1
|
Yu Y, Zhang T, Lu D, Wang J, Xu Z, Zhang Y, Liu Q. Genome-wide nonessential gene identification of Autographa californica multiple nucleopolyhedrovirus. Gene 2023; 863:147239. [PMID: 36736504 DOI: 10.1016/j.gene.2023.147239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/07/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
The Baculovirus Expression Vector System (BEVS) is an insect cell-based heterologous protein expression system that possesses powerful potential in the development of protein drugs and vaccines. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the most widely-used vector in BEVS with 151 open reading frames (ORFs) containing essential and nonessential genes. Deletion of nonessential genes has many advantages including increased foreign gene insertion. In this study, the λ red recombination system was used to knock out genes in a modified AcMNPV that carried an enhanced yellow fluorescent protein (eYFP) at the Ac126-Ac127 locus. Eighty genes were almost completely deleted respectively and 69 gene knockout AcMNPVs (KOVs) were obtained to evaluate their infection efficiency. After infecting Spodoptera frugiperda 9 (Sf9) cells, 51 KOVs including 62 genes showed similar infectivity as wide type (WT) and hence were defined as nonessential genes. However, 18 KOVs produced fewer infectious virions, indicating that these genes were influential in the production of progeny viruses. Combining our research with previous studies, a desired minimal AcMNPV genome containing 86 ORFs and all of the homologous regions (hrs) was brought up, facilitating genetic modification of baculovirus vectors and improvement of recombinant protein expression in the future.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Tong Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Dongbo Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenhe Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
2
|
Hussain B, Masoodi KZ, War AR, Hakak AS, Ahmad N, Masoodi T. Occurrence of granulovirus infecting Cydia pomonella in high altitude cold arid region of India. Virusdisease 2020; 31:517-525. [PMID: 33381624 PMCID: PMC7749020 DOI: 10.1007/s13337-020-00638-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/22/2020] [Indexed: 11/25/2022] Open
Abstract
Codling moth (Cydia pomonella, Lepidoptera: Tortricidae) is a quarantine pest of apple in Ladakh, India. We report Cydia pomonella granulovirus from infected larvae of codling moth for the first time in India. The two CpGV isolates were identified as (CpGV SKUAST-1 and CpGV SKUAST-2) and published in Genbank under accession number, MK801791 and MK801792, respectively. The mortality of CpGV was evaluated against 3rd instar larvae of codling moth at various concentrations viz., 102, 104, 106, 108, 1010, 1012 and 1014 OBS/ml. The median lethal concentrations (LC50 and LC90) were observed at 7.08 and 28.56 OBS/ml, respectively. In field, the infection rate by CpGV was 5.95 to 15.65%. Based on typical infection symptoms on the larvae, morphological features under the microscope and sequence results of the amplified product confirmed the first occurrence of CpGV from India. Thus, CpGV will form an important non-chemical strategy for managing this pest.
Collapse
Affiliation(s)
- Barkat Hussain
- Division of Entomology, Sher-E-Kashmir University of Agriculture Science and Technology, Kashmir (SKUAST-K), Shalimar, Srinagar, Jammu and Kashmir India
| | | | | | - Asma S. Hakak
- Division of Plant Biotechnology, SKUAST-K, Srinagar, India
| | - Nazeer Ahmad
- Sher-E-Kashmir University of Agriculture Science and Technology, Kashmir (SKUAST-K), Shalimar, Srinagar, Jammu and Kashmir India
| | - Tariq Masoodi
- Division of Forestry, Sher-E-Kashmir University of Agriculture Science and Technology, Kashmir (SKUAST-K), Shalimar, Srinagar, Jammu and Kashmir India
| |
Collapse
|
3
|
Autographa californica Nucleopolyhedrovirus AC141 (Exon0), a Potential E3 Ubiquitin Ligase, Interacts with Viral Ubiquitin and AC66 To Facilitate Nucleocapsid Egress. J Virol 2018; 92:JVI.01713-17. [PMID: 29142135 DOI: 10.1128/jvi.01713-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022] Open
Abstract
During the infection cycle of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), two forms of virions are produced, budded virus (BV) and occlusion-derived virus (ODV). Nucleocapsids that form BV have to egress from the nucleus, whereas nucleocapsids that form ODV remain inside the nucleus. The molecular mechanism that determines whether nucleocapsids remain inside or egress from the nucleus is unknown. AC141 (a predicted E3 ubiquitin ligase) and viral ubiquitin (vUbi) have both been shown to be required for efficient BV production. In this study, it was hypothesized that vUbi interacts with AC141, and in addition, that this interaction was required for BV production. Deletion of both ac141 and vubi restricted viral infection to a single cell, and BV production was completely eliminated. AC141 was ubiquitinated by either vUbi or cellular Ubi, and this interaction was required for optimal BV production. Nucleocapsids in BV, but not ODV, were shown to be specifically ubiquitinated by vUbi, including a 100-kDa protein, as well as high-molecular-weight conjugates. The viral ubiquitinated 100-kDa BV-specific nucleocapsid protein was identified as AC66, which is known to be required for BV production and was shown by coimmunoprecipitation and mass spectrometry to interact with AC141. Confocal microscopy also showed that AC141, AC66, and vUbi interact at the nuclear periphery. These results suggest that ubiquitination of nucleocapsid proteins by vUbi functions as a signal to determine if a nucleocapsid will egress from the nucleus and form BV or remain in the nucleus to form ODV.IMPORTANCE Baculoviruses produce two types of virions called occlusion-derived virus (ODV) and budded virus (BV). ODVs are required for oral infection, whereas BV enables the systemic spread of virus to all host tissues, which is critical for killing insects. One of the important steps for BV production is the export of nucleocapsids out of the nucleus. This study investigated the molecular mechanisms that enable the selection of nucleocapsids for nuclear export instead of being retained within the nucleus, where they would become ODV. Our data show that ubiquitination, a universal cellular process, specifically tags nucleocapsids of BV, but not those found in ODV, using a virus-encoded ubiquitin (vUbi). Therefore, ubiquitination may be the molecular signal that determines if a nucleocapsid is destined to form a BV, thus ensuring lethal infection of the host.
Collapse
|
4
|
Cell-cycle involvement in autophagy and apoptosis in yeast. Mech Ageing Dev 2016; 161:211-224. [PMID: 27450768 DOI: 10.1016/j.mad.2016.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/16/2016] [Accepted: 07/17/2016] [Indexed: 12/14/2022]
Abstract
Regulation of the cell cycle and apoptosis are two eukaryotic processes required to ensure maintenance of genomic integrity, especially in response to DNA damage. The ease with which yeast, amongst other eukaryotes, can switch from cellular proliferation to cell death may be the result of a common set of biochemical factors which play dual roles depending on the cell's physiological state. A wide variety of homologues are shared between different yeasts and metazoans and this conservation confirms their importance. This review gives an overview of key molecular players involved in yeast cell-cycle regulation, and those involved in mechanisms which are induced by cell-cycle dysregulation. One such mechanism is autophagy which, depending on the severity and type of DNA damage, may either contribute to the cell's survival or death. Cell-cycle dysregulation due to checkpoint deficiency leads to mitotic catastrophe which in turn leads to programmed cell death. Molecular players implicated in the yeast apoptotic pathway were shown to play important roles in the cell cycle. These include the metacaspase Yca1p, the caspase-like protein Esp1p, the cohesin subunit Mcd1p, as well as the inhibitor of apoptosis protein Bir1p. The roles of these molecular players are discussed.
Collapse
|
5
|
Wu C, Deng Z, Long Z, Cai Y, Ying Z, Yin H, Yuan M, Clem RJ, Yang K, Pang Y. Generating a host range-expanded recombinant baculovirus. Sci Rep 2016; 6:28072. [PMID: 27321273 PMCID: PMC4913269 DOI: 10.1038/srep28072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/25/2016] [Indexed: 11/09/2022] Open
Abstract
As baculoviruses usually have a narrow insecticidal spectrum, knowing the mechanisms by which they control the host-range is prerequisite for improvement of their applications as pesticides. In this study, from supernatant of culture cells transfected with DNAs of an Autographa californica multiple nucleopolyhedrovirus (AcMNPV) mutant lacking the antiapoptotic gene p35 (vAc(∆P35)) and a cosmid representing a fragment of Spodoptera exigua nucleopolyhedrovirus (SeMNPV), a viral strain was plaque-purified and named vAcRev. vAcRev had a broader host range than either vAc(∆P35) or SeMNPV parental virus, being able to infect not only the permissive hosts of its parental viruses but also a nonpermissive host (Spodoptera litura). Genome sequencing indicated that vAcRev comprises a mixture of two viruses with different circular dsDNA genomes. One virus contains a genome similar to vAc(∆P35), while in the other viral genome, a 24.4 kbp-fragment containing 10 essential genesis replaced with a 4 kbp-fragment containing three SeMNPV genes including a truncated Se-iap3 gene. RNA interference and ectopic expression assays found that Se-iap3 is responsible for the host range expansion of vAcRev, suggesting that Se-iap3 inhibits the progression of apoptosis initiated by viral infection and promotes viral propagation in hosts both permissive and non-permissive for AcMNPV and SeMNPV.
