr virus (EBV) infection in humans range from the fairly benign disease infectious mononucleosis to life-threatening cancer. As an enveloped virus, EBV must fuse with a host cell membrane for entry and infection by using glycoproteins gH/gL, gB, and gp42. Among these glycoproteins, gB is thought to be the protein that executes fusion. To further characterize the function of the EBV gB cytoplasmic C-terminal tail domain (CTD) in fusion, we used a previously constructed CTD truncation mutant and studied its fusion activity in the context of other EBV glycoprotein mutants. From these studies, we find that the gB CTD regulates fusion by altering the energy requirements for the triggering of fusion mediated by gH/gL or gp42. Overall, our studies may lead to a better understanding of EBV fusion and entry, which may result in novel therapies that target the EBV entry step.
Collapse
|
15
|
Dual split protein-based fusion assay reveals that mutations to herpes simplex virus (HSV) glycoprotein gB alter the kinetics of cell-cell fusion induced by HSV entry glycoproteins. J Virol 2013; 87:11332-45. [PMID: 23946457 DOI: 10.1128/jvi.01700-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Herpes simplex virus (HSV) entry and cell-cell fusion require glycoproteins gD, gH/gL, and gB. We propose that receptor-activated changes to gD cause it to activate gH/gL, which then triggers gB into an active form. We employed a dual split-protein (DSP) assay to monitor the kinetics of HSV glycoprotein-induced cell-cell fusion. This assay measures content mixing between two cells, i.e., fusion, within the same cell population in real time (minutes to hours). Titration experiments suggest that both gD and gH/gL act in a catalytic fashion to trigger gB. In fact, fusion rates are governed by the amount of gB on the cell surface. We then used the DSP assay to focus on mutants in two functional regions (FRs) of gB, FR1 and FR3. FR1 contains the fusion loops (FL1 and FL2), and FR3 encompasses the crown at the trimer top. All FL mutants initiated fusion very slowly, if at all. However, the fusion rates caused by some FL2 mutants increased over time, so that total fusion by 8 h looked much like that of the WT. Two distinct kinetic patterns, "slow and fast," emerged for mutants in the crown of gB (FR3), again showing differences in initiation and ongoing fusion. Of note are the fusion kinetics of the gB syn mutant (LL871/872AA). Although this mutant was originally included as an ongoing high-rate-of-fusion control, its initiation of fusion is so rapid that it appears to be on a "hair trigger." Thus, the DSP assay affords a unique way to examine the dynamics of HSV glycoprotein-induced cell fusion.
Collapse
|
16
|
Mutations in the cytoplasmic tail of herpes simplex virus 1 gH reduce the fusogenicity of gB in transfected cells. J Virol 2013; 87:10139-47. [PMID: 23843635 DOI: 10.1128/jvi.01760-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations within the cytoplasmic tail (cytotail) of herpes simplex virus 1 (HSV-1) gH were previously observed to suppress the syncytial phenotype of gB cytoplasmic domain mutant A855V in infected cells. Here, we examined the effects of gH cytotail mutations on virus-free cell-cell fusion in transfected cells to exclude the contributions of viral proteins other than gD, gH/gL, and gB. We show that a truncation at residue 832 coupled with the point mutation V831A within the cytotail of gH reduces fusion regardless of whether the wild type (WT) or a syn gB allele is present. We hypothesize that the gH cytotail mutations either reduce activation of gB by gH/gL or suppress the fusogenicity of gB through another, as yet unknown mechanism. The gB cytodomain and the gH cytotail do not interact in vitro, suggesting that mutations in the gH cytotail may instead affect the function of the gH/gL ectodomain. Nevertheless, we cannot exclude the possibility that the gB cytodomain and the gH cytotail interact in the context of full-length membrane-anchored proteins. The observed fusion suppression in transfected cells is less prominent than what was seen in infected cells, and we propose that gH cytotail mutations may additionally suppress syncytium formation in cells infected with syn HSV-1 by acting on other viral proteins, reinforcing the idea that fusion of HSV-infected cells is a complex phenomenon. Although fusion suppression by the gH cytotail mutant in transfected cells was evident when syncytia were visualized and counted, it was not detected by the luciferase assay, highlighting the differences between the two assays.
Collapse
|
17
|
Glycoproteins gB and gH are required for syncytium formation but not for herpesvirus-induced nuclear envelope breakdown. J Virol 2013; 87:9733-41. [PMID: 23824797 DOI: 10.1128/jvi.01401-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus nucleocapsids are assembled in the nucleus, whereas maturation into infectious virions takes place in the cytosol. Since, due to their size, nucleocapsids cannot pass the nuclear pores, they traverse the nuclear envelope by vesicle-mediated transport. Nucleocapsids bud at the inner nuclear membrane into the perinuclear space, forming primary enveloped particles and are released into the cytosol after fusion of the primary envelope with the outer nuclear membrane. The nuclear egress complex (NEC), consisting of the conserved herpesvirus proteins (p)UL31 and pUL34, is required for this process, whereas the viral glycoproteins gB and gH, which are essential for fusion during penetration, are not. We recently described herpesvirus-induced nuclear envelope breakdown (NEBD) as an alternative egress pathway used in the absence of the NEC. However, the molecular details of this pathway are still unknown. It has been speculated that glycoproteins involved in fusion during entry might play a role in NEBD. By deleting genes encoding glycoproteins gB and gH from the genome of NEBD-inducing pseudorabies viruses, we demonstrate that these glycoproteins are not required for NEBD but are still necessary for syncytium formation, again emphasizing fundamental differences in herpesvirus-induced alterations at the nuclear envelopes and plasma membranes of infected cells.
Collapse
|
18
|
Herpes simplex virus 1 glycoprotein M and the membrane-associated protein UL11 are required for virus-induced cell fusion and efficient virus entry. J Virol 2013; 87:8029-37. [PMID: 23678175 DOI: 10.1128/jvi.01181-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) facilitates virus entry into cells and cell-to-cell spread by mediating fusion of the viral envelope with cellular membranes and fusion of adjacent cellular membranes. Although virus strains isolated from herpetic lesions cause limited cell fusion in cell culture, clinical herpetic lesions typically contain large syncytia, underscoring the importance of cell-to-cell fusion in virus spread in infected tissues. Certain mutations in glycoprotein B (gB), gK, UL20, and other viral genes drastically enhance virus-induced cell fusion in vitro and in vivo. Recent work has suggested that gB is the sole fusogenic glycoprotein, regulated by interactions with the viral glycoproteins gD, gH/gL, and gK, membrane protein UL20, and cellular receptors. Recombinant viruses were constructed to abolish either gM or UL11 expression in the presence of strong syncytial mutations in either gB or gK. Virus-induced cell fusion caused by deletion of the carboxyl-terminal 28 amino acids of gB or the dominant syncytial mutation in gK (Ala to Val at amino acid 40) was drastically reduced in the absence of gM. Similarly, syncytial mutations in either gB or gK did not cause cell fusion in the absence of UL11. Neither the gM nor UL11 gene deletion substantially affected gB, gC, gD, gE, and gH glycoprotein synthesis and expression on infected cell surfaces. Two-way immunoprecipitation experiments revealed that the membrane protein UL20, which is found as a protein complex with gK, interacted with gM while gM did not interact with other viral glycoproteins. Viruses produced in the absence of gM or UL11 entered into cells more slowly than their parental wild-type virus strain. Collectively, these results indicate that gM and UL11 are required for efficient membrane fusion events during virus entry and virus spread.
