1
|
Hidalgo P, Ip WH, Dobner T, Gonzalez RA. The biology of the adenovirus E1B 55K protein. FEBS Lett 2019; 593:3504-3517. [PMID: 31769868 DOI: 10.1002/1873-3468.13694] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022]
Abstract
The adenovirus E1B 55K (E1B) protein plays major roles in productive adenoviral infection and cellular transformation. Interest in E1B increased because of the potential of adenoviruses as therapeutic vectors, and the E1B gene is commonly deleted from adenovirus vectors for anticancer therapy. E1B activities are spatiotemporally regulated through SUMOylation and phosphorylation, and through interactions with multiple partners that occur presumably at different intracellular sites and times postinfection. E1B is implicated in the formation of viral replication compartments and regulates viral genome replication and transcription, transcriptional repression, degradation of cellular proteins, and several intranuclear steps of viral late mRNA biogenesis. Here, we review advances in our understanding of E1B during productive adenovirus replication and discuss fundamental aspects that remain unresolved.
Collapse
Affiliation(s)
- Paloma Hidalgo
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Wing Hang Ip
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ramón A Gonzalez
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
2
|
El-Mogy MA, Abdalla MA, Misic V, Haj-Ahmad Y. Effect of adenovirus infection on transgene expression under the adenoviral MLP/TPL and the CMVie promoter/enhancer in CHO cells. J Genet Eng Biotechnol 2017; 15:211-217. [PMID: 30647657 PMCID: PMC6296590 DOI: 10.1016/j.jgeb.2017.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 02/27/2017] [Accepted: 04/05/2017] [Indexed: 11/19/2022]
Abstract
The adenovirus major late promoter (MLP) and its translational regulator - the tripartite leader (TPL) sequence - can actively drive efficient gene expression during adenoviral infection. However, both elements have not been widely tested in transgene expression outside of the adenovirus genome context. In this study, we tested whether the combination of MLP and TPL would enhance transgene expression beyond that of the most widely used promoter in transgene expression in mammalian cells, the cytomegalovirus immediate early (CMVie) promoter/enhancer. The activity of these two regulatory elements was compared in Chinese hamster ovary (CHO) cells. Although transient expression was significantly higher under the control of the CMVie promoter/enhance compared to the MLP/TPL, this difference was greater at the level of transcription (30 folds) than translation (11 folds). Even with adenovirus infection to provide additional elements (in trans), CMVie promoter/enhancer exhibited significantly higher activity relative to MLP/TPL. Interestingly, the CMVie promoter/enhancer was 1.9 folds more active in adenovirus-infected cells than in non-infected cells. Our study shows that the MLP-TPL drives lower transgene expression than the CMVie promoter/enhancer particularly at the transcription level. The data also highlight the utility of the TPL sequence at the translation level and/or possible overwhelming of the cellular translational machinery by the high transcription activity of the CMVie promoter/enhancer. In addition, here we present data that show stimulation of the CMVie promoter/enhancer by adenovirus infection, which may prove interesting in future work to test the combination of CMVie/TPL sequence, and additional adenovirus elements, for transgene expression.
Collapse
Key Words
- Adenovirus
- CHO, Chinese hamster ovary
- CMVie promoter/enhancer
- CMVie, cytomegalovirus immediate early
- GFP, green fluorescence proteins
- IRES, internal ribosome entry site
- MLP
- MLP, major late promoter
- MOI, multiplicity of infection
- PFU, plaque forming unit
- RFU, relative fluorescence units
- TPL
- TPL, tripartite leader
- Transgene expression
- qPCR, Quantitative PCR
Collapse
Affiliation(s)
- Mohamed A. El-Mogy
- Molecular Biology Department, National Research Centre, Dokki, Giza, Egypt
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
- Corresponding author at: Molecular Biology Department, National Research Centre, Dokki, Giza, Egypt.
| | - Moemen A.K. Abdalla
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Vanja Misic
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Yousef Haj-Ahmad
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
3
|
Sharon D, Schümann M, MacLeod S, McPherson R, Chaurasiya S, Shaw A, Hitt MM. 2-aminopurine enhances the oncolytic activity of an E1b-deleted adenovirus in hepatocellular carcinoma cells. PLoS One 2013; 8:e65222. [PMID: 23750246 PMCID: PMC3672087 DOI: 10.1371/journal.pone.0065222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/23/2013] [Indexed: 01/01/2023] Open
Abstract
Adenoviruses with deletions of viral genes have been extensively studied as potential cancer therapeutics. Although a high degree of cancer selectivity has been demonstrated with these conditionally replicating adenoviruses, low levels of virus replication can be detected in normal cells. Furthermore, these mutations were also found to reduce the activity of the replicating viruses in certain cancer cells. Recent studies have shown that co-administration of chemotherapeutic drugs may increase the activity of these viruses without affecting their specificity. We constructed an adenovirus with deletions of both the E1b and the VA-RNA genes and found that replication of this virus was selective for human hepatocellular carcinoma (HCC) cell lines when compared to normal cell lines. Furthermore, we show that 2-aminopurine (2′AP) treatment selectively enhanced virus replication and virus-mediated death of HCC cells. 2′AP did not compensate for the loss of VA-RNA activities, but rather the loss of an E1b-55K activity, such as the DNA damage response, suggesting that co-administration of 2′AP derivatives that block host DNA damage response, may increase the oncolytic activity of AdΔE1bΔVA without reducing its selectivity for HCC cells.
Collapse
Affiliation(s)
- David Sharon
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Schümann
- Institut für Virologie, Klinikum der Philipps-Universität Marburg, Marburg, Germany
| | - Sheena MacLeod
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Robyn McPherson
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Andrew Shaw
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Mary M. Hitt
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
4
|
Patel RK, Burnham AJ, Gebhart NN, Sokoloski KJ, Hardy RW. Role for subgenomic mRNA in host translation inhibition during Sindbis virus infection of mammalian cells. Virology 2013; 441:171-81. [PMID: 23601784 DOI: 10.1016/j.virol.2013.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/15/2013] [Accepted: 03/24/2013] [Indexed: 01/25/2023]
Abstract
Sindbis virus subgenomic mRNA is efficiently translated in infected vertebrate cells whereas host translation is shut-off. Deletions in the 5'UTR of the subgenomic mRNA were made to investigate its role in viral gene expression. Deletion of nucleotides 1-10 and 11-20 caused a small plaque phenotype, reduced levels of subgenomic mRNA and structural proteins, and increased expression of nonstructural proteins. Whereas deletion 1-10 virus inhibited cellular protein synthesis, deletion 11-20 did so inefficiently. A large plaque revertant of deletion 11-20, possessing a duplication of the subgenomic promoter region, produced subgenomic mRNA at WT levels and restored inhibition of host protein synthesis. Further analysis of the mutant and revertant 5'UTR sequences showed the ability to shut-off host cell translation correlated with the efficiency of translation of subgenomic mRNA. We propose that the translational efficiency and quantity of the subgenomic mRNA play a role in inhibition of host cell translation.
Collapse
Affiliation(s)
- Rohini K Patel
- Department of Biology, Indiana University, Simon Hall, 212 South Hawthorne Drive, Bloomington, IN 47405-7003, USA
| | | | | | | | | |
Collapse
|
5
|
Amino acid exchanges in the putative nuclear export signal of adenovirus type 5 L4-100K severely reduce viral progeny due to effects on hexon biogenesis. J Virol 2012; 87:1893-8. [PMID: 23175361 DOI: 10.1128/jvi.02061-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The adenovirus type 5 nonstructural L4-100K protein is indispensable for efficient lytic infection. During the late phase, L4-100K promotes selective translation of viral late transcripts and mediates the trimerization of the major capsid protein hexon. In the present study, the role of a potential nuclear export signal in L4-100K was investigated. Intriguingly, amino acid substitutions in this sequence resulted in severely diminished progeny virus production, seemingly by precluding proper hexon biogenesis.
Collapse
|
6
|
Yángüez E, Rodriguez P, Goodfellow I, Nieto A. Influenza virus polymerase confers independence of the cellular cap-binding factor eIF4E for viral mRNA translation. Virology 2011; 422:297-307. [PMID: 22112850 DOI: 10.1016/j.virol.2011.10.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 06/30/2011] [Accepted: 10/28/2011] [Indexed: 11/25/2022]
Abstract
The influenza virus mRNAs are structurally similar to cellular mRNAs nevertheless; the virus promotes selective translation of viral mRNAs despite the inhibition of host cell protein synthesis. The infection proceeds normally upon functional impairment of eIF4E cap-binding protein, but requires functional eIF4A helicase and eIF4G factor. Here, we have studied whether the presence of cis elements in viral mRNAs or the action of viral proteins is responsible for this eIF4E-independence. The eIF4E protein is required for viral mRNA translation in vitro, indicating that cis-acting RNA sequences are not involved in this process. We also show that PB2 viral polymerase subunit interacts with the eIF4G protein. In addition, a chimeric mRNA containing viral UTR sequences transcribed by the viral polymerase out of the infection is successfully translated independently of an impaired eIF4E factor. These data support that the viral polymerase is responsible for the eIF4E independence of influenza virus mRNA translation.