Collapse
Affiliation(s)
- Chunfeng Wu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China.,Liuzhou People's Hospital, Liuzhou 545006, China
| | - Zihao Deng
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhao Long
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Cai
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhongfu Ying
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Hanqi Yin
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Meijin Yuan
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, KS66506, USA
| | - Kai Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Pang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
6
|
Comparative proteomics analysis of apoptotic Spodoptera frugiperda cells during p35 knockout Autographa californica multiple nucleopolyhedrovirus infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 18:21-9. [PMID: 26922645 DOI: 10.1016/j.cbd.2016.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 11/21/2022]
Abstract
Infection with Autographa californica multiple nucleopolyhedrovirus (AcMNPV) mutants lacking a functional p35 gene can induce host cell apoptosis, which provides the possibility to use the potential of these viruses in the biological control of pest insects. Nonetheless, the proteomics or the protein changes of Spodoptera frugiperda (Sf9) cells infected with p35 knockout AcMNPV have not yet been studied. To further improve the use of AcMNPV, we set out to analyze the protein composition and protein changes of Sf9 cells of different infection stages by isobaric tag for relative and absolute quantification (iTRAQ) techniques. A total of 4004 sf9 proteins were identified by iTRAQ. After comparation of the significantly expressed 483 proteins from p35koAcMNPV-infected Sf9 cells and the significantly expressed 413 proteins from wtAcMNPV-infected Sf9 cells, we found that 226 proteins were specific to p35koAcMNPV-infected Sf9 cells. The 226 proteins were categorized according to GO classification for insects and were categorized into: biological processes, molecular functions and cellular components. Of interest, the most up-regulated proteins related to Epstein-Barr virus infection, RNA transport, Calcium signaling pathway, cGMP-PKG signaling pathway, oxidative phosphorylation and N-Glycan biosynthesis. Determination of the protein changes in p35 knockout AcMNPV-infected Sf9 cells would facilitate the better use of this virus-host cell interaction in pest insect control and other related fields.
Collapse
|
7
|
Ishimwe E, Hodgson JJ, Clem RJ, Passarelli AL. Reaching the melting point: Degradative enzymes and protease inhibitors involved in baculovirus infection and dissemination. Virology 2015; 479-480:637-49. [PMID: 25724418 DOI: 10.1016/j.virol.2015.01.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 01/13/2015] [Accepted: 01/30/2015] [Indexed: 10/24/2022]
Abstract
Baculovirus infection of a host insect involves several steps, beginning with initiation of virus infection in the midgut, followed by dissemination of infection from the midgut to other tissues in the insect, and finally culminating in "melting" or liquefaction of the host, which allows for horizontal spread of infection to other insects. While all of the viral gene products are involved in ultimately reaching this dramatic infection endpoint, this review focuses on two particular types of baculovirus-encoded proteins: degradative enzymes and protease inhibitors. Neither of these types of proteins is commonly found in other virus families, but they both play important roles in baculovirus infection. The types of degradative enzymes and protease inhibitors encoded by baculoviruses are discussed, as are the roles of these proteins in the infection process.
Collapse
Affiliation(s)
- Egide Ishimwe
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506-4901, United States
| | - Jeffrey J Hodgson
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506-4901, United States
| | - Rollie J Clem
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506-4901, United States.
| | - A Lorena Passarelli
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506-4901, United States.
| |
Collapse
|
8
|
Saleem M, Qadir MI, Perveen N, Ahmad B, Saleem U, Irshad T, Ahmad B. Inhibitors of apoptotic proteins: new targets for anticancer therapy. Chem Biol Drug Des 2014; 82:243-51. [PMID: 23790005 DOI: 10.1111/cbdd.12176] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Inhibitors of apoptotic proteins (IAPs) can play an important role in inhibiting apoptosis by exerting their negative action on caspases (apoptotic proteins). There are eight proteins in this family: NAIP/BIRC1/NLRB, cellular IAP1 (cIAP1)/human IAP2/BIRC2, cellular IAP2 (cIAP2)/human IAP1/BIRC3, X-linked IAP (XIAP)/BIRC4, survivin/BIRC5, baculoviral IAP repeat (BIR)-containing ubiquitin-conjugating enzyme/apollon/BIRC6, livin/melanoma-IAP (ML-IAP)/BIRC7/KIAP, and testis-specific IAP (Ts-IAP)/hILP-2/BIRC8. Deregulation of these inhibitors of apoptotic proteins (IAPs) may push cell toward cancer and neurodegenerative disorders. Inhibitors of apoptotic proteins (IAPs) may provide new target for anticancer therapy. Drugs may be developed that are inhibiting these IAPs to induce apoptosis in cancerous cells.
Collapse
Affiliation(s)
- Mohammad Saleem
- College of Pharmacy, GC University, Faisalabad, Pakistan; University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | | | | | | | | | | | | |
Collapse
|
9
|
Analysis of the genomic sequence of Philosamia cynthia nucleopolyhedrin virus and comparison with Antheraea pernyi nucleopolyhedrin virus. BMC Genomics 2013; 14:115. [PMID: 23425301 PMCID: PMC3600015 DOI: 10.1186/1471-2164-14-115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/31/2013] [Indexed: 11/23/2022] Open
Abstract
Background Two species of wild silkworms, the Chinese oak silkworm (Antheraea pernyi) and the castor silkworm Philosamia cynthia ricini, can acquire a serious disease caused by Nucleopolyhedrin Viruses (NPVs) (known as AnpeNPV and PhcyNPV, respectively). The two viruses have similar polyhedral morphologies and their viral fragments share high sequence similarity. However, the physical maps of the viral genomes and cross-infectivity of the viruses are different. The genome sequences of two AnpeNPV isolates have been published. Results We sequenced and analyzed the full-length genome of PhcyNPV to compare the gene contents of the two viruses. The genome of PhcyNPV is 125, 376 bp, with a G + C content of 53.65%, and encodes 138 open reading frames (ORFs) of at least 50 amino acids (aa) (GenBank accession number: JX404026). Between PhcyNPV and AnpeMNPV-L and -Z isolates, 126 ORFs are identical, including 30 baculovirus core genes. Nine ORFs were only found in PhcyNPV. Four genes, cath, v-chi, lef 10 and lef 11, were not found in PhcyNPV. However, most of the six genes required for infectivity via the oral route were found in PhcyNPV and in the two AnpeNPV isolates, with high sequence similarities. The pif-3 gene of PhcyNPV contained 59 aa extra amino acids at the N-terminus compared with AnpeNPV. Conclusions Most of the genes in PhcyNPV are similar to the two AnpeNPV isolates, including the direction of expression of the ORFs. Only a few genes were missing from PhcyNPV. These data suggest that PhcyNPV and AnpeNPV might be variants of each other, and that the differences in cross-infection might be caused by gene mutations.
Collapse
|
10
|
Bak A, Irons SL, Martinière A, Blanc S, Drucker M. Host cell processes to accomplish mechanical and non-circulative virus transmission. PROTOPLASMA 2012; 249:529-39. [PMID: 21984344 DOI: 10.1007/s00709-011-0328-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/28/2011] [Indexed: 05/22/2023]
Abstract
Mechanical vector-less transmission of viruses, as well as vector-mediated non-circulative virus transmission, where the virus attaches only to the exterior of the vector during the passage to a new host, are apparently simple processes: the viruses are carried along with the wind, the food or by the vector to a new host. We discuss here, using the examples of the non-circulatively transmitted Cauliflower mosaic virus that binds to its aphid vector's exterior mouthparts, and that of the mechanically (during feeding activity) transmitted Autographa californica multicapsid nucleopolyhedrovirus, that transmission of these viruses is not so simple as previously thought. Rather, these viruses prepare their transmission carefully and long before the actual acquisition event. Host-virus interactions play a pivotal and specialised role in the future encounter with the vector or the new host. This ensures optimal propagation and enlarges the tremendous bottleneck transmission presents for viruses and other pathogens.
