1
|
Pramono D, Takeuchi D, Katsuki M, AbuEed L, Abdillah D, Kimura T, Kawasaki J, Miyake A, Nishigaki K. FeLIX is a restriction factor for mammalian retrovirus infection. J Virol 2024; 98:e0177123. [PMID: 38440982 PMCID: PMC11019853 DOI: 10.1128/jvi.01771-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/11/2024] [Indexed: 03/06/2024] Open
Abstract
Endogenous retroviruses (ERVs) are remnants of ancestral viral infections. Feline leukemia virus (FeLV) is an exogenous and endogenous retrovirus in domestic cats. It is classified into several subgroups (A, B, C, D, E, and T) based on viral receptor interference properties or receptor usage. ERV-derived molecules benefit animals, conferring resistance to infectious diseases. However, the soluble protein encoded by the defective envelope (env) gene of endogenous FeLV (enFeLV) functions as a co-factor in FeLV subgroup T infections. Therefore, whether the gene emerged to facilitate viral infection is unclear. Based on the properties of ERV-derived molecules, we hypothesized that the defective env genes possess antiviral activity that would be advantageous to the host because FeLV subgroup B (FeLV-B), a recombinant virus derived from enFeLV env, is restricted to viral transmission among domestic cats. When soluble truncated Env proteins from enFeLV were tested for their inhibitory effects against enFeLV and FeLV-B, they inhibited viral infection. Notably, this antiviral machinery was extended to infection with the Gibbon ape leukemia virus, Koala retrovirus A, and Hervey pteropid gammaretrovirus. Although these viruses used feline phosphate transporter 1 (fePit1) and phosphate transporter 2 as receptors, the inhibitory mechanism involved competitive receptor binding in a fePit1-dependent manner. The shift in receptor usage might have occurred to avoid the inhibitory effect. Overall, these findings highlight the possible emergence of soluble truncated Env proteins from enFeLV as a restriction factor against retroviral infection and will help in developing host immunity and antiviral defense by controlling retroviral spread.IMPORTANCERetroviruses are unique in using reverse transcriptase to convert RNA genomes into DNA, infecting germ cells, and transmitting to offspring. Numerous ancient retroviral sequences are known as endogenous retroviruses (ERVs). The soluble Env protein derived from ERVs functions as a co-factor that assists in FeLV-T infection. However, herein, we show that the soluble Env protein exhibits antiviral activity and provides resistance to mammalian retrovirus infection through competitive receptor binding. In particular, this finding may explain why FeLV-B transmission is not observed among domestic cats. ERV-derived molecules can benefit animals in an evolutionary arms race, highlighting the double-edged-sword nature of ERVs.
Collapse
MESH Headings
- Animals
- Cats
- Endogenous Retroviruses/genetics
- Endogenous Retroviruses/metabolism
- Gene Products, env/genetics
- Gene Products, env/metabolism
- Leukemia Virus, Feline/classification
- Leukemia Virus, Feline/genetics
- Leukemia Virus, Feline/metabolism
- Leukemia Virus, Gibbon Ape/genetics
- Leukemia Virus, Gibbon Ape/metabolism
- Leukemia, Feline/genetics
- Leukemia, Feline/metabolism
- Leukemia, Feline/virology
- Phosphate Transport Proteins/genetics
- Phosphate Transport Proteins/metabolism
- Receptors, Virus/metabolism
- Retroviridae Infections/metabolism
- Retroviridae Infections/virology
- Solubility
- Female
Collapse
Affiliation(s)
- Didik Pramono
- Laboratory of Molecular Immunology and Infectious Disease, The Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Dai Takeuchi
- Laboratory of Molecular Immunology and Infectious Disease, The Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masato Katsuki
- Laboratory of Molecular Immunology and Infectious Disease, The Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Loai AbuEed
- Laboratory of Molecular Immunology and Infectious Disease, The Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Dimas Abdillah
- Laboratory of Molecular Immunology and Infectious Disease, The Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Tohru Kimura
- The Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Junna Kawasaki
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Ariko Miyake
- Laboratory of Molecular Immunology and Infectious Disease, The Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Kazuo Nishigaki