Collapse
Affiliation(s)
- Emilio Yángüez
- Centro Nacional de Biotecnología, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
7
|
Surakasi VP, Nalini M, Kim Y. Host translational control of a polydnavirus, Cotesia plutellae bracovirus, by sequestering host eIF4A to prevent formation of a translation initiation complex. INSECT MOLECULAR BIOLOGY 2011; 20:609-618. [PMID: 21699595 DOI: 10.1111/j.1365-2583.2011.01091.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Host translational control is a viral strategy to exploit host cellular resources. Parasitization by some endoparasitoids containing polydnaviruses inhibits the synthesis of specific host proteins at post-transcriptional level. Two host translation inhibitory factors (HTIFs) have been proposed in Cotesia plutellae bracovirus (CpBV). Parasitization by C. plutellae inhibited storage protein 1 (SP1) synthesis of Plutella xylostella at post-transcriptional level. One HTIF, CpBV15β, inhibited the translation of SP1 mRNA in an in vitro translation assay using rabbit reticulocyte lysate, but did not inhibit its own mRNA. To further analyse the discrimination of target and nontarget mRNAs of the inhibitory effect of HTIF, 5' untranslated regions (UTRs) of SP1 and CpBV15β mRNA were reciprocally exchanged. In the presence of HTIFs, the chimeric CpBV15β mRNA that contained SP1 5' UTR was not translated, whereas the chimeric SP1 mRNA that contained CpBV15β 5' UTR was translated. There was a difference in the 5' UTR secondary structures between target (SP1) and nontarget (CpBV15α and CpBV15β) mRNAs in terms of thermal stability. Different mutant 5' UTRs of SP1 mRNA were prepared by point mutations to modify their secondary structures. The constructs containing 5' UTRs of high thermal stability in their secondary structures were inhibited by HTIF, but those of low thermal stability were not. Immunoprecipitation with CpBV15β antibody coprecipitated eIF4A, which would be required for unwinding the secondary structure of the 5' UTR. These results indicate that the viral HTIF discriminates between host mRNAs according to their dependency on eIF4A to form a functional initiation complex for translation.
Collapse
Affiliation(s)
- V P Surakasi
- Department of Bioresource Sciences, Andong National University, Andong, Korea
| | | | | |
Collapse
|
8
|
Manipulation of the host translation initiation complex eIF4F by DNA viruses. Biochem Soc Trans 2011; 38:1511-6. [PMID: 21118117 DOI: 10.1042/bst0381511] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the absence of their own translational machinery, all viruses must gain access to host cell ribosomes to synthesize viral proteins and replicate. Ribosome recruitment and scanning of capped host mRNAs is facilitated by the multisubunit eIF (eukaryotic initiation factor) 4F, which consists of a cap-binding protein, eIF4E and an RNA helicase, eIF4A, assembled on a large scaffolding protein, eIF4G. Although inactivated by many viruses to inhibit host translation, a growing number of DNA viruses are being found to employ diverse strategies to stimulate eIF4F activity in infected cells and maximize viral protein synthesis. These strategies include stimulation of cellular mTOR (mammalian target of rapamycin) signalling to inactivate 4E-BPs (eIF4E-binding proteins), a family of translational repressors that limit eIF4E availability and eIF4F complex formation, together with modulating the activity of the eIF4E kinase Mnk (mitogen-activated protein kinase signal-integrating kinase) in a variety of manners to regulate both host and viral mRNA translation. In some cases, specific viral proteins that mediate these signalling events have been identified, whereas others have been shown to interact with host translation initiation factors or complexes and modify their activity and/or subcellular localization. The present review outlines current understanding of the role of eIF4F in the life cycle of various DNA viruses and discusses its potential as a therapeutic target to suppress viral infection.
Collapse
|
9
|
Abstract
Infection of cultured cells with lytic animal viruses often results in the selective inhibition of host protein synthesis, whereas viral mRNA is efficiently translated under these circumstances. This phenomenon, known as "shut off," has been well described at the molecular level for some viruses, but there is not yet any direct or indirect evidence supporting the idea that it also should operate in animals infected with viruses. To address this issue, we constructed recombinant Sindbis virus (SV)-expressing reporter mRNA, the translation of which is sensitive or resistant to virus-induced shut off. As found in cultured cells, replication of SV in mouse brain was associated with a strong phosphorylation of eukaryotic initiation factor (eIF2) that prevented translation of reporter mRNA (luciferase and EGFP). Translation of these reporters was restored in vitro, in vivo, and ex vivo when a viral RNA structure, termed downstream hairpin loop, present in viral 26S mRNA, was placed at the 5' end of reporter mRNAs. By comparing the expression of shut off-sensitive and -resistant reporters, we unequivocally concluded that replication of SV in animal tissues is associated with a profound inhibition of nonviral mRNA translation. A strategy as simple as that followed here might be applicable to other viruses to evaluate their interference on host translation in infected animals.
Collapse
|
10
|
Uil TG, de Vrij J, Vellinga J, Rabelink MJWE, Cramer SJ, Chan OYA, Pugnali M, Magnusson M, Lindholm L, Boulanger P, Hoeben RC. A lentiviral vector-based adenovirus fiber-pseudotyping approach for expedited functional assessment of candidate retargeted fibers. J Gene Med 2010; 11:990-1004. [PMID: 19757488 DOI: 10.1002/jgm.1395] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many studies aimed at retargeting adenovirus (Ad) rationally focus on genetic modification of fiber, which is the primary receptor-binding protein of Ad. Retargeted fibers ultimately require functional validation in the viral context. METHODS Lentiviral vectors (LV) were used to express fiber variants in cells. Infections with a fiber gene-deleted Ad vector yielded fiber-pseudotyped viruses. An enzyme-linked immunosorbent assay and slot blot-based assays probed target binding-ability of retargeted fibers. Differential treatments with an alkylating agent prior to western blot analysis allowed for examination of intra- and extracellular redox states of fibers. RESULTS In the present study, LV-based fiber-pseudotyping of Ad is presented as an accelerated means to test new fibers. LV-mediated gene transfer yielded stable and uniform populations of fiber variant-expressing cells. These populations were found to effectively support fiber-pseudotyping of Ad. As a secondary objective of the study, we functionally assessed a chimeric fiber harboring a tumor antigen-directed single-chain antibody fragment (scFv). This fiber was shown to trimerize and achieve a degree of binding to its antigenic target. However, its capsid incorporation ability was impaired and, moreover, it was unable to confer a detectable level of target binding upon Ad. Importantly, subsequent analyses of this fiber revealed the improper folding of its scFv constituent. CONCLUSIONS LV-based fiber-pseudotyping was established as a convenient method for testing modified fibers for functionality within Ad particles. Furthermore, a new chimeric fiber was found to be inadequate for Ad retargeting. The folding difficulties encountered for this particular fiber might be generally inherent to the use (i.e. for genetic Ad capsid incorporation) of complex, disulfide bridge-containing natural ligands.
Collapse
Affiliation(s)
- Taco G Uil
- Leiden University Medical Center, Department of Molecular Cell Biology, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Roberts LO, Jopling CL, Jackson RJ, Willis AE. Viral strategies to subvert the mammalian translation machinery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:313-67. [PMID: 20374746 PMCID: PMC7102724 DOI: 10.1016/s1877-1173(09)90009-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Viruses do not carry their own protein biosynthesis machinery and the translation of viral proteins therefore requires that the virus usurps the machinery of the host cell. To allow optimal translation of viral proteins at the expense of cellular proteins, virus families have evolved a variety of methods to repress the host translation machinery, while allowing effective viral protein synthesis. Many viruses use noncanonical mechanisms that permit translation of their own RNAs under these conditions. Viruses have also developed mechanisms to evade host innate immune responses that would repress translation under conditions of viral infection, in particular PKR activation in response to double-stranded RNA (dsRNA). Importantly, the study of viral translation mechanisms has enormously enhanced our understanding of many aspects of the cellular protein biosynthesis pathway and its components. A number of unusual mechanisms of translation initiation that were first discovered in viruses have since been observed in cellular mRNAs, and it has become apparent that a diverse range of translation mechanisms operates in eukaryotes, allowing subtle regulation of this essential process.
Collapse
Affiliation(s)
- Lisa O Roberts
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | | | | |
Collapse
|
12
|
Barandoc KP, Kim Y. Identification of three host translation inhibitory factors encoded in Cotesia glomerata bracovirus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2009; 4:218-26. [DOI: 10.1016/j.cbd.2009.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 03/24/2009] [Accepted: 03/24/2009] [Indexed: 10/20/2022]
|
13
|
The adenovirus E1B 55-kilodalton and E4 open reading frame 6 proteins limit phosphorylation of eIF2alpha during the late phase of infection. J Virol 2009; 83:9970-82. [PMID: 19605483 DOI: 10.1128/jvi.01113-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During a productive infection, species C adenovirus reprograms the host cell to promote viral translation at the expense of cellular translation. The E1B 55-kilodalton (E1B-55K) and E4 open reading frame 6 (E4orf6) proteins are important in this control of gene expression. As part of a ubiquitin-protein ligase, these viral proteins stimulate viral mRNA export, inhibit cellular mRNA export, promote viral gene expression, and direct the degradation of certain host proteins. We report here that the E1B-55K and E4orf6 proteins limited phosphorylation of eIF2alpha and the activation of the eIF2alpha kinase PKR. Phospho-eIF2alpha levels were observed to rise and fall at least twice during infection. The E1B-55K and E4orf6 proteins prevented a third increase at late times of infection. PKR appeared to phosphorylate eIF2alpha only in the absence of E1B-55K/E4orf6 function. PKR activation and eIF2alpha phosphorylation was unrelated to the cytoplasmic levels of the adenovirus inhibitor of PKR, VA-I RNA. Nonetheless, expression of a PKR inhibitor, the reovirus double-stranded RNA-binding protein sigma 3, prevented PKR activation and eIF2alpha phosphorylation. The sigma 3 protein largely corrected the defect in viral late protein synthesis associated with the E1B-55K and E4orf6 mutant viruses without affecting cytoplasmic levels of the late viral mRNA. The ubiquitin-protein ligase activity associated with the E1B-55K/E4orf6 complex was necessary to prevent activation of PKR and phosphorylation of eIF2alpha. These findings reveal a new contribution of the E1B-55K/E4orf6 complex to viral late protein synthesis and the existence of multiple layers of regulation imposed on eIF2alpha phosphorylation and PKR activation in adenovirus-infected cells.