Collapse
Affiliation(s)
- Aurélie Bak
- INRA, Equipe CaGeTE, UMR BGPI Plant Pathogen Interactions, TA A54K Campus International de Baillarguet, 34398, Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
11
|
Baculovirus-encoded protein BV/ODV-E26 determines tissue tropism and virulence in lepidopteran insects. J Virol 2011; 86:2545-55. [PMID: 22190721 DOI: 10.1128/jvi.06308-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lepidopteran nucleopolyhedroviruses (NPVs) show distinct tissue tropism in host insect larvae. However, the molecular mechanism of this tropism is largely unknown. We quantitatively investigated NPV tissue tropism by measuring mRNA levels of viral genes in 16 tissues from Bombyx mori NPV (BmNPV)-infected B. mori larvae and found clear tissue tropism, i.e., BmNPV replicates poorly in the silk glands, midgut, and Malpighian tubule compared with other larval tissues. We next identified the viral genes determining tissue tropism in NPV infection by investigating the phenotypes of larvae infected with 44 BmNPV mutants in which one gene was functionally disrupted by a LacZ cassette insertion. We found that occlusion body (OB) production was markedly enhanced compared with that of the wild type in the middle silk glands (MSGs) of larvae infected with three mutants in which one of three tandemly arrayed genes (Bm7, Bm8, and Bm9) was disrupted. We generated additional mutants in which one or two genes of this gene cluster were partially deleted and showed that Bm8, also known as BV/ODV-E26, was solely required for the suppression of OB production in the MSGs of BmNPV-infected B. mori larvae. Western blotting showed that a LacZ cassette insertion in Bm7 or Bm9 resulted in aberrant expression of Bm8, presumably leading to abnormal OB production in the MSGs. Larval bioassays also revealed that disruption of Bm8 accelerated the death of B. mori larvae. These results suggest that the group I NPV-specific protein BV/ODV-E26 determines tissue tropism and virulence in host lepidopteran insects.
Collapse
|
12
|
TRAF2 and Cellular IAPs: A Critical Link in TNFR Family Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:63-78. [DOI: 10.1007/978-1-4419-6612-4_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
|
14
|
Sequence and gene organization of 24 circles from the Cotesia plutellae bracovirus genome. Arch Virol 2009; 154:1313-27. [DOI: 10.1007/s00705-009-0441-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
|
15
|
Bryant B, Clem RJ. Caspase inhibitor P35 is required for the production of robust baculovirus virions in Trichoplusia ni TN-368 cells. J Gen Virol 2009; 90:654-661. [PMID: 19218211 DOI: 10.1099/vir.0.007419-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apoptosis can protect lepidopteran insects against baculovirus infection by limiting viral replication. Baculoviruses counter this response by expressing anti-apoptotic proteins such as the caspase inhibitor P35, which is expressed by several baculoviruses including Autographa californica mutiple nucleopolyhedrovirus (AcMNPV). Mutants of AcMNPV that lack the p35 gene induce apoptosis in Spodoptera frugiperda cells, and replication of these mutants is severely curtailed in S. frugiperda cell lines and larvae. However, cells from another lepidopteran species, Trichoplusia ni, do not undergo apoptosis when infected with AcMNPV mutants lacking p35, and p35 mutant and wild-type viruses replicate to equivalent levels in the T. ni cell line TN-368 and have equivalent infectivity in T. ni larvae by either oral or intrahaemocoelic injection. This has led to the conclusion that p35 is not required for AcMNPV replication in T. ni. However, in this study it was found that stocks of p35 mutant virus produced in TN-368 cells had defects in virion stability and infectivity. TN-368 cells infected with p35 mutant AcMNPV exhibited caspase activity, despite a lack of apoptosis, and propagation of the mutant virus in the presence of a chemical caspase inhibitor restored the normal infection phenotype to the progeny virus. These results suggest that caspases can directly or indirectly damage baculovirus virions, and reveal a novel aspect of the role of apoptosis in antiviral defence.
Collapse
Affiliation(s)
- Bart Bryant
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Rollie J Clem
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
16
|
Hebert CG, Valdes JJ, Bentley WE. Investigating apoptosis: characterization and analysis of Trichoplusia ni-caspase-1 through overexpression and RNAi mediated silencing. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:113-124. [PMID: 19027856 DOI: 10.1016/j.ibmb.2008.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 10/15/2008] [Accepted: 10/21/2008] [Indexed: 05/27/2023]
Abstract
In both mammals and invertebrates, caspases play a critical role in apoptosis. Although Lepidopteron caspases have been widely studied in Spodoptera frugiperda cells, this is not the case for Trichoplusia ni cells, despite their widespread use for the production of recombinant protein and differences in baculovirus infectivity between the two species. We have cloned, expressed, purified and characterized Tn-caspase-1 in several situations: in its overexpression, in silencing via RNA interference (RNAi), during baculovirus infection, and in interactions with baculovirus protein p35. Overexpression can transiently increase caspase activity in T. ni (High Five) cells, while silencing results in a greater than 6-fold decrease. The reduction in caspase activity resulted in a reduction in the level of apoptosis, demonstrating the ability to affect apoptosis by modulating Tn-caspase-1. During baculovirus infection, caspase activity remains low until approximately 5 days post infection, at which point it increases dramatically, though not in those cells treated with dsRNA. Our results demonstrate that Tn-caspase-1 is presumably the principal effector caspase present in High Five cells, and that it is inhibited by baculovirus protein p35. Finally, our results indicate differences between RNAi and p35 as effector molecules for modulating caspase activity and apoptosis during cell growth and baculovirus infection.
Collapse
Affiliation(s)
- Colin G Hebert
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Science Building, College Park, MD 20742, USA
| | | | | |
Collapse
|
17
|
Abstract
Apoptosis is a common cellular response to virus infection. However, many viruses have evolved strategies, such as the expression of anti-apoptotic proteins, to combat this response. One such family of anti-apoptotic viral proteins is the p35 family of caspase inhibitors, which are expressed by certain insect viruses. Expression of p35 prevents the host cell from undergoing apoptosis, thereby allowing for propagation of the virus. p35 family members are potent inhibitors of caspases. Members of the family fall into one of three groups that inhibit different classes of caspases. Since the discovery of the first p35 gene in 1991, the anti-apoptotic function of this protein family has been studied extensively. This unique type of protease inhibitor has proven to be extremely useful in the study of apoptosis in experimental settings ranging from nematodes to mammals.
Collapse
Affiliation(s)
- John C Means
- Molecular, Cellular & Developmental Biology Program, Arthropod Genomics Center, Division of Biology, Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Rollie J Clem
- Molecular, Cellular & Developmental Biology Program, Arthropod Genomics Center, Division of Biology, Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
18
|
Suderman RJ, Pruijssers AJ, Strand MR. Protein tyrosine phosphatase-H2 from a polydnavirus induces apoptosis of insect cells. J Gen Virol 2008; 89:1411-1420. [PMID: 18474557 DOI: 10.1099/vir.0.2008/000307-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The family Polydnaviridae is a large group of immunosuppressive insect viruses that are symbiotically associated with parasitoid wasps. The polydnavirus Microplitis demolitor bracovirus (MdBV) causes several alterations that disable the cellular and humoral immune defences of host insects, including apoptosis of the primary phagocytic population of circulating immune cells (haemocytes), called granulocytes. Here, we show that MdBV infection causes granulocytes in the lepidopteran Spodoptera frugiperda to apoptose. An expression screen conducted in the S. frugiperda 21 cell line identified the MdBV gene ptp-H2 as an apoptosis inducer, as indicated by cell fragmentation, annexin V binding, mitochondrial membrane depolarization and caspase activation. PTP-H2 is a classical protein tyrosine phosphatase that has been shown previously to function as an inhibitor of phagocytosis. PTP-H2-mediated death of Sf-21 cells was blocked by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-(O-methyl) Asp-fluoromethylketone (Z-VAD-FMK), but cells maintained in this inhibitor still exhibited a suppressed phagocytic response. Mutagenesis experiments indicated that the essential catalytic cysteine residue required for the phosphatase activity of PTP-H2 was required for apoptotic activity in Sf-21 cells. Loss of adhesion was insufficient to stimulate apoptosis of Sf-21 cells. PTP-H2 expression, however, did significantly reduce proliferation of Sf-21 cells, which could contribute to the apoptotic activity of this viral gene. Overall, our results indicate that specific genes expressed by MdBV induce apoptosis of certain insect cells and that this activity contributes to immunosuppression of hosts.