Collapse
|
19
|
Modulation of Epstein-Barr virus glycoprotein B (gB) fusion activity by the gB cytoplasmic tail domain. mBio 2013; 4:e00571-12. [PMID: 23341550 PMCID: PMC3551549 DOI: 10.1128/mbio.00571-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Epstein-Barr virus (EBV), along with other members of the herpesvirus family, requires a set of viral glycoproteins to mediate host cell attachment and entry. Viral glycoprotein B (gB), a highly conserved glycoprotein within the herpesvirus family, is thought to be the viral fusogen based on structural comparison of EBV gB and herpes simplex virus (HSV) gB with the postfusion crystal structure of vesicular stomatitis virus fusion protein glycoprotein G (VSV-G). In addition, mutational studies indicate that gB plays an important role in fusion function. In the current study, we constructed a comprehensive library of mutants with truncations of the C-terminal cytoplasmic tail domain (CTD) of EBV gB. Our studies indicate that the gB CTD is important in the cellular localization, expression, and fusion function of EBV gB. However, in line with observations from other studies, we conclude that the degree of cell surface expression of gB is not directly proportional to observed fusion phenotypes. Rather, we conclude that other biochemical or biophysical properties of EBV gB must be altered to explain the different fusion phenotypes observed. Epstein-Barr virus (EBV), like all enveloped viruses, fuses the virion envelope to a cellular membrane to allow release of the capsid, resulting in virus infection. To further characterize the function of EBV glycoprotein B (gB) in fusion, a comprehensive library of mutants with truncations in the gB C-terminal cytoplasmic tail domain (CTD) were made. These studies indicate that the CTD of gB is important for the cellular expression and localization of gB, as well as for the function of gB in fusion. These studies will lead to a better understanding of the mechanism of EBV-induced membrane fusion and herpesvirus-induced membrane fusion in general, which will ultimately lead to focused therapies guided at preventing viral entry into host cells.
Collapse
|
20
|
Membrane requirement for folding of the herpes simplex virus 1 gB cytodomain suggests a unique mechanism of fusion regulation. J Virol 2012; 86:8171-84. [PMID: 22623783 DOI: 10.1128/jvi.00932-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) enters cells by fusion of its envelope with a host cell membrane, which requires four viral glycoproteins and a cellular receptor. Viral fusion glycoprotein B (gB) mediates membrane fusion through the action of its ectodomain, while its cytoplasmic domain (cytodomain) regulates fusion from the opposite face of the membrane by an unknown mechanism. The gB cytodomain appears to restrict fusion, because point or truncation mutations within it increase the extent of fusion (syn mutations). Previously, we showed that the hyperfusion phenotype correlated with reduced membrane binding in gB syn truncation mutants and proposed that membrane binding was important in regulating fusion. Here, we extended our analysis to three syn point mutants: A855V, R858H, and A874P. These mutations produce local conformational changes, with some affecting membrane interaction, which suggests that while syn mutants may deregulate fusion by somewhat different mechanisms, maintaining the wild-type (WT) conformation is critical for fusion regulation. We further show that the presence of a membrane is necessary for the cytodomain to achieve its fully folded conformation and propose that the membrane-bound form of the cytodomain represents its native conformation. Taken together, our data suggest that the cytodomain of gB regulates fusion by a novel mechanism in which membrane interaction plays a key role.
Collapse
|
21
|
Residues within the C-terminal arm of the herpes simplex virus 1 glycoprotein B ectodomain contribute to its refolding during the fusion step of virus entry. J Virol 2012; 86:6386-93. [PMID: 22491468 DOI: 10.1128/jvi.00104-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Herpesvirus entry into cells requires coordinated interactions among several viral glycoproteins. The final membrane fusion step of entry is executed by glycoprotein B (gB), a class III viral fusion protein that is conserved across all herpesviruses. Fusion proteins are metastable proteins that mediate fusion by inserting into a target membrane and refolding from a prefusion to postfusion conformation to bring the viral and cell membranes together. Although the structure of gB has been solved in a conformation that likely represents its postfusion form, its prefusion structure and the details of how it refolds to execute fusion are unknown. The postfusion gB structure contains a trimeric coiled-coil at its core and a long C-terminal arm within the ectodomain packs against this coil in an antiparallel manner. This coil-arm complex is reminiscent of the six-helix bundle that provides the energy for fusion in class I fusogens. To determine the role of the coil-arm complex, we individually mutated residues in the herpes simplex virus 1 gB coil-arm complex to alanine and assessed the contribution of each residue to cell-cell and virus-cell fusion. Several coil mutations resulted in a loss of cell surface expression, indicating that the coil residues are important for proper processing of gB. Three mutations in the arm region (I671A, H681A, and F683A) reduced fusion without affecting expression. Combining these three arm mutations drastically reduced the ability of gB to execute fusion; however, fusion function could be restored by adding known hyperfusogenic mutations to the arm mutant. We propose that the formation of the coil-arm complex drives the gB transition to a postfusion conformation and the coil-arm complex performs a function similar to that of the six-helix bundle in class I fusion. Furthermore, we suggest that these specific mutations in the arm may energetically favor the prefusion state of gB.
Collapse
|
22
|
Abstract
Membrane fusion induced by enveloped viruses proceeds through the actions of viral fusion proteins. Once activated, viral fusion proteins undergo large protein conformational changes to execute membrane fusion. Fusion is thought to proceed through a "hemifusion" intermediate in which the outer membrane leaflets of target and viral membranes mix (lipid mixing) prior to fusion pore formation, enlargement, and completion of fusion. Herpes simplex virus type 1 (HSV-1) requires four glycoproteins-glycoprotein D (gD), glycoprotein B (gB), and a heterodimer of glycoprotein H and L (gH/gL)-to accomplish fusion. gD is primarily thought of as a receptor-binding protein and gB as a fusion protein. The role of gH/gL in fusion has remained enigmatic. Despite experimental evidence that gH/gL may be a fusion protein capable of inducing hemifusion in the absence of gB, the recently solved crystal structure of HSV-2 gH/gL has no structural homology to any known viral fusion protein. We found that in our hands, all HSV entry proteins-gD, gB, and gH/gL-were required to observe lipid mixing in both cell-cell- and virus-cell-based hemifusion assays. To verify that our hemifusion assay was capable of detecting hemifusion, we used glycosylphosphatidylinositol (GPI)-linked hemagglutinin (HA), a variant of the influenza virus fusion protein, HA, known to stall the fusion process before productive fusion pores are formed. Additionally, we found that a mutant carrying an insertion within the short gH cytoplasmic tail, 824L gH, is incapable of executing hemifusion despite normal cell surface expression. Collectively, our findings suggest that HSV gH/gL may not function as a fusion protein and that all HSV entry glycoproteins are required for both hemifusion and fusion. The previously described gH 824L mutation blocks gH/gL function prior to HSV-induced lipid mixing.
Collapse
|
23
|
Syncytial phenotype of C-terminally truncated herpes simplex virus type 1 gB is associated with diminished membrane interactions. J Virol 2010; 84:4923-35. [PMID: 20200237 DOI: 10.1128/jvi.00206-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic domain of glycoprotein B (gB) from herpes simplex virus type 1 (HSV-1) is an important regulator of membrane fusion. C-terminal truncations of the cytoplasmic domain lead to either hyperfusion or fusion-null phenotypes. Currently, neither the structure of the cytoplasmic domain nor its mechanism of fusion regulation is known. Here we show, for the first time, that the full-length cytoplasmic domain of HSV-1 gB associates stably with lipid membranes, preferentially binding to membranes containing anionic head groups. This interaction involves a large increase in helical content. However, the truncated cytoplasmic domains associated with the hyperfusion phenotype show a small increase in helical structure and a diminished association with lipid membranes, whereas the one associated with the fusion-null phenotype shows no increase in helical structure and only a minimal association with lipid membranes. We hypothesize that stable binding to lipid membranes is an important part of the mechanism by which the cytoplasmic domain negatively regulates membrane fusion. Moreover, our experiments with truncated cytoplasmic domains point to two specific regions that are critical for membrane interactions. Taken together, our work provides several important new insights into the architecture of the cytoplasmic domain of HSV-1 gB and its interaction with lipid membranes.