Collapse
|
14
|
Mouse adenovirus type 1-induced breakdown of the blood-brain barrier. J Virol 2009; 83:9398-410. [PMID: 19570856 DOI: 10.1128/jvi.00954-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infection with mouse adenovirus type 1 (MAV-1) results in fatal acute encephalomyelitis in susceptible mouse strains via infection of brain endothelial cells. Wild-type (wt) MAV-1 causes less brain inflammation than an early region 3 (E3) null virus in C57BL/6 mice. A mouse brain microvascular endothelial cell line infected with wt MAV-1 had higher expression of mRNAs for the proinflammatory chemokines CCL2 and CCL5 than mock- and E3 null virus-infected cells. Primary mouse brain endothelial cells infected with wt virus had elevated levels of CCL2 compared to mock- or E3 null virus-infected cells. Infection of C57BL/6 mice with wt MAV-1 or the E3 null virus caused a dose-dependent breakdown of the blood-brain barrier, primarily due to direct effects of virus infection rather than inflammation. The tight junction proteins claudin-5 and occludin showed reduced surface expression on primary mouse brain endothelial cells following infection with either wt MAV-1 or the E3 null virus. mRNAs and protein for claudin-5, occludin, and zona occludens 2 were also reduced in infected cells. MAV-1 infection caused a loss of transendothelial electrical resistance in primary mouse brain endothelial cells that was not dependent on E3 or on MAV-1-induced CCL2 expression. Taken together, these results demonstrate that MAV-1 infection caused breakdown of the blood-brain barrier accompanied by decreased surface expression of tight junction proteins. Furthermore, while the MAV-1-induced pathogenesis and inflammation were dependent on E3, MAV-1-induced breakdown of the blood-brain barrier and alteration of endothelial cell function were not dependent on E3 or CCL2.
Collapse
|
15
|
Transient expression of a polydnaviral gene, CpBV15β, induces immune and developmental alterations of the diamondback moth, Plutella xylostella. J Invertebr Pathol 2009; 100:22-8. [DOI: 10.1016/j.jip.2008.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/02/2008] [Accepted: 09/16/2008] [Indexed: 11/20/2022]
|
16
|
Inoue Y, Tsukiyama-Kohara K, Yoneda M, Sato H, Kai C. Inhibition of host protein synthesis in B95a cells infected with the HL strain of measles virus. Comp Immunol Microbiol Infect Dis 2009; 32:29-41. [DOI: 10.1016/j.cimid.2008.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2008] [Indexed: 11/27/2022]
|
17
|
Shimazu T, Degenhardt K, Nur-E-Kamal A, Zhang J, Yoshida T, Zhang Y, Mathew R, White E, Inouye M. NBK/BIK antagonizes MCL-1 and BCL-XL and activates BAK-mediated apoptosis in response to protein synthesis inhibition. Genes Dev 2007; 21:929-41. [PMID: 17403773 PMCID: PMC1847711 DOI: 10.1101/gad.1522007] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ribonucleases, antibiotics, bacterial toxins, and viruses inhibit protein synthesis, which results in apoptosis in mammalian cells. How the BCL-2 family of proteins regulates apoptosis in response to the shutoff of protein synthesis is not known. Here we demonstrate that an Escherichia coli toxin, MazF, inhibited protein synthesis by cleavage of cellular mRNA and induced apoptosis in mammalian cells. MazF-induced apoptosis required proapoptotic BAK and its upstream regulator, the proapoptotic BH3-only protein NBK/BIK, but not BIM, PUMA, or NOXA. Interestingly, in response to MazF induction, NBK/BIK activated BAK by displacing it from anti-apoptotic proteins MCL-1 and BCL-X(L) that sequester BAK. Furthermore, NBK/BIK- or BAK-deficient cells were resistant to cell death induced by pharmacologic inhibition of translation and by virus-mediated shutoff of protein synthesis. Thus, the BH3-only protein NBK/BIK is the apical regulator of a BAK-dependent apoptotic pathway in response to shutoff of protein synthesis that functions to displace BAK from sequestration by MCL1 and BCL-X(L). Although NBK/BIK is dispensable for development, it is the BH3-only protein targeted for inactivation by viruses, suggesting that it plays a role in pathogen/toxin response through apoptosis activation.
Collapse
Affiliation(s)
- Tsutomu Shimazu
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Kurt Degenhardt
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Alam Nur-E-Kamal
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Junjie Zhang
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Takeshi Yoshida
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Yonglong Zhang
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Robin Mathew
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Eileen White
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, USA
- Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
- E-MAIL ; FAX (732) 235-5759
| | - Masayori Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
- Corresponding authors.E-MAIL ; FAX (732) 235-4559
| |
Collapse
|
18
|
Kim Y. Identification of host translation inhibitory factor of Campoletis sonorensis ichnovirus on the tobacco budworm, Heliothis virescens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2005; 59:230-44. [PMID: 16034985 DOI: 10.1002/arch.20074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Parasitization of a wasp, Campoletis sonorensis, against the larvae of Heliothis virescens depresses synthesis of specific host proteins related to growth and immunity. It has been suggested that the inhibition of host gene expression is targeted at a posttranscriptional level. This study aimed to verify the identity of host translation inhibitory factor (HTIF) derived from wasp parasitization. To identify HTIF, the proteins in the parasitized host were fractionated using different protein purification methods, and each fraction's HTIF activity was assessed. In the course of the protein purification steps, HTIF activity was highly correlated with the fractions containing VHv 1.4 protein, which has a conserved cysteine-motif and is encoded in C. sonorensis ichnovirus (CsIV). Purified VHv 1.4 protein using an immunoaffinity column exhibited a significant HTIF effect, while the heat-inactivated VHv 1.4 did not. Both recombinant VHv 1.4 and VHv 1.1 (another cys-motif protein encoded in CsIV) proteins were synthesized in Sf 9 cells through a baculovirus expression system. The purified recombinant VHv 1.4 and VHv 1.1 exhibited significant HTIF activities in a nanomolar range. However, VHv1.4 protein showed about four times higher HTIF activity than did VHv 1.1 protein. Both HTIFs acted directly on translation machinery because they inhibited a cell-free in vitro translation system using rabbit reticulocyte lysate. Both HTIFs are likely to discriminate specific target mRNAs because they inhibited translation of RNA extracts from the Tn 368 cell line, but not from Sf 9 cells. In addition, they inhibited translation of RNAs from fat body, hemocytes, and testis, but not from epidermis, gut, labial gland, and nerve tissues of H. virescens. These results indicate that both cys-motif proteins of VHv 1.4 and VHv 1.1 play a role as HTIF in C. sonorensis parasitization.
Collapse
Affiliation(s)
- Yonggyun Kim
- School of Bioresource Sciences, College of Natural Sciences, Andong National University, Andong, Korea.
| |
Collapse
|
19
|
Xi Q, Cuesta R, Schneider RJ. Tethering of eIF4G to adenoviral mRNAs by viral 100k protein drives ribosome shunting. Genes Dev 2004; 18:1997-2009. [PMID: 15314025 PMCID: PMC514180 DOI: 10.1101/gad.1212504] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although most mRNAs initiate translation by 5' ribosome scanning, some small fraction of mammalian and viral mRNAs utilize either of two alternate mechanisms, known as internal ribosome entry and ribosome shunting. Ribosome shunting is a poorly understood form of initiation in which 40S ribosome subunits are loaded onto mRNA through interactions with the m7GTP cap, but then bypass large segments of the mRNA as directed by cis-acting RNA shunting elements and trans-acting protein factors. Here, we describe the molecular mechanism by which ribosome shunting occurs with high efficiency on adenovirus late mRNAs. We show that the viral 100k protein possesses a selective binding element for the 5' noncoding region (5'NCR) of viral late mRNAs (known as the tripartite leader), forms a complex with initiation factor eIF4G and poly(A)-binding protein (PABP), and strongly and selectively enhances the level of both factors and 40S ribosome subunits on viral mRNAs in polysomes. Mutational and biochemical studies demonstrate that the ability of 100k protein to bind both the tripartite leader and eIF4G are critical to promote a high level of ribosome shunting. A molecular mechanism for ribosome shunting is described by which enhanced binding of eIF4G and possibly PABP with 100k protein, and simultaneous interaction with the tripartite leader 5'NCR, drives 40S ribosome recruitment and initiation on mRNAs.