Collapse
Affiliation(s)
- Richard J Suderman
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Andrea J Pruijssers
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Michael R Strand
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
19
|
Extended budded virus formation and induction of apoptosis by an AcMNPV FP-25/p35 double mutant in Trichoplusia ni cells. Virus Res 2008; 133:157-66. [DOI: 10.1016/j.virusres.2007.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 12/20/2007] [Accepted: 12/20/2007] [Indexed: 11/19/2022]
|
20
|
Yin Y, Huang WW, Lin C, Chen H, MacKenzie A, Ma L. Estrogen suppresses uterine epithelial apoptosis by inducing birc1 expression. Mol Endocrinol 2008; 22:113-25. [PMID: 17901126 PMCID: PMC2171041 DOI: 10.1210/me.2007-0295] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 09/18/2007] [Indexed: 12/30/2022] Open
Abstract
The decision whether or not a cell undergoes apoptosis is determined by the opposing forces of pro- and antiapoptotic effectors. Here we demonstrate genetically that estrogen can tip this balance toward cell survival in uterine epithelial cells by inducing the expression of baculoviral inhibitors of apoptosis repeat-containing 1 (Birc1), a family of antiapoptotic proteins. In neonatal mice, both 17beta-estradiol and the potent synthetic estrogen diethylstilbestrol strongly suppress uterine epithelial apoptosis while markedly elevating Birc1 transcript level in an estrogen receptor-alpha-dependent manner. The induction of Birc1 before any effect on apoptosis suppression and failure of diethylstilbestrol to completely inhibit apoptosis in Birc1a-deficient uterine epithelium indicate a functional role for Birc1a in estrogen-mediated apoptosis suppression. In ovariectomized adult mice, expression of Birc1 is also induced by ovarian hormones, suggesting a role for these proteins in normal uterine physiology. We propose that by binding to active caspases, Birc1 proteins can eliminate them through proteasome degradation. These results for the first time establish Birc1 proteins as functional targets of estrogen in suppressing apoptosis in the uterus.
Collapse
Affiliation(s)
- Yan Yin
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
21
|
da Silveira EB, Cordeiro BA, Ribeiro BM, de Castro MEB, Soares EF, Báo SN. An Anticarsia gemmatalis multiple nucleopolyhedrovirus mutant, vApAg, induces hemocytes apoptosis in vivo and displays reduced infectivity in larvae of Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae). Virus Res 2007; 130:182-92. [PMID: 17643541 DOI: 10.1016/j.virusres.2007.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/04/2007] [Accepted: 06/11/2007] [Indexed: 10/23/2022]
Abstract
An Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) mutant, vApAg, induces apoptosis in a cell culture derived from Anticarsia gemmatalis (UFL-AG-286), reducing viral progeny. We have investigated apoptosis induction in vivo by vApAg in A. gemmatalis larvae and its correlation to infectivity reduction. LC(50), LD(50), LT(50) and the mean time to death of larvae were determined for vApAg and AgMNPV. Apoptosis was accessed for hemocytes of infected larvae using light and transmission electron microscopy. All types of hemocytes can be infected by vApAg. After 12h post-infection (h p.i.), typical cellular modifications associated to nucleopolyhedrovirus infection were observed. Apoptosis becomes evident after 24h p.i., and massive after 72h p.i. Necrosis of infected cells was also observed. Despite cell death, hemocytes produced budded viruses and polyhedra. Pl and gh1-type hemocytes presented phagocytic activity. Agarose gel electrophoresis revealed fragmentation of hemocytes DNA at late times post-infection. The LC(50) and LD(50) were between five- and six-fold higher for vApAg. The LT(50) and the mean time to death were higher for vApAg in a same treatment or for a similar mortality induced by AgMNPV. These results show correlation of apoptosis and the reduced infectivity of vApAg in A. gemmatalis larvae.
Collapse
Affiliation(s)
- Eni Braga da Silveira
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade Estadual de Campinas, C.P. 6109, Campinas 13083-863, SP, Brazil
| | | | | | | | | | | |
Collapse
|
22
|
Xiao H, Qi Y. Genome sequence of Leucania seperata nucleopolyhedrovirus. Virus Genes 2007; 35:845-56. [PMID: 17763934 DOI: 10.1007/s11262-007-0106-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 04/18/2007] [Indexed: 10/22/2022]
Abstract
The nucleotide sequence of the Leucania seperata (Ls) Nucleopolyhedrovirus (LsNPV) genome has been determined and analyzed. The circular dsDNA genome contains 168041 bp, making it the largest NPV sequenced to date. The genome has a G + C content of 48.6% and encodes 169 predicted open reading frames (ORFs), one unique repeat region, and eight homologous repeat regions that are divided into two groups. Of the genome, 82.8% encodes predicted ORFs including five dispersal ORFs that have a large overlaps (range in 149 approximately 390 bp) with their adjacent ORFs, respectively such as expression factor 10, 11, 5, 2 (lef-10, lef-11, lef-5, lef-2), and telokin-like protein-20 (tlp-20); 4.4% is in repeat regions; the remaining 12.8% of the genome comprises nonrepeat intergenic regions. LsNPV encodes homologues of 133 ORFs identified previously in other baculoviruses. Other than 10 'baculovirus repeat ORFs' (bro) and two 'inhibitor of apoptosis' (iap) genes, no duplicated ORFs were found. LsNPV lacks a homologue of the ubiquitin gene, which has been found in all fully sequenced baculoviruses. Iap3 and p49, two genes were proven to be inhibitors of apoptosis by experiment, and are found in the LsNPV genome. It is not found in other baculoviruses that two kinds of inhibitors of apoptosis present in a baculovirus genome.
Collapse
Affiliation(s)
- Huazhong Xiao
- Institute of Virology, Wuhan University, Wuhan 430072, PR China.
| | | |
Collapse
|
23
|
Kelly BJ, King LA, Possee RD, Chapple SDJ. Dual mutations in the Autographa californica nucleopolyhedrovirus FP-25 and p35 genes result in plasma-membrane blebbing in Trichoplusia ni cells. J Gen Virol 2006; 87:531-536. [PMID: 16476974 DOI: 10.1099/vir.0.81312-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spodoptera frugiperda cells infected with Autographa californica nucleopolyhedrovirus (AcMNPV) lacking a functional anti-apoptotic p35 protein undergo apoptosis. However, such mutants replicate normally in Trichoplusia ni (TN-368) cells. An AcMNPV plaque isolate (AcdefrT) was identified during propagation of a virus deficient in p35 in TN-368 cells. This virus exhibited enhanced budded-particle formation in TN-368 cells, but was partially defective for polyhedra production in the same cells. Virus replication in AcdefrT-infected TN-368 cells was accompanied by extensive plasma-membrane blebbing and caspase activation late in infection, both features of apoptosis. Rescue of the p35 locus of AcdefrT continued to result in a reduction in polyhedra and increase in budded virus production in TN-368 cells, but no plasma-membrane blebbing was observed. The mutation was mapped to the FP-25 gene locus. This gene mutation combined with the non-functional p35 was found to be responsible for the cell-blebbing effect observed in AcdefrT-infected TN-368 cells.
Collapse
Affiliation(s)
- Barbara J Kelly
- School of Biological and Molecular Sciences, Oxford Brookes University, The Headington Campus, Oxford OX3 0BP, UK
- Centre for Ecology and Hydrology Oxford, Mansfield Road, Oxford OX1 3SR, UK
| | - Linda A King
- School of Biological and Molecular Sciences, Oxford Brookes University, The Headington Campus, Oxford OX3 0BP, UK
| | - Robert D Possee
- Centre for Ecology and Hydrology Oxford, Mansfield Road, Oxford OX1 3SR, UK
| | - Susan D J Chapple
- School of Biological and Molecular Sciences, Oxford Brookes University, The Headington Campus, Oxford OX3 0BP, UK
- Centre for Ecology and Hydrology Oxford, Mansfield Road, Oxford OX1 3SR, UK
| |
Collapse
|
24
|
Drezen JM, Bézier A, Lesobre J, Huguet E, Cattolico L, Periquet G, Dupuy C. The few virus-like genes of Cotesia congregata bracovirus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 61:110-22. [PMID: 16482582 DOI: 10.1002/arch.20108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The origin of the symbiotic association between parasitoid wasps and bracoviruses is still unknown. From phylogenetic analyses, bracovirus-associated wasp species constitute a monophyletic group, the microgastroid complex. Thus all wasp-bracovirus associations could have originated from the integration of an ancestral virus in the genome of the ancestor of the microgastroids. In an effort to identify a set of virus genes that would give clues on the nature of the ancestral virus, we have recently performed the complete sequencing of the genome of CcBV, the bracovirus of the wasp Cotesia congregata. We describe here the putative proteins encoded by CcBV genome having significant similarities with sequences from known viruses and mobile elements. The analysis of CcBV gene content does not lend support to the hypothesis that bracoviruses originated from a baculovirus. Moreover, no consistent homology was found between CcBV genes and any set of genes constituting the core genome of a known free-living virus. We discuss the significance of the scarce homology found between proteins from CcBV and other viruses or mobile elements.