Collapse
|
24
|
The amino terminus of herpes simplex virus type 1 glycoprotein K (gK) modulates gB-mediated virus-induced cell fusion and virion egress. J Virol 2009; 83:12301-13. [PMID: 19793812 DOI: 10.1128/jvi.01329-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1)-induced cell fusion is mediated by viral glycoproteins and other membrane proteins expressed on infected cell surfaces. Certain mutations in the carboxyl terminus of HSV-1 glycoprotein B (gB) and in the amino terminus of gK cause extensive virus-induced cell fusion. Although gB is known to be a fusogenic glycoprotein, the mechanism by which gK is involved in virus-induced cell fusion remains elusive. To delineate the amino-terminal domains of gK involved in virus-induced cell fusion, the recombinant viruses gKDelta31-47, gKDelta31-68, and gKDelta31-117, expressing gK carrying in-frame deletions spanning the amino terminus of gK immediately after the gK signal sequence (amino acids [aa] 1 to 30), were constructed. Mutant viruses gKDelta31-47 and gKDelta31-117 exhibited a gK-null (DeltagK) phenotype characterized by the formation of very small viral plaques and up to a 2-log reduction in the production of infectious virus in comparison to that for the parental HSV-1(F) wild-type virus. The gKDelta31-68 mutant virus formed substantially larger plaques and produced 1-log-higher titers than the gKDelta31-47 and gKDelta31-117 mutant virions at low multiplicities of infection. Deletion of 28 aa from the carboxyl terminus of gB (gBDelta28syn) caused extensive virus-induced cell fusion. However, the gBDelta28syn mutation was unable to cause virus-induced cell fusion in the presence of the gKDelta31-68 mutation. Transient expression of a peptide composed of the amino-terminal 82 aa of gK (gKa) produced a glycosylated peptide that was efficiently expressed on cell surfaces only after infection with the HSV-1(F), gKDelta31-68, DeltagK, or UL20-null virus. The gKa peptide complemented the gKDelta31-47 and gKDelta31-68 mutant viruses for infectious-virus production and for gKDelta31-68/gBDelta28syn-mediated cell fusion. These data show that the amino terminus of gK modulates gB-mediated virus-induced cell fusion and virion egress.
Collapse
|
25
|
Multiple peptides homologous to herpes simplex virus type 1 glycoprotein B inhibit viral infection. Antimicrob Agents Chemother 2008; 53:987-96. [PMID: 19104014 DOI: 10.1128/aac.00793-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 773-residue ectodomain of the herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) has been resistant to the use of mutagenic strategies because the majority of the induced mutations result in defective proteins. As an alternative strategy for the identification of functionally important regions and novel inhibitors of infection, we prepared a library of overlapping peptides homologous to the ectodomain of gB and screened for the ability of the peptides to block infection. Seven of 138 15-mer peptides inhibited infection by more than 50% at a concentration of 100 microM. Three peptides (gB94, gB122, and gB131) with 50% effective concentrations (EC(50)s) below 20 microM were selected for further studies. The gB131 peptide (residues 681 to 695 in HSV-1 gB [gB-1]) was a specific entry inhibitor (EC(50), approximately 12 microM). The gB122 peptide (residues 636 to 650 in gB-1) blocked viral entry (EC(50), approximately 18 microM), protected cells from infection (EC(50), approximately 72 microM), and inactivated virions in solution (EC(50), approximately 138 microM). We were unable to discern the step or steps inhibited by the gB94 peptide, which is homologous to residues 496 to 510 in gB-1. Substitution of a tyrosine in the gB122 peptide (Y640 in full-length gB-1) reduced the antiviral activity eightfold, suggesting that this residue is critical for inhibition. This peptide-based strategy could lead to the identification of functionally important regions of gB or other membrane proteins and identify novel inhibitors of HSV-1 entry.
Collapse
|
26
|
Analysis of Epstein-Barr virus glycoprotein B functional domains via linker insertion mutagenesis. J Virol 2008; 83:734-47. [PMID: 18987135 DOI: 10.1128/jvi.01817-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr Virus (EBV) glycoprotein B (gB) is essential for viral fusion events with epithelial and B cells. This glycoprotein has been studied extensively in other herpesvirus family members, but functional domains outside of the cytoplasmic tail have not been characterized in EBV gB. In this study, a total of 28 linker insertion mutations were generated throughout the length of gB. In general, the linker insertions did not disrupt intracellular expression and variably altered cell surface expression. Oligomerization was disrupted by insertions located between residues 561 and 620, indicating the location of a potential site of oligomer contacts between EBV gB monomers. In addition, a novel N-glycosylated form of wild-type gB was identified under nonreducing Western blot conditions that likely represents a mature form of the protein. Fusion activity was abolished in all but three variants containing mutations in the N-terminal region (gB30), within the ectodomain (gB421), and in the intracellular C-terminal domain (gB832) of the protein. Fusion activity with variants gB421 and gB832 was comparable to that of the wild type with epithelial and B cells, and only these two mutants, but not gB30, were able to complement gB-null virus and subsequently function in virus entry. The mutant gB30 exhibited a low level of fusion activity with B cells and was unable to complement gB-null virus. The mutations generated here indicate important structural domains, as well as regions important for function in fusion, within EBV gB.
Collapse
|
27
|
The cytoplasmic terminus of Kaposi's sarcoma-associated herpesvirus glycoprotein B is not essential for virion egress and infectivity. J Virol 2008; 82:7144-54. [PMID: 18480449 DOI: 10.1128/jvi.00617-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded glycoprotein B (gB) is an important determinant of viral infectivity and virion egress. A small interfering RNA (siRNA)-based strategy was devised to inhibit KSHV gB gene expression. Transient cotransfection of plasmids constitutively expressing gB and anti-gB siRNAs in 293 cells substantially inhibited gB mRNA levels and protein production. Similarly, transient expression of siRNAs into the primary effusion lymphoma cell line BCBL-1 caused a substantial reduction of gB transcripts and protein synthesis. TaqMan real-time PCR assays against the lytic KSHV gene ORF59 and infectivity assays on 293 cells were employed to assess the effect of inhibiting gB synthesis on virion egress from BCBL-1 cells and infectivity on 293 cells, respectively. These experiments showed that gB was essential for virion egress and infectivity. Transfection of a codon-optimized gB gene with the first 540 nucleotides altered, and therefore not recognized by anti-gB siRNAs that target the native but not the codon-optimized sequence, efficiently rescued virion egress and infectivity in BCBL-1 cells in the presence of siRNAs inhibiting wild-type gB expression. To assess the role of the cytoplasmic domain of gB in virion egress, mutant gB genes were generated specifying carboxyl terminal truncations of 25 and 58 amino acids disrupting two prominent predicted alpha-helical domains associated with virus-induced cell fusion. A third truncation removed the entire predicted cytoplasmic terminus of 84 amino acids, while a fourth truncation removed 110 amino acids, including the terminal most hydrophobic, intramembrane anchoring sequence. Virion egress experiments revealed that all truncated gBs facilitated virion egress from BCBL-1 cells, with the exception of the largest 110-amino-acid truncation, which removed the gB anchoring sequence. Importantly, the gB truncation that removed the entire predicted cytoplasmic domain increased virion egress, suggesting the presence of a egress regulation domain located proximal to the intramembrane sequence within the cytoplasmic domain of gB. All supernatant virions were infectious on 293 cells, indicating that the carboxyl terminus of gB is not essential for either virion egress or virus infectivity.
Collapse
|
28
|
Beitia Ortiz de Zarate I, Cantero-Aguilar L, Longo M, Berlioz-Torrent C, Rozenberg F. Contribution of endocytic motifs in the cytoplasmic tail of herpes simplex virus type 1 glycoprotein B to virus replication and cell-cell fusion. J Virol 2007; 81:13889-903. [PMID: 17913800 PMCID: PMC2168835 DOI: 10.1128/jvi.01231-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The use of endocytic pathways by viral glycoproteins is thought to play various functions during viral infection. We previously showed in transfection assays that herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is transported from the cell surface back to the trans-Golgi network (TGN) and that two motifs of gB cytoplasmic tail, YTQV and LL, function distinctly in this process. To investigate the role of each of these gB trafficking signals in HSV-1 infection, we constructed recombinant viruses in which each motif was rendered nonfunctional by alanine mutagenesis. In infected cells, wild-type gB was internalized from the cell surface and concentrated in the TGN. Disruption of YTQV abolished internalization of gB during infection, whereas disruption of LL induced accumulation of internalized gB in early recycling endosomes and impaired its return to the TGN. The growth of both recombinants was moderately diminished. Moreover, the fusion phenotype of cells infected with the gB recombinants differed from that of cells infected with the wild-type virus. Cells infected with the YTQV-mutated virus displayed reduced cell-cell fusion, whereas giant syncytia were observed in cells infected with the LL-mutated virus. Furthermore, blocking gB internalization or impairing gB recycling to the cell surface, using drugs or a transdominant negative form of Rab11, significantly reduced cell-cell fusion. These results favor a role for endocytosis in virus replication and suggest that gB intracellular trafficking is involved in the regulation of cell-cell fusion.