Collapse
Affiliation(s)
- Qiaoran Xi
- Department of Microbiology, New York University School of Medicine New York, New York 10016, USA
| | | | | |
Collapse
|
20
|
Cuesta R, Xi Q, Schneider RJ. Structural basis for competitive inhibition of eIF4G-Mnk1 interaction by the adenovirus 100-kilodalton protein. J Virol 2004; 78:7707-16. [PMID: 15220445 PMCID: PMC434077 DOI: 10.1128/jvi.78.14.7707-7716.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation of most cellular mRNAs involves cap binding by the translation initiation complex. Among this complex of proteins are cap-binding protein eIF4E and the eIF4E kinase Mnk1. Cap-dependent mRNA translation generally correlates with Mnk1 phosphorylation of eIF4E when both are bound to eIF4G. During the late phase of adenovirus (Ad) infection translation of cellular mRNA is inhibited, which correlates with displacement of Mnk1 from eIF4G by the viral 100-kDa (100K) protein and dephosphorylation of eIF4E. Here we describe the molecular mechanism for 100K protein displacement of Mnk1 from eIF4G and elucidate a structural basis for eIF4G interaction with Mnk1 and 100K proteins and Ad inhibition of cellular protein synthesis. The eIF4G-binding site is located in an N-terminal 66-amino-acid peptide of 100K which is sufficient to bind eIF4G, displace Mnk1, block eIF4E phosphorylation, and inhibit eIF4F (cap)-dependent cellular mRNA translation. Ad 100K and Mnk1 proteins possess a common eIF4G-binding motif, but 100K protein binds more strongly to eIF4G than does Mnk1. Unlike Mnk1, for which binding to eIF4G is RNA dependent, competitive binding by 100K protein is RNA independent. These data support a model whereby 100K protein blocks cellular protein synthesis by coopting eIF4G and cap-initiation complexes regardless of their association with mRNA and displacing or blocking binding by Mnk1, which occurs only on preassembled complexes, resulting in dephosphorylation of eIF4E.
Collapse
Affiliation(s)
- Rafael Cuesta
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
21
|
Schlatter S, Senn C, Fussenegger M. Modulation of translation-initiation in CHO-K1 cells by rapamycin-induced heterodimerization of engineered eIF4G fusion proteins. Biotechnol Bioeng 2003; 83:210-25. [PMID: 12768627 DOI: 10.1002/bit.10662] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Translation-initiation is a predominant checkpoint in mammalian cells which controls protein synthesis and fine-tunes the flow of information from gene to protein. In eukaryotes, translation-initiation is typically initiated at a 7-methyl-guanylic acid cap posttranscriptionally linked to the 5' end of mRNAs. Alternative cap-independent translation-initiation involves 5' untranslated regions (UTR) known as internal ribosome entry sites, which adopt a particular secondary structure. Translation-initiating ribosome assembly at cap or IRES elements is mediated by a multiprotein complex of which the initiation factor 4F (eIF4F) consisting of eIF4A (helicase), eIF4E (cap-binding protein), and eIF4G is a major constituent. eIF4G is a key target of picornaviral protease 2A, which cleaves this initiation factor into eIF4G(Delta) and (Delta)eIF4G to redirect the cellular translation machinery exclusively to its own IRES-containing transcripts. We have designed a novel translation control system (TCS) for conditional as well as adjustable translation of cap- and IRES-dependent transgene mRNAs in mammalian cells. eIF4G(Delta) and (Delta)eIF4G were fused C- and N-terminally to the FK506-binding protein (FKBP) and the FKBP-rapamycin-binding domain (FRB) of the human FKBP-rapamycin-associated protein (FRAP), respectively. Rapamycin-induced heterodimerization of eIF4G(Delta)-FKBP and FRB-(Delta)eIF4G fusion proteins reconstituted a functional chimeric elongation factor 4G in a dose-dependent manner. Rigorous quantitative expression analysis of cap- and IRES-dependent SEAP- (human placental secreted alkaline phosphatase) and luc- (Photinus pyralis luciferase) encoding reporter constructs confirmed adjustable translation control and revealed increased production of desired proteins in response to dimerization-induced heterologous eIF4G in Chinese hamster ovary (CHO-K1) cells.
Collapse
Affiliation(s)
- Stefan Schlatter
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
22
|
Cuesta R, Xi Q, Schneider RJ. Preferential translation of adenovirus mRNAs in infected cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:259-67. [PMID: 12762027 DOI: 10.1101/sqb.2001.66.259] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- R Cuesta
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
23
|
Flint SJ, Gonzalez RA. Regulation of mRNA production by the adenoviral E1B 55-kDa and E4 Orf6 proteins. Curr Top Microbiol Immunol 2003; 272:287-330. [PMID: 12747554 DOI: 10.1007/978-3-662-05597-7_10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The E1B 55-kDa and E4 Orf6 proteins of human subgroup C adenoviruses both counter host cell defenses mediated by the cellular p53 protein and regulate viral late gene expression. A complex containing the two proteins has been implicated in induction of selective export of viral late mRNAs from the nucleus to the cytoplasm, with concomitant inhibition of export of the majority of newly synthesized cellular mRNAs. The molecular mechanisms by which these viral proteins subvert cellular pathways of nuclear export are not yet clear. Here, we review recent efforts to identify molecular and biochemical functions of the E1B 55-kDa and E4 Orf6 proteins required for regulation of mRNA export, the several difficulties and discrepancies that have been encountered in studies of these viral proteins, and evidence indicating that the reorganization of the infected cell nucleus and production of viral late mRNA at specific intra-nuclear sites are important determinants of selective mRNA export in infected cells. In our view, it is not yet possible to propose a coherent molecular model for regulation of mRNA export by the E1B 55-kDa and E4 Orf6 proteins. However, it should now be possible to address specific questions about the roles of potentially relevant properties of these viral proteins.
Collapse
Affiliation(s)
- S J Flint
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08844, USA.
| | | |
Collapse
|
24
|
Harada JN, Shevchenko A, Shevchenko A, Pallas DC, Berk AJ. Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery. J Virol 2002; 76:9194-206. [PMID: 12186903 PMCID: PMC136464 DOI: 10.1128/jvi.76.18.9194-9206.2002] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2002] [Accepted: 06/12/2002] [Indexed: 12/26/2022] Open
Abstract
During the early phase of infection, the E1B-55K protein of adenovirus type 5 (Ad5) counters the E1A-induced stabilization of p53, whereas in the late phase, E1B-55K modulates the preferential nucleocytoplasmic transport and translation of the late viral mRNAs. The mechanism(s) by which E1B-55K performs these functions has not yet been clearly elucidated. In this study, we have taken a proteomics-based approach to identify and characterize novel E1B-55K-associated proteins. A multiprotein E1B-55K-containing complex was immunopurified from Ad5-infected HeLa cells and found to contain E4-orf6, as well as several cellular factors previously implicated in the ubiquitin-proteasome-mediated destruction of proteins, including Cullin-5, Rbx1/ROC1/Hrt1, and Elongins B and C. We further demonstrate that a complex containing these as well as other proteins is capable of directing the polyubiquitination of p53 in vitro. These ubiquitin ligase components were found in a high-molecular-mass complex of 800 to 900 kDa. We propose that these newly identified binding partners (Cullin-5, Elongins B and C, and Rbx1) complex with E1B-55K and E4-orf6 during Ad infection to form part of an E3 ubiquitin ligase that targets specific protein substrates for degradation. We further suggest that E1B-55K functions as the principal substrate recognition component of this SCF-type ubiquitin ligase, whereas E4-orf6 may serve to nucleate the assembly of the complex. Lastly, we describe the identification and characterization of two novel E1B-55K interacting factors, importin-alpha 1 and pp32, that may also participate in the functions previously ascribed to E1B-55K and E4-orf6.
Collapse
Affiliation(s)
- Josephine N Harada
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095-1570, USA
| | | | | | | | | |
Collapse
|
25
|
Kato J, Kato N, Yoshida H, Ono-Nita SK, Shiratori Y, Omata M. Hepatitis C virus NS4A and NS4B proteins suppress translation in vivo. J Med Virol 2002; 66:187-99. [PMID: 11782927 DOI: 10.1002/jmv.2129] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many viruses can inhibit protein synthesis in their host cells by targeting translation ("translational shutoff"). There are few reports on the effects of hepatitis C virus (HCV) infection on protein synthesis, because of the lack of a reproducible tissue culture system for HCV. In this study, the influence of seven HCV proteins (core, NS2, NS3, NS4A, NS4B, NS5A, NS5B) on protein synthesis was examined using a reporter assay. In addition, it was determined whether the HCV proteins inhibit protein synthesis via transcription or translation using an RNase protection assay and the effect of HCV proteins on translation from the HCV internal ribosome entry site (IRES) was also examined using a bicistronic reporter. Of the seven HCV proteins, NS4A and NS4B proteins inhibited cellular protein synthesis by targeting the process of translation. They also inhibited translation from the HCV IRES. Moreover, NS4A protein, induced under the control of doxycycline, inhibited the proliferation of HeLa cells. In conclusion, HCV NS4A and NS4B proteins have an effect of translational inhibition. This novel function may be involved in HCV infection and help its survival in host cells.
Collapse
Affiliation(s)
- Jun Kato
- Department of Gastroenterology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Ryabova LA, Pooggin MM, Hohn T. Viral strategies of translation initiation: ribosomal shunt and reinitiation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:1-39. [PMID: 12206450 PMCID: PMC7133299 DOI: 10.1016/s0079-6603(02)72066-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to the compactness of their genomes, viruses are well suited to the study of basic expression mechanisms, including details of transcription, RNA processing, transport, and translation. In fact, most basic principles of these processes were first described in viral systems. Furthermore, viruses seem not to respect basic rules, and cases of "abnormal" expression strategies are quiet common, although such strategies are usually also finally observed in rare cases of cellular gene expression. Concerning translation, viruses most often violate Kozak's original rule that eukaryotic translation starts from a capped monocistronic mRNA and involves linear scanning to find the first suitable start codon. Thus, many viral cases have been described where translation is initiated from noncapped RNA, using an internal ribosome entry site. This review centers on other viral translation strategies, namely shunting and virus-controlled reinitiation as first described in plant pararetroviruses (Caulimoviridae). In shunting, major parts of a complex leader are bypassed and not melted by scanning ribosomes. In the Caulimoviridae, this process is coupled to reinitiation after translation of a small open reading frame; in other cases, it is possibly initiated upon pausing of the scanning ribosome. Most of the Caulimoviridae produce polycistronic mRNAs. Two basic mechanisms are used for their translation. Alternative translation of the downstream open reading frames in the bacilliform Caulimoviridae occurs by a leaky scanning mechanism, and reinitiation of polycistronic translation in many of the icosahedral Caulimoviridae is enabled by the action of a viral transactivator. Both of these processes are discussed here in detail and compared to related processes in other viruses and cells.