Collapse
Affiliation(s)
- J-M Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 6035, Université F. Rabelais, Tours, France.
| | | | | | | | | | | | | |
Collapse
|
25
|
da Silveira EB, Cordeiro BA, Ribeiro BM, Báo SN. In vivo apoptosis induction and reduction of infectivity by an Autographa californica multiple nucleopolyhedrovirus p35− recombinant in hemocytes from the velvet bean caterpillar Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae). Res Microbiol 2005; 156:1014-25. [PMID: 16081248 DOI: 10.1016/j.resmic.2005.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 05/17/2005] [Accepted: 06/02/2005] [Indexed: 11/19/2022]
Abstract
Baculoviruses have long been shown to regulate apoptosis in cultured insect cells. Recently, this phenomenon was also reported to occur in vivo, reinforcing the importance of apoptosis in insect immunity against viruses. The vP35del virus, an Autographa californica multiple nucleopolyhedrovirus (AcMNPV) recombinant, was previously shown to induce apoptosis in Anticarsia gemmatalis cultured cells. In order to verify the AcMNPV interaction with hemocytes, apoptosis induction in vivo and its effects upon infectivity, we studied the course of intrahemocoelic infection of recombinant viruses (vHSGFP and vHSGFP/P35del) in A. gemmatalis larvae. Insect development and mortality were monitored and infection progress was followed by light, fluorescence and electron microscopy. For all doses tested, vHSGFP/P35del caused lower mortality than vHSGFP. Mortality of 95% occurred with a dose of 4x10(6) PFUs of vHSGFP, which was reduced to 60% for vHSGFP/P35del. GFP expression was first observed at 3 h p.i. for the two viruses, increasing for vHSGFP (40% at 120 h p.i.) and decreasing for vHSGFP/P35del (0% at 120 h p.i.). The virus vHSGFP/P35del induced apoptosis in hemocytes, with some budded virus being produced, and fragmented cells were observed between 24 and 72 h p.i. The recombinant vHSGFP induced typical wild-type cytopathic effects, with low production of occluded viruses until 120 h p.i. Plasmatocytes and granular hemocytes type 1 were the hemocytes most susceptible to both viruses. For these experimental conditions, we concluded that A. gemmatalis is a semi-permissive host to AcMNPV; moreover, apoptosis reduces AcMNPV infectivity and the p35 gene is essential for blocking apoptosis in this system.
Collapse
Affiliation(s)
- Eni Braga da Silveira
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade Estadual de Campinas, C.P. 6109, Campinas, SP 13.083-863, Brazil
| | | | | | | |
Collapse
|
26
|
Abstract
The baculoviruses make up a large, diverse family of DNA viruses that have evolved a number of fascinating mechanisms to manipulate their insect hosts. One of these is the ability to regulate apoptosis during infection by expressing proteins that can inhibit caspase activation and/or activity, including the caspase inhibitor P35 and its relatives, and the inhibitor of apoptosis (IAP) proteins. Experimental manipulations of the expression of these antiapoptotic genes, either by genetic deletions or by RNAi, have shed light on the effectiveness of apoptosis in combating baculovirus infection. The results of these experiments indicate that apoptosis can be an extremely powerful response to baculovirus infection, reducing viral replication, infectivity, and the ability of the virus to spread within the insect host even if a successful infection is established. Apoptosis is especially effective when it is combined with other innate antiviral defenses, which are largely unexplored in insects to date.
Collapse
Affiliation(s)
- R J Clem
- Division of Biology, Kansas State University, 232 Ackert Hall, Manhattan, KS 66506, USA.
| |
Collapse
|
27
|
Lapointe R, Wilson R, Vilaplana L, O'Reilly DR, Falabella P, Douris V, Bernier-Cardou M, Pennacchio F, Iatrou K, Malva C, Olszewski JA. Expression of a Toxoneuron nigriceps polydnavirus-encoded protein causes apoptosis-like programmed cell death in lepidopteran insect cells. J Gen Virol 2005; 86:963-971. [PMID: 15784889 DOI: 10.1099/vir.0.80834-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The polydnavirus Toxoneuron nigriceps bracovirus (TnBV) is an obligate symbiont associated with the braconid wasp T. nigriceps, a parasitoid of Heliothis virescens larvae. Previously, to identify polydnavirus genes that allow parasitization by altering the host immune and endocrine systems, expression patterns of TnBV genes from parasitized H. virescens larvae were analysed and cDNAs were obtained. To study the function of the protein from one such cDNA, TnBV1, overexpression of the protein was attempted by using the baculovirus Autographa californica multicapsid nucleopolyhedrovirus. Recovery of stable recombinant virus was unsuccessful, with the exception of recombinants with deletions/mutations within the TnBV1 gene. It was hypothesized that TnBV1 expression was cytotoxic to the Spodoptera frugiperda (Sf21) insect cells that were used to produce the recombinants. Therefore, the Bac-to-Bac system was used to create recombinant baculoviruses maintained in Escherichia coli expressing either TnBV1 (Ac-TnBV1) or an initiator-methionine mutant [Ac-TnBV1(ATG−)]. Microscopy revealed substantial cell death of Sf21 and High Five cells from 48 h post-infection with Ac-TnBV1, but not with the Ac-TnBV1(ATG−) recombinant virus. Ac-TnBV1-infected Sf21 cells, but not those with parental virus infection, showed an increased caspase-3-like protease activity, as well as increased terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling (TUNEL) for breaks in host genomic DNA. Although indicative of apoptosis, blebbing and apoptotic bodies were not observed in infected cells. Transiently expressing TnBV1 alone caused TUNEL staining in High Five cells. These data suggest that TnBV1 expression alone can induce apoptosis-like programmed cell death in two insect cell lines. Injection of Ac-TnBV1 budded virus, compared with parental virus, did not result in an alteration of virulence in H. virescens larvae.
Collapse
Affiliation(s)
- Renée Lapointe
- Department of Biological Sciences, Imperial College, London SW7 2AZ, UK
| | - Rebecca Wilson
- Department of Biological Sciences, Imperial College, London SW7 2AZ, UK
| | - Lluïsa Vilaplana
- Department of Biological Sciences, Imperial College, London SW7 2AZ, UK
| | - David R O'Reilly
- Department of Biological Sciences, Imperial College, London SW7 2AZ, UK
| | - Patrizia Falabella
- Dipartimento di Biologia, Difesa e Biotecnologie, Agro-Forestali-Università della Basilicata-Macchia Romana, 85100 Potenza, Italy
| | - Vassilis Douris
- National Centre for Scientific Research 'Demokritos', 153 10 Aghia Paraskevi, Athens, Greece
| | - Michèle Bernier-Cardou
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Sainte-Foy (Québec), Canada G1V 4C7
| | - Francesco Pennacchio
- Dipartimento di Biologia, Difesa e Biotecnologie, Agro-Forestali-Università della Basilicata-Macchia Romana, 85100 Potenza, Italy
| | - Kostas Iatrou
- National Centre for Scientific Research 'Demokritos', 153 10 Aghia Paraskevi, Athens, Greece
| | - Carla Malva
- Instituto di Genetica e Biofisica, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Julie A Olszewski
- Department of Biological Sciences, Imperial College, London SW7 2AZ, UK
| |
Collapse
|
28
|
Li Q, Liston P, Moyer RW. Functional analysis of the inhibitor of apoptosis (iap) gene carried by the entomopoxvirus of Amsacta moorei. J Virol 2005; 79:2335-45. [PMID: 15681434 PMCID: PMC546542 DOI: 10.1128/jvi.79.4.2335-2345.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2004] [Accepted: 09/13/2004] [Indexed: 02/02/2023] Open
Abstract
The entomopoxvirus from Amsacta moorei (AmEPV) contains none of the commonly recognized vertebrate poxvirus apoptotic suppressor genes. However, AmEPV carries a single inhibitor of apoptosis (iap) gene (AMViap) not present in vertebrate poxviruses. The AMViap gene was active when coexpressed with the Drosophila proapoptotic gene hid in Ld652 cells and can rescue cells from apoptosis as shown by increased number of surviving cells and reduced levels of caspase-3-like activity. We also showed that expression of the AMViap gene rescued polyhedron production in Autographa californica M nucleopolyhedrovirus (AcMNPV)Deltap35-infected Sf9 cells during an otherwise abortive infection induced by apoptosis. Surprisingly, deletion of the AMViap gene from the AmEPV genome led to only a modest (10-fold) loss of virion production in infected Ld652 cells, indicating that the AMViap gene is nonessential for virus replication under these conditions. However, infection of Ld652 cells by AmEPV lacking a functional iap gene led to a more rapid induction of cytotoxicity and increased levels of caspase-3-like activity. Similar results were observed and were more pronounced in infected Sf9 and S2 cells. The purified AMVIAP protein also inhibits the enzymatic activities of human caspase-9 and caspase-3 in vitro. Our results indicate that while the AMViap gene was active in controlling apoptosis through the intrinsic pathway, the virus likely encodes additional proteins that also regulate apoptosis.