Collapse
|
29
|
Calistri A, Sette P, Salata C, Cancellotti E, Forghieri C, Comin A, Göttlinger H, Campadelli-Fiume G, Palù G, Parolin C. Intracellular trafficking and maturation of herpes simplex virus type 1 gB and virus egress require functional biogenesis of multivesicular bodies. J Virol 2007; 81:11468-78. [PMID: 17686835 PMCID: PMC2045546 DOI: 10.1128/jvi.01364-07] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The biogenesis of multivesicular bodies (MVBs) is topologically equivalent to virion budding. Hence, a number of viruses exploit the MVB pathway to build their envelope and exit from the cell. By expression of dominant negative forms of Vps4 and Vps24, two components of the MVB pathway, we observed an impairment in infectious herpes simplex virus (HSV) assembly/egress, in agreement with a recent report showing the involvement in HSV envelopment of Vps4, the MVB-specific ATPase (C. M. Crump, C. Yates, and T. Minson, J. Virol. 81:7380-7387). Furthermore, HSV infection resulted in morphological changes to MVBs. Glycoprotein B (gB), one of the most highly conserved glycoproteins across the Herpesviridae family, was sorted to MVB membranes. In cells expressing the dominant negative form of Vps4, the site of intracellular gB accumulation was altered; part of gB accumulated as an endoglycosidase H-sensitive immature form at a calreticulin-positive compartment, indicating that gB traffic was dependent on a functional MVB pathway. gB was ubiquitinated in both infected and transfected cells. Ubiquitination was in part dependent on ubiquitin lysine 63, a signal for cargo sorting to MVBs. Partial deletion of the gB cytoplasmic tail resulted in a dramatic reduction of ubiquitination, as well as of progeny virus assembly and release to the extracellular compartment. Thus, HSV envelopment/egress and gB intracellular trafficking are dependent on functional MVB biogenesis. Our data support the view that the sorting of gB to MVB membranes may represent a critical step in HSV envelopment and egress and that modified MVB membranes constitute a platform for HSV cytoplasmic envelopment or that MVB components are recruited to the site(s) of envelopment.
Collapse
Affiliation(s)
- Arianna Calistri
- Department of Histology, Microbiology and Medical Biotechnologies, via Gabelli 63, 35121 Padova, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ishida Y, Okabe T, Azukizawa Y, Isono T, Seto A. Pathogenic potentials of glycoprotein C-negative syncytial mutants from rabbit T cells infected persistently with herpes simplex virus type 1. J Med Virol 2005; 76:89-97. [PMID: 15779044 DOI: 10.1002/jmv.20328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human T cell lymphotropic virus type I (HTLV-I)-transformed T cells of rabbits were infected persistently with Herpes simplex virus type 1 (HSV-1) strain KOS. These infected cells yielded syncytial mutants, either glycoprotein C (gC)-negative or -positive, which predominated over and replaced the wild-type virus in a long-term culture for 2 years. An alignment of nucleotide sequences showed multiple mutations in glycoprotein B (gB) and gC genes of these mutants, which are or may be responsible for the mutant phenotypes. One of four mutants analyzed produced extensively large syncytia and possessed point mutations within the cytoplasmic domain of gB. All four mutants possessed multiple point mutations in gC and two possessed single insertions which resulted in a frame shift, leading to the premature termination of the gC polypeptide chain. The supernatant of the 2-year culture of cells infected persistently, containing only gC-negative syncytial mutants, induced encephalitic symptoms in B/Jas inbred rabbits, when injected intravenously. One gC-negative syncytial isolate from an encephalitic lesion, together with those from the culture supernatant, were examined for pathogenic potential in vitro and in vivo. All these mutants were more cytotoxic and more susceptible to complement inactivation than the parental virus, and could infect and replicate in adrenal glands when injected intravenously into rabbits. Invasion into the central nervous system appeared to be blocked at the portal of entry, the adrenal gland, i.e., none exhibited neuroinvasive potential by itself. Syncytial gC-negative mutants could thus be pathogenic in rabbits.
Collapse
Affiliation(s)
- Yoshimasa Ishida
- Department of Microbiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | | | | | | |
Collapse
|
31
|
Melancon JM, Luna RE, Foster TP, Kousoulas KG. Herpes simplex virus type 1 gK is required for gB-mediated virus-induced cell fusion, while neither gB and gK nor gB and UL20p function redundantly in virion de-envelopment. J Virol 2005; 79:299-313. [PMID: 15596825 PMCID: PMC538735 DOI: 10.1128/jvi.79.1.299-313.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple amino acid changes within herpes simplex virus type 1 (HSV-1) gB and gK cause extensive virus-induced cell fusion and the formation of multinucleated cells (syncytia). Early reports established that syncytial mutations in gK could not cause cell-to-cell fusion in the absence of gB. To investigate the interdependence of gB, gK, and UL20p in virus-induced cell fusion and virion de-envelopment from perinuclear spaces as well as to compare the ultrastructural phenotypes of the different mutant viruses in a syngeneic HSV-1 (F) genetic background, gB-null, gK-null, UL20-null, gB/gK double-null, and gB/UL20 double-null viruses were constructed with the HSV-1 (F) bacterial artificial chromosome pYEBac102. The gK/gB double-null virus YEbacDeltagBDeltagK was used to isolate the recombinant viruses gBsyn3DeltagK and gBamb1511DeltagK, which lack the gK gene and carry the gBsyn3 or gBamb1511 syncytial mutation, respectively. Both viruses formed small nonsyncytial plaques on noncomplementing Vero cells and large syncytial plaques on gK-complementing cells, indicating that gK expression was necessary for gBsyn3- and gBamb1511-induced cell fusion. Lack of virus-induced cell fusion was not due to defects in virion egress, since recombinant viruses specifying the gBsyn3 or gKsyn20 mutation in the UL19/UL20 double-null genetic background caused extensive cell fusion on UL20-complementing cells. As expected, the gB-null virus failed to produce infectious virus, but enveloped virion particles egressed efficiently out of infected cells. The gK-null and UL20-null viruses exhibited cytoplasmic defects in virion morphogenesis like those of the corresponding HSV-1 (KOS) mutant viruses. Similarly, the gB/gK double-null and gB/UL20 double-null viruses accumulated capsids in the cytoplasm, indicating that gB, gK, and UL20p do not function redundantly in membrane fusion during virion de-envelopment at the outer nuclear lamellae.
Collapse
Affiliation(s)
- Jeffrey M Melancon
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | |
Collapse
|
32
|
Heineman TC, Connolly P, Hall SL, Assefa D. Conserved cytoplasmic domain sequences mediate the ER export of VZV, HSV-1, and HCMV gB. Virology 2004; 328:131-41. [PMID: 15380364 DOI: 10.1016/j.virol.2004.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2004] [Revised: 04/23/2004] [Accepted: 07/14/2004] [Indexed: 10/26/2022]
Abstract
Glycoprotein B (gB) is conserved among the herpesviruses and participates in both virus entry and cell-cell spread. The ER export of VZV gB is mediated by two cytoplasmic domain regions, aa 818-826, which contains a YXXphi motif, and the C-terminal 17 aa. The current study examines whether related sequences in the cytoplasmic domains of HSV-1 and HCMV gB similarly influence the ER export of their gB homologs. Directed mutations were introduced into the cytoplasmic domains of HSV-1 and HCMV gB, and the efficiencies with which the mutated proteins acquired Golgi-dependent modifications were determined. Sequences homologous to VZV gB aa 818-826 were required for normal ER export of both HSV-1 gB and HCMV gB. However, the C-terminal regions of HSV-1 and HCMV gB had no impact on ER export. Therefore, alpha- and betaherpesvirus gB homologs share conserved ER export signals, but species-specific differences in the ER export of gB also exist.