Collapse
|
27
|
Affiliation(s)
- T Dobner
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | |
Collapse
|
28
|
Vivinus S, Baulande S, van Zanten M, Campbell F, Topley P, Ellis JH, Dessen P, Coste H. An element within the 5' untranslated region of human Hsp70 mRNA which acts as a general enhancer of mRNA translation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1908-17. [PMID: 11277913 DOI: 10.1046/j.1432-1327.2001.02064.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The untranslated regions of mRNAs encoding heat-shock proteins have been reported to contain elements important to the post-transcriptional regulation of these key components of the stress response. In this report we describe an element from the 5'UTR of human Hsp70 mRNA that increases the efficiency of mRNA translation. Cloning of this region upstream of the coding sequence of two different reporter genes (firefly luciferase and chloramphenicol acetyltransferase) increases expression of the reporter under normal cell culture conditions by up to an order of magnitude. This effect was observed in three different promoter contexts (HSP, SV40 and CMV) and in six cell lines. The increase in protein production is not accompanied by any alteration in mRNA levels, suggesting that the element facilitates translation. 5' or 3' truncated sequences are ineffective in enhancing reporter expression, suggesting that the activity arises from the secondary structure of the element, rather than from some smaller defined motif. Computer analysis of this region revealed that it is able to form stable secondary structures (DeltaG approximately -292.6 kJ x mol(-1)). The Hsp70 element does not seem to act as an internal ribosome entry site. Incorporation of the sequence into plasmids used for DNA vaccination produces increased antibody responses, confirming that the sequence is functional in primary cells. These data suggest that the 5'UTR of human Hsp70 mRNA plays an important role in determining Hsp70 expression levels, and that it contains an element of general utility in enhancing recombinant protein expression systems.
Collapse
Affiliation(s)
- S Vivinus
- Laboratoire GlaxoWellcome, Les Ulis, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Léonard S, Plante D, Wittmann S, Daigneault N, Fortin MG, Laliberté JF. Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J Virol 2000; 74:7730-7. [PMID: 10933678 PMCID: PMC112301 DOI: 10.1128/jvi.74.17.7730-7737.2000] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction between the viral protein linked to the genome (VPg) of turnip mosaic potyvirus (TuMV) and the translation eukaryotic initiation factor eIF(iso)4E of Arabidopsis thaliana has previously been reported. eIF(iso)4E binds the cap structure (m(7)GpppN, where N is any nucleotide) of mRNAs and has an important role in the regulation in the initiation of translation. In the present study, it was shown that not only did VPg bind eIF(iso)4E but it also interacted with the eIF4E isomer of A. thaliana as well as with eIF(iso)4E of Triticum aestivum (wheat). The interaction domain on VPg was mapped to a stretch of 35 amino acids, and substitution of an aspartic acid residue found within this region completely abolished the interaction. The cap analogue m(7)GTP, but not GTP, inhibited VPg-eIF(iso)4E complex formation, suggesting that VPg and cellular mRNAs compete for eIF(iso)4E binding. The biological significance of this interaction was investigated. Brassica perviridis plants were infected with a TuMV infectious cDNA (p35Tunos) and p35TuD77N, a mutant which contained the aspartic acid substitution in the VPg domain that abolished the interaction with eIF(iso)4E. After 20 days, plants bombarded with p35Tunos showed viral symptoms, while plants bombarded with p35TuD77N remained symptomless. These results suggest that VPg-eIF(iso)4E interaction is a critical element for virus production.
Collapse
Affiliation(s)
- S Léonard
- Centre de Microbiologie et Biotechnologie, INRS-Institut Armand-Frappier, Ville de Laval, Québec, Canada H7V 1B7
| | | | | | | | | | | |
Collapse
|
30
|
Cuesta R, Xi Q, Schneider RJ. Adenovirus-specific translation by displacement of kinase Mnk1 from cap-initiation complex eIF4F. EMBO J 2000; 19:3465-74. [PMID: 10880459 PMCID: PMC313943 DOI: 10.1093/emboj/19.13.3465] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Translation of cellular mRNAs involves formation of a cap-binding translation initiation complex known as eIF4F, containing phosphorylated cap-binding protein eIF4E, eIF4E kinase Mnk1, eIF4A, poly(A)-binding protein and eIF4G. Adenovirus is shown to prevent cellular translation by displacing Mnk1 from eIF4F, thereby blocking phosphorylation of eIF4E. Over expression of an eIF4E mutant that cannot be phosphorylated by Mnk1 impairs translation of cellular but not viral late mRNAs. Adenovirus 100k protein is shown to bind the C-terminus of eIF4G in vivo and in vitro, the same region bound by Mnk1. In vivo, 100k protein displaces Mnk1 from eIF4G during adenovirus infection, or in transfected cells. Purified 100k protein also evicts Mnk1 from isolated eIF4F complexes in vitro. A mutant adenovirus with a temperature-sensitive 100k protein that cannot inhibit cellular protein synthesis at restrictive temperature no longer blocks Mnk1 binding to eIF4G, or phosphorylation of eIF4E. We describe a mechanism whereby adenovirus selectively inhibits the translation of cellular but not viral mRNAs by displacement of Mnk1 from eIF4G and inhibition of eIF4E phosphorylation.
Collapse
Affiliation(s)
- R Cuesta
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
31
|
Abstract
As obligate intracellular parasites, viruses rely exclusively on the translational machinery of the host cell for the synthesis of viral proteins. This relationship has imposed numerous challenges on both the infecting virus and the host cell. Importantly, viruses must compete with the endogenous transcripts of the host cell for the translation of viral mRNA. Eukaryotic viruses have thus evolved diverse mechanisms to ensure translational efficiency of viral mRNA above and beyond that of cellular mRNA. Mechanisms that facilitate the efficient and selective translation of viral mRNA may be inherent in the structure of the viral nucleic acid itself and can involve the recruitment and/or modification of specific host factors. These processes serve to redirect the translation apparatus to favor viral transcripts, and they often come at the expense of the host cell. Accordingly, eukaryotic cells have developed antiviral countermeasures to target the translational machinery and disrupt protein synthesis during the course of virus infection. Not to be outdone, many viruses have answered these countermeasures with their own mechanisms to disrupt cellular antiviral pathways, thereby ensuring the uncompromised translation of virion proteins. Here we review the varied and complex translational programs employed by eukaryotic viruses. We discuss how these translational strategies have been incorporated into the virus life cycle and examine how such programming contributes to the pathogenesis of the host cell.
Collapse
Affiliation(s)
- M Gale
- University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | |
Collapse
|
32
|
Yueh A, Schneider RJ. Translation by ribosome shunting on adenovirus and hsp70 mRNAs facilitated by complementarity to 18S rRNA. Genes Dev 2000; 14:414-21. [PMID: 10691734 PMCID: PMC316380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Translation initiation on eukaryotic mRNAs involves 40S ribosome association with mRNA caps (m(7)GpppN), mediated by initiation factor eIF4F. 40S eukaryotic ribosomes and initiation factors undergo 5' scanning to the initiation codon, with no known role for complementarity between eukaryotic 18S rRNA and the 5' noncoding region of mRNAs. We demonstrate that the 5' noncoding region of human adenovirus late mRNAs, known as the tripartite leader, utilizes a striking complementarity to 18S rRNA to facilitate a novel form of translation initiation referred to as ribosome shunting, in which 40S ribosomes bind the cap and bypass large segments of the mRNA to reach the initiation codon. Related elements are also shown to promote ribosome shunting in adenovirus IVa2 intermediate phase mRNA during virus infection and in human heat shock protein 70 (hsp70) mRNA for selective translation during heat shock. The importance of mRNA complementarity to 18S rRNA suggests that ribosome shunting may involve either specific RNA structural features or a prokaryotic-like interaction between mRNA and rRNA.
Collapse
Affiliation(s)
- A Yueh
- Department of Microbiology, New York University School of Medicine, New York, New York 10016 USA
| | | |
Collapse
|
33
|
Yueh A, Schneider RJ. Translation by ribosome shunting on adenovirus and hsp70 mRNAs facilitated by complementarity to 18S rRNA. Genes Dev 2000. [DOI: 10.1101/gad.14.4.414] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Translation initiation on eukaryotic mRNAs involves 40S ribosome association with mRNA caps (m7GpppN), mediated by initiation factor eIF4F. 40S eukaryotic ribosomes and initiation factors undergo 5′ scanning to the initiation codon, with no known role for complementarity between eukaryotic 18S rRNA and the 5′ noncoding region of mRNAs. We demonstrate that the 5′ noncoding region of human adenovirus late mRNAs, known as the tripartite leader, utilizes a striking complementarity to 18S rRNA to facilitate a novel form of translation initiation referred to as ribosome shunting, in which 40S ribosomes bind the cap and bypass large segments of the mRNA to reach the initiation codon. Related elements are also shown to promote ribosome shunting in adenovirus IVa2 intermediate phase mRNA during virus infection and in human heat shock protein 70 (hsp70) mRNA for selective translation during heat shock. The importance of mRNA complementarity to 18S rRNA suggests that ribosome shunting may involve either specific RNA structural features or a prokaryotic-like interaction between mRNA and rRNA.