Collapse
Affiliation(s)
- Qianjun Li
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610-0266, USA
| | | | | |
Collapse
|
29
|
Li L, Li Q, Willis LG, Erlandson M, Theilmann DA, Donly C. Complete comparative genomic analysis of two field isolates of Mamestra configurata nucleopolyhedrovirus-A. J Gen Virol 2005; 86:91-105. [PMID: 15604435 DOI: 10.1099/vir.0.80488-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A second genotype of Mamestra configurata nucleopolyhedrovirus-A (MacoNPV-A), variant 90/4 (v90/4), was identified due to its altered restriction endonuclease profile and reduced virulence for the host insect, M. configurata, relative to the archetypal genotype, MacoNPV-A variant 90/2 (v90/2). To investigate the genetic differences between these two variants, the genome of v90/4 was sequenced completely. The MacoNPV-A v90/4 genome is 153 656 bp in size, 1404 bp smaller than the v90/2 genome. Sequence alignment showed that there was 99·5 % nucleotide sequence identity between the genomes of v90/4 and v90/2. However, the v90/4 genome has 521 point mutations and numerous deletions and insertions when compared to the genome of v90/2. Gene content and organization in the genome of v90/4 is identical to that in v90/2, except for an additional bro gene that is found in the v90/2 genome. The region between hr1 and orf31 shows the greatest divergence between the two genomes. This region contains three bro genes, which are among the most variable baculovirus genes. These results, together with other published data, suggest that bro genes may influence baculovirus genome diversity and may be involved in recombination between baculovirus genomes. Many ambiguous residues found in the v90/4 sequence also reveal the presence of 214 sequence polymorphisms. Sequence analysis of cloned HindIII fragments of the original MacoNPV field isolate that the 90/4 variant was derived from indicates that v90/4 is an authentic variant and may represent approximately 25 % of the genotypes in the field isolate. These results provide evidence of extensive sequence variation among the individual genomes comprising a natural baculovirus outbreak in a continuous host population.
Collapse
Affiliation(s)
- Lulin Li
- Pacific Agri-Food Research Centre, AAFC, Summerland, BC, Canada
| | - Qianjun Li
- Saskatoon Research Centre, AAFC-Saskatoon, SK, Canada
| | - Leslie G Willis
- Pacific Agri-Food Research Centre, AAFC, Summerland, BC, Canada
| | | | | | - Cam Donly
- Southern Crop Protection and Food Research Centre, AAFC, London, ON, Canada
| |
Collapse
|
30
|
Espagne E, Dupuy C, Huguet E, Cattolico L, Provost B, Martins N, Poirié M, Periquet G, Drezen JM. Genome sequence of a polydnavirus: insights into symbiotic virus evolution. Science 2004; 306:286-9. [PMID: 15472078 DOI: 10.1126/science.1103066] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Little is known of the fate of viruses involved in long-term obligatory associations with eukaryotes. For example, many species of parasitoid wasps have symbiotic viruses to manipulate host defenses and to allow development of parasitoid larvae. The complete nucleotide sequence of the DNA enclosed in the virus particles injected by a parasitoid wasp revealed a complex organization, resembling a eukaryote genomic region more than a viral genome. Although endocellular symbiont genomes have undergone a dramatic loss of genes, the evolution of symbiotic viruses appears to be characterized by extensive duplication of virulence genes coding for truncated versions of cellular proteins.
Collapse
Affiliation(s)
- Eric Espagne
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 6035, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Thiem SM, Chejanovsky N. The role of baculovirus apoptotic suppressors in AcMNPV-mediated translation arrest in Ld652Y cells. Virology 2004; 319:292-305. [PMID: 14980489 DOI: 10.1016/j.virol.2003.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Revised: 11/05/2003] [Accepted: 11/05/2003] [Indexed: 11/17/2022]
Abstract
Infecting the insect cell line IPLB-Ld652Y with the baculovirus Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV) results in global translation arrest, which correlates with the presence of the AcMNPV apoptotic suppressor, p35. In this study, we investigated the role of apoptotic suppression on AcMNPV-induced translation arrest. Infecting cells with AcMNPV bearing nonfunctional mutant p35 did not result in global translation arrest. In contrast, global translation arrest was observed in cells infected with AcMNPV in which p35 was replaced with Opiap, Cpiap, or p49, baculovirus apoptotic suppressors that block apoptosis by different mechanisms than p35. These results indicated that suppressing apoptosis triggered translation arrest in AcMNPV-infected Ld652Y cells. Experiments using the DNA synthesis inhibitor aphidicolin and temperature shift experiments, using the AcMNPV replication mutants ts8 and ts8deltap35, indicated that translation arrest initiated during the early phase of infection, but events during the late phase were required for global translation arrest. Peptide caspase inhibitors could not substitute for baculovirus apoptotic suppressors to induce translation arrest in Ld652Y cells infected with a p35-null virus. However, if the p35-null-AcMNPV also carried hrf-1, a novel baculovirus host range gene, progeny virus was produced and treatment with peptide caspase inhibitors enhanced translation of a late viral gene transcript. Together, these results indicate that translation arrest in AcMNPV-infected Ld652Y cells is due to the anti-apoptotic function of p35, but suggests that rather than simply preventing caspase activation, its activity enhances signaling to a separate translation arrest pathway, possibly by stimulating the late stages of the baculovirus infection cycle.
Collapse
Affiliation(s)
- Suzanne M Thiem
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
32
|
Pijlman GP, van Schijndel JE, Vlak JM. Spontaneous excision of BAC vector sequences from bacmid-derived baculovirus expression vectors upon passage in insect cells. J Gen Virol 2003; 84:2669-2678. [PMID: 13679600 DOI: 10.1099/vir.0.19438-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Repeated baculovirus infections in cultured insect cells lead to the generation of defective interfering viruses (DIs), which accumulate at the expense of the intact helper virus and compromise heterologous protein expression. In particular, Autographa californica multicapsid nucleopolyhedovirus (AcMNPV) DIs are enriched in an origin of viral DNA replication (ori) not associated with the homologous regions (hrs). This non-hr ori is located within the coding sequence of the non-essential p94 gene. We investigated the effect of a deletion of the AcMNPV non-hr ori on the heterologous protein expression levels following serial passage in Sf21 insect cells. Using homologous ET recombination in E. coli, deletions within the p94 gene were made in a bacterial artificial chromosome (BAC) containing the entire AcMNPV genome (bacmid). All bacmids were equipped with an expression cassette containing the green fluorescent protein gene and a gene encoding the classical swine fever virus E2 glycoprotein (CSFV-E2). For the parental (intact) bacmid only, a strong accumulation of DIs with reiterated non-hr oris was observed. This was not observed for the mutants, indicating that removal of the non-hr ori enhanced the genetic stability of the viral genome upon passaging. However, for all passaged viruses it was found that the entire BAC vector including the expression cassette was spontaneously deleted from the viral genome, leading to a rapid decrease in GFP and CSFV-E2 production. The rationale for the (intrinsic) genetic instability of the BAC vector in insect cells and the implications with respect to large-scale production of proteins with bacmid-derived baculoviruses are discussed.
Collapse
Affiliation(s)
- Gorben P Pijlman
- Wageningen University, Laboratory of Virology, Binnenhaven 11, 6709 PD, Wageningen, The Netherlands
| | - Jessica E van Schijndel
- Wageningen University, Laboratory of Virology, Binnenhaven 11, 6709 PD, Wageningen, The Netherlands
| | - Just M Vlak
- Wageningen University, Laboratory of Virology, Binnenhaven 11, 6709 PD, Wageningen, The Netherlands
| |
Collapse
|
33
|
Abstract
Insects, with their lack of an adaptive immune response, provide a unique animal model to examine the effects of apoptosis on viral infection. Several members of the baculovirus family of insect viruses have been shown to induce apoptosis during infection of cultured insect cells, and depending on the virus-host combination this apoptotic response can severely limit viral replication. In response to this evolutionary pressure, all baculoviruses studied to date carry antiapoptotic genes, including members of the p35 and IAP (inhibitor of apoptosis) gene families. Recent work has characterized the apoptotic response during infection of the host insect, and the results directly demonstrate the power of apoptosis as an antiviral response.