Collapse
Affiliation(s)
- Thomas C Heineman
- Division of Infectious Diseases and Immunology, Saint Louis University School of Medicine, Saint Louis, MO 63110-0250, USA.
| | | | | | | |
Collapse
|
33
|
Avitabile E, Lombardi G, Gianni T, Capri M, Campadelli-Fiume G. Coexpression of UL20p and gK inhibits cell-cell fusion mediated by herpes simplex virus glycoproteins gD, gH-gL, and wild-type gB or an endocytosis-defective gB mutant and downmodulates their cell surface expression. J Virol 2004; 78:8015-25. [PMID: 15254173 PMCID: PMC446093 DOI: 10.1128/jvi.78.15.8015-8025.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Syncytium formation in cells that express herpes simplex virus glycoprotein B (gB), gD, gH, and gL is blocked by gK (E. Avitabile, G. Lombardi, and G. Campadelli-Fiume, J. Virol. 77:6836-6844, 2003). Here, we report the results of two series of experiments. First, UL20 protein (UL20p) expression weakly inhibited cell-cell fusion. Coexpression of UL20p and gK drastically reduced fusion in a cell-line-dependent manner, with the highest inhibition in BHK cells. Singly expressed UL20p and gK localized at the endoplasmic reticulum and nuclear membranes. When they were coexpressed, both proteins relocalized to the Golgi apparatus. Remarkably, in cells that coexpressed UL20p and gK, the antifusion activity correlated with a downmodulation of gD, gB, gH, and gL cell surface expression. Second, gB(Delta867) has a partial deletion in the cytoplasmic tail that removed endocytosis motifs. Whereas wild-type (wt) gB was internalized in vesicles lined with the endosomal marker Rab5, gB(delta867) was not internalized, exhibited enhanced cell surface expression, and was more efficient in mediating cell-cell fusion than wt gB. The antifusion activity of UL20p and gK was also exerted when gB(delta867) replaced wt gB in the cell fusion assay. These studies show that the gB C tail carries a functional endocytosis motif(s) and that the removal of the motif correlated with increased gB surface expression and increased fusion activity. We conclude that cell-cell fusion in wt-virus-infected cells is negatively controlled by at least two mechanisms. The novel mechanism described here involves the concerted action of UL20p and gK and correlates with a moderate but consistent reduction in the cell surface expression of the fusion glycoproteins. This mechanism is independent of the one exerted through endocytosis-mediated downmodulation of gB from the plasma membrane.
Collapse
Affiliation(s)
- Elisa Avitabile
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
34
|
Jones NA, Geraghty RJ. Fusion activity of lipid-anchored envelope glycoproteins of herpes simplex virus type 1. Virology 2004; 324:213-28. [PMID: 15183068 DOI: 10.1016/j.virol.2004.03.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 10/17/2003] [Accepted: 03/24/2004] [Indexed: 11/25/2022]
Abstract
Expression of the herpes simplex virus type 1 (HSV-1) glycoproteins gB, gD, gH, and gL is necessary and sufficient to cause cell fusion. To identify the requirements for a membrane-spanning domain in HSV-1 glycoprotein-induced cell fusion, we created gB, gD, and gH mutants with transmembrane and cytoplasmic domains replaced by a glycosylphosphatidylinositol (gpi)-addition sequence. The corresponding gBgpi, gDgpi, and gHgpi proteins were expressed with wild-type efficiency at the cell surface and were linked to the plasma membrane via a gpi anchor. The gDgpi mutant promoted cell fusion near wild-type gD levels when co-expressed with gB, gH, and gL in a cell-mixing fusion assay, indicating that the gD transmembrane and cytoplasmic domains were not required for fusion activity. A plasma membrane link was required for fusion because a gD mutant lacking a transmembrane and cytoplasmic domain was nonfunctional for fusion. The gDgpi mutant was also able to cooperate with wild-type gB, gH, and gL to form syncytia, albeit at a size smaller than those formed in the wild-type situation. The gBgpi and gHgpi mutants were unable to promote fusion when expressed with the other wild-type viral glycoproteins, highlighting the requirement of the specific transmembrane and cytoplasmic domains for gB and gH function.
Collapse
Affiliation(s)
- Natasha A Jones
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
35
|
Pasieka TJ, Maresova L, Shiraki K, Grose C. Regulation of varicella-zoster virus-induced cell-to-cell fusion by the endocytosis-competent glycoproteins gH and gE. J Virol 2004; 78:2884-96. [PMID: 14990707 PMCID: PMC353742 DOI: 10.1128/jvi.78.6.2884-2896.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gH glycoprotein of varicella-zoster virus (VZV) is a major fusogen. The realigned short cytoplasmic tail of gH (18 amino acids) harbors a functional endocytosis motif (YNKI) that mediates internalization in both VZV-infected and transfected cells (T. J. Pasieka, L. Maresova, and C. Grose, J. Virol. 77: 4194-4202, 2003). During subsequent confocal microscopy studies of endocytosis-deficient gH mutants, we observed that cells transfected with the gH tail mutants exhibited marked fusion. Therefore, we postulated that VZV gH endocytosis served to regulate cell-to-cell fusion. Subsequent analyses of gH+gL transfection fusion assays by the Kolmogorov-Smirnov statistical test demonstrated that expression of the endocytosis-deficient gH mutants resulted in a statistically significant enhancement of cell-to-cell fusion (P < 0.0001) compared to wild-type gH. On the other hand, coexpression of VZV gE, another endocytosis-competent VZV glycoprotein, was able to temper the fusogenicity of the gH endocytosis mutants by facilitating internalization of the mutant gH protein from the cell surface. When the latter results were similarly analyzed, there was no longer any enhanced fusion by the endocytosis-deficient gH mutant protein. In summary, these studies support a role for gH endocytosis in regulating the cell surface expression of gH and thereby regulating gH-mediated fusion. The data also confirm and extend prior observations of a gE-gH interaction during viral glycoprotein trafficking in a VZV transfection system.
Collapse
Affiliation(s)
- Tracy Jo Pasieka
- Department of Pediatrics, University of Iowa College of Medicine, Iowa City, Iowa, USA
| | | | | | | |
Collapse
|
36
|
Beitia Ortiz de Zarate I, Kaelin K, Rozenberg F. Effects of mutations in the cytoplasmic domain of herpes simplex virus type 1 glycoprotein B on intracellular transport and infectivity. J Virol 2004; 78:1540-51. [PMID: 14722308 PMCID: PMC321396 DOI: 10.1128/jvi.78.3.1540-1551.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 10/15/2003] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a human pathogen of the alphaherpesvirus family which infects and spreads in the nervous system. Glycoproteins play a key role in the process of assembly and maturation of herpesviruses, which is essential for neuroinvasion and transneuronal spread. Glycoprotein B (gB) is a main component of the HSV-1 envelope and is necessary for the production of infectious particles. The cytoplasmic domain of gB, the longest one among HSV-1 glycoproteins, contains several highly conserved peptide sequences homologous to motifs involved in intracellular sorting. To determine the specific roles of these motifs in processing, subcellular localization, and the capacity of HSV-1 gB to complement a gB-null virus, we generated truncated or point mutated forms of a green fluorescent protein (GFP)-tagged gB. GFP-gB with a deletion in the acidic cluster DGDADEDDL (amino acids [aa] 896 to 904) behaved the same as the parental form. Deletion or disruption of the YTQV motif (aa 889 to 892) abolished internalization and reduced complementation by 60%. Disruption of the LL motif (aa 871 to 872) impaired the return of the protein to the trans-Golgi network (TGN) while enhancing its recycling to the plasma membrane. Truncations from residue E 857 abolished transport and processing of the truncated proteins, which had null complementation activity, through the Golgi complex. Altogether, our results favor a model in which HSV-1 gets its final envelope in the TGN, and they suggest that endocytosis, albeit not necessary, might play a role in infectivity.
