1
|
Ostrowska N, Feig M, Trylska J. Varying molecular interactions explain aspects of crowder-dependent enzyme function of a viral protease. PLoS Comput Biol 2023; 19:e1011054. [PMID: 37098073 PMCID: PMC10162569 DOI: 10.1371/journal.pcbi.1011054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/05/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
Biochemical processes in cells, including enzyme-catalyzed reactions, occur in crowded conditions with various background macromolecules occupying up to 40% of cytoplasm's volume. Viral enzymes in the host cell also encounter such crowded conditions as they often function at the endoplasmic reticulum membranes. We focus on an enzyme encoded by the hepatitis C virus, the NS3/4A protease, which is crucial for viral replication. We have previously found experimentally that synthetic crowders, polyethylene glycol (PEG) and branched polysucrose (Ficoll), differently affect the kinetic parameters of peptide hydrolysis catalyzed by NS3/4A. To gain understanding of the reasons for such behavior, we perform atomistic molecular dynamics simulations of NS3/4A in the presence of either PEG or Ficoll crowders and with and without the peptide substrates. We find that both crowder types make nanosecond long contacts with the protease and slow down its diffusion. However, they also affect the enzyme structural dynamics; crowders induce functionally relevant helical structures in the disordered parts of the protease cofactor, NS4A, with the PEG effect being more pronounced. Overall, PEG interactions with NS3/4A are slightly stronger but Ficoll forms more hydrogen bonds with NS3. The crowders also interact with substrates; we find that the substrate diffusion is reduced much more in the presence of PEG than Ficoll. However, contrary to NS3, the substrate interacts more strongly with Ficoll than with PEG crowders, with the substrate diffusion being similar to crowder diffusion. Importantly, crowders also affect the substrate-enzyme interactions. We observe that both PEG and Ficoll enhance the presence of substrates near the active site, especially near catalytic H57 but Ficoll crowders increase substrate binding more than PEG molecules.
Collapse
Affiliation(s)
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Isken O, Walther T, Wong-Dilworth L, Rehders D, Redecke L, Tautz N. Identification of NS2 determinants stimulating intrinsic HCV NS2 protease activity. PLoS Pathog 2022; 18:e1010644. [PMID: 35727826 PMCID: PMC9249167 DOI: 10.1371/journal.ppat.1010644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/01/2022] [Accepted: 06/02/2022] [Indexed: 11/19/2022] Open
Abstract
Hepatitis C Virus NS2-NS3 cleavage is mediated by NS2 autoprotease (NS2pro) and this cleavage is important for genome replication and virus assembly. Efficient NS2-NS3 cleavage relies on the stimulation of an intrinsic NS2pro activity by the NS3 protease domain. NS2pro activation depends on conserved hydrophobic NS3 surface residues and yet unknown NS2-NS3 surface interactions. Guided by an in silico NS2-NS3 precursor model, we experimentally identified two NS2 surface residues, F103 and L144, that are important for NS2pro activation by NS3. When analyzed in the absence of NS3, a combination of defined amino acid exchanges, namely F103A and L144I, acts together to increase intrinsic NS2pro activity. This effect is conserved between different HCV genotypes. For mutation L144I its stimulatory effect on NS2pro could be also demonstrated for two other mammalian hepaciviruses, highlighting the functional significance of this finding. We hypothesize that the two exchanges stimulating the intrinsic NS2pro activity mimic structural changes occurring during NS3-mediated NS2pro activation. Introducing these activating NS2pro mutations into a NS2-NS5B replicon reduced NS2-NS3 cleavage and RNA replication, indicating their interference with NS2-NS3 surface interactions pivotal for NS2pro activation by NS3. Data from chimeric hepaciviral NS2-NS3 precursor constructs, suggest that NS2 F103 is involved in the reception or transfer of the NS3 stimulus by NS3 P115. Accordingly, fine-tuned NS2-NS3 surface interactions are a salient feature of HCV NS2-NS3 cleavage. Together, these novel insights provide an exciting basis to dissect molecular mechanisms of NS2pro activation by NS3.
Collapse
Affiliation(s)
- Olaf Isken
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | - Thomas Walther
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | - Luis Wong-Dilworth
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | - Dirk Rehders
- Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | - Lars Redecke
- Institute of Biochemistry, University of Luebeck, Luebeck, Germany
- Deutsches Elektronen Synchrotron (DESY), Photon Science, Hamburg, Germany
| | - Norbert Tautz
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
- * E-mail:
| |
Collapse
|
3
|
Hussain R, Khalid H, Fatmi MQ. HCV genotype-specific drug discovery through structure-based virtual screening. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2021-1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Hepatitis C Virus (HCV) poses great threat worldwide, and is a major cause for liver cancer. HCV genome encodes polyprotein that is subsequently cleaved into independently functioning proteins, which spread viral infection in host. The Non-Structural 3 (NS3) protease is responsible for cleaving the polyprotein, and may serve as a potential drug target. Since HCV has seven genotypes, the available drugs are predominantly designed for genotype 1 (GT1), and others prevalent in Europe. Consequently, these drugs lose efficacy when they are used for different genotypes. The current perspective study aims to find potential drug candidate against genotype 3 (GT3), prevalent in South Asia. The current study employed molecular docking technique and in silico ADME prediction tool to highlight potentially active compounds against HCV NS3 GT3. The study revealed Li_PIO_114 and Li_PIH_191 as potential lead compounds, as suggested by their docking score and ADME properties. These two compounds could be further optimized to improve their drug likeliness for curing HCV GT3.
Collapse
Affiliation(s)
- Rashid Hussain
- Department of Chemistry , Forman Christian College University , Lahore 54000 , Pakistan
| | - Hira Khalid
- Department of Chemistry , Forman Christian College University , Lahore 54000 , Pakistan
| | - Muhammad Qaiser Fatmi
- Department of Biosciences , COMSATS University Islamabad , Park Road, Chak Shahzad , Islamabad 45600 , Pakistan
| |
Collapse
|
4
|
Yamazawa R, Kuwana R, Takeuchi K, Takamatsu H, Nakajima Y, Ito K. Identification of the active site and characterization of a novel sporulation-specific cysteine protease YabG from Bacillus subtilis. J Biochem 2021; 171:315-324. [PMID: 34865059 DOI: 10.1093/jb/mvab135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/28/2021] [Indexed: 11/15/2022] Open
Abstract
In order to characterize the probable protease gene yabG found in the genomes of spore-forming bacteria, Bacillus subtilis yabG was expressed as a 35 kDa His-tagged protein (BsYabG) in Escherichia coli cells. During purification using Ni-affinity chromatography, the 35 kDa protein was degraded via several intermediates to form a 24 kDa protein. Furthermore, it was degraded after an extended incubation period. The effect of protease inhibitors, including certain chemical modification reagents, on the conversion of the 35 kDa protein to the 24 kDa protein was investigated. Reagents reacting with sulfhydryl groups exerted significant effects, strongly suggesting that the yabG gene product is a cysteine protease with autolytic activity. Site-directed mutagenesis of the conserved Cys and His residues indicated that Cys218 and His172 are active site residues. No degradation was observed in the C218A/S and H172A mutants. In addition to the chemical modification reagents, benzamidine inhibited the degradation of the 24 kDa protein. Determination of the N-terminal amino acid sequences of the intermediates revealed trypsin-like specificity for YabG protease. Based on the relative positions of His172 and Cys218 and their surrounding sequences, we propose the classification of YabG as a new family of clan CD in the Merops peptidase database.
Collapse
Affiliation(s)
- Ryuji Yamazawa
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotouge-cho, Hirakata, Osaka 573-0101, Japan
| | - Ritsuko Kuwana
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotouge-cho, Hirakata, Osaka 573-0101, Japan
| | - Kenji Takeuchi
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotouge-cho, Hirakata, Osaka 573-0101, Japan
| | - Hiromu Takamatsu
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotouge-cho, Hirakata, Osaka 573-0101, Japan
| | - Yoshitaka Nakajima
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, 17-8 Ikeda-nakamachi, Neyagawa, Osaka 572-8508, Japan
| | - Kiyoshi Ito
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotouge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
5
|
Abstract
Viral proteases are diverse in structure, oligomeric state, catalytic mechanism, and substrate specificity. This chapter focuses on proteases from viruses that are relevant to human health: human immunodeficiency virus subtype 1 (HIV-1), hepatitis C (HCV), human T-cell leukemia virus type 1 (HTLV-1), flaviviruses, enteroviruses, and coronaviruses. The proteases of HIV-1 and HCV have been successfully targeted for therapeutics, with picomolar FDA-approved drugs currently used in the clinic. The proteases of HTLV-1 and the other virus families remain emerging therapeutic targets at different stages of the drug development process. This chapter provides an overview of the current knowledge on viral protease structure, mechanism, substrate recognition, and inhibition. Particular focus is placed on recent advances in understanding the molecular basis of diverse substrate recognition and resistance, which is essential toward designing novel protease inhibitors as antivirals.
Collapse
Affiliation(s)
- Jacqueto Zephyr
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States.
| |
Collapse
|
6
|
Smith DA, Fernandez-Antunez C, Magri A, Bowden R, Chaturvedi N, Fellay J, McLauchlan J, Foster GR, Irving WL, Simmonds P, Pedergnana V, Ramirez S, Bukh J, Barnes E, Ansari MA. Viral genome wide association study identifies novel hepatitis C virus polymorphisms associated with sofosbuvir treatment failure. Nat Commun 2021; 12:6105. [PMID: 34671027 PMCID: PMC8528821 DOI: 10.1038/s41467-021-25649-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Persistent hepatitis C virus (HCV) infection is a major cause of chronic liver disease, worldwide. With the development of direct-acting antivirals, treatment of chronically infected patients has become highly effective, although a subset of patients responds less well to therapy. Sofosbuvir is a common component of current de novo or salvage combination therapies, that targets the HCV NS5B polymerase. We use pre-treatment whole-genome sequences of HCV from 507 patients infected with HCV subtype 3a and treated with sofosbuvir containing regimens to detect viral polymorphisms associated with response to treatment. We find three common polymorphisms in non-targeted HCV NS2 and NS3 proteins are associated with reduced treatment response. These polymorphisms are enriched in post-treatment HCV sequences of patients unresponsive to treatment. They are also associated with lower reductions in viral load in the first week of therapy. Using in vitro short-term dose-response assays, these polymorphisms do not cause any reduction in sofosbuvir potency, suggesting an indirect mechanism of action in decreasing sofosbuvir efficacy. The identification of polymorphisms in NS2 and NS3 proteins associated with poor treatment outcomes emphasises the value of systematic genome-wide analyses of viruses in uncovering clinically relevant polymorphisms that impact treatment.