- Laboratory of Molecular Immunology and Infectious Disease, The Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
2
|
Chabukswar S, Grandi N, Lin LT, Tramontano E. Envelope Recombination: A Major Driver in Shaping Retroviral Diversification and Evolution within the Host Genome. Viruses 2023; 15:1856. [PMID: 37766262 PMCID: PMC10536682 DOI: 10.3390/v15091856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Endogenous retroviruses (ERVs) are integrated into host DNA as the result of ancient germ line infections, primarily by extinct exogenous retroviruses. Thus, vertebrates' genomes contain thousands of ERV copies, providing a "fossil" record for ancestral retroviral diversity and its evolution within the host genome. Like other retroviruses, the ERV proviral sequence consists of gag, pro, pol, and env genes flanked by long terminal repeats (LTRs). Particularly, the env gene encodes for the envelope proteins that initiate the infection process by binding to the host cellular receptor(s), causing membrane fusion. For this reason, a major element in understanding ERVs' evolutionary trajectory is the characterization of env changes over time. Most of the studies dedicated to ERVs' env have been aimed at finding an "actual" physiological or pathological function, while few of them have focused on how these genes were once acquired and modified within the host. Once acquired into the organism, genome ERVs undergo common cellular events, including recombination. Indeed, genome recombination plays a role in ERV evolutionary dynamics. Retroviral recombination events that might have been involved in env divergence include the acquisition of env genes from distantly related retroviruses, env swapping facilitating multiple cross-species transmission over millions of years, ectopic recombination between the homologous sequences present in different positions in the chromosomes, and template switching during transcriptional events. The occurrence of these recombinational events might have aided in shaping retroviral diversification and evolution until the present day. Hence, this review describes and discusses in detail the reported recombination events involving ERV env to provide the basis for further studies in the field.
Collapse
Affiliation(s)
- Saili Chabukswar
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (S.C.); (N.G.)
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (S.C.); (N.G.)
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (S.C.); (N.G.)
| |
Collapse
|
3
|
Morishita M, Sunden Y, Horiguchi M, Sakoya H, Yokogawa M, Ino H, Une S, Kawata M, Hosoido T, Morita T. Wavy changes in the whiskers of domestic cats are correlated with feline leukemia virus infection. BMC Vet Res 2023; 19:58. [PMID: 36871053 PMCID: PMC9985215 DOI: 10.1186/s12917-023-03610-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Feline leukemia virus (FeLV) is a retrovirus with global impact on the health of domestic cats and is usually examined by serology. In our daily clinical practice, we noticed that cats infected with FeLV often possess wavy whiskers (sinus hairs on the face). To investigate the relationship between wavy whiskers (WW) and FeLV infection, the association between the presence or absence of wavy changes in whiskers and serological FeLV infection was examined in a total of 358 cats including 56 cats possessing WW, using the chi-square test. The results of blood tests from 223 cases were subjected to multivariate analysis (logistic analysis). Isolated whiskers were observed under light microscopy, and upper lip tissues (proboscis) were subjected to histopathological and immunohistochemical analyses. RESULTS The prevalence of WW was significantly correlated with FeLV antigen positivity in the blood. Of 56 cases with WW, 50 (89.3%) were serologically positive for FeLV. The significant association between WW and serological FeLV positivity was also confirmed by multivariate analysis. In WW, narrowing, degeneration, and tearing of the hair medulla were observed. Mild infiltration of mononuclear cells in the tissues, but no degeneration or necrosis, was found. By immunohistochemistry, FeLV antigens (p27, gp70 and p15E) were observed in various epithelial cells including the sinus hair follicular epithelium of the whisker. CONCLUSIONS The data suggest that the wavy changes in whiskers, a unique and distinctive external sign on a cat's face, were associated with FeLV infection.