Collapse
Affiliation(s)
- Igor Beitia Ortiz de Zarate
- UPRES EA 3622, Faculté Cochin, Université Paris V, and INSERM U 567, CNRS UMR 8104, IFR 116, 75014 Paris, France
| | | | | |
Collapse
|
37
|
Potel C, Kaelin K, Danglot L, Triller A, Vannier C, Rozenberg F. Herpes simplex virus type 1 glycoprotein B sorting in hippocampal neurons. J Gen Virol 2003; 84:2613-2624. [PMID: 13679595 DOI: 10.1099/vir.0.19279-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that spreads in the nervous system in functionally connected neurons. Determining how HSV-1 components are sorted in neurons is critical to elucidate the mechanisms of virus neuroinvasion. By using recombinant viruses expressing glycoprotein B (gB) tagged with green fluorescent protein (GFP), the subcellular localization of this envelope protein was visualized in infected hippocampal neurons in culture. Results obtained using a fully infectious recombinant virus containing GFP inserted into the ectodomain of gB support the view that capsids and gB are transported separately in neuron processes. Moreover, they show that during infection gB is sorted to the dendritic tree and the axons of polarized hippocampal neurons. However, GFP insertion into the cytoplasmic tail of gB impaired the maturation of the resulting fusion protein and caused its retention in the endoplasmic reticulum. The defective protein did not gain access to axons of infected neurons. These results suggest that the cytoplasmic tail of gB plays a role in maturation and transport and subsequently in axonal sorting in differentiated hippocampal neurons.
Collapse
Affiliation(s)
- Corinne Potel
- Laboratoire de Virologie, UPRES EA 3622, Faculté de Médecine Cochin, Université Paris V et Inserm U 567, Bâtiment Gustave Roussy, porte 636, 27 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Karin Kaelin
- Laboratoire de Virologie, UPRES EA 3622, Faculté de Médecine Cochin, Université Paris V et Inserm U 567, Bâtiment Gustave Roussy, porte 636, 27 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Lydia Danglot
- Laboratoire de Biologie Cellulaire de la Synapse Normale et Pathologique, Institut National de la Santé et de la Recherche Médicale U497, Ecole Normale Supérieure, 75005 Paris, France
| | - Antoine Triller
- Laboratoire de Biologie Cellulaire de la Synapse Normale et Pathologique, Institut National de la Santé et de la Recherche Médicale U497, Ecole Normale Supérieure, 75005 Paris, France
| | - Christian Vannier
- Laboratoire de Biologie Cellulaire de la Synapse Normale et Pathologique, Institut National de la Santé et de la Recherche Médicale U497, Ecole Normale Supérieure, 75005 Paris, France
| | - Flore Rozenberg
- Laboratoire de Virologie, UPRES EA 3622, Faculté de Médecine Cochin, Université Paris V et Inserm U 567, Bâtiment Gustave Roussy, porte 636, 27 rue du Faubourg Saint Jacques, 75014 Paris, France
| |
Collapse
|
38
|
Maresova L, Pasieka T, Wagenaar T, Jackson W, Grose C. Identification of the authentic varicella-zoster virus gB (gene 31) initiating methionine overlapping the 3' end of gene 30. J Med Virol 2003; 70 Suppl 1:S64-70. [PMID: 12627491 DOI: 10.1002/jmv.10324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The varicella-zoster virus (VZV) gB sequence was re-examined in light of recent knowledge about unusually long gB signal peptides in other herpesviral gB homologs. Through mutational analysis, the discovery was made that the authentic initiating methionine for VZV gB is a codon beginning at genome nucleotide 56,819. The total length for the VZV gB primary translation product was 931 amino acids (aa) with a 71-aa signal sequence. Considering the likely signal sequence cleavage site to be located between Ser 71 and Val 72, the length of the mature VZV gB polypeptide would then be 860 amino acids prior to further internal endoproteolytic cleavage between amino acids Arg 494 and Ser 495. In this report, we also produced a full-length gB and demonstrated its association with VZV gE, suggesting a possible gE-gB interaction during gB trafficking before its cleavage in the Golgi.
Collapse
Affiliation(s)
- Lucie Maresova
- Departments of Microbiology and Pediatrics, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
39
|
Fan Z, Grantham ML, Smith MS, Anderson ES, Cardelli JA, Muggeridge MI. Truncation of herpes simplex virus type 2 glycoprotein B increases its cell surface expression and activity in cell-cell fusion, but these properties are unrelated. J Virol 2002; 76:9271-83. [PMID: 12186911 PMCID: PMC136473 DOI: 10.1128/jvi.76.18.9271-9283.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of small polykaryons by cell-cell fusion is characteristic of herpes simplex virus (HSV) lesions, but the great majority of viruses isolated from such lesions produce only limited cell fusion in tissue culture. Because of this, HSV laboratory strains that produce extensive cell fusion (syncytium formation) in culture are regarded as variants or mutants. Furthermore, the rarity of clinical isolates able to produce syncytia in culture suggests that extensive cell fusion is deleterious in vivo. Mutations that confer a syncytial phenotype can then be regarded as bypassing a mechanism that normally limits cell fusion. Determination of how these mutations, some of which are in the cytoplasmic tail of glycoprotein B (gB), lead to syncytium formation will likely reveal how fusion is controlled. Here we show the following. (i) Truncation of the cytoplasmic tail of HSV type 2 gB (gB-2) by a minimum of 25 residues or a maximum of 49 residues produces a syncytial phenotype. (ii) Truncation by 20 to 49 residues increases cell fusion when gB-2 is coexpressed with only gD-2, gH-2, and gL-2. (iii) Truncation by 25 or more residues removes a potential endocytosis motif and increases gB-2 cell surface expression. (iv) Mutation of this motif increases gB-2 cell surface expression but does not increase fusogenic activity, whereas mutation of another potential endocytosis motif does not increase surface expression but does increase fusogenic activity. Therefore, syncytial mutations in the cytoplasmic tail of gB-2 do not act by increasing cell surface levels of the protein.
Collapse
Affiliation(s)
- Zhenghong Fan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | | | |
Collapse
|
40
|
Favoreel HW, Van Minnebruggen G, Nauwynck HJ, Enquist LW, Pensaert MB. A tyrosine-based motif in the cytoplasmic tail of pseudorabies virus glycoprotein B is important for both antibody-induced internalization of viral glycoproteins and efficient cell-to-cell spread. J Virol 2002; 76:6845-51. [PMID: 12050399 PMCID: PMC136286 DOI: 10.1128/jvi.76.13.6845-6851.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudorabies virus (PRV), a swine alphaherpesvirus, is capable of causing viremia in vaccinated animals. Two mechanisms that may help PRV avoid recognition by the host immune system during this viremia are direct cell-to-cell spread in tissue and antibody-induced internalization of viral cell surface glycoproteins in PRV-infected blood monocytes, the carrier cells of the virus in the blood. PRV glycoprotein B (gB) is crucial during both processes. Here we show that mutating a tyrosine residue located in a YXXPhi motif in the gB cytoplasmic tail results in decreased efficiency of cell-to-cell spread and a strong reduction in antibody-induced internalization of viral cell surface glycoproteins. Mutating the dileucine motif in the gB tail led to an increased cell-to-cell spread of the virus and the formation of large syncytia.
Collapse
Affiliation(s)
- Herman W Favoreel
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
41
|
Abstract
Herpesvirus entry into cells and herpesvirus-induced cell fusion are related processes in that virus penetration proceeds by fusion of the viral envelope and cell membrane. To characterize the human herpesvirus 8 (HHV-8) glycoproteins that can mediate cell fusion, a luciferase reporter gene activation assay was used. Chinese hamster ovary (CHO) cells expressing the HHV-8 glycoproteins of interest along with a luciferase reporter gene under the control of the T7 promoter were cocultivated with human cells transfected with T7 RNA polymerase. Because HHV-8 glycoprotein B (gB) expressed in CHO cells localizes to the perinuclear region, a truncated form of gB (designated gB(MUT)) that lacks putative endocytosis signals was constructed by deletion of the distal 58 amino acids of the cytoplasmic tail. HHV-8 gB(MUT) was expressed efficiently on the surface of CHO cells. HHV-8 gB, gH, and gL could mediate the fusion of CHO cells with two different human cell types, embryonic kidney cells and B lymphocytes. Substituting gB(MUT) for gB significantly enhanced the fusion of CHO cells with human embryonic kidney cells but not B lymphocytes. Thus, two human cell types known to be susceptible to HHV-8 entry were also suitable targets for cell fusion induced by HHV-8 gB, gH, and gL. For human embryonic kidney cells and B cells at least, optimal fusion was noted with the expression of all three HHV-8 glycoproteins.