Collapse
Affiliation(s)
- David A Smith
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 1SY, UK
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Magri
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 1SY, UK
| | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Nimisha Chaturvedi
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Precision Medicine Unit, University Hospital and University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - John McLauchlan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Graham R Foster
- Barts Liver Centre, Blizard Institute, Queen Mary University of London, London, UK
| | - William L Irving
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Peter Simmonds
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 1SY, UK
| | | | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 1SY, UK
| | - M Azim Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 1SY, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
7
|
Serine 229 Balances the Hepatitis C Virus Nonstructural Protein NS5A between Hypo- and Hyperphosphorylated States. J Virol 2019; 93:JVI.01028-19. [PMID: 31511391 DOI: 10.1128/jvi.01028-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/08/2019] [Indexed: 12/19/2022] Open
Abstract
The nonstructural protein NS5A of hepatitis C virus (HCV) is a phosphorylated protein that is indispensable for viral replication and assembly. We previously showed that NS5A undergoes sequential serine S232/S235/S238 phosphorylation resulting in NS5A transition from a hypo- to a hyperphosphorylated state. Here, we studied functions of S229 with a newly generated antibody specific to S229 phosphorylation. In contrast to S232, S235, or S238 phosphorylation detected only in the hyperphosphorylated NS5A, S229 phosphorylation was found in both hypo- and hyperphosphorylated NS5A, suggesting that S229 phosphorylation initiates NS5A sequential phosphorylation. Immunoblotting showed an inverse relationship between S229 phosphorylation and S235 phosphorylation. When S235 was phosphorylated as in the wild-type NS5A, the S229 phosphorylation level was low; when S235 could not be phosphorylated as in the S235A mutant NS5A, the S229 phosphorylation level was high. These results suggest an intrinsic feedback regulation between S229 phosphorylation and S235 phosphorylation. It has been known that NS5A distributes in large static and small dynamic intracellular structures and that both structures are required for the HCV life cycle. We found that S229A or S229D mutation was lethal to the virus and that both increased NS5A in large intracellular structures. Similarly, the lethal S235A mutation also increased NS5A in large structures. Likewise, the replication-compromised S235D mutation also increased NS5A in large structures, albeit to a lesser extent. Our data suggest that S229 probably cycles through phosphorylation and dephosphorylation to maintain a delicate balance of NS5A between hypo- and hyperphosphorylated states and the intracellular distribution necessary for the HCV life cycle.IMPORTANCE This study joins our previous efforts to elucidate how NS5A transits between hypo- and hyperphosphorylated states via phosphorylation on a series of highly conserved serine residues. Of the serine residues, serine 229 is the most interesting since phosphorylation-mimicking and phosphorylation-ablating mutations at this serine residue are both lethal. With a new high-quality antibody specific to serine 229 phosphorylation, we concluded that serine 229 must remain wild type so that it can dynamically cycle through phosphorylation and dephosphorylation that govern NS5A between hypo- and hyperphosphorylated states. Both are required for the HCV life cycle. When phosphorylated, serine 229 signals phosphorylation on serine 232 and 235 in a sequential manner, leading NS5A to the hyperphosphorylated state. As serine 235 phosphorylation is reached, serine 229 is dephosphorylated, stopping signal for hyperphosphorylation. This balances NS5A between two phosphorylation states and in intracellular structures that warrant a productive HCV life cycle.
Collapse
|
8
|
Saito Y, Imamura M, Uchida T, Osawa M, Teraoka Y, Fujino H, Nakahara T, Ono A, Murakami E, Kawaoka T, Miki D, Tsuge M, Serikawa M, Aikata H, Abe-Chayama H, Hayes CN, Chayama K. Ribavirin induces hepatitis C virus genome mutations in chronic hepatitis patients who failed to respond to prior daclatasvir plus asunaprevir therapy. J Med Virol 2019; 92:210-218. [PMID: 31584207 DOI: 10.1002/jmv.25602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
Abstract
Ribavirin (RBV) induces nucleotide (nt) substitutions in hepatitis C virus (HCV) genome nonstructural (NS) regions. Although emergence of drug resistance-associated variants is associated with direct-acting antiviral treatment failure, the effect of RBV on genome substitutions in such patients is unknown. Genotype 1b HCV subgenomic replicon cells were treated with RBV for 120 hours. Six patients with chronic genotype 1b with HCV-infected patients who failed to respond to prior daclatasvir plus asunaprevir (DCV/ASV) therapy were treated with 12 weeks of sofosbuvir and ledipasvir plus RBV after 4 weeks of RBV monotherapy. RBV-induced genome mutations in the HCV NS region (nt3493-9301) in replicon cells and in patients during 4 weeks of RBV monotherapy were analyzed by deep sequencing. RBV-associated G-to-A and C-to-U transitions increased in a dose-dependent manner in HCV replicon cells after the RBV treatment. In patients with prior DCV/ASV treatment failures, the median serum HCV RNA level was 6.25 ± 0.31 log IU/mL at the start of RBV therapy and decreased significantly to 5.95 ± 0.4 log IU/mL (P = .03) after 4 weeks of RBV monotherapy. Although predominant HCV genome substitutions rates were similar between nontreatment and RBV-treatment periods (0.042 and 0.031 per base pair, respectively; P = .248), the frequencies of G-to-A and C-to-U transitions significantly increased after RBV monotherapy. These transitions were enriched, particularly within the HCV NS3 region in all patients. RBV treatment induces G-to-A and C-to-U transitions in the HCV genome even in chronic patients with hepatitis C with prior DCV/ASV treatment failures.
Collapse
Affiliation(s)
- Yuhei Saito
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Takuro Uchida
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Mitsutaka Osawa
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Yuji Teraoka
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Hatsue Fujino
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Takashi Nakahara
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Atsushi Ono
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Eisuke Murakami
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Tomokazu Kawaoka
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Daiki Miki
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Masataka Tsuge
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan.,Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Masahiro Serikawa
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Hiromi Abe-Chayama
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan.,Center for Medical Specialist Graduate Education and Research, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - C Nelson Hayes
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
9
|
Chu L, Jin M, Feng C, Wang X, Zhang D. A highly divergent hepacivirus-like flavivirus in domestic ducks. J Gen Virol 2019; 100:1234-1240. [PMID: 31282853 DOI: 10.1099/jgv.0.001298] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Using random amplification and reverse transcription-PCR, a novel RNA virus was detected in sera of domestic ducks. The full genome of the virus was determined for three strains, identifying the first hepacivirus-like flavivirus in birds. The virus, that we tentatively named duck hepacivirus-like virus (DuHV), possesses several unique molecular features, such as possession of the largest hepacivirus-like polyprotein gene and a Pegivirus A-like internal ribosome entry site. Sequence comparisons and phylogenetic and sliding-window analyses indicated that DuHV is most closely related to, but highly divergent from, the known hepaciviruses. DuHV was detected in 69.7 % of 185 serum samples from four duck species and in 31 of 33 flocks from five provinces of China, reflecting a high prevalence in duck populations and a wide geographical distribution. The detection of DuHV in the same flock in November 2018 and April 2019 suggested that persistent infection can be established in the infected ducks.
Collapse
Affiliation(s)
- Lili Chu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Meiling Jin
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Chonglun Feng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Xiaoyan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Dabing Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| |
Collapse
|
10
|
Luna JM, Saeed M, Rice CM. Taming a beast: lessons from the domestication of hepatitis C virus. Curr Opin Virol 2019; 35:27-34. [PMID: 30875640 PMCID: PMC6556422 DOI: 10.1016/j.coviro.2019.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
"What I cannot create, I do not understand." Richard Feynman may have championed reasoning from first principles in his famous blackboard missive, but he could just as well have been referring to the plight of a molecular virologist. What cannot be grown in a controlled laboratory setting, we cannot fully understand. The story of the laboratory domestication of hepatitis C virus (HCV) is now a classic example of virologists applying all manner of inventive skill to create cell-based models of infection in order to clarify prospective drug targets. In this review, we highlight key successes and failures that were instructive in achieving cell-based models for HCV studies and drug development. We also emphasize the lessons learned from the ∼40 year saga that may be applicable to viruses yet unknown and uncultured.
Collapse
Affiliation(s)
- Joseph M Luna
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States
| | - Mohsan Saeed
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States
| | - Charles M Rice
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
11
|
Marecki JC, Aarattuthodiyil S, Byrd AK, Penthala NR, Crooks PA, Raney KD. N-Naphthoyl-substituted indole thio-barbituric acid analogs inhibit the helicase activity of the hepatitis C virus NS3. Bioorg Med Chem Lett 2018; 29:430-434. [PMID: 30578035 DOI: 10.1016/j.bmcl.2018.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 11/30/2022]
Abstract
The hepatitis C virus (HCV) represents a substantial threat to human health worldwide. The virus expresses a dual-function protein, NS3 having both protease and RNA helicase activities that are essential for productive viral replication and sustained infections. While viral protease and polymerase inhibitors have shown great successes in treating chronic HCV infections, drugs that specifically target the helicase activity have not advanced. A robust and quantitative 96-well plate-based fluorescent DNA unwinding assay was used to screen a class of indole thio-barbituric acid (ITBA) analogs using the full-length, recombinant HCV NS3, and identified three naphthoyl-containing analogs that efficiently inhibited NS3 helicase activity in a dose-dependent manner, with observed IC50 values of 21-24 µM. Standard gel electrophoresis helicase assays using radiolabeled duplex DNA and RNA NS3 substrates confirmed the inhibition of NS3 unwinding activity. Subsequent anisotropy measurements demonstrated that the candidate compounds did not disrupt NS3 binding to nucleic acids. Additionally, the rate of ATP hydrolysis and the protease activity were also not affected by the inhibitors. Thus, these results indicate that the three ITBA analogs containing N-naphthoyl moieties are the foundation of a potential series of small molecules capable of inhibiting NS3 activity via a novel interaction with the helicase domain that prevents the productive unwinding of nucleic acid substrates, and may represent the basis for a new class of therapeutic agents with the potential to aid in the treatment and eradication of hepatitis C virus.
Collapse
Affiliation(s)
- John C Marecki
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Suja Aarattuthodiyil
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Narsimha R Penthala
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| |
Collapse
|
12
|
Provazzi PJS, Rossi LMG, Carneiro BM, Miura VC, Rosa PCR, de Carvalho LR, de Andrade STQ, Fachini RM, Grotto RMT, Silva GF, Valêncio CR, Neto PS, Cordeiro JA, Nogueira ML, Rahal P. Hierarchical assessment of host factors influencing the spontaneous resolution of hepatitis C infection. Braz J Microbiol 2018; 50:147-155. [PMID: 30637644 DOI: 10.1007/s42770-018-0008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/06/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is associated with chronic liver disease, resulting in cirrhosis and hepatocellular carcinoma. Approximately 20% of HCV infections are spontaneously resolved. Here, we assessed the hierarchical relevance of host factors contributing to viral clearance. METHODS DNA samples from 40 resolved infections and 40 chronic HCV patients paired by age were analyzed. Bivariate analysis was performed to rank the importance of each contributing factor in spontaneous HCV clearance. RESULTS Interestingly, 63.6% of patients with resolved infections exhibited the protective genotype CC for SNP rs12979860. Additionally, 59.3% of patients with resolved infections displayed the protective genotype TT/TT for SNP ss469415590. Moreover, a ranking of clearance factors was estimated. In order of importance, the IL28B CC genotype (OR 0.197, 95% CI 0.072-0.541) followed by the INFL4 TT/TT genotype (OR 0.237, 95% CI 0.083-0.679), and female gender (OR 0.394, 95% CI 0.159-0.977) were the main predictors for clearance of HCV infection. CONCLUSIONS HCV clearance is multifactorial and the contributing factors display a hierarchical order. Identifying all elements playing role in HCV clearance is of the most importance for HCV-related disease management. Dissecting the relevance of each contributing factor will certainly improve our understanding of the pathogenesis of HCV infection.