Collapse
Affiliation(s)
- Masataka Morishita
- Niihama Animal Hospital, 2-1-11 Wakamizu Niihama, Ehime, 792-0017, Japan.,Neovets VR Center, 3-8-15 Nakamichi, Higashinari, Osaka, 537-0025, Japan
| | - Yuji Sunden
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8553, Japan.
| | - Misaki Horiguchi
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8553, Japan
| | - Hirosei Sakoya
- Niihama Animal Hospital, 2-1-11 Wakamizu Niihama, Ehime, 792-0017, Japan.,Sigenobu Animal Hospital, 1054-1 Ushibuchi Touon, Ehime, 791-0213, Japan
| | - Mana Yokogawa
- Niihama Animal Hospital, 2-1-11 Wakamizu Niihama, Ehime, 792-0017, Japan
| | - Hiroyuki Ino
- Niihama Animal Hospital, 2-1-11 Wakamizu Niihama, Ehime, 792-0017, Japan
| | - Satoshi Une
- Neovets VR Center, 3-8-15 Nakamichi, Higashinari, Osaka, 537-0025, Japan
| | - Mutsumi Kawata
- Neovets VR Center, 3-8-15 Nakamichi, Higashinari, Osaka, 537-0025, Japan
| | - Taisei Hosoido
- Neovets VR Center, 3-8-15 Nakamichi, Higashinari, Osaka, 537-0025, Japan
| | - Takehito Morita
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8553, Japan
| |
Collapse
|
4
|
Acevedo-Jiménez GE, Sarmiento-Silva RE, Alonso-Morales RA, Córdova-Ponce R, Ramírez-Álvarez H. Detection and genetic characterization of feline retroviruses in domestic cats with different clinical signs and hematological alterations. Arch Virol 2023. [DOI: https:/doi.org/10.1007/s00705-022-05627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
Detection and genetic characterization of feline retroviruses in domestic cats with different clinical signs and hematological alterations. Arch Virol 2023; 168:2. [DOI: 10.1007/s00705-022-05627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/17/2022] [Indexed: 12/23/2022]
|
6
|
Establishment of CRFK cells for vaccine production by inactivating endogenous retrovirus with TALEN technology. Sci Rep 2022; 12:6641. [PMID: 35477976 PMCID: PMC9046391 DOI: 10.1038/s41598-022-10497-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
Endogenous retroviruses (ERVs) are retroviral sequences present in the host genomes. Although most ERVs are inactivated, some are produced as replication-competent viruses from host cells. We previously reported that several live-attenuated vaccines for companion animals prepared using the Crandell-Rees feline kidney (CRFK) cell line were contaminated with a replication-competent feline ERV termed RD-114 virus. We also found that the infectious RD-114 virus can be generated by recombination between multiple RD-114 virus-related proviruses (RDRSs) in CRFK cells. In this study, we knocked out RDRS env genes using the genome-editing tool TAL Effector Nuclease (TALEN) to reduce the risk of contamination by infectious ERVs in vaccine products. As a result, we succeeded in establishing RDRS knockout CRFK cells (RDKO_CRFK cells) that do not produce infectious RD-114 virus. The growth kinetics of feline herpesvirus type 1, calicivirus, and panleukopenia virus in RDKO_CRFK cells differed from those in parental cells, but all of them showed high titers exceeding 107 TCID50/mL. Infectious RD-114 virus was undetectable in the viral stocks propagated in RDKO_CRFK cells. This study suggested that RDRS env gene-knockout CRFK cells will be useful as a cell line for the manufacture of live-attenuated vaccines or biological substances with no risk of contamination with infectious ERV.