Collapse
Affiliation(s)
- Peter E Pertel
- Division of Infectious Diseases, Northwestern University Medical School, Chicago, Illinois, USA.
| |
Collapse
|
42
|
Heineman TC, Hall SL. Role of the varicella-zoster virus gB cytoplasmic domain in gB transport and viral egress. J Virol 2002; 76:591-9. [PMID: 11752150 PMCID: PMC136849 DOI: 10.1128/jvi.76.2.591-599.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the function of the varicella-zoster virus (VZV) gB cytoplasmic domain during viral infection, we produced a VZV recombinant virus that expresses a truncated form of gB lacking the C-terminal 36 amino acids of its cytoplasmic domain (VZV gB-36). VZV gB-36 replicates in noncomplementing cells and grows at a rate similar to that of native VZV. However, cells infected with VZVgB-36 form extensive syncytia compared to the relatively small syncytia formed during native VZV infection. In addition, electron microscopy shows that very little virus is present on the surfaces of cells infected with VZV gB-36, while cells infected with native VZV exhibit abundant virions on the cell surface. The C-terminal 36 amino acids of the gB cytoplasmic domain have been shown in transfection-based experiments to contain both an endoplasmic reticulum-to-Golgi transport signal (the C-terminal 17 amino acids) and a consensus YXXphi (where Y is tyrosine, X is any amino acid, and phi is any bulky hydrophobic amino acid) signal sequence (YSRV) that mediates the internalization of gB from the plasma membrane. As predicted based on these data, gB-36 expressed during the infection of cultured cells is transported inefficiently to the Golgi. Despite lacking the YSRV signal sequence, gB-36 is internalized from the plasma membrane; however, in contrast to native gB, it fails to localize to the Golgi. Therefore, the C-terminal 36 amino acids of the VZV gB cytoplasmic domain are required for normal viral egress and for both the pre- and post-Golgi transport of gB.
Collapse
Affiliation(s)
- Thomas C Heineman
- Division of Infectious Diseases and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63110-0250, USA.
| | | |
Collapse
|
43
|
Haan KM, Lee SK, Longnecker R. Different functional domains in the cytoplasmic tail of glycoprotein B are involved in Epstein-Barr virus-induced membrane fusion. Virology 2001; 290:106-14. [PMID: 11882994 DOI: 10.1006/viro.2001.1141] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A virus-free cell fusion assay relying on the transient transfection of Epstein-Barr virus (EBV) glycoproteins into cells provides an efficient and quantitative assay for characterizing the viral requirements necessary for fusion of the viral envelope with the B cell membrane. Extensive cellular fusion occurred when Daudi cells were layered onto Chinese hamster ovary K1 cells transiently expressing EBV glycoproteins gp42, gH, gL, and gB. This is the first direct evidence that gB is involved in the process of EBV entry. Moreover, mutational analysis of gB indicates that the cytoplasmic tail contains two distinct domains that function differentially in the process of fusion. The region from amino acids 802 to 816 is necessary for productive membrane fusion, while amino acids 817 to 841 comprise a domain that negatively regulates membrane fusion.
Collapse
Affiliation(s)
- K M Haan
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
44
|
Theiler RN, Compton T. Characterization of the signal peptide processing and membrane association of human cytomegalovirus glycoprotein O. J Biol Chem 2001; 276:39226-31. [PMID: 11504733 DOI: 10.1074/jbc.m106300200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human cytomegalovirus (HCMV) has a structurally complex envelope that contains multiple glycoproteins. These glycoproteins are involved in virus entry, virus maturation, and cell-cell spread of infection. Glycoprotein H (gH), glycoprotein L (gL), and glycoprotein O (gO) associate covalently to form a unique disulfide-bonded tripartite complex. Glycoprotein O was recently discovered, and its basic structure, as well as that of the tripartite complex, remains uncharacterized. Based on hydropathy analysis, we hypothesized that gO could adopt a type II transmembrane orientation. The data presented here, however, reveal that the single hydrophobic domain of gO functions as a cleavable signal peptide that is absent from the mature molecule. Although it lacks a membrane anchor, glycoprotein O is associated with the membranes of HCMV-infected cells. The sophisticated organization of the gH.gL.gO complex reflects the intricate nature of the multicomponent entry and fusion machinery encoded by HCMV.
Collapse
Affiliation(s)
- R N Theiler
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
45
|
Maresova L, Pasieka TJ, Grose C. Varicella-zoster Virus gB and gE coexpression, but not gB or gE alone, leads to abundant fusion and syncytium formation equivalent to those from gH and gL coexpression. J Virol 2001; 75:9483-92. [PMID: 11533210 PMCID: PMC114515 DOI: 10.1128/jvi.75.19.9483-9492.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) is distinguished from herpes simplex virus type 1 (HSV-1) by the fact that cell-to-cell fusion and syncytium formation require only gH and gL within a transient-expression system. In the HSV system, four glycoproteins, namely, gH, gL, gB, and gD, are required to induce a similar fusogenic event. VZV lacks a gD homologous protein. In this report, the role of VZV gB as a fusogen was investigated and compared to the gH-gL complex. First of all, the VZV gH-gL experiment was repeated under a different set of conditions; namely, gH and gL were cloned into the same vaccinia virus (VV) genome. Surprisingly, the new expression system demonstrated that a recombinant VV-gH+gL construct was even more fusogenic than seen in the prior experiment with two individual expression plasmids containing gH and gL (K. M. Duus and C. Grose, J. Virol. 70:8961-8971, 1996). Recombinant VV expressing VZV gB by itself, however, effected the formation of only small syncytia. When VZV gE and gB genes were cloned into one recombinant VV genome and another fusion assay was performed, extensive syncytium formation was observed. The degree of fusion with VZV gE-gB coexpression was comparable to that observed with VZV gH-gL: in both cases, >80% of the cells in a monolayer were fused. Thus, these studies established that VZV gE-gB coexpression greatly enhanced the fusogenic properties of gB. Control experiments documented that the fusion assay required a balance between the fusogenic potential of the VZV glycoproteins and the fusion-inhibitory effect of the VV infection itself.
Collapse
Affiliation(s)
- L Maresova
- Department of Microbiology, University of Iowa, Iowa City, Iowa, USA
| | | | | |
Collapse
|
46
|
Foster TP, Melancon JM, Kousoulas KG. An alpha-helical domain within the carboxyl terminus of herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is associated with cell fusion and resistance to heparin inhibition of cell fusion. Virology 2001; 287:18-29. [PMID: 11504538 DOI: 10.1006/viro.2001.1004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies from our laboratory indicated that a 28-amino-acid carboxyl-terminal truncation of gB caused extensive virus-induced cell fusion (Baghian et al., 1993, J Virol 67, 2396-2401). We tested the ability of additional truncations and mutations within gB to cause cell fusion in the recently established virus-free cell fusion assay (Turner et al., 1998, J. Virol. 72, 873-875). Deletion of the carboxyl-terminal 28 amino acids of gB (gBDelta28), which removed part of the predicted alpha-helical structure H17b, caused extensive cell fusion. A gB truncation specified by gBDelta36, which removed the entire H17b domain, caused as much cell fusion as the gBDelta28 truncation. Similarly, gB(A874P) containing a substitution of an Ala with Pro within H17b caused cell fusion. Heparin, a gB-specific inhibitor of virus-induced cell fusion, inhibited both wild-type gB and gB(syn3)-mediated cell fusion. In contrast, fusion of cells transfected with gB(Delta28), gB(Delta36), or gB(A874P) was resistant to heparin inhibition of cell fusion. We concluded the following: (1) The predicted alpha-helical structure of H17b within the carboxyl terminus of gB is involved in both virus-induced and virus-free cell fusion. (2) Heparin is a specific inhibitor of gB-mediated fusion in both systems. (3) Resistance to heparin inhibition of gB-mediated cell fusion is associated with the predicted alpha-helical structure H17b within the carboxyl terminus of gB.