Collapse
Affiliation(s)
| | | | - Bruno Moreira Carneiro
- Department of Biology, São Paulo State University - UNESP, São José do Rio Preto, SP, 15054-000, Brazil
| | - Valeria Chamas Miura
- Department of Biology, São Paulo State University - UNESP, São José do Rio Preto, SP, 15054-000, Brazil
| | | | | | | | - Roberta Maria Fachini
- Department of Hepatology, São José do Rio Preto Medical School, São José do Rio Preto, SP, 15090-000, Brazil
| | | | - Giovanni Faria Silva
- Department of Internal Medicine, São Paulo State University - UNESP, Botucatu, SP, 18618-970, Brazil
| | - Carlos Roberto Valêncio
- Department of Computer Science and Statistics, São Paulo State University - UNESP, São José do Rio Preto, SP, 15054-000, Brazil
| | - Paulo Scarpelini Neto
- Department of Computer Science and Statistics, São Paulo State University - UNESP, São José do Rio Preto, SP, 15054-000, Brazil
| | - José Antonio Cordeiro
- Department of Computer Science and Statistics, São Paulo State University - UNESP, São José do Rio Preto, SP, 15054-000, Brazil
| | - Mauricio Lacerda Nogueira
- Laboratory of Virology, São José do Rio Preto Medical School, São José do Rio Preto, SP, 15090-000, Brazil
| | - Paula Rahal
- Department of Biology, São Paulo State University - UNESP, São José do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
13
|
Hepatitis C virus cell culture models: an encomium on basic research paving the road to therapy development. Med Microbiol Immunol 2018; 208:3-24. [PMID: 30298360 DOI: 10.1007/s00430-018-0566-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
Chronic hepatitis C virus (HCV) infections affect 71 million people worldwide, often resulting in severe liver damage. Since 2014 highly efficient therapies based on directly acting antivirals (DAAs) are available, offering cure rates of almost 100%, if the infection is diagnosed in time. It took more than a decade to discover HCV in 1989 and another decade to establish a cell culture model. This review provides a personal view on the importance of HCV cell culture models, particularly the replicon system, in the process of therapy development, from drug screening to understanding of mode of action and resistance, with a special emphasis on the contributions of Ralf Bartenschlager's group. It summarizes the tremendous efforts of scientists in academia and industry required to achieve efficient DAAs, focusing on the main targets, protease, polymerase and NS5A. It furthermore underpins the importance of strong basic research laying the ground for translational medicine.
Collapse
|
14
|
Gauna A, Losada S, Lorenzo M, Toledo M, Bermúdez H, D'Angelo P, Sánchez D, Noya O. Use of Synthetic Peptides and Multiple Antigen Blot Assay in the Immunodiagnosis of Hepatitis C Virus Infection. Viral Immunol 2018; 31:568-574. [PMID: 30256730 DOI: 10.1089/vim.2018.0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acute hepatitis C virus (HCV) infection is usually asymptomatic, therefore, early diagnosis is rare. It may remain undiagnosed in individuals who progress to chronic infection, often until serious liver damage has developed. To incorporate the diagnosis of this viral disease in a multiple-diagnostic assay, we first analyzed by immunoinformatics the HCV subtype 1a polyprotein (specifically Core, E2, NS3, NS5A proteins) to select antigenic peptides to be tested initially by the Pepscan technique. Next, we performed the immunodiagnosis of HCV infection, using the Multiple Antigen Blot Assay (MABA). In 22 patients' sera included in this study, a 20-mer linear peptide belonging to the N-terminus of the worldwide conserved Core protein showed 100% sensitivity and specificity; other sequences showed different levels of antibody recognition. The use of MABA in combination with synthetic peptides as a source of multiple, specific, and nonexpensive antigens for other infectious diseases could represent a rapid, integrated, and inexpensive diagnostic methodology.
Collapse
Affiliation(s)
- Adriana Gauna
- 1 Programa de Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso/Universidad Técnica Federico Santa María , Valparaíso, Chile
| | - Sandra Losada
- 2 Sección de Biohelmintiasis, Instituto de Medicina Tropical , Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - María Lorenzo
- 2 Sección de Biohelmintiasis, Instituto de Medicina Tropical , Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Marilyan Toledo
- 3 Cátedra de Parasitología, Escuela de Medicina "Luis Razetti," Universidad Central de Venezuela , Caracas, Venezuela
| | - Henry Bermúdez
- 2 Sección de Biohelmintiasis, Instituto de Medicina Tropical , Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Pierina D'Angelo
- 4 Laboratorio de Programas Especiales-Hepatitis y SIDA, Dpto de Virología, Gerencia Sectorial de Diagnóstico y Vigilancia Epidemiológica, Instituto Nacional de Higiene "Rafael Rangel ," Caracas, Venezuela
| | - Doneyla Sánchez
- 4 Laboratorio de Programas Especiales-Hepatitis y SIDA, Dpto de Virología, Gerencia Sectorial de Diagnóstico y Vigilancia Epidemiológica, Instituto Nacional de Higiene "Rafael Rangel ," Caracas, Venezuela
| | - Oscar Noya
- 2 Sección de Biohelmintiasis, Instituto de Medicina Tropical , Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela .,5 Centro para Estudios Sobre Malaria, Instituto de Altos Estudios "Dr. Arnoldo Gabaldón" Instituto Nacional de Higiene-Ministerio del Poder Popular para la Salud , Caracas, Venezuela
| |
Collapse
|
15
|
Sagnelli E, Starace M, Minichini C, Pisaturo M, Macera M, Sagnelli C, Coppola N. Resistance detection and re-treatment options in hepatitis C virus-related chronic liver diseases after DAA-treatment failure. Infection 2018; 46:761-783. [DOI: 10.1007/s15010-018-1188-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
|
16
|
Boukadida C, Fritz M, Blumen B, Fogeron ML, Penin F, Martin A. NS2 proteases from hepatitis C virus and related hepaciviruses share composite active sites and previously unrecognized intrinsic proteolytic activities. PLoS Pathog 2018; 14:e1006863. [PMID: 29415072 PMCID: PMC5819835 DOI: 10.1371/journal.ppat.1006863] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/20/2018] [Accepted: 01/08/2018] [Indexed: 12/17/2022] Open
Abstract
Over the recent years, several homologues with varying degrees of genetic relatedness to hepatitis C virus (HCV) have been identified in a wide range of mammalian species. HCV infectious life cycle relies on a first critical proteolytic event of its single polyprotein, which is carried out by nonstructural protein 2 (NS2) and allows replicase assembly and genome replication. In this study, we characterized and evaluated the conservation of the proteolytic mode of action and regulatory mechanisms of NS2 across HCV and animal hepaciviruses. We first demonstrated that NS2 from equine, bat, rodent, New and Old World primate hepaciviruses also are cysteine proteases. Using tagged viral protein precursors and catalytic triad mutants, NS2 of equine NPHV and simian GBV-B, which are the most closely and distantly related viruses to HCV, respectively, were shown to function, like HCV NS2 as dimeric proteases with two composite active sites. Consistent with the reported essential role for NS3 N-terminal domain (NS3N) as HCV NS2 protease cofactor via NS3N key hydrophobic surface patch, we showed by gain/loss of function mutagenesis studies that some heterologous hepacivirus NS3N may act as cofactors for HCV NS2 provided that HCV-like hydrophobic residues are conserved. Unprecedently, however, we also observed efficient intrinsic proteolytic activity of NS2 protease in the absence of NS3 moiety in the context of C-terminal tag fusions via flexible linkers both in transiently transfected cells for all hepaciviruses studied and in the context of HCV dicistronic full-length genomes. These findings suggest that NS3N acts as a regulatory rather than essential cofactor for hepacivirus NS2 protease. Overall, unique features of NS2 including enzymatic function as dimers with two composite active sites and additional NS3-independent proteolytic activity are conserved across hepaciviruses regardless of their genetic distances, highlighting their functional significance in hepacivirus life cycle. Despite remarkable progress in the development of therapeutic options, more than 70 million individuals are chronically infected by hepatitis C virus (HCV) worldwide and major challenges in basic and translational research remain. Phylogenetically-related HCV homologues have recently been identified in the wild in several mammalian species, whose host restriction and potential for zoonosis remain largely unknown. We comparatively characterized the functions and properties of nonstructural proteins 2 (NS2) from several animal hepaciviruses and HCV. We demonstrated that NS2 from animal hepaciviruses, like HCV NS2, are cysteine proteases, which function as dimers with two composite active sites to ensure a key proteolytic event of the single viral polyprotein at the NS2/NS3 junction. In addition to the activation of HCV NS2 protease by NS3 N-terminal domain, our data revealed a novel NS3-independent substrate specificity and efficient intrinsic proteolytic activity of NS2. The conservation of its properties and peculiar mode of action among distantly related hepaciviruses supports an important regulatory role for NS2 protein in the life cycle of these viruses. It also strengthens the value of animal, notably rodent hepaciviruses for the development of surrogate, immunocompetent models of HCV infection to address HCV-associated pathogenesis and vaccine strategies.
Collapse
Affiliation(s)
- Célia Boukadida
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
- CNRS UMR 3569, Paris, France
- Université Paris Diderot–Sorbonne Paris Cité, Paris, France
| | - Matthieu Fritz
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
- CNRS UMR 3569, Paris, France
- Université Paris Diderot–Sorbonne Paris Cité, Paris, France
| | - Brigitte Blumen
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
- CNRS UMR 3569, Paris, France
- Université Paris Diderot–Sorbonne Paris Cité, Paris, France
| | - Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - François Penin
- Institut de Biologie et Chimie des Protéines, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Annette Martin
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
- CNRS UMR 3569, Paris, France
- Université Paris Diderot–Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
17
|
Sudo K, Matsumoto Y, Matsushima M, Konno K, Shimotohno K, Shigeta S, Yokota T. Novel Hepatitis C virus Protease Inhibitors: 2,4,6-Trihydroxy,3-Nitro-Benzamide Derivatives. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/095632029700800608] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- K Sudo
- Rational Drug Design Laboratories, 4-1-1, Misato, Matsukawa-Machi, Fukushima 960-1 2, Japan
- Department of Microbiology, Fukushima Medical College, 1 Hikarigaoka, Fukushima 960-1 2, Japan
| | - Y Matsumoto
- Rational Drug Design Laboratories, 4-1-1, Misato, Matsukawa-Machi, Fukushima 960-1 2, Japan
| | - M Matsushima
- Rational Drug Design Laboratories, 4-1-1, Misato, Matsukawa-Machi, Fukushima 960-1 2, Japan
| | - K Konno
- Rational Drug Design Laboratories, 4-1-1, Misato, Matsukawa-Machi, Fukushima 960-1 2, Japan
| | - K Shimotohno
- Institute for Virus Research, Kyoto University, Sakyo-ku Shogoin, Kyoto 606, Japan
| | - S Shigeta
- Department of Microbiology, Fukushima Medical College, 1 Hikarigaoka, Fukushima 960-1 2, Japan
| | - T Yokota
- Rational Drug Design Laboratories, 4-1-1, Misato, Matsukawa-Machi, Fukushima 960-1 2, Japan
| |
Collapse
|
18
|
Elberry MH, Darwish NHE, Mousa SA. Hepatitis C virus management: potential impact of nanotechnology. Virol J 2017; 14:88. [PMID: 28464951 PMCID: PMC5414367 DOI: 10.1186/s12985-017-0753-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
Around 170–200 million individuals have hepatitis C virus (HCV), which represents ~ 3% of the world population, including ~ 3–5 million people in the USA. According to the WHO regional office in the Middle East, Egypt has the highest prevalence in the world, with 7% prevalence in adults. There had been no effective vaccine for HCV; a combination of PEG-Interferon and ribavirin for at least 48 weeks was the standard therapy, but it failed in more than 40% of the patients and has a high cost and serious side effects. The recent introduction of direct-acting antivirals (DAA) resulted in major advances toward the cure of HCV. However, relapse and reduced antiviral efficacy in fibrotic, cirrhotic HCV patients in addition to some undesired effects restrain the full potential of these combinations. There is a need for new approaches for the combinations of different DAA and their targeted delivery using novel nanotechnology approaches. In this review, the role of nanoparticles as a carrier for HCV vaccines, anti-HCV combinations, and their targeted delivery are discussed.