Collapse
|
7
|
Zheng J, Wei Y, Han GZ. The diversity and evolution of retroviruses: perspectives from viral “fossils”. Virol Sin 2022; 37:11-18. [PMID: 35234634 PMCID: PMC8922424 DOI: 10.1016/j.virs.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 01/19/2023] Open
Abstract
Retroviruses exclusively infect vertebrates, causing a variety of diseases. The replication of retroviruses requires reverse transcription and integration into host genomes. When infecting germline cells, retroviruses become inherited vertically, forming endogenous retroviruses (ERVs). ERVs document past viral infections, providing molecular fossils for studying the evolutionary history of retroviruses. In this review, we summarize the recent advances in understanding the diversity and evolution of retroviruses from the perspectives of viral fossils, and discuss the effects of ERVs on the evolution of host biology. Recent advances in understanding the diversity and evolution of retroviruses. Methods to analyze ERVs. The effects of ERVs on the evolution of host biology.
Collapse
Affiliation(s)
- Jialu Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yutong Wei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Endogenous Feline Leukemia Virus (FeLV) siRNA Transcription May Interfere with Exogenous FeLV Infection. J Virol 2021; 95:e0007021. [PMID: 34495702 DOI: 10.1128/jvi.00070-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endogenous retroviruses (ERVs) are increasingly recognized for biological impacts on host cell function and susceptibility to infectious agents, particularly in relation to interactions with exogenous retroviral progenitors (XRVs). ERVs can simultaneously promote and restrict XRV infections using mechanisms that are virus and host specific. The majority of endogenous-exogenous retroviral interactions have been evaluated in experimental mouse or chicken systems, which are limited in their ability to extend findings to naturally infected outbred animals. Feline leukemia virus (FeLV) has a relatively well-characterized endogenous retrovirus with a coexisting virulent exogenous counterpart and is endemic worldwide in domestic cats. We have previously documented an association between endogenous FeLV (enFeLV) long terminal repeat (LTR) copy number and abrogated exogenous FeLV in naturally infected cats and experimental infections in tissue culture. Analyses described here examine limited FeLV replication in experimentally infected peripheral blood mononuclear cells, which correlates with higher enFeLV transcripts in these cells compared to fibroblasts. We further examine NCBI Sequence Read Archive RNA transcripts to evaluate enFeLV transcripts and RNA interference (RNAi) precursors. We find that lymphoid-derived tissues, which are experimentally less permissive to exogenous FeLV infection, transcribe higher levels of enFeLV under basal conditions. Transcription of enFeLV-LTR segments is significantly greater than that of other enFeLV genes. We documented transcription of a 21-nucleotide (nt) microRNA (miRNA) just 3' to the enFeLV 5'-LTR in the feline miRNAome of all data sets evaluated (n = 27). Our findings point to important biological functions of enFeLV transcription linked to solo LTRs distributed within the domestic cat genome, with potential impacts on domestic cat exogenous FeLV susceptibility and pathogenesis. IMPORTANCE Endogenous retroviruses (ERVs) are increasingly implicated in host cellular processes and susceptibility to infectious agents, specifically regarding interactions with exogenous retroviral progenitors (XRVs). Exogenous feline leukemia virus (FeLV) and its endogenous counterpart (enFeLV) represent a well-characterized, naturally occurring XRV-ERV dyad. We have previously documented an abrogated FeLV infection in both naturally infected cats and experimental fibroblast infections that harbor higher enFeLV proviral loads. Using an in silico approach, we provide evidence of miRNA transcription that is produced in tissues that are most important for FeLV infection, replication, and transmission. Our findings point to important biological functions of enFeLV transcription linked to solo-LTRs distributed within the feline genome, with potential impacts on domestic cat exogenous FeLV susceptibility and pathogenesis. This body of work provides additional evidence of RNA interference (RNAi) as a mechanism of viral interference and is a demonstration of ERV exaptation by the host to defend against related XRVs.