Collapse
Affiliation(s)
- T P Foster
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | |
Collapse
|
47
|
Heineman TC, Hall SL. VZV gB endocytosis and Golgi localization are mediated by YXXphi motifs in its cytoplasmic domain. Virology 2001; 285:42-9. [PMID: 11414804 DOI: 10.1006/viro.2001.0930] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytoplasmic domains of many membrane proteins contain sorting signals that mediate their endocytosis from the plasma membrane. VZV gB contains three consensus internalization motifs within its cytoplasmic domain: YMTL (aa 818-821), YSRV (aa 857-860), and LL (aa 841-842). To determine whether VZV gB is internalized from the plasma membrane, and whether these motifs are required for its endocytosis, we compared the internalization of native gB to that of gB containing mutations in each of the predicted internalization motifs. VZV gB present on the surface of transfected cells associated with clathrin and was efficiently internalized to the Golgi apparatus within 60 min at 37 degrees C. VZV gB containing the mutation Y857 failed to be internalized, while gB-Y818A was internalized but did not accumulate in the Golgi. These data indicate that the internalization of VZV gB, and its subsequent localization to the Golgi, is mediated by two tyrosine-based sequence motifs in its cytoplasmic domain.
Collapse
Affiliation(s)
- T C Heineman
- Division of Infectious Diseases and Immunology, St. Louis University School of Medicine, St. Louis, Missouri 63110-0250, USA.
| | | |
Collapse
|
48
|
Heineman TC, Krudwig N, Hall SL. Cytoplasmic domain signal sequences that mediate transport of varicella-zoster virus gB from the endoplasmic reticulum to the Golgi. J Virol 2000; 74:9421-30. [PMID: 11000211 PMCID: PMC112371 DOI: 10.1128/jvi.74.20.9421-9430.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Normal herpesvirus assembly and egress depend on the correct intracellular localization of viral glycoproteins. While several post-Golgi transport motifs have been characterized within the cytoplasmic domains of various viral glycoproteins, few specific endoplasmic reticulum (ER)-to-Golgi transport signals have been described. We report the identification of two regions within the 125-amino-acid cytoplasmic domain of Varicella-Zoster virus gB that are required for its ER-to-Golgi transport. Native gB or gB containing deletions and specific point mutations in its cytoplasmic domain was expressed in mammalian cells. ER-to-Golgi transport of gB was assessed by indirect immunofluorescence and by the acquisition of Golgi-dependent posttranslational modifications. These studies revealed that the ER-to-Golgi transport of gB requires a nine-amino-acid region (YMTLVSAAE) within its cytoplasmic domain. Mutations of individual amino acids within this region markedly impaired the transport of gB from the ER to the Golgi, indicating that this domain functions by a sequence-dependent mechanism. Deletion of the C-terminal 17 amino acids of the gB cytoplasmic domain was also shown to impair the transport of gB from the ER to the Golgi. However, internal mutations within this region did not disrupt the transport of gB, indicating that its function during gB transport is not sequence dependent. Native gB is also transported to the nuclear membrane of transfected cells. gB lacking as many as 67 amino acids from the C terminus of its cytoplasmic domain continued to be transported to the nuclear membrane at apparently normal levels, indicating that the cytoplasmic domain of gB is not required for nuclear membrane localization.
Collapse
Affiliation(s)
- T C Heineman
- Division of Infectious Diseases and Immunology, St. Louis University School of Medicine, St. Louis, Missouri 63110-0250, USA.
| | | | | |
Collapse
|
49
|
Abstract
A transient transfection-fusion assay was established to investigate membrane fusion mediated by pseudorabies virus (PrV) glycoproteins. Plasmids expressing PrV glycoproteins under control of the immediate-early 1 promoter-enhancer of human cytomegalovirus were transfected into rabbit kidney cells, and the extent of cell fusion was quantitated 27 to 42 h after transfection. Cotransfection of plasmids encoding PrV glycoproteins B (gB), gD, gH, and gL resulted in formation of polykaryocytes, as has been shown for homologous proteins of herpes simplex virus type 1 (HSV-1) (A. Turner, B. Bruun, T. Minson, and H. Browne, J. Virol. 72:873-875, 1998). However, in contrast to HSV-1, fusion was also observed when the gD-encoding plasmid was omitted, which indicates that PrV gB, gH, and gL are sufficient to mediate fusion. Fusogenic activity was enhanced when a carboxy-terminally truncated version of gB (gB-008) lacking the C-terminal 29 amino acids was used instead of wild-type gB. With gB-008, only gH was required in addition for fusion. A very rapid and extended fusion was observed after cotransfection of plasmids encoding gB-008 and gDH, a hybrid protein consisting of the N-terminal 271 amino acids of gD fused to the 590 C-terminal amino acids of gH. This protein has been shown to substitute for gH, gD, and gL function in the respective viral mutants (B. G. Klupp and T. C. Mettenleiter, J. Virol. 73:3014-3022, 1999). Cotransfection of plasmids encoding PrV gC, gE, gI, gK, and UL20 with gB-008 and gDH had no effect on fusion. However, inclusion of a gM-expressing plasmid strongly reduced the extent of fusion. An inhibitory effect was also observed after inclusion of plasmids encoding gM homologs of equine herpesvirus 1 or infectious laryngotracheitis virus but only in conjunction with expression of the gM complex partner, the gN homolog. Inhibition by PrV gM was not limited to PrV glycoprotein-mediated fusion but also affected fusion induced by the F protein of bovine respiratory syncytial virus, indicating a general mechanism of fusion inhibition by gM.
Collapse
Affiliation(s)
- B G Klupp
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | | | |
Collapse
|
50
|
Nixdorf R, Klupp BG, Karger A, Mettenleiter TC. Effects of truncation of the carboxy terminus of pseudorabies virus glycoprotein B on infectivity. J Virol 2000; 74:7137-45. [PMID: 10888654 PMCID: PMC112232 DOI: 10.1128/jvi.74.15.7137-7145.2000] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoproteins homologous to the type I membrane glycoprotein B (gB) of herpes simplex virus 1 (HSV-1) are the most highly conserved glycoproteins within the family Herpesviridae and are present in members of each herpesvirus subfamily. In the alphaherpesvirus pseudorabies virus (PrV), gB is required for entry into target cells and for direct viral cell-to-cell spread. These processes, though related, appear to be distinct, and thus it was interesting to analyze whether they require different functions of gB. To this end, we established cell lines stably expressing different carboxy-terminally truncated versions of PrV gB by deleting either (i) one predicted intracytoplasmic alpha-helical domain encompassing putative YQRL and dileucine internalization signals, (ii) two predicted intracytoplasmic alpha-helical domains, (iii) the complete intracytoplasmic domain, or (iv) the intracytoplasmic domain and the transmembrane anchor region. Confocal laser scanning microscopy showed that gB derivatives lacking at least the last 29 amino acids (aa) localize close to the plasma membrane, while the full-length protein accumulates in intracellular aggregations. Trans-complementation studies with a gB-deleted PrV (PrV-gB(-)) demonstrated that the 29-aa truncated form lacking the putative internalization signals and the C-terminal alpha-helical domain (gB-008) was efficiently incorporated into PrV-gB(-) virions and efficiently complemented infectivity and cell-to-cell spread. Moreover, gB-008 exhibited an enhanced fusogenic activity. In contrast, gB proteins lacking both alpha-helical domains (gB-007), the complete intracytoplasmic domain, or the intracytoplasmic domain and transmembrane anchor were only inefficiently or not at all incorporated into PrV-gB(-) virions and did not complement infectivity. However, gB-007 was able to mediate cell-to-cell spread of PrV-gB(-). Similar phenotypes were observed when virus recombinants expressing gB-008 or gB-007, respectively, instead of wild-type gB were isolated and analyzed. Thus, our data show that internalization of gB is not required for gB incorporation into virions nor for its function in either entry or cell-to-cell spread. Moreover, they indicate different requirements for gB in these membrane fusion processes.
Collapse
Affiliation(s)
- R Nixdorf
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | | | | | |
Collapse
|