Collapse
Affiliation(s)
- Mostafa H Elberry
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA.,National Cancer Institute, Cairo University, Cairo, Egypt
| | - Noureldien H E Darwish
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA.,Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA.
| |
Collapse
|
19
|
Morio R, Imamura M, Kawakami Y, Morio K, Kobayashi T, Yokoyama S, Kimura Y, Nagaoki Y, Kawaoka T, Tsuge M, Hiramatsu A, Nelson Hayes C, Aikata H, Takahashi S, Miki D, Ochi H, Mori N, Takaki S, Tsuji K, Chayama K. Safety and efficacy of dual therapy with daclatasvir and asunaprevir for older patients with chronic hepatitis C. J Gastroenterol 2017; 52:504-511. [PMID: 27631593 DOI: 10.1007/s00535-016-1255-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/25/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Daclatasvir and asunaprevir combination therapy has shown a high virological response for chronic genotype 1 hepatitis C virus (HCV)-infected patients. However, the safety and efficacy of the therapy for older patients are unknown. METHODS One hundred seventy patients younger than 75 years and 139 patients aged 75 years or older with genotype 1 HCV infection were treated for 24 weeks with daclatasvir plus asunaprevir. Pretreatment drug-resistance-associated variants at NS5A-L31 and NS5A-Y93 were determined by the Invader assay. Virological response and adverse events according to age were analyzed. RESULTS The sustained virological response (SVR) rate for older patients was similar to that for younger patients (97.1 and 92.4 % respectively). In multivariate regression analysis, prior simeprevir treatment (odds ratio 56.6 for absence; P < 0.001) was identified as a significant independent predictor of SVR. The SVR rate for patients with pretreatment resistance-associated variants (RAVs) at a low population frequency (less than 25 %) was similar to that for patients with no detectable RAVs. The frequency of adverse events was similar between younger and older patients. All 19 very elderly patients (85 years or older) completed the 24 weeks of treatment and achieved SVR. CONCLUSIONS Older patients have a virological response and tolerance of daclatasvir plus asunaprevir therapy similar to those of younger patients. Even though RAVs were detected, virological response similar to that for patients with no detectable RAVs may still be expected for patients with RAVs as long as the population frequency is low.
Collapse
Affiliation(s)
- Reona Morio
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yoshiiku Kawakami
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kei Morio
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tomoki Kobayashi
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Satoe Yokoyama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yuki Kimura
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yuko Nagaoki
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tomokazu Kawaoka
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masataka Tsuge
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Akira Hiramatsu
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - C Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shoichi Takahashi
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Daiki Miki
- Laboratory for Digestive Diseases, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Hiroshima, Japan
| | - Hidenori Ochi
- Laboratory for Digestive Diseases, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Hiroshima, Japan
| | - Nami Mori
- Hiroshima Red Cross Hospital & Atomic-Bomb Survivors Hospital, Hiroshima, Japan
| | - Shintaro Takaki
- Hiroshima Red Cross Hospital & Atomic-Bomb Survivors Hospital, Hiroshima, Japan
| | - Keiji Tsuji
- Hiroshima Red Cross Hospital & Atomic-Bomb Survivors Hospital, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan. .,Laboratory for Digestive Diseases, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Hiroshima, Japan.
| |
Collapse
|
20
|
Abstract
Chronic infection with hepatitis C virus (HCV) is a global public health burden. It has been only several decades since this virus was first identified. In the meantime, a lot of progress has been made in the fight against HCV. Although the development of pegylated interferon (PEG-IFN) and its combination with ribavirin (RBV) has significantly increased effectiveness of IFN-based treatment, candidate patients must be assessed for eligibility prior to the treatment due to side effects of the regimens and the rates of sustained virological response (SVR) were only around 50%. In 2011, the protease inhibitor (PI) Telaprevir was firstly approved as a direct-acting antiviral (DAA) for hepatitis C. The second generation of PIs was subsequently introduced and, by adding PI to Peg-IFN/RBV, the SVR rates were found to be raised to up to 80%. Further, with the recent approval of the NS5A inhibitors and the NS5B polymerase inhibitors and with the SVR rates reaching 90% or greater using IFN-free, DAA combination regimens, it is now expected that the majority of patients with chronic hepatitis C can be cured of infection in the near future.
Collapse
|
21
|
A Point Mutation in the N-Terminal Amphipathic Helix α 0 in NS3 Promotes Hepatitis C Virus Assembly by Altering Core Localization to the Endoplasmic Reticulum and Facilitating Virus Budding. J Virol 2017; 91:JVI.02399-16. [PMID: 28053108 DOI: 10.1128/jvi.02399-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 12/25/2016] [Indexed: 12/22/2022] Open
Abstract
The assembly of hepatitis C virus (HCV), a complicated process in which many viral and cellular factors are involved, has not been thoroughly deciphered. NS3 is a multifunctional protein that contains an N-terminal amphipathic α helix (designated helix α0), which is crucial for the membrane association and stability of NS3 protein, followed by a serine protease domain and a C-terminal helicase/NTPase domain. NS3 participates in HCV assembly likely through its C-terminal helicase domain, in which all reported adaptive mutations enhancing virion assembly reside. In this study, we determined that the N-terminal helix α0 of NS3 may contribute to HCV assembly. We identified a single mutation from methionine to threonine at amino acid position 21 (M21T) in helix α0, which significantly promoted viral production while having no apparent effect on the membrane association and protease activity of NS3. Subsequent analyses demonstrated that the M21T mutation did not affect HCV genome replication but rather promoted virion assembly. Further study revealed a shift in the subcellular localization of core protein from lipid droplets (LD) to the endoplasmic reticulum (ER). Finally, we showed that the M21T mutation increased the colocalization of core proteins and viral envelope proteins, leading to a more efficient envelopment of viral nucleocapsids. Collectively, the results of our study revealed a new function of NS3 helix α0 and aid understanding of the role of NS3 in HCV virion morphogenesis.IMPORTANCE HCV NS3 protein possesses the protease activity in its N-terminal domain and the helicase activity in its C-terminal domain. The role of NS3 in virus assembly has been mainly attributed to its helicase domain, because all adaptive mutations enhancing progeny virus production are found to be within this domain. Our study identified, for the first time to our knowledge, an adaptive mutation within the N-terminal helix α0 domain of NS3 that significantly enhanced virus assembly while having no effect on viral genome replication. The mechanistic studies suggested that this mutation promoted the relocation of core proteins from LD to the ER, leading to a more efficient envelopment of viral nucleocapsids. Our results revealed a possible new function of helix α0 in the HCV life cycle and provided new clues to understanding the molecular mechanisms for the action of NS3 in HCV assembly.
Collapse
|
22
|
Preclinical Characterization and Human Microdose Pharmacokinetics of ITMN-8187, a Nonmacrocyclic Inhibitor of the Hepatitis C Virus NS3 Protease. Antimicrob Agents Chemother 2016; 61:AAC.01569-16. [PMID: 27795376 DOI: 10.1128/aac.01569-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/09/2016] [Indexed: 12/11/2022] Open
Abstract
The current paradigm for the treatment of chronic hepatitis C virus (HCV) infection involves combinations of agents that act directly on steps of the HCV life cycle. Here we report the preclinical characteristics of ITMN-8187, a nonmacrocyclic inhibitor of the NS3/4A HCV protease. X-ray crystallographic studies of ITMN-8187 and simeprevir binding to NS3/4A protease demonstrated good agreement between structures. Low nanomolar biochemical potency was maintained against NS3/4A derived from HCV genotypes 1, 2b, 4, 5, and 6. In cell-based potency assays, half-maximal reduction of genotype 1a and 1b HCV replicon RNA was afforded by 11 and 4 nM doses of ITMN-8187, respectively. Combinations of ITMN-8187 with other directly acting antiviral agents in vitro displayed additive antiviral efficacy. A 30-mg/kg of body weight dose of ITMN-8187 administered for 4 days yielded significant viral load reductions through day 5 in a chimeric mouse model of HCV. A 3-mg/kg oral dose administered to rats, dogs, or monkeys yielded concentrations in plasma 16 h after dosing that exceeded the half-maximal effective concentration of ITMN-8187. Human microdose pharmacokinetics showed low intersubject variability and prolonged oral absorption with first-order elimination kinetics compatible with once-daily dosing. These preclinical characteristics compare favorably with those of other NS3/4A inhibitors approved for the treatment of chronic HCV infection.
Collapse
|
23
|
Tomei L, Altamura S, Paonessa G, De Francesco R, Migliaccio G. Review HCV Antiviral Resistance: The Impact of in vitro Studies on the Development of Antiviral Agents Targeting the Viral NS5B Polymerase. ACTA ACUST UNITED AC 2016; 16:225-45. [PMID: 16130521 DOI: 10.1177/095632020501600403] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The high prevalence of the disease caused by hepatitis C virus (HCV) and the limited efficacy of interferon-based therapies have stimulated the search for safer and more effective drugs. The development of inhibitors of the HCV NS5B RNA polymerase represents a promising strategy for identifying novel anti-HCV therapeutics. However, the high genetic diversity, mutation rate and turnover of HCV are expected to favour the emergence of drug resistance, limiting the clinical usefulness of polymerase inhibitors. Thus, the characterization of the drug-resistance profile of these antiviral agents is considered crucial for identifying the inhibitors with a higher probability of clinical success. In the absence of an efficient in vitro infection system, HCV sub-genomic replicons have been used to study viral resistance to both nucleoside and non-nucleoside NS5B inhibitors. While these studies suggest that drug-resistant viruses are likely to evolve in vivo, they provide a wealth of information that should help in the identification of inhibitors with improved and distinct resistance profiles that might be used for combination therapy.