Collapse
|
34
|
Elgadi MM, Smiley JR. Picornavirus internal ribosome entry site elements target RNA cleavage events induced by the herpes simplex virus virion host shutoff protein. J Virol 1999; 73:9222-31. [PMID: 10516030 PMCID: PMC112956 DOI: 10.1128/jvi.73.11.9222-9231.1999] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus (HSV) virion host shutoff (vhs) protein (UL41 gene product) is a component of the HSV virion tegument that triggers shutoff of host protein synthesis and accelerated mRNA degradation during the early stages of HSV infection. vhs displays weak amino acid sequence similarity to the fen-1 family of nucleases and suffices to induce accelerated RNA turnover through endoribonucleolytic cleavage events when it is expressed as the only HSV protein in a rabbit reticulocyte in vitro translation system. Although vhs selectively targets mRNAs in vivo, the basis for this selectivity remains obscure, since in vitro activity is not influenced by the presence of a 5' cap or 3' poly(A) tail. Here we show that vhs activity is greatly altered by placing an internal ribosome entry site (IRES) from encephalomyocarditis virus or poliovirus in the RNA substrate. Transcripts bearing the IRES were preferentially cleaved by the vhs-dependent endoribonuclease at multiple sites clustered in a narrow zone located immediately downstream of the element in a reaction that did not require ribosomes. Targeting was observed when the IRES was located at the 5' end or placed at internal sites in the substrate, indicating that it is independent of position or sequence context. These data indicate that the vhs-dependent nuclease can be selectively targeted by specific cis-acting elements in the RNA substrate, possibly through secondary structure or a component of the translational machinery.
Collapse
Affiliation(s)
- M M Elgadi
- Department of Biology, McMaster University, Hamilton, Ontario L8N 3Z5
| | | |
Collapse
|
35
|
Abstract
The late phase of adenovirus infection is characterized not only by the synthesis of late proteins and the assembly of new virions, but also by the inhibition of early gene expression and host cell translation. Previous work has demonstrated that both of these inhibitory effects depend upon expression from the major late transcription unit (MLTU), controlled by the major late promoter (MLP). Furthermore, the repression of early gene expression has been shown to be mediated in trans, suggesting a role for one or more MLTU-encoded soluble factor(s). A possible candidate for such a factor is the L4-encoded 33K gene product, a protein conserved throughout the Mastadenoviridae, but of no known function. To test the role of this protein in viral infection, a stop codon was placed at the 20th position of the 33K ORF. Viable virus with genomes containing the mutation were recovered in an overlap recombination assay. Phenotypic analysis revealed that the mutant virus had a significant deficiency in both kinetics of replication and final yield, as compared to the wild-type virus. Detailed analysis of infected cells showed that there was no detectable change in the regulation of expression of several early genes and the pIX gene. This suggests either that 33K is not involved in this late phase phenomenon or that this function is replaceable by another late protein(s). Late protein synthesis and accumulation were similar to those in wild-type-infected cells. However, the reduced yield of infectious mutant virus could be accounted for by a marked deficiency in the accumulation of intermediate particles and completed capsids, suggesting a role for 33K in the process of assembly. In addition there was a small but reproducible deficiency in the shutoff of host cell translation. These results show that the 33K protein plays an important, although apparently not essential, function in the late phase of virus infection.
Collapse
MESH Headings
- Capsid/metabolism
- Codon, Terminator/genetics
- DNA, Viral/analysis
- DNA, Viral/genetics
- Down-Regulation
- Gene Expression Regulation, Viral
- Genes, Viral/genetics
- Genes, Viral/physiology
- Humans
- Mastadenovirus/genetics
- Mastadenovirus/growth & development
- Mastadenovirus/metabolism
- Mastadenovirus/pathogenicity
- Molecular Weight
- Mutation
- Open Reading Frames/genetics
- Phenotype
- Protein Biosynthesis
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Viral/analysis
- RNA, Viral/genetics
- Time Factors
- Tumor Cells, Cultured
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/physiology
- Virus Assembly
- Virus Replication
Collapse
Affiliation(s)
- S P Fessler
- Department of Microbiology, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
36
|
Harada JN, Berk AJ. p53-Independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J Virol 1999; 73:5333-44. [PMID: 10364280 PMCID: PMC112589 DOI: 10.1128/jvi.73.7.5333-5344.1999] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus type 5 mutant dl1520 was engineered previously to be completely defective for E1B-55K functions. Recently, this mutant (also known as ONYX-015) has been suggested to replicate preferentially in p53(-) and some p53(+) tumor cell lines but to be attenuated in primary cultured cells (C. Heise, A. Sampson-Johannes, A. Williams, F. McCormick, D. D. F. Hoff, and D. H. Kirn, Nat. Med. 3:639-645, 1997). It has been suggested that dl1520 might be used as a "magic bullet" that could selectively lyse tumor cells without harm to normal tissues. However, we report here that dl1520 replication is independent of p53 genotype and occurs efficiently in some primary cultured human cells, indicating that the mutant virus does not possess a tumor selectivity. Although it was not the sole host range determinant, p53 function did reduce dl1520 replication when analyzed in a cell line expressing temperature-sensitive p53 (H1299-tsp53) (K. L. Fries, W. E. Miller, and N. Raab-Traub, J. Virol. 70:8653-8659, 1996). As found earlier for other E1B-55K mutants in HeLa cells (Y. Ho, R. Galos, and J. Williams, Virology 122:109-124, 1982), dl1520 replication was temperature dependent in H1299 cells. When p53 function was restored at low temperature in H1299-tsp53 cells, it imposed a modest defect in viral DNA replication and accumulation of late viral cytoplasmic mRNA. However, in both H1299 and H1299-tsp53 cells, the defect in late viral protein synthesis appeared to be much greater than could be accounted for by the modest defects in late viral mRNA levels. We therefore propose that in addition to countering p53 function and modulating viral and cellular mRNA nuclear transport, E1B-55K also stimulates late viral mRNA translation.
Collapse
Affiliation(s)
- J N Harada
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095-1570, USA
| | | |
Collapse
|
37
|
Von Seggern DJ, Nemerow GR. ADENOVIRAL VECTORS FOR PROTEIN EXPRESSION. GENE EXPRESSION SYSTEMS 1999. [PMCID: PMC7150134 DOI: 10.1016/b978-012253840-7/50006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Feigenblum D, Walker R, Schneider RJ. Adenovirus induction of an interferon-regulatory factor during entry into the late phase of infection. J Virol 1998; 72:9257-66. [PMID: 9765473 PMCID: PMC110345 DOI: 10.1128/jvi.72.11.9257-9266.1998] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus infection of animal cells can induce intracellular antiviral responses mediated by the induction of interferon-regulatory transcription factors (IRFs), which bind to and control genes directed by the interferon-stimulated response element (ISRE). The purpose of this study was to determine whether adenovirus (Ad) induces IRFs during infection, because they might play a role in promoting viral pathogenesis. Here we show that after the late phase of infection, Ad induces a transcription factor related to the IRF family of factors. The IRF is induced shortly after Ad entry into late phase and is shown to stimulate ISRE-directed transcription, to require activation by protein tyrosine kinase signalling, and to be induced several hours prior to the inhibition of cell protein synthesis. Inhibition of tyrosine kinase activity blocks Ad induction and activation of the IRF. Attempts to identify the Ad-induced factor immunologically and by photo-UV cross-linking indicate that it is likely a novel member of the IRF family. Finally, several independent lines of evidence also suggest that Ad induction of the IRF might correlate with the ability of the virus to block host cell protein synthesis later during infection.
Collapse
Affiliation(s)
- D Feigenblum
- Department of Biochemistry and Microbiology, Kaplan Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
39
|
Gabler S, Schütt H, Groitl P, Wolf H, Shenk T, Dobner T. E1B 55-kilodalton-associated protein: a cellular protein with RNA-binding activity implicated in nucleocytoplasmic transport of adenovirus and cellular mRNAs. J Virol 1998; 72:7960-71. [PMID: 9733834 PMCID: PMC110131 DOI: 10.1128/jvi.72.10.7960-7971.1998] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/1998] [Accepted: 07/01/1998] [Indexed: 11/20/2022] Open
Abstract
The adenovirus type 5 (Ad5) early 1B 55-kDa protein (E1B-55kDa) is a multifunctional phosphoprotein that regulates viral DNA replication and nucleocytoplasmic RNA transport in lytically infected cells. In addition, E1B-55kDa provides functions required for complete oncogenic transformation of rodent cells in cooperation with the E1A proteins. Using the far-Western technique, we have isolated human genes encoding E1B-55kDa-associated proteins (E1B-APs). The E1B-AP5 gene encodes a novel nuclear RNA-binding protein of the heterogeneous nuclear ribonucleoprotein (hnRNP) family that is highly related to hnRNP-U/SAF-A. Immunoprecipitation experiments indicate that two distinct segments in the 55-kDa polypeptide which partly overlap regions responsible for p53 binding are required for complex formation with E1B-AP5 in Ad-infected cells and that this protein interaction is modulated by the adenovirus E4orf6 protein. Expression of E1B-AP5 efficiently interferes with Ad5 E1A/E1B-mediated transformation of primary rat cells. Furthermore, stable expression of E1B-AP5 in Ad-infected cells overcomes the E1B-dependent inhibition of cytoplasmic host mRNA accumulation. These data suggest that E1B-AP5 might play a role in RNA transport and that this function is modulated by E1B-55kDa in Ad-infected cells.