Collapse
Affiliation(s)
- Thomas E Clarke
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
34
|
Means JC, Muro I, Clem RJ. Silencing of the baculovirus Op-iap3 gene by RNA interference reveals that it is required for prevention of apoptosis during Orgyia pseudotsugata M nucleopolyhedrovirus infection of Ld652Y cells. J Virol 2003; 77:4481-8. [PMID: 12663755 PMCID: PMC152165 DOI: 10.1128/jvi.77.8.4481-4488.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Op-iap3 gene from the baculovirus Orgyia pseudotsugata M nucleopolyhedrovirus (OpMNPV) inhibits apoptosis induced by a mutant of Autographa californica MNPV (AcMNPV) that lacks the antiapoptotic gene p35, as well as apoptosis induced by a wide range of other stimuli in both mammalian and insect cells. However, the role of Op-iap3 during OpMNPV infection has not been previously examined. To determine the function of the Op-IAP3 protein during OpMNPV infection, we used RNA interference (RNAi) to silence Op-iap3 expression during OpMNPV infection of Ld652Y cells. Infected cells treated with Op-iap3 double-stranded RNA (dsRNA) did not accumulate detectable Op-iap3 mRNA, confirming that the Op-iap3 gene was effectively silenced. Op-IAP3 protein was found to be a component of the budded virion; however, in OpMNPV-infected cells treated with Op-iap3 dsRNA, the Op-IAP3 protein that was introduced by the inoculum virus decreased to almost undetectable levels by 12 h after dsRNA addition. Apoptosis was observed in infected cells treated with Op-iap3 dsRNA beginning at 12 h, and by 48 h, almost all of the cells had undergone apoptosis. These results show for the first time that Op-IAP3 is necessary to prevent apoptosis during OpMNPV infection. In addition, our results demonstrate that the RNAi technique can be an effective tool for studying baculovirus gene function.
Collapse
Affiliation(s)
- John C Means
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | |
Collapse
|
35
|
Clarke TE, Clem RJ. In vivo induction of apoptosis correlating with reduced infectivity during baculovirus infection. J Virol 2003; 77:2227-32. [PMID: 12525657 PMCID: PMC140947 DOI: 10.1128/jvi.77.3.2227-2232.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spodoptera frugiperda caterpillars were infected with a mutant of Autographa californica M nucleopolyhedrovirus lacking the antiapoptotic p35 gene. Viral infectivity, replication, and spread were substantially reduced compared to that of a control revertant virus. Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling confirmed that apoptosis occurred in mutant-infected caterpillars, thus directly correlating reduced infectivity and in vivo induction of apoptosis.
Collapse
Affiliation(s)
- Thomas E Clarke
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | | |
Collapse
|
36
|
Clem RJ. Baculoviruses and apoptosis: the good, the bad, and the ugly. Cell Death Differ 2001; 8:137-43. [PMID: 11313715 DOI: 10.1038/sj.cdd.4400821] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2000] [Accepted: 12/04/2000] [Indexed: 11/09/2022] Open
Abstract
Since 1991, when a baculovirus was first shown to inhibit apoptosis of its host insect cells, considerable contributions to our knowledge of apoptosis have arisen from the study of these viruses and the anti-apoptotic genes they encode. Baculovirus anti-apoptotic genes include p35, which encodes the most broadly acting caspase inhibitor protein known, and iap (inhibitor of apoptosis) genes, which were the first members of an evolutionarily conserved gene family involved in regulation of apoptosis and cytokinesis in organisms ranging from yeast to humans. Baculoviruses also provide an ideal system to study the effects of an apoptotic response on viral pathogenesis in an animal host. In this review, I discuss a number of interesting recent developments in the areas of apoptotic regulation by baculoviruses and the effects of apoptosis on baculovirus replication and pathogenesis.
Collapse
Affiliation(s)
- R J Clem
- Division of Biology, Kansas State University, Manhattan 66506, USA.
| |
Collapse
|
37
|
IJkel WFJ, van Strien EA, Heldens JGM, Broer R, Zuidema D, Goldbach RW, Vlak JM. Sequence and organization of the Spodoptera exigua multicapsid nucleopolyhedrovirus genome. J Gen Virol 1999; 80 ( Pt 12):3289-3304. [PMID: 10567663 DOI: 10.1099/0022-1317-80-12-3289] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nucleotide sequence of the DNA genome of Spodoptera exigua multicapsid nucleopolyhedrovirus (SeMNPV), a group II NPV, was determined and analysed. The genome contains 135611 bp and has a G+C content of 44 mol%. Computer-assisted analysis revealed 139 ORFs of 150 nucleotides or larger; 103 have homologues in Autographa californica MNPV (AcMNPV) and a further 16 have homologues in other baculoviruses. Twenty ORFs are unique to SeMNPV. Major differences in SeMNPV gene content and arrangement were found compared with the group I NPVs AcMNPV, Bombyx mori (Bm) NPV and Orgyia pseudotsugata (Op) MNPV and the group II NPV Lymantria dispar (Ld) MNPV. Eighty-five ORFs were conserved among all five baculoviruses and are considered as candidate core baculovirus genes. Two putative p26 and odv-e66 homologues were identified in SeMNPV, each of which appeared to have been acquired independently and not by gene duplication. The SeMNPV genome lacks homologues of the major budded virus glycoprotein gene gp64, the immediate-early transactivator ie-2 and bro (baculovirus repeat ORF) genes that are found in AcMNPV, BmNPV, OpMNPV and LdMNPV. Gene parity analysis of baculovirus genomes suggests that SeMNPV and LdMNPV have a recent common ancestor and that they are more distantly related to the group I baculoviruses AcMNPV, BmNPV and OpMNPV. The orientation of the SeMNPV genome is reversed compared with the genomes of AcMNPV, BmNPV, OpMNPV and LdMNPV. However, the gene order in the 'central' part of baculovirus genomes is highly conserved and appears to be a key feature in the alignment of baculovirus genomes.
Collapse
Affiliation(s)
- Wilfred F J IJkel
- Laboratory of Virology, Wageningen University and Research Centre, Binnenhaven 11, 6709 PD Wageningen, The Netherlands1
| | - Elisabeth A van Strien
- Laboratory of Virology, Wageningen University and Research Centre, Binnenhaven 11, 6709 PD Wageningen, The Netherlands1
| | - Jacobus G M Heldens
- Laboratory of Virology, Wageningen University and Research Centre, Binnenhaven 11, 6709 PD Wageningen, The Netherlands1
| | - René Broer
- Laboratory of Virology, Wageningen University and Research Centre, Binnenhaven 11, 6709 PD Wageningen, The Netherlands1
| | - Douwe Zuidema
- Laboratory of Virology, Wageningen University and Research Centre, Binnenhaven 11, 6709 PD Wageningen, The Netherlands1
| | - Rob W Goldbach
- Laboratory of Virology, Wageningen University and Research Centre, Binnenhaven 11, 6709 PD Wageningen, The Netherlands1
| | - Just M Vlak
- Laboratory of Virology, Wageningen University and Research Centre, Binnenhaven 11, 6709 PD Wageningen, The Netherlands1
| |
Collapse
|
38
|
Abstract
Successful viral replication requires not only the efficient production and spread of progeny, but also evasion of host defense mechanisms that limit replication by killing infected cells. In addition to inducing immune and inflammatory responses, infection by most viruses triggers apoptosis or programmed cell death of the infected cell. This cell response often results as a compulsory or unavoidable by-product of the action of critical viral replicative functions. In addition, some viruses seem to use apoptosis as a mechanism of cell killing and virus spread. In both cases, successful replication relies on the ability of certain viral products to block or delay apoptosis until sufficient progeny have been produced. Such proteins target a variety of strategic points in the apoptotic pathway. In this review we summarize the great amount of recent information on viruses and apoptosis and offer insights into how this knowledge may be used for future research and novel therapies.
Collapse
Affiliation(s)
- A Roulston
- GeminX Biotechnologies Inc., Montreal, Quebec, Canada.
| | | | | |
Collapse
|
39
|
Kobayashi K, Hatano M, Otaki M, Ogasawara T, Tokuhisa T. Expression of a murine homologue of the inhibitor of apoptosis protein is related to cell proliferation. Proc Natl Acad Sci U S A 1999; 96:1457-62. [PMID: 9990045 PMCID: PMC15484 DOI: 10.1073/pnas.96.4.1457] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inhibitor of apoptosis (IAP) proteins form a highly conserved gene family that prevents cell death in response to a variety of stimuli. Herein we describe a newly defined murine IAP, designated Tiap, that proved to be a murine homologue of human survivin based on sequence comparison. TIAP has one baculovirus IAP repeat and lacks a C-terminal RING finger motif. TIAP interacted with the processed form of caspase 3 and inhibited caspase-induced cell death. Histological examinations revealed that TIAP is expressed in growing tissues such as thymus, testis, and intestine of adult mice and many tissues of embryos. In in vitro studies, TIAP was induced in splenic T cells activated with anti-CD3 antibody or Con A, and the expression of TIAP was up-regulated in synchronized NIH 3T3 cells at S to G2/M phase of the cell cycle. We propose that during cell proliferation, cellular protective activity may be augmented with inducible IAPs such as TIAP.