Collapse
Affiliation(s)
- Licia Tomei
- Istituto di Ricerche di Biologia Molecolare P Angeletti, Pomezia-Roma, Italy
| | | | | | | | | |
Collapse
|
24
|
Hung HM, Nguyen VP, Ngo ST, Nguyen MT. Theoretical study of the interactions between the first transmembrane segment of NS2 protein and a POPC lipid bilayer. Biophys Chem 2016; 217:1-7. [DOI: 10.1016/j.bpc.2016.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/16/2016] [Accepted: 07/16/2016] [Indexed: 01/22/2023]
|
25
|
Protease Inhibitor Resistance Remains Even After Mutant Strains Become Undetectable by Deep Sequencing. J Infect Dis 2016; 214:1687-1694. [DOI: 10.1093/infdis/jiw437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022] Open
|
26
|
Meanwell NA. 2015 Philip S. Portoghese Medicinal Chemistry Lectureship. Curing Hepatitis C Virus Infection with Direct-Acting Antiviral Agents: The Arc of a Medicinal Chemistry Triumph. J Med Chem 2016; 59:7311-51. [PMID: 27501244 DOI: 10.1021/acs.jmedchem.6b00915] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of direct-acting antiviral agents that can cure a chronic hepatitis C virus (HCV) infection after 8-12 weeks of daily, well-tolerated therapy has revolutionized the treatment of this insidious disease. In this article, three of Bristol-Myers Squibb's HCV programs are summarized, each of which produced a clinical candidate: the NS3 protease inhibitor asunaprevir (64), marketed as Sunvepra, the NS5A replication complex inhibitor daclatasvir (117), marketed as Daklinza, and the allosteric NS5B polymerase inhibitor beclabuvir (142), which is in late stage clinical studies. A clinical study with 64 and 117 established for the first time that a chronic HCV infection could be cured by treatment with direct-acting antiviral agents alone in the absence of interferon. The development of small molecule HCV therapeutics, designed by medicinal chemists, has been hailed as "the arc of a medical triumph" but may equally well be described as "the arc of a medicinal chemistry triumph".
Collapse
Affiliation(s)
- Nicholas A Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research & Development , Wallingford, Connecticut 06492, United States
| |
Collapse
|
27
|
Abstract
The recent approval by the regulatory authorities in the United States of several HIV proteinase inhibitors as therapeutics for the treatment of AIDS confirms that virus proteinases are valid molecular targets in the search for new antiviral drugs. This review summarizes the available approaches that can be taken to discover virus proteinase inhibitors and reviews the current status of our knowledge with respect to virus proteinases in viruses of clinical significance other than HIV. The major focus is on proteinases identified in the viruses that cause the common cold, hepatitis C virus and the herpesviruses.
Collapse
Affiliation(s)
- J. S. Mills
- Molecular Virology Department, Roche Research Centre, 40 Broadwater Road, Welwyn Garden City, Herts AL7 3AY, UK
| |
Collapse
|
28
|
Abstract
Hepatitis C virus (HCV) is the major cause of transfusion-associated hepatitis and accounts for a significant proportion of hepatitis cases worldwide. Most, if not all, infections become persistent and about 60% of cases develop chronic liver disease with various outcomes ranging from an asymptomatic carrier state to chronic active hepatitis and liver cirrhosis, which is strongly associated with the development of hepatocellular carcinoma. Since the initial cloning of the viral genome in 1989, our knowledge of the molecular biology of HCV has increased rapidly and led to the identification of several potential targets for antiviral intervention. In contrast, the low replication of the virus in cell culture, the lack of convenient animal models and the high genome variability present major challenges for drug development. This review will describe candidate drug targets and summarize ‘classical’ and ‘novel’ approaches currently being pursued to develop efficient HCV-specific therapies.
Collapse
Affiliation(s)
- R Bartenschlager
- Institute for Virology, Johannes-Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany
| |
Collapse
|
29
|
Awan Z, Tay ESE, Eyre NS, Wu LE, Beard MR, Boo I, Drummer HE, George J, Douglas MW. Calsyntenin-1 mediates hepatitis C virus replication. J Gen Virol 2016; 97:1877-1887. [PMID: 27221318 DOI: 10.1099/jgv.0.000511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The hepatitis C virus (HCV) RNA genome of 9.6 kb encodes only 10 proteins, and so is highly dependent on host hepatocyte factors to facilitate replication. We aimed to identify host factors involved in the egress of viral particles. By screening the supernatant of HCV-infected Huh7 cells using SILAC-based proteomics, we identified the transmembrane protein calsyntenin-1 as a factor specifically secreted by infected cells. Calsyntenin-1 has previously been shown to mediate transport of endosomes along microtubules in neurons, through interactions with kinesin light chain-1. Here we demonstrate for the first time, we believe, a similar role for calsyntenin-1 in Huh7 cells, mediating intracellular transport of endosomes. In HCV-infected cells we show that calsyntenin-1 contributes to the early stages of the viral replication cycle and the formation of the replication complex. Importantly, we demonstrate in our model that silencing calsyntenin-1 disrupts the viral replication cycle, confirming the reliance of HCV on this protein as a host factor. Characterizing the function of calsyntenin-1 will increase our understanding of the HCV replication cycle and pathogenesis, with potential application to other viruses sharing common pathways.
Collapse
Affiliation(s)
- Zunaira Awan
- Storr Liver Centre, The Westmead Millennium Institute for Medical Research, The University of Sydney at Westmead Hospital, 176 Hawkesbury Rd, Westmead NSW 2145, Australia
| | - Enoch S E Tay
- Storr Liver Centre, The Westmead Millennium Institute for Medical Research, The University of Sydney at Westmead Hospital, 176 Hawkesbury Rd, Westmead NSW 2145, Australia
| | - Nicholas S Eyre
- Hepatitis C Virus Research Laboratory, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Lindsay E Wu
- University of New South Wales, Sydney NSW 2052, Australia
| | - Michael R Beard
- Hepatitis C Virus Research Laboratory, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Irene Boo
- Centre for Biomedical Research, Burnet Institute, 85 Commercial Rd, Melbourne VIC 3004, Australia
| | - Heidi E Drummer
- Centre for Biomedical Research, Burnet Institute, 85 Commercial Rd, Melbourne VIC 3004, Australia.,Department of Microbiology, 19 Innovation Walk, Monash University, Victoria, Australia.,Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Millennium Institute for Medical Research, The University of Sydney at Westmead Hospital, 176 Hawkesbury Rd, Westmead NSW 2145, Australia
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Millennium Institute for Medical Research, The University of Sydney at Westmead Hospital, 176 Hawkesbury Rd, Westmead NSW 2145, Australia.,Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead NSW 2145, Australia
| |
Collapse
|
30
|
Talley DC, Delang L, Neyts J, Leyssen P, Smith PJ. Exploring the importance of zinc binding and steric/hydrophobic factors in novel HCV replication inhibitors. Bioorg Med Chem Lett 2016; 26:1196-9. [PMID: 26804234 DOI: 10.1016/j.bmcl.2016.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 12/17/2022]
Abstract
Several novel compounds have been identified that inhibit the replication of hepatitis C virus in a replicon assay with EC50 values as low as 0.6 μM. Lead compounds were modified to investigate the possible role that zinc binding may play in inhibitor efficacy. In addition, the structure-activity relationship was explored to increase inhibitor efficacy and possibly identify favorable interactions within the currently unknown inhibitor binding pocket. The rationale for inhibitor design and biological results are presented herein.
Collapse
Affiliation(s)
- Daniel C Talley
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Leen Delang
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Johan Neyts
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Pieter Leyssen
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Paul J Smith
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States.
| |
Collapse
|
31
|
Kumthip K, Maneekarn N. The role of HCV proteins on treatment outcomes. Virol J 2015; 12:217. [PMID: 26666318 PMCID: PMC4678629 DOI: 10.1186/s12985-015-0450-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022] Open
Abstract
For many years, the standard of treatment for hepatitis C virus (HCV) infection was a combination of pegylated interferon alpha (Peg-IFN-α) and ribavirin for 24–48 weeks. This treatment regimen results in a sustained virologic response (SVR) rate in about 50 % of cases. The failure of IFN-α-based therapy to eliminate HCV is a result of multiple factors including a suboptimal treatment regimen, severity of HCV-related diseases, host factors and viral factors. In recent years, advances in HCV cell culture have contributed to a better understanding of the viral life cycle, which has led to the development of a number of direct-acting antiviral agents (DAAs) that target specific key components of viral replication, such as HCV NS3/4A, HCV NS5A, and HCV NS5B proteins. To date, several new drugs have been approved for the treatment of HCV infection. Application of DAAs with IFN-based or IFN-free regimens has increased the SVR rate up to >90 % and has allowed treatment duration to be shortened to 12–24 weeks. The impact of HCV proteins in response to IFN-based and IFN-free therapies has been described in many reports. This review summarizes and updates knowledge on molecular mechanisms of HCV proteins involved in anti-IFN activity as well as examining amino acid variations and mutations in several regions of HCV proteins associated with the response to IFN-based therapy and pattern of resistance associated amino acid variants (RAV) to antiviral agents.
Collapse
Affiliation(s)
- Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
32
|
Provazzi PJS, Mukherjee S, Hanson AM, Nogueira ML, Carneiro BM, Frick DN, Rahal P. Analysis of the Enzymatic Activity of an NS3 Helicase Genotype 3a Variant Sequence Obtained from a Relapse Patient. PLoS One 2015; 10:e0144638. [PMID: 26658750 PMCID: PMC4684341 DOI: 10.1371/journal.pone.0144638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 11/20/2015] [Indexed: 12/15/2022] Open
Abstract
The hepatitis C virus (HCV) is a species of diverse genotypes that infect over 170 million people worldwide, causing chronic inflammation, cirrhosis and hepatocellular carcinoma. HCV genotype 3a is common in Brazil, and it is associated with a relatively poor response to current direct-acting antiviral therapies. The HCV NS3 protein cleaves part of the HCV polyprotein, and cellular antiviral proteins. It is therefore the target of several HCV drugs. In addition to its protease activity, NS3 is also an RNA helicase. Previously, HCV present in a relapse patient was found to harbor a mutation known to be lethal to HCV genotype 1b. The point mutation encodes the amino acid substitution W501R in the helicase RNA binding site. To examine how the W501R substitution affects NS3 helicase activity in a genotype 3a background, wild type and W501R genotype 3a NS3 alleles were sub-cloned, expressed in E. coli, and the recombinant proteins were purified and characterized. The impact of the W501R allele on genotype 2a and 3a subgenomic replicons was also analyzed. Assays monitoring helicase-catalyzed DNA and RNA unwinding revealed that the catalytic efficiency of wild type genotype 3a NS3 helicase was more than 600 times greater than the W501R protein. Other assays revealed that the W501R protein bound DNA less than 2 times weaker than wild type, and both proteins hydrolyzed ATP at similar rates. In Huh7.5 cells, both genotype 2a and 3a subgenomic HCV replicons harboring the W501R allele showed a severe defect in replication. Since the W501R allele is carried as a minor variant, its replication would therefore need to be attributed to the trans-complementation by other wild type quasispecies.