Collapse
Affiliation(s)
- S Gabler
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, D-93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Rodriguez CM, Freire MA, Camilleri C, Robaglia C. The Arabidopsis thaliana cDNAs coding for eIF4E and eIF(iso)4E are not functionally equivalent for yeast complementation and are differentially expressed during plant development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 13:465-473. [PMID: 9680993 DOI: 10.1046/j.1365-313x.1998.00047.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Two cDNAs (At.EIF4E1 and At.EIF4E2) encoding, respectively, the eukaryotic initiation factors eIF4E and eIF(iso)4E of Arabidopsis thaliana were isolated by complementation of a Saccharomyces cerevisiae conditional mutant. The deduced amino acid sequences of the proteins are homologous to those from monocotyledonous plants, yeast and mammals. The corresponding genes were identified in YAC clones mapping to chromosome IV (At.EIF4E1) and to chromosome V (At.EIF4E2). The yeast strain complemented by At.EIF4E2 grew poorly compared with an isogenic strain expressing At.EIF4E1. Northern and in situ hybridization analysis show that both Arabidopsis At.EIF4E1 and At.EIF4E2 mRNAs are differentially accumulated in plant tissues. The At.EIF4E1 mRNA is expressed in all tissues except in the cells of the specialization zone of the roots; the At.EIF4E2 mRNA is particularly abundant in floral organs and in young developing tissues. This work further demonstrates an association between a high level of EIF4E mRNAs and cell proliferation and suggests that the plant eIF4E isoforms may have distinct functions in cell development and metabolism.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/metabolism
- Chromosome Mapping
- DNA Primers/genetics
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Eukaryotic Initiation Factor-4E
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Plant
- Genetic Complementation Test
- In Situ Hybridization
- Molecular Sequence Data
- Peptide Initiation Factors/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Saccharomyces cerevisiae/genetics
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- C M Rodriguez
- INRA, Laboratoire de Biologie Cellulaire, Versailles, France
| | | | | | | |
Collapse
|
41
|
Huang W, Flint SJ. The tripartite leader sequence of subgroup C adenovirus major late mRNAs can increase the efficiency of mRNA export. J Virol 1998; 72:225-35. [PMID: 9420219 PMCID: PMC109368 DOI: 10.1128/jvi.72.1.225-235.1998] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The subgroup C human adenoviruses induce selective export of newly synthesized viral mRNA from the nucleus to the cytoplasm, with concomitant inhibition of export of the majority of cellular mRNA species. Such posttranscriptional regulation of viral and cellular gene expression in infected cells requires viral E1B and E4 proteins. To facilitate the investigation of parameters that govern selective export in adenovirus-infected cells, we constructed a marked human beta-actin minigene under the control of the glucocorticoid-inducible enhancer-promoter of mouse mammary tumor virus and introduced it into the left end of the adenovirus type 5 (Ad5) genome. Transcription of this reporter gene (designated MA) as well as of a sibling, which differed only in the inclusion of a cDNA copy of the Ad2 major late tripartite leader sequence upstream of beta-actin sequences (termed MtplA), in recombinant virus-infected cells was strictly dependent on the addition of dexamethasone to the medium. When transcription of the MA gene was induced during the late phase of infection, newly synthesized MA RNA entered the cytoplasm. These transcripts, which contain no viral sequences, therefore reproduce the behavior of exceptional cellular mRNA species observed when transcription of their genes is activated during the late phase of infection (U.-C. Yang, W. Huang, and S. J. Flint, J. Virol. 70:4071-4080, 1996). Unexpectedly, however, higher concentrations of newly synthesized RNA accumulated in the cytoplasm when the tripartite leader sequence was present in the reporter RNA, despite equal rates of transcription of the two reporter genes. Examination of the partitioning of both newly synthesized and steady-state populations of MA and MtplA RNAs between nuclear and cytoplasmic compartments indicated that the tripartite leader sequence did not increase RNA stability in the cytoplasm. Comparison of nuclear and cytoplasmic reporter RNA species by Northern blotting, primer extension, and reverse transcription-PCR provided no evidence for altered processing induced by the tripartite leader sequence. We therefore conclude that the tripartite leader sequence, long known to facilitate the translation of mRNAs during the late phase of adenovirus infection, can also modulate mRNA export from the nucleus.
Collapse
MESH Headings
- Actins/genetics
- Adenoviruses, Human/classification
- Adenoviruses, Human/genetics
- Adenoviruses, Human/metabolism
- Animals
- Biological Transport, Active
- Cell Line
- Cell Nucleus/metabolism
- Cell Nucleus/virology
- Chimera/genetics
- Cytoplasm/metabolism
- Cytoplasm/virology
- Gene Expression Regulation, Viral
- Genes, Reporter
- Humans
- Mice
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombination, Genetic
Collapse
Affiliation(s)
- W Huang
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | |
Collapse
|
42
|
Wang Z, Luo T, Roeder RG. Identification of an autonomously initiating RNA polymerase III holoenzyme containing a novel factor that is selectively inactivated during protein synthesis inhibition. Genes Dev 1997; 11:2371-82. [PMID: 9308965 PMCID: PMC316516 DOI: 10.1101/gad.11.18.2371] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transcription by RNA polymerase III (Pol III) requires multiple general initiation factors that, in isolated form, assemble onto the promoter in an ordered fashion. Here, it is shown that all components required for transcription of the VA1 and tRNA genes, including TFIIIB, TFIIIC, and RNA Pol III, can be coimmunopurified from a HeLa cell line that constantly expresses a FLAG epitope-tagged subunit of human RNA Pol III. This finding of an RNA Pol III "holoenzyme" suggests similarities between transcription initiation by RNA Pol II and RNA Pol III and has led to the identification of a novel general initiation factor (TDF, translation dependent factor) that is present within the holoenzyme. TDF is selectively inactivated during protein synthesis inhibition by cycloheximide and at a late stage of adenovirus infection, thus accounting for the loss of RNA Pol III-mediated transcription of the tRNA and VA RNA genes under these conditions. On the basis of these observations, possible mechanisms for the global regulation of transcription by RNA Pol III and for disassembly of RNA Pol III initiation complexes are proposed.
Collapse
Affiliation(s)
- Z Wang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
43
|
Wittmann S, Chatel H, Fortin MG, Laliberté JF. Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 1997; 234:84-92. [PMID: 9234949 DOI: 10.1006/viro.1997.8634] [Citation(s) in RCA: 217] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The yeast LexA interaction trap was used to screen a cDNA library from Arabidopsis thaliana in order to identify proteins that interact with the viral protein genome linked (VPg)-proteinase of turnip mosaic potyvirus. The screen allowed the isolation of four candidate cDNA clones. Clones pHC4, pHC21, and pHC40 were partially sequenced but no homologies to known proteins were found. However, the amino acid sequence deduced from the complete nucleotide sequence of pSW56 revealed that it was the eukaryotic initiation factor (iso) 4E [eIF(iso)4E]. Deletion analysis indicated that the VPg domain was involved in the interaction with the plant protein. Interaction between the viral protein and the cellular protein was confirmed by ELISA-based binding experiments. eIF(iso)4E plays an essential role in the initiation of the translation of capped mRNAs and its association with VPg would point to a role of the viral protein in the translation of the virus.
Collapse
Affiliation(s)
- S Wittmann
- Centre de recherche en virologie, Institut Armand-Frappier, Ville de Laval, Québec, Canada
| | | | | | | |
Collapse
|
44
|
Feigenblum D, Schneider RJ. Cap-binding protein (eukaryotic initiation factor 4E) and 4E-inactivating protein BP-1 independently regulate cap-dependent translation. Mol Cell Biol 1996; 16:5450-7. [PMID: 8816458 PMCID: PMC231545 DOI: 10.1128/mcb.16.10.5450] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cap-dependent protein synthesis in animal cells is inhibited by heat shock, serum deprivation, metaphase arrest, and infection with certain viruses such as adenovirus (Ad). At a mechanistic level, translation of capped mRNAs is inhibited by dephosphorylation of eukaryotic initiation factor 4E (eIF-4E) (cap-binding protein) and its physical sequestration with the translation repressor protein BP-1 (PHAS-I). Dephosphorylation of BP-I blocks cap-dependent translation by promoting sequestration of eIF-4E. Here we show that heat shock inhibits translation of capped mRNAs by simultaneously inducing dephosphorylation of eIF-4E and BP-1, suggesting that cells might coordinately regulate translation of capped mRNAs by impairing both the activity and the availability of eIF-4E. Like heat shock, late Ad infection is shown to induce dephosphorylation of eIF-4E. However, in contrast to heat shock, Ad also induces phosphorylation of BP-1 and release of eIF-4E. BP-1 and eIF-4E can therefore act on cap-dependent translation in either a mutually antagonistic or cooperative manner. Three sets of experiments further underscore this point: (i) rapamycin is shown to block phosphorylation of BP-1 without inhibiting dephosphorylation of eIF-4E induced by heat shock or Ad infection, (ii) eIF-4E is efficiently dephosphorylated during heat shock or Ad infection regardless of whether it is in a complex with BP-1, and (iii) BP-1 is associated with eIF-4E in vivo regardless of the state of eIF-4E phosphorylation. These and other studies establish that inhibition of cap-dependent translation does not obligatorily involve sequestration of eIF-4E by BP-1. Rather, translation is independently regulated by the phosphorylation states of eIF-4E and the 4E-binding protein, BP-1. In addition, these results demonstrate that BP-1 and eIF-4E can act either in concert or in opposition to independently regulate cap-dependent translation. We suggest that independent regulation of eIF-4E and BP-1 might finely regulate the efficiency of translation initiation or possibly control cap-dependent translation for fundamentally different purposes.