Collapse
|
9
|
Srinivasachar Badarinarayan S, Sauter D. Switching Sides: How Endogenous Retroviruses Protect Us from Viral Infections. J Virol 2021; 95:e02299-20. [PMID: 33883223 PMCID: PMC8315955 DOI: 10.1128/jvi.02299-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/30/2021] [Indexed: 01/15/2023] Open
Abstract
Long disregarded as junk DNA or genomic dark matter, endogenous retroviruses (ERVs) have turned out to represent important components of the antiviral immune response. These remnants of once-infectious retroviruses not only regulate cellular immune activation, but may even directly target invading viral pathogens. In this Gem, we summarize mechanisms by which retroviral fossils protect us from viral infections. One focus will be on recent advances in the role of ERVs as regulators of antiviral gene expression.
Collapse
MESH Headings
- Animals
- Endogenous Retroviruses/genetics
- Endogenous Retroviruses/physiology
- Enhancer Elements, Genetic
- Gene Expression Regulation
- Humans
- Immunity, Cellular
- Promoter Regions, Genetic
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Pattern Recognition/metabolism
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/metabolism
- Retroelements
- Viral Proteins/metabolism
- Virion/metabolism
- Virus Diseases/genetics
- Virus Diseases/immunology
- Virus Diseases/virology
Collapse
Affiliation(s)
- Smitha Srinivasachar Badarinarayan
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Germany
| |
Collapse
|
10
|
Stephenson T, Speight N, Low WY, Woolford L, Tearle R, Hemmatzadeh F. Molecular Diagnosis of Koala Retrovirus (KoRV) in South Australian Koalas ( Phascolarctos cinereus). Animals (Basel) 2021; 11:ani11051477. [PMID: 34065572 PMCID: PMC8161083 DOI: 10.3390/ani11051477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Koala retrovirus (KoRV) is a significant threat to koalas across Australia. Koalas in northern koala populations (from New South Wales and Queensland) have KoRV inserted into their DNA and inherited to their offspring. Southern koala populations (from Victoria and South Australia) have KoRV infection spread through close contact of koalas. As such, there are koalas within South Australia that are not infected with KoRV. Accurate diagnosis of the infection of each koala is therefore fundamental for disease studies. Previous studies have shown differences in prevalence of different KoRV genes in the Mount Lofty Ranges Koala population; therefore, clarification is necessary. This study uses a large cohort (n = 216) and defines the diagnostic regions of the KoRV genome within the South Australian population. Using multiple molecular techniques, it demonstrates strong evidence for two clear groupings of koalas: KoRV positive and KoRV negative. Within this study, a population of 41% were shown to be KoRV positive and 57% were KoRV negative, with 2% inconclusive. This differentiation is of great importance when examining the clinical importance of KoRV infection within southern koalas. Abstract Koala retrovirus, a recent discovery in Australian koalas, is endogenised in 100% of northern koalas but has lower prevalence in southern populations, with lower proviral and viral loads, and an undetermined level of endogenisation. KoRV has been associated with lymphoid neoplasia, e.g., lymphoma. Recent studies have revealed high complexity in southern koala retroviral infections, with a need to clarify what constitutes positive and negative cases. This study aimed to define KoRV infection status in Mount Lofty Ranges koalas in South Australia using RNA-seq and proviral analysis (n = 216). The basis for positivity of KoRV was deemed the presence of central regions of the KoRV genome (gag 2, pol, env 1, and env 2) and based on this, 41% (89/216) koalas were positive, 57% (124/216) negative, and 2% inconclusive. These genes showed higher expression in lymph node tissue from KoRV positive koalas with lymphoma compared with other KoRV positive koalas, which showed lower, fragmented expression. Terminal regions (LTRs, partial gag, and partial env) were present in SA koalas regardless of KoRV status, with almost all (99.5%, 215/216) koalas positive for gag 1 by proviral PCR. Further investigation is needed to understand the differences in KoRV infection in southern koala populations.
Collapse
Affiliation(s)
- Tamsyn Stephenson
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
- Correspondence:
| | - Natasha Speight
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
| | - Wai Yee Low
- The Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (W.Y.L.); (R.T.)