Collapse
Affiliation(s)
- Paola J. S. Provazzi
- São Paulo State University - UNESP, Department of Biology, São José do Rio Preto/SP, CEP: 15054–000, Brazil
- * E-mail:
| | - Sourav Mukherjee
- University of Wisconsin- Milwaukee, Department of Chemistry & Biochemistry, Milwaukee, WI, 53217, United States of America
| | - Alicia M. Hanson
- University of Wisconsin- Milwaukee, Department of Chemistry & Biochemistry, Milwaukee, WI, 53217, United States of America
| | - Mauricio L. Nogueira
- São José do Rio Preto Medical School, Laboratory of Virology, São José do Rio Preto/SP, CEP: 15090–000, Brazil
| | - Bruno M. Carneiro
- São Paulo State University - UNESP, Department of Biology, São José do Rio Preto/SP, CEP: 15054–000, Brazil
| | - David N. Frick
- University of Wisconsin- Milwaukee, Department of Chemistry & Biochemistry, Milwaukee, WI, 53217, United States of America
| | - Paula Rahal
- São Paulo State University - UNESP, Department of Biology, São José do Rio Preto/SP, CEP: 15054–000, Brazil
| |
Collapse
|
33
|
Kan H, Hiraga N, Imamura M, Hayes CN, Uchida T, Miyaki E, Tsuge M, Abe H, Aikata H, Miki D, Ochi H, Ishida Y, Tateno C, Chayama K. Combination therapies with daclatasvir and asunaprevir on NS3-D168 mutated HCV in human hepatocyte chimeric mice. Antivir Ther 2015; 21:307-15. [PMID: 26562322 DOI: 10.3851/imp3009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Although the frequency of emergent drug-resistant strains of HCV in patients who failed to respond to simeprevir plus pegylated interferon (PEG-IFN) and ribavirin (RBV) decreased after cessation of the treatment, it is not clear whether or not the NS3-D168 variants affect the outcome of NS5A and NS3 inhibitor combination therapy. In this study, we investigated the relationship between the effect of daclatasvir plus asunaprevir treatment and the frequencies of NS3-D168 variants. METHODS HCV genotype-1b-infected human hepatocyte chimeric mice with various frequencies of NS3-D168 amino acid substitutions were treated with asunaprevir alone or in combination with daclatasvir for 4 weeks. Frequencies of NS3-D168 substitutions at baseline were analysed by ultra-deep sequencing. Some mice with NS3-D168 substitutions were treated with PEG-IFN or telaprevir for 4 weeks. RESULTS Mice with high frequencies of NS3-D168 showed low susceptibility to asunaprevir treatment and failed to respond to daclatasvir plus asunaprevir therapy. In contrast, mice with a low frequency (less than approximately 14%) of NS3-D168 showed a similar susceptibility to wild-type HCV-infected mice and achieved viral eradication with daclatasvir plus asunaprevir therapy. Although treatment with either telaprevir or PEG-IFN resulted in reduction of serum HCV RNA levels, no significant decrease in the frequency of NS3-D168 substitutions was achieved. CONCLUSIONS Daclatasvir and asunaprevir treatment could eliminate NS3-D168 variant HCV if the frequency was low. It is necessary to confirm that the frequency of NS3-D168 variants has decreased sufficiently before adopting daclatasvir plus asunaprevir therapy in patients with simeprevir plus PEG-IFN/RBV treatment failure.
Collapse
Affiliation(s)
- Hiromi Kan
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cannalire R, Barreca ML, Manfroni G, Cecchetti V. A Journey around the Medicinal Chemistry of Hepatitis C Virus Inhibitors Targeting NS4B: From Target to Preclinical Drug Candidates. J Med Chem 2015; 59:16-41. [PMID: 26241789 DOI: 10.1021/acs.jmedchem.5b00825] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection is a global health burden with an estimated 130-170 million chronically infected individuals and is the cause of serious liver diseases such as cirrhosis and hepatocellular carcinoma. HCV NS4B protein represents a validated target for the identification of new drugs to be added to the combination regimen recently approved. During the last years, NS4B has thus been the object of impressive medicinal chemistry efforts, which led to the identification of promising preclinical candidates. In this context, the present review aims to discuss research published on NS4B functional inhibitors focusing the attention on hit identification, hit-to-lead optimization, ADME profile evaluation, and the structure-activity relationship data raised for each compound family taken into account. The information delivered in this review will be a useful and valuable tool for those medicinal chemists dealing with research programs focused on NS4B and aimed at the identification of innovative anti-HCV compounds.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia , Via A. Fabretti, 48-06123 Perugia, Italy
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia , Via A. Fabretti, 48-06123 Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia , Via A. Fabretti, 48-06123 Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia , Via A. Fabretti, 48-06123 Perugia, Italy
| |
Collapse
|
35
|
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic hepatitis and infects approximately three to four million people per year, about 170 million infected people in total, making it one of the major global health problems. In a minority of cases HCV is cleared spontaneously, but in most of the infected individuals infection progresses to a chronic state associated with high risk to develop liver cirrhosis, hepatocellular cancer, or liver failure. The treatment of HCV infection has evolved over the years. Interferon (IFN)-α in combination with ribavirin has been used for decades as standard therapy. More recently, a new standard-of-care treatment has been approved based on a triple combination with either HCV protease inhibitor telaprevir or boceprevir. In addition, various options for all-oral, IFN-free regimens are currently being evaluated. Despite substantial improvement of sustained virological response rates, some intrinsic limitations of these new direct-acting antivirals, including serious side effects, the risk of resistance development and high cost, urge the development of alternative or additional therapeutic strategies. Gene therapy represents a feasible alternative treatment. Small RNA technology, including RNA interference (RNAi) techniques and antisense approaches, is one of the potentially promising ways to investigate viral and host cell factors that are involved in HCV infection and replication. With this, newly developed gene therapy regimens will be provided to treat HCV. In this chapter, a comprehensive overview guides you through the current developments and applications of RNAi and microRNA-based gene therapy strategies in HCV treatment.
Collapse
|
36
|
Abstract
Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter.
Collapse
Affiliation(s)
- Norbert Tautz
- Institute for Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Birke Andrea Tews
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
37
|
Isken O, Langerwisch U, Jirasko V, Rehders D, Redecke L, Ramanathan H, Lindenbach BD, Bartenschlager R, Tautz N. A conserved NS3 surface patch orchestrates NS2 protease stimulation, NS5A hyperphosphorylation and HCV genome replication. PLoS Pathog 2015; 11:e1004736. [PMID: 25774920 PMCID: PMC4361677 DOI: 10.1371/journal.ppat.1004736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/06/2015] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a leading cause of liver disease worldwide. The HCV RNA genome is translated into a single polyprotein. Most of the cleavage sites in the non-structural (NS) polyprotein region are processed by the NS3/NS4A serine protease. The vital NS2-NS3 cleavage is catalyzed by the NS2 autoprotease. For efficient processing at the NS2/NS3 site, the NS2 cysteine protease depends on the NS3 serine protease domain. Despite its importance for the viral life cycle, the molecular details of the NS2 autoprotease activation by NS3 are poorly understood. Here, we report the identification of a conserved hydrophobic NS3 surface patch that is essential for NS2 protease activation. One residue within this surface region is also critical for RNA replication and NS5A hyperphosphorylation, two processes known to depend on functional replicase assembly. This dual function of the NS3 surface patch prompted us to reinvestigate the impact of the NS2-NS3 cleavage on NS5A hyperphosphorylation. Interestingly, NS2-NS3 cleavage turned out to be a prerequisite for NS5A hyperphosphorylation, indicating that this cleavage has to occur prior to replicase assembly. Based on our data, we propose a sequential cascade of molecular events: in uncleaved NS2-NS3, the hydrophobic NS3 surface patch promotes NS2 protease stimulation; upon NS2-NS3 cleavage, this surface region becomes available for functional replicase assembly. This model explains why efficient NS2-3 cleavage is pivotal for HCV RNA replication. According to our model, the hydrophobic surface patch on NS3 represents a module critically involved in the temporal coordination of HCV replicase assembly.
Collapse
Affiliation(s)
- Olaf Isken
- Institute of Virology and Cell Biology, University of Lübeck, Germany
| | | | - Vlastimil Jirasko
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Dirk Rehders
- Joint Laboratory for Structural Biology of Infection and Inflammation of the University of Hamburg and the University of Lübeck, DESY, Hamburg, Germany
| | - Lars Redecke
- Joint Laboratory for Structural Biology of Infection and Inflammation of the University of Hamburg and the University of Lübeck, DESY, Hamburg, Germany
| | - Harish Ramanathan
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, United States of America
| | - Brett D. Lindenbach
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, United States of America
| | - Ralf Bartenschlager
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Norbert Tautz
- Institute of Virology and Cell Biology, University of Lübeck, Germany
- * E-mail:
| |
Collapse
|
38
|
Rossi LMG, Escobar-Gutierrez A, Rahal P. Advanced molecular surveillance of hepatitis C virus. Viruses 2015; 7:1153-88. [PMID: 25781918 PMCID: PMC4379565 DOI: 10.3390/v7031153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/05/2015] [Accepted: 02/20/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is an important public health problem worldwide. HCV exploits complex molecular mechanisms, which result in a high degree of intrahost genetic heterogeneity. This high degree of variability represents a challenge for the accurate establishment of genetic relatedness between cases and complicates the identification of sources of infection. Tracking HCV infections is crucial for the elucidation of routes of transmission in a variety of settings. Therefore, implementation of HCV advanced molecular surveillance (AMS) is essential for disease control. Accounting for virulence is also important for HCV AMS and both viral and host factors contribute to the disease outcome. Therefore, HCV AMS requires the incorporation of host factors as an integral component of the algorithms used to monitor disease occurrence. Importantly, implementation of comprehensive global databases and data mining are also needed for the proper study of the mechanisms responsible for HCV transmission. Here, we review molecular aspects associated with HCV transmission, as well as the most recent technological advances used for virus and host characterization. Additionally, the cornerstone discoveries that have defined the pathway for viral characterization are presented and the importance of implementing advanced HCV molecular surveillance is highlighted.
Collapse
Affiliation(s)
- Livia Maria Gonçalves Rossi
- Department of Biology, Institute of Bioscience, Language and Exact Science, Sao Paulo State University, Sao Jose do Rio Preto, SP 15054-000, Brazil.
| | | | - Paula Rahal
- Department of Biology, Institute of Bioscience, Language and Exact Science, Sao Paulo State University, Sao Jose do Rio Preto, SP 15054-000, Brazil.
| |
Collapse
|
39
|
Song R, Yang B, Gao X, Zhang J, Sun L, Wang P, Meng Y, Wang Q, Liu S, Cheng J. Cyclic adenosine monophosphate response element-binding protein transcriptionally regulates CHCHD2 associated with the molecular pathogenesis of hepatocellular carcinoma. Mol Med Rep 2015; 11:4053-62. [PMID: 25625293 PMCID: PMC4394931 DOI: 10.3892/mmr.2015.3256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 12/11/2014] [Indexed: 01/30/2023] Open
Abstract
The function of the novel cell migration-promoting factor, coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) in liver cancer remains to be elucidated. The aim of the present study was to elucidate the role of CHCHD2 in liver carcinogenesis. Immunohistochemistry was performed on patients with hepatocellular carcinoma (HCC) and suppression subtractive hybridization (SSH) was used for screening differentially expressed genes in the HepG2 cell cDNA library. Chronic hepatitis C virus (HCV) infection frequently leads to liver cancer. The HCV NS2 protein is a hydrophobic transmembrane protein that is associated with certain cellular proteins. Detailed characterization of the nonstructural protein 2 (NS2) of the HCV was performed with respect to its role in transregulatory activity in the HepG2 cell lines. A gel electrophoresis mobility shift assay and a chromatin immunoprecipitation assay were used to confirm the presence of cyclic adenosine monophosphate response element-binding protein (CREB), a transcriptional factor, which specifically interacts with the CHCHD2 promoter. CHCHD2 was highly expressed in the HCC specimens and was consistent with tumor markers of HCC. CHCHD2 was identified by SSH in the HepG2 cells. NS2 upregulated the expression of CHCHD2 by monitoring its promoter activities. The promoter of CHCHD2 contained 350 bp between nucleotides −257 and +93 and was positively regulated by CREB. In conclusion, the results of the present study indicated that CHCHD2 may be a novel biomarker for HCC and that CREB is important in the transcriptional activation of CHCHD2 by HCV NS2.