Collapse
Affiliation(s)
- D Feigenblum
- Department of Biochemistry, New York University Medical School, New York 10016, USA
| | | |
Collapse
|
45
|
Yueh A, Schneider RJ. Selective translation initiation by ribosome jumping in adenovirus-infected and heat-shocked cells. Genes Dev 1996; 10:1557-67. [PMID: 8666238 DOI: 10.1101/gad.10.12.1557] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Translation initiation on eukaryotic mRNAs usually occurs by 5'-processive scanning of 40S ribosome subunits from the m7GTP-cap to the initiating AUG. In contrast, picornavirus and some specialized mRNAS initiate translation by internally binding ribosomes. A poorly described third mechanism of initiation, referred to as ribosome shunting or jumping, involves discontinuous scanning by 40S ribosome subunits, in which large segments of the 5' noncoding region are bypassed. Ribosome shunting has only been observed to date on a cauliflower mosaic virus mRNA. In this report we show that the family of adenovirus late mRNAs, which are preferentially translated during infection, use a ribosome jumping mechanism to initiate protein synthesis. Late adenovirus mRNAs contain a common 5'-noncoding region known as the tripartite leader, which confers preferential translation by reducing the requirement for the rate-limiting initiation factor eIF-4F (cap-binding protein complex). Adenovirus inhibits cell protein synthesis largely by inactivating eIF-4F. We show that the tripartite leader directs both 5' linear ribosome scanning and ribosome jumping when eIF-4F is abundant but exclusively uses a ribosome jumping mechanism during late adenovirus infection or heat shock (stress) of mammalian cells, when eIF-4F is altered or inactivated. Shunting is directed by a complex group of secondary structures in the tripartite leader and is facilitated by one or more unidentified viral late gene products. We propose that shunting may represent a widespread mechanism to facilitate selective translation of specialized classes of capped mRNAs, including some stress and developmentally regulated mRNAs, which possess little requirement for eIF-4F but do not initiate by internal ribosome binding.
Collapse
Affiliation(s)
- A Yueh
- Department of Biochemistry and Kaplan Cancer Center, New York University Medical School, New York 10016, USA
| | | |
Collapse
|
46
|
Yang UC, Huang W, Flint SJ. mRNA export correlates with activation of transcription in human subgroup C adenovirus-infected cells. J Virol 1996; 70:4071-80. [PMID: 8648745 PMCID: PMC190288 DOI: 10.1128/jvi.70.6.4071-4080.1996] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To investigate the mechanisms by which viral mRNA species are distinguished from their cellular counterparts for export to the cytoplasm during the late phase of subgroup C adenovirus infection, we have examined the metabolism of several cellular and viral mRNAs in human cells productively infected by adenovirus type 5 (Ad5). Several cellular mRNAs that were refractory to, or could escape from, adenovirus-induced inhibition of export of mRNA from the nucleus have been identified. This group includes Hsp70 mRNAs synthesized upon heat shock of Ad5-infected 293 or HeLa cells during the late phase of infection. However, successful export in Ad5-infected cells is not a specific response to heat shock, for beta-tubulin and interferon-inducible mRNAs were also refractory to virus-induced export inhibition. The export of these cellular mRNAs, like that of viral late mRNAs, required the E1B 55-kDa protein. Export to the cytoplasm during the late phase of Ad5 infection of several cellular mRNAs, including members of the Hsp70 family whose export was inhibited under some, but not other, conditions, indicates that viral mRNA species cannot be selectively exported by virtue of specific sequence or structural features. Cellular and viral late mRNAs that can be exported from the nucleus to the cytoplasm were expressed from genes whose transcription was induced or activated during the late phase of Ad5 infection. Consistent with the possibility that successful export is governed by transcriptional activation in the late phase of adenovirus infection, newly synthesized viral early E1A mRNA was subject to export inhibition during the late phase of infection.
Collapse
Affiliation(s)
- U C Yang
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
47
|
Abstract
It is becoming increasingly apparent that translational control plays an important role in the regulation of gene expression in eukaryotic cells. Most of the known physiological effects on translation are exerted at the level of polypeptide chain initiation. Research on initiation of translation over the past five years has yielded much new information, which can be divided into three main areas: (a) structure and function of initiation factors (including identification by sequencing studies of consensus domains and motifs) and investigation of protein-protein and protein-RNA interactions during initiation; (b) physiological regulation of initiation factor activities and (c) identification of features in the 5' and 3' untranslated regions of messenger RNA molecules that regulate the selection of these mRNAs for translation. This review aims to assess recent progress in these three areas and to explore their interrelationships.
Collapse
Affiliation(s)
- V M Pain
- School of Biological Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
48
|
Abstract
An adenovirus culture-positive lymphoblastoid cell line was derived from a bone marrow transplant recipient with fatal B-cell lymphoproliferative disease and adenovirus pneumonia. At autopsy, focal areas of the lymphoma infiltrating the patient's lung were positive for adenovirus proteins by immunohistochemical staining. The Epstein-Barr virus-transformed B-cell line Mk, established from pleural fluid cells, contained adenovirus virions in both the nucleus and the cytoplasm by electron microscopy. The majority of Mk cells expressed adenovirus proteins and produced a high level of infectious adenovirus by plaque assay analysis. However, in contrast to the rapid cell death induced by adenovirus in other permissive cell lines, Mk was maintained stably in tissue culture for 6 months. These data indicate that adenoviral replication is not sufficient for cell lysis and confirm that adenovirus can cause persistent infection in human lymphoid cells in vivo.
Collapse
MESH Headings
- Adenoviridae Infections/complications
- Adenoviridae Infections/pathology
- Adenoviridae Infections/virology
- Adenoviruses, Human/isolation & purification
- Adenoviruses, Human/ultrastructure
- Bone Marrow/virology
- Bone Marrow Cells
- Bone Marrow Transplantation
- Capsid/immunology
- Capsid Proteins
- Child, Preschool
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Humans
- Lymphoma, B-Cell/complications
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/virology
- Male
- Pneumonia, Viral/complications
- Pneumonia, Viral/pathology
- Pneumonia, Viral/virology
- Tumor Cells, Cultured
- Virus Latency
Collapse
Affiliation(s)
- P Flomenberg
- Department of Medicine, Medical College of Wisconsin, John L. Doyne Hospital, Milwaukee, Wisconsin USA
| | | | | | | | | |
Collapse
|
49
|
Yeh P, Dedieu JF, Orsini C, Vigne E, Denefle P, Perricaudet M. Efficient dual transcomplementation of adenovirus E1 and E4 regions from a 293-derived cell line expressing a minimal E4 functional unit. J Virol 1996; 70:559-65. [PMID: 8523570 PMCID: PMC189844 DOI: 10.1128/jvi.70.1.559-565.1996] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transgene expression after the administration of recombinant adenovirus with E1 deleted is constantly transient. It is admitted that E1A-substituting activities of cellular or viral origin allow viral antigen synthesis and trigger cytotoxic lymphocyte-mediated clearance of the recipient cells. Our approach to solving this problem relies on the additional deletion of the E4 region from the vector backbone as this region upregulates viral gene expression at both transcriptional and posttranscriptional levels. As a prerequisite to the construction of E1 E4 doubly defective adenoviruses, we investigated the possibility of transcomplementing both functions within a single cell. In particular, the distal ORF6+ORF7 segment from the E4 locus of adenovirus type 5 was cloned under the control of the dexamethasone-inducible mouse mammary tumor virus long terminal repeat. Following transfection into 293 cells, clone IGRP2 was retained and characterized as it can rescue the growth defect of all E1+ E4- adenoviral deletants tested. DNA and RNA analysis experiments verified that the mouse mammary tumor virus promoter drives the expression of the ORF6+ORF7 unit and permits its bona fide alternative splicing, generating ORF6/7 mRNA in addition to the ORF6-expressing primary transcript. Importantly, IGRP2 cells sustain cell confluence for a period longer than that of 293 parental cells and allow the plaque purification of E1- or E4- defective viruses. The dual expression of E1 and E4 regulatory genes within IGRP2 cells is demonstrated by the construction, plaque purification, and helper-free propagation of recombinant lacZ-encoding doubly defective adenoviruses harboring different E4 deletions. In addition, the emergence, if any, of replicative particles during viral propagation in this novel packaging cell line will be drastically impaired as only a limited segment of E4 has been integrated.
Collapse
Affiliation(s)
- P Yeh
- Laboratoire des Virus Oncogènes, 1301/Rhône-Poulenc Rorer Gencell, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | |
Collapse
|
50
|
Kleijn M, Voorma HO, Thomas AA. Phosphorylation of eIF-4E and initiation of protein synthesis in P19 embryonal carcinoma cells. J Cell Biochem 1995; 59:443-52. [PMID: 8749714 DOI: 10.1002/jcb.240590405] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mitogenic stimulation of protein synthesis is accompanied by an increase in eIF-4E phosphorylation. The effect on protein synthesis by induction of differentiation is less well known. We treated P19 embryonal carcinoma cells with the differentiating agent retinoic acid and found that protein synthesis increased during the first hour of addition. However, the phosphorylation state, as well as the turnover of phosphate on eIF-4E, remained unchanged. Apparently, the change in protein synthesis after RA addition is regulated by another mechanism than eIF-4E phosphorylation. By using P19 cells overexpressing the EGF receptor, we show that the signal transduction pathway that leads to phosphorylation of eIF-4E is present in P19 cells; the EGF-induced change in phosphorylation of eIF-4E in these cells is likely to be regulated by a change in eIF-4E phosphatase activity. These results suggest that the onset of retinoic acid-induced differentiation is triggered by a signal transduction pathway which involves changes in protein synthesis, but not eIF-4E phosphorylation.
Collapse
Affiliation(s)
- M Kleijn
- Department of Molecular Cell Biology, University of Utrecht, Netherlands
| | | | | |
Collapse
|