Collapse
Affiliation(s)
- K Kobayashi
- Department of Developmental Genetics, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | |
Collapse
|
40
|
Abstract
Baculoviruses possess at least two different classes of anti-apoptotic genes which allow them to block apoptosis of their host cells, thereby increasing the infectivity of the virus and extending the range of cells and hosts that can be efficiently infected. One of these genes, p35, encodes a broadly acting inhibitor of the caspase family of cysteine proteases involved in the induction and execution of apoptotic cell death. The other class of genes, the iaps, are found in higher eukaryotes, as well as baculoviruses, and appear to function at an earlier point in the pathway(s) leading to apoptosis. The IAPs appear to have a more limited role, and the action of at least some of these proteins may be confined to a narrower spectrum of signal transduction pathways. Characterization of the iaps has provided insight into the basis of a prominent human genetic disorder. Both classes of baculovirus inhibitors are proving to be useful in unraveling the molecular pathways governing cellular apoptosis.
Collapse
Affiliation(s)
- L K Miller
- Department of Genetics, University of Georgia, Athens 30602-2603, USA.
| |
Collapse
|
41
|
Abstract
Advances in the understanding of baculovirus replication and the identification of genes that affect host range set the stage for constructing recombinant baculoviruses for specific past insects. The modification of baculovirus host specificity has recently been achieved by inserting or deleting genes that affect virus replication or cellular defenses.
Collapse
Affiliation(s)
- S M Thiem
- Department of Entomology, 243 Natural Science, Michigan State University, East Lansing 48824, USA.
| |
Collapse
|
42
|
Ahrens CH, Russell RL, Funk CJ, Evans JT, Harwood SH, Rohrmann GF. The sequence of the Orgyia pseudotsugata multinucleocapsid nuclear polyhedrosis virus genome. Virology 1997; 229:381-99. [PMID: 9126251 DOI: 10.1006/viro.1997.8448] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nucleotide sequence of the Orgyia pseudotsugata multinucleocapsid nuclear polyhedrosis virus (OpMNPV) genome was completed and analyzed. It is composed of 131,990 bases with a G + C content of 55% and contains 152 putative genes of 150 nucleotides or greater. Major differences in gene content and arrangement between OpMNPV and the Autographa californica MNPV were found. These include the presence in OpMNPV of three complete iap gene homologs, two conotoxin gene homologs, two protein tyrosine phosphatase homologs, and genes encoding homologs of dUTPase and the large and small subunits of ribonucleotide reductase. Seven major intergenic repeated regions were identified. Five of these are homologous regions that are related to similar regions from other baculoviruses.
Collapse
Affiliation(s)
- C H Ahrens
- Department of Agricultural Chemistry, Oregon State University, Corvallis 97331-7301, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
It is clear from this brief review that our understanding of the molecular cross-talk between insects and their baculovirus pathogens is still very limited. Studies in cell culture have taught us a great deal about the basic baculovirus molecular machinery and how it is regulated, and in many cases this information has been predictive of what occurs in infected insects. Frequently, however, studies in cell culture do not adequately predict the infection process in insect hosts, as demonstrated by viral mutants (some of which were discussed in this review) that behave identically to wild-type virus in cell culture but differ markedly in larvae. More baculovirus studies, therefore, need to be conducted in vivo if we are to improve our understanding of the complex interactions between baculoviruses and their hosts. Conducting baculovirus studies in insects (or at least in primary cell culture) also offers the opportunity to address questions that reach beyond the baculovirus community in significance. For example, almost all of our knowledge of viral fusion mechanisms comes from infection of cells in culture where the pH is neutral or acidic and the temperature is constant at 27 degrees or 37 degrees C. An answer to the question of how the ODV envelope fuses with the microvillar membrane of columnar epithelial cells in the highly alkaline midgut environment at low temperatures will not only be important for an improved understanding of baculovirus infection in the natural world, but will also constitute a new chapter on viral entry mechanisms. Similarly, the answer to the question of how baculovirus nucleocapsids move basally within microvilli promises to involve factors and/or a mechanism not yet described by cell biologists, and so will constitute a valuable contribution to both baculovirology and cell biology. There are many more such examples of biological mechanisms that can be uniquely explored within the context of baculoviruses and their insect hosts, some of which have been highlighted in this review. As more and more young investigators realize the importance of combining a knowledge of virology, molecular technology, and insect biology, however, many of the outstanding mysteries will be solved.
Collapse
Affiliation(s)
- L E Volkman
- Department of Plant and Microbial Biology, University of California, Berkeley 94720, USA
| |
Collapse
|
44
|
Affiliation(s)
- J M Hardwick
- Department of Molecular Microbiology & Immunology, Johns Hopkins University School of Public Health, Baltimore, Maryland 21205, USA
| |
Collapse
|
45
|
Abstract
The host cell-specific factor 1 gene (hcf-1) of the baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV) is required for the efficient replication and/or stability of reporter plasmids carrying an AcMNPV-derived origin of DNA replication in a cell-specific manner; hcf-1 is required for reporter plasmid replication or stability in TN-368 cells, a cell line derived from the cabbage looper Trichoplusia ni, but not in IPLB-SF-21 (SF-21) cells, a cell line derived from the fall armyworm Spodoptera frugiperda (A. Lu and L. K. Miller, J. Virol. 69:6265-6272, 1995). To further define the function of hcf-1, recombinant viruses with null mutations in hcf-1 were constructed in SF-21 cells and the phenotype of the mutants was determined in selected cell lines as well as in insect larvae. In S.frugiperda larvae and SF-21 cells, the phenotype of hcf-1 mutants was indistinguishable from that of wild-type AcMNPV. In T. ni larvae as well as T. ni-derived cell lines, hcf-1 mutants exhibited a mutant phenotype. In TN-368 cells, the replication of hcf-1 mutants was extremely impaired; the phenotype included a defect in viral DNA replication, late gene transcription, and virus production as well as a complete cessation of host and viral protein synthesis. In another cell line derived from T. ni, the BTI-TN5B1-4 cell line, the hcf-1 mutants exhibited a less severe phenotype. In T. ni larvae, the infectivity of the budded form of hcf-1 mutants was decreased significantly (50-fold), although no difference in the oral infectivity of the occluded form was observed. T. ni larvae infected with hcf-1 mutants by either oral or hemocoelic routes, however, died 20 to 30% more slowly than those infected with wild-type AcMNPV. These data indicate that there is a host-specific requirement for hcf-1 and that it exerts cell line-specific effects and possibly tissue-specific effects on the rate at which the virus replicates, thereby affecting the virulence of the virus in a species-specific manner.
Collapse
Affiliation(s)
- A Lu
- Department of Entomology, The University of Georgia, Athens 30602, USA
| | | |
Collapse
|
46
|
Todd JW, Passarelli AL, Miller LK. Eighteen baculovirus genes, including lef-11, p35, 39K, and p47, support late gene expression. J Virol 1995; 69:968-74. [PMID: 7815564 PMCID: PMC188665 DOI: 10.1128/jvi.69.2.968-974.1995] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We report the identification of four additional genes of the Autographa californica nuclear polyhedrosis virus involved in expression from a late baculovirus promoter in transient expression assays. Three of these genes, p35, 39K, and p47, have been previously described. The role of the p35 gene product in late gene expression may be related to its ability to block apoptosis, since two other baculovirus genes also known to block apoptosis, Cp-iap and Op-iap, were able to functionally replace p35 in the transient expression assay. The requirement for p47 in this assay confirms its role in late gene expression, a role previously established by characterization of a temperature-sensitive mutant of p47, while the requirement for 39K may be related to its known association with the virogenic stroma. The fourth gene identified as a late expression factor gene, lef-11, was located immediately upstream of 39K and is predicted to encode a 13-kDa polypeptide. When plasmids containing these 4 genes were cotransfected with plasmids containing the 14 genes previously identified as late gene expression factors, the level of expression from the late capsid promoter was similar to that observed for a library of clones representing the entire viral genome. The genes provided by these 18 plasmids thus represent the viral genes necessary and sufficient to support expression from a late viral promoter in this transient expression assay.
Collapse
Affiliation(s)
- J W Todd
- Department of Genetics, University of Georgia, Athens 30602-2603
| | | | | |
Collapse
|