Collapse
Affiliation(s)
- Rui Song
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Biao Yang
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Xuesong Gao
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Jinqian Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Lei Sun
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Peng Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Yixing Meng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Qi Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Shunai Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Jun Cheng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| |
Collapse
|
40
|
David N, Yaffe Y, Hagoel L, Elazar M, Glenn JS, Hirschberg K, Sklan EH. The interaction between the hepatitis C proteins NS4B and NS5A is involved in viral replication. Virology 2014; 475:139-49. [PMID: 25462354 DOI: 10.1016/j.virol.2014.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/07/2014] [Accepted: 10/22/2014] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) replicates in membrane associated, highly ordered replication complexes (RCs). These complexes include viral and host proteins necessary for viral RNA genome replication. The interaction network among viral and host proteins underlying the formation of these RCs is yet to be thoroughly characterized. Here, we investigated the association between NS4B and NS5A, two critical RC components. We characterized the interaction between these proteins using fluorescence resonance energy transfer and a mammalian two-hybrid system. Specific tryptophan residues within the C-terminal domain (CTD) of NS4B were shown to mediate this interaction. Domain I of NS5A, was sufficient to mediate its interaction with NS4B. Mutations in the NS4B CTD tryptophan residues abolished viral replication. Moreover, one of these mutations also affected NS5A hyperphosphorylation. These findings provide new insights into the importance of the NS4B-NS5A interaction and serve as a starting point for studying the complex interactions between the replicase subunits.
Collapse
Affiliation(s)
- Naama David
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yakey Yaffe
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lior Hagoel
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Menashe Elazar
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, United States
| | - Jeffrey S Glenn
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, United States; Veterans Administration Medical Center, Palo Alto, CA, United States
| | - Koret Hirschberg
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ella H Sklan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
41
|
Atoom AM, Taylor NGA, Russell RS. The elusive function of the hepatitis C virus p7 protein. Virology 2014; 462-463:377-87. [PMID: 25001174 PMCID: PMC7112009 DOI: 10.1016/j.virol.2014.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) is a major global health burden with 2–3% of the world׳s population being chronically infected. Persistent infection can lead to cirrhosis and hepatocellular carcinoma. Recently available treatment options show enhanced efficacy of virus clearance, but are associated with resistance and significant side effects. This warrants further research into the basic understanding of viral proteins and their pathophysiology. The p7 protein of HCV is an integral membrane protein that forms an ion-channel. The role of p7 in the HCV life cycle is presently uncertain, but most of the research performed to date highlights its role in the virus assembly process. The aim of this review is to provide an overview of the literature investigating p7, its structural and functional details, and to summarize the developments to date regarding potential anti-p7 compounds. A better understanding of this protein may lead to development of a new and effective therapy. This review paper provides an overview of the literature investigating HCV. The content focuses on p7 structural and functional details. We summarize the developments to date regarding potential anti-p7 compounds.
Collapse
Affiliation(s)
- Ali M Atoom
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, Newfoundland, St. John׳s, Canada
| | - Nathan G A Taylor
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, Newfoundland, St. John׳s, Canada
| | - Rodney S Russell
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, Newfoundland, St. John׳s, Canada.
| |
Collapse
|
42
|
Sugiyama N, Murayama A, Suzuki R, Watanabe N, Shiina M, Liang TJ, Wakita T, Kato T. Single strain isolation method for cell culture-adapted hepatitis C virus by end-point dilution and infection. PLoS One 2014; 9:e98168. [PMID: 24848954 PMCID: PMC4029950 DOI: 10.1371/journal.pone.0098168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/29/2014] [Indexed: 12/11/2022] Open
Abstract
The hepatitis C virus (HCV) culture system has enabled us to clarify the HCV life cycle and essential host factors for propagation. However, the virus production level of wild-type JFH-1 (JFH-1/wt) is limited, and this leads to difficulties in performing experiments that require higher viral concentrations. As the cell culture-adapted JFH-1 has been reported to have robust virus production, some mutations in the viral genome may play a role in the efficiency of virus production. In this study, we obtained cell culture-adapted virus by passage of full-length JFH-1 RNA-transfected Huh-7.5.1 cells. The obtained virus produced 3 log-fold more progeny viruses as compared with JFH-1/wt. Several mutations were identified as being responsible for robust virus production, but, on reverse-genetics analysis, the production levels of JFH-1 with these mutations did not reach the level of cell culture-adapted virus. By using the single strain isolation method by end-point dilution and infection, we isolated two strains with additional mutations, and found that these strains have the ability to produce more progeny viruses. On reverse-genetics analysis, the strains with these additional mutations were able to produce robust progeny viruses at comparable levels as cell culture-adapted JFH-1 virus. The strategy used in this study will be useful for identifying strains with unique characteristics, such as robust virus production, from a diverse population, and for determining the responsible mutations for these characteristics.
Collapse
Affiliation(s)
- Nao Sugiyama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Asako Murayama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriyuki Watanabe
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masaaki Shiina
- Department of Gastroenterology and Hepatology, Shin-Yurigaoka General Hospital, Kawasaki, Kanagawa, Japan
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail:
| |
Collapse
|
43
|
Human pegivirus (GB virus C) NS3 protease activity inhibits induction of the type I interferon response and is not inhibited by HCV NS3 protease inhibitors. Virology 2014; 456-457:300-9. [PMID: 24889249 DOI: 10.1016/j.virol.2014.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/08/2014] [Accepted: 03/17/2014] [Indexed: 11/20/2022]
Abstract
We previously found that human pegivirus (HPgV; formerly GBV-C) NS3 protease activity inhibits Human Immunodeficiency Virus (HIV) replication in a CD4+ T cell line. Given the protease׳s similarity to the Hepatitis C virus (HCV) NS3 protease, we characterized HPgV protease activity and asked whether it affects the type I interferon response or is inhibited by HCV protease antagonists. We characterized the activity of proteases with mutations in the catalytic triad and demonstrated that the HCV protease inhibitors Telaprevir, Boceprevir, and Danoprevir do not affect HPgV protease activity. HPgV NS3 protease cleaved MAVS but not TRIF, and it inhibited interferon responses sufficiently to enhance growth of an interferon-sensitive virus. Therefore, HPgV׳s inhibition of the interferon response could help promote HPgV persistence, which is associated with clinical benefits in HIV-infected patients. Our results also imply that HCV protease inhibitors should not interfere with the beneficial effects of HPgV in HPgV/HCV/HIV infected patients.
Collapse
|
44
|
Fan X, Xue B, Dolan PT, LaCount DJ, Kurgan L, Uversky VN. The intrinsic disorder status of the human hepatitis C virus proteome. MOLECULAR BIOSYSTEMS 2014; 10:1345-63. [PMID: 24752801 DOI: 10.1039/c4mb00027g] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many viral proteins or their biologically important regions are disordered as a whole, or contain long disordered regions. These intrinsically disordered proteins/regions do not possess unique structures and possess functions that complement the functional repertoire of "normal" ordered proteins and domains, with many protein functional classes being heavily dependent on the intrinsic disorder. Viruses commonly use these highly flexible regions to invade the host organisms and to hijack various host systems. These disordered regions also help viruses in adapting to their hostile habitats and to manage their economic usage of genetic material. In this article, we focus on the structural peculiarities of proteins from human hepatitis C virus (HCV) and use a wide spectrum of bioinformatics techniques to evaluate the abundance of intrinsic disorder in the completed proteomes of several human HCV genotypes, to analyze the peculiarities of disorder distribution within the individual HCV proteins, and to establish potential roles of the structural disorder in functions of ten HCV proteins. We show that the intrinsic disorder or increased flexibility is not only abundant in these proteins, but is also absolutely necessary for their functions, playing a crucial role in the proteolytic processing of the HCV polyprotein, the maturation of the individual HCV proteins, and being related to the posttranslational modifications of these proteins and their interactions with DNA, RNA, and various host proteins.
Collapse
Affiliation(s)
- Xiao Fan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta AB T6G 2V4, Canada.
| | | | | | | | | | | |
Collapse
|
45
|
NS2 proteins of GB virus B and hepatitis C virus share common protease activities and membrane topologies. J Virol 2014; 88:7426-44. [PMID: 24741107 DOI: 10.1128/jvi.00656-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED GB virus B (GBV-B), which is hepatotropic in experimentally infected small New World primates, is a member of the Hepacivirus genus but phylogenetically relatively distant from hepatitis C virus (HCV). To gain insights into the role and specificity of hepaciviral nonstructural protein 2 (NS2), which is required for HCV polyprotein processing and particle morphogenesis, we investigated whether NS2 structural and functional features are conserved between HCV and GBV-B. We found that GBV-B NS2, like HCV NS2, has cysteine protease activity responsible for cleavage at the NS2/NS3 junction, and we experimentally confirmed the location of this junction within the viral polyprotein. A model for GBV-B NS2 membrane topology was experimentally established by determining the membrane association properties of NS2 segments fused to green fluorescent protein (GFP) and their nuclear magnetic resonance structures using synthetic peptides as well as by applying an N-glycosylation scanning approach. Similar glycosylation studies confirmed the HCV NS2 organization. Together, our data show that despite limited amino acid sequence similarity, GBV-B and HCV NS2 proteins share a membrane topology with 3 N-terminal transmembrane segments, which is also predicted to apply to other recently discovered hepaciviruses. Based on these data and using trans-complementation systems, we found that intragenotypic hybrid NS2 proteins with heterologous N-terminal membrane segments were able to efficiently trans-complement an assembly-deficient HCV mutant with a point mutation in the NS2 C-terminal domain, while GBV-B/HCV or intergenotypic NS2 chimeras were not. These studies indicate that virus- and genotype-specific intramolecular interactions between N- and C-terminal domains of NS2 are critically involved in HCV morphogenesis. IMPORTANCE Nonstructural protein 2 (NS2) of hepatitis C virus (HCV) is a multifunctional protein critically involved in polyprotein processing and virion morphogenesis. To gain insights into NS2 mechanisms of action, we investigated whether NS2 structural and functional features are conserved between HCV and GB virus B (GBV-B), a phylogenetically relatively distant primate hepacivirus. We showed that GBV-B NS2, like HCV NS2, carries cysteine protease activity. We experimentally established a model for GBV-B NS2 membrane topology and demonstrated that despite limited sequence similarity, GBV-B and HCV NS2 share an organization with three N-terminal transmembrane segments. We found that the role of HCV NS2 in particle assembly is genotype specific and relies on critical interactions between its N- and C-terminal domains. This first comparative analysis of NS2 proteins from two hepaciviruses and our structural predictions of NS2 from other newly identified mammal hepaciviruses highlight conserved key features of the hepaciviral life cycle.
Collapse
|
46
|
Genetic complementation of hepatitis C virus nonstructural protein functions associated with replication exhibits requirements that differ from those for virion assembly. J Virol 2013; 88:2748-62. [PMID: 24352463 DOI: 10.1128/jvi.03588-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Within the polyprotein encoded by hepatitis C virus (HCV), the minimum components required for viral RNA replication lie in the NS3-5B region, while virion assembly requires expression of all virus components. Here, we have employed complementation systems to examine the role that HCV polyprotein precursors play in RNA replication and virion assembly. In a trans-complementation assay, an HCV NS3-5A polyprotein precursor was required to facilitate efficient complementation of a replication-defective mutation in NS5A. However, this requirement for precursor expression was partially alleviated when a second functional copy of NS5A was expressed from an additional upstream cistron within the RNA to be rescued. In contrast, rescue of a virion assembly mutation in NS5A was more limited but exhibited little or no requirement for expression of functional NS5A as a precursor, even when produced in the context of a second replicating helper RNA. Furthermore, expression of NS5A alone from an additional cistron within a replicon construct gave greater rescue of virion assembly in cis than in trans. Combined with the findings of confocal microscope analysis examining the extent to which the two copies of NS5A from the various expression systems colocalize, the results point to NS3-5A playing a role in facilitating the integration of nonstructural (NS) proteins into viral membrane-associated foci, with this representing an early stage in the steps leading to replication complex formation. The data further imply that HCV employs a minor virion assembly pathway that is independent of replication. IMPORTANCE In hepatitis C virus-infected cells, replication is generally considered an absolute prerequisite for virus particle formation. Here we investigated the role that the viral protein NS5A has in both replication and particle assembly using complementation assays and microscopy. We found that efficient rescue of replication required NS5A to be expressed as part of a larger polyprotein, and this correlated with detection of NS5A at sites where replication occurred. In contrast, rescue of particle assembly did not require expression of NS5A within the context of a polyprotein. Interestingly, although only partial restoration of particle assembly was possible by complementation, that proportion that could be rescued benefitted from expressing NS5A from the same RNA being packaged. Collectively, these findings provide new insight into aspects of polyprotein function. They also support the existence of a minor virion assembly pathway that bypasses replication.
Collapse
|
47
|
Abstract
Hepatitis C Virus (HCV) particles exhibit several unusual properties that are not found in other enveloped RNA viruses, most notably their low buoyant density and interaction with serum lipoproteins. With the advent of systems to grow HCV in cell culture, the molecular basis of HCV particle assembly and release can now be addressed. The process of virus assembly involves protein-protein interactions between viral structural and nonstructural proteins and the coordinated action of host factors. This chapter reviews our current understanding of these interactions and factors.
Collapse
Affiliation(s)
- Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
48
|
Vega S, Neira JL, Marcuello C, Lostao A, Abian O, Velazquez-Campoy A. NS3 protease from hepatitis C virus: biophysical studies on an intrinsically disordered protein domain. Int J Mol Sci 2013; 14:13282-306. [PMID: 23803659 PMCID: PMC3742187 DOI: 10.3390/ijms140713282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/04/2013] [Accepted: 06/13/2013] [Indexed: 12/14/2022] Open
Abstract
The nonstructural protein 3 (NS3) from the hepatitis C virus (HCV) is responsible for processing the non-structural region of the viral precursor polyprotein in infected hepatic cells. NS3 protease activity, located at the N-terminal domain, is a zinc-dependent serine protease. A zinc ion, required for the hydrolytic activity, has been considered as a structural metal ion essential for the structural integrity of the protein. In addition, NS3 interacts with another cofactor, NS4A, an accessory viral protein that induces a conformational change enhancing the hydrolytic activity. Biophysical studies on the isolated protease domain, whose behavior is similar to that of the full-length protein (e.g., catalytic activity, allosteric mechanism and susceptibility to inhibitors), suggest that a considerable global conformational change in the protein is coupled to zinc binding. Zinc binding to NS3 protease can be considered as a folding event, an extreme case of induced-fit binding. Therefore, NS3 protease is an intrinsically (partially) disordered protein with a complex conformational landscape due to its inherent plasticity and to the interaction with its different effectors. Here we summarize the results from a detailed biophysical characterization of this enzyme and present new experimental data.
Collapse
Affiliation(s)
- Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-IQFR (CSIC), University of Zaragoza, Zaragoza 50018, Spain; E-Mails: (S.V.); (J.L.N.)
| | - Jose L. Neira
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-IQFR (CSIC), University of Zaragoza, Zaragoza 50018, Spain; E-Mails: (S.V.); (J.L.N.)
- Institute of Molecular and Cell Biology, Miguel Hernandez University, Elche (Alicante) 03202, Spain
| | - Carlos Marcuello
- Advanced Microscopy Laboratory (LMA), Institute of Nanoscience of Aragon (INA), University of Zaragoza, Zaragoza 50018, Spain; E-Mails: (C.M.); (A.L.)
| | - Anabel Lostao
- Advanced Microscopy Laboratory (LMA), Institute of Nanoscience of Aragon (INA), University of Zaragoza, Zaragoza 50018, Spain; E-Mails: (C.M.); (A.L.)
- ARAID Foundation, Government of Aragon, Zaragoza 50018, Spain
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-IQFR (CSIC), University of Zaragoza, Zaragoza 50018, Spain; E-Mails: (S.V.); (J.L.N.)
- IIS Aragon–Aragon Health Science Institute (I+CS), Zaragoza 50009, Spain
- Network Biomedical Research Center on Hepatic and Digestive Diseases (CIBERehd), Barcelona 08036, Spain
- Authors to whom correspondence should be addressed; E-Mails: (O.A.); (A.V.-C.); Tel.: +34-976-761-000 (ext. 5417) (O.A.); +34-976-762-996 (A.V.-C.); Fax: +34-976-762-990 (O.A. & A.V.-C.)
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-IQFR (CSIC), University of Zaragoza, Zaragoza 50018, Spain; E-Mails: (S.V.); (J.L.N.)
- ARAID Foundation, Government of Aragon, Zaragoza 50018, Spain
- Department of Biochemistry and Cellular and Molecular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza 50009, Spain
- Authors to whom correspondence should be addressed; E-Mails: (O.A.); (A.V.-C.); Tel.: +34-976-761-000 (ext. 5417) (O.A.); +34-976-762-996 (A.V.-C.); Fax: +34-976-762-990 (O.A. & A.V.-C.)
| |
Collapse
|
49
|
Naderi M, Saeedi A, Moradi A, Kleshadi M, Zolfaghari MR, Gorji A, Ghaemi A. Interleukin-12 as a genetic adjuvant enhances hepatitis C virus NS3 DNA vaccine immunogenicity. Virol Sin 2013; 28:167-73. [PMID: 23709057 DOI: 10.1007/s12250-013-3291-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/28/2013] [Indexed: 01/27/2023] Open
Abstract
Hepatitis C virus (HCV) chronic infection is a worldwide health problem, and numerous efforts have been invested to develop novel vaccines. An efficient vaccine requires broad immune response induction against viral proteins. To achieve this goal, we constructed a DNA vaccine expressing nonstructural 3 (NS3) gene (pcDNA3.1-HCV-NS3) and assessed the immune response in C57BL/6 mice. In this study, the NS3 gene was amplified with a nested-reverse transcriptase-polymerase chain reaction (RT-PCR) method using sera of HCV-infected patients with genotype 1a. The resulting NS3 gene was subcloned into a pcDNA3.1 eukaryotic expression vector, and gene expression was detected by western blot. The resultant DNA vaccine was co-administered with interleukin-12 (IL-12) as an adjuvant to female C57BL/6 mice. After the final immunizations, lymphocyte proliferation, cytotoxicity, and cytokine levels were assessed to measure immune responses. Our data suggest that co-administration of HCV NS3 DNA vaccine with IL-12 induces production of significant levels of both IL-4 and interferon (IFN)-γ (p<0.05). Cytotoxicity and lymphocyte proliferation responses of vaccinated mice were significantly increased compared to control (p<0.05). Collectively, our results demonstrated that co-administration of HCV NS3 and IL-12 displayed strong immunogenicity in a murine model.
Collapse
Affiliation(s)
- Malihe Naderi
- Department of Microbiology, Qom branch, Islamic Azad University, Qom 37185-364, Iran
| | | | | | | | | | | | | |
Collapse
|
50
|
Ismail MAH, Abouzid KAM, Mohamed NS, Dokla EME. Ligand design, synthesis and biological anti-HCV evaluations for genotypes 1b and 4a of certain 4-(3- & 4-[3-(3,5-dibromo-4-hydroxyphenyl)-propylamino]phenyl) butyric acids and 3-(3,5-dibromo-4-hydroxyphenyl)-propylamino-acetamidobenzoic acid esters. J Enzyme Inhib Med Chem 2013; 28:1274-90. [PMID: 23294107 DOI: 10.3109/14756366.2012.733384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
4-(4-[N-1-carboxy-3-(3,5-dibromo-4-hydroxyphenyl)-3-oxo-propylamino]phenyl)-4-oxo-butyric acid (V), 4-(3- & 4-[N-1-carboxy-3-(3,5-dibromo-4-hydroxyphenyl)-3-oxo-propylaminophenyl]-2-aryl-4-oxo-butyric acids (Xa-e) and 4-(2-alkyl-2-[N-3-(3,5-dibromo-4-hydroxyphenyl)-1-carboxy-3-oxo-propylamino]acetamido) benzoate esters (XVa-e) were designed, synthesized and biologically evaluated as anti-HCV for genotypes 1b and 4a. The design was based on their docking scores with HCV NS3/4A protease-binding site of the genotype 1b (1W3C), which is conserved in the genotype 4a structure. The docking scores predicted that most of these molecules have higher affinity to the HCV NS3/4A enzyme more than Indoline lead. These compounds were synthesized and evaluated for their cytopathic inhibitory activity against RAW HCV cell cultures of genotype 4a and also examined against Huh 5-2 HCV cell culture of genotype 1b, utilizing Luciferase and MTS assays. Compounds Xa and Xb have 95 and 80% of the activity of Ribavirin against genotype 4a and compounds XVa, XVb and XVd exerted high percentage inhibitory activity against genotype 1b equal 87.7, 84.3 and 82.8%, respectively, with low EC50 doses.
Collapse
Affiliation(s)
- Mohamed Abdel Hamid Ismail
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University , 11655 El khalifa El Mamoon Street, Abbassia, Cairo , Egypt
| | | | | | | |
Collapse
|