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
- Veterinary Diagnostics Laboratory, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia
| | - Rick Tearle
- The Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (W.Y.L.); (R.T.)
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
| |
Collapse
|
11
|
McEwen GK, Alquezar-Planas DE, Dayaram A, Gillett A, Tarlinton R, Mongan N, Chappell KJ, Henning J, Tan M, Timms P, Young PR, Roca AL, Greenwood AD. Retroviral integrations contribute to elevated host cancer rates during germline invasion. Nat Commun 2021; 12:1316. [PMID: 33637755 PMCID: PMC7910482 DOI: 10.1038/s41467-021-21612-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Repeated retroviral infections of vertebrate germlines have made endogenous retroviruses ubiquitous features of mammalian genomes. However, millions of years of evolution obscure many of the immediate repercussions of retroviral endogenisation on host health. Here we examine retroviral endogenisation during its earliest stages in the koala (Phascolarctos cinereus), a species undergoing germline invasion by koala retrovirus (KoRV) and affected by high cancer prevalence. We characterise KoRV integration sites (IS) in tumour and healthy tissues from 10 koalas, detecting 1002 unique IS, with hotspots of integration occurring in the vicinity of known cancer genes. We find that tumours accumulate novel IS, with proximate genes over-represented for cancer associations. We detect dysregulation of genes containing IS and identify a highly-expressed transduced oncogene. Our data provide insights into the tremendous mutational load suffered by the host during active retroviral germline invasion, a process repeatedly experienced and overcome during the evolution of vertebrate lineages.
Collapse
Affiliation(s)
- Gayle K McEwen
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - David E Alquezar-Planas
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia
| | - Anisha Dayaram
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Institute for Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Amber Gillett
- Australia Zoo Wildlife Hospital, Beerwah, QLD, Australia
| | - Rachael Tarlinton
- Faculty of Medicine and Health Sciences, University of Nottingham, Leicestershire, UK
| | - Nigel Mongan
- Faculty of Medicine and Health Sciences, University of Nottingham, Leicestershire, UK
| | - Keith J Chappell
- School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Joerg Henning
- School of Veterinary Science, University of Queensland, Brisbane, QLD, Australia
| | - Milton Tan
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Peter Timms
- Genecology Research Center, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Paul R Young
- School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.
- Department of Veterinary Medicine, Freie Universität, Berlin, Germany.
| |
Collapse
|
12
|
Chiu ES, VandeWoude S. Endogenous Retroviruses Drive Resistance and Promotion of Exogenous Retroviral Homologs. Annu Rev Anim Biosci 2020; 9:225-248. [PMID: 33290087 DOI: 10.1146/annurev-animal-050620-101416] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endogenous retroviruses (ERVs) serve as markers of ancient viral infections and provide invaluable insight into host and viral evolution. ERVs have been exapted to assist in performing basic biological functions, including placentation, immune modulation, and oncogenesis. A subset of ERVs share high nucleotide similarity to circulating horizontally transmitted exogenous retrovirus (XRV) progenitors. In these cases, ERV-XRV interactions have been documented and include (a) recombination to result in ERV-XRV chimeras, (b) ERV induction of immune self-tolerance to XRV antigens, (c) ERV antigen interference with XRV receptor binding, and (d) interactions resulting in both enhancement and restriction of XRV infections. Whereas the mechanisms governing recombination and immune self-tolerance have been partially determined, enhancement and restriction of XRV infection are virus specific and only partially understood. This review summarizes interactions between six unique ERV-XRV pairs, highlighting important ERV biological functions and potential evolutionary histories in vertebrate hosts.
Collapse
Affiliation(s)
- Elliott S Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA; ,
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA; ,
| |
Collapse
|
13
|
Ngo MH, Soma T, Youn HY, Endo T, Makundi I, Kawasaki J, Miyake A, Nga BTT, Nguyen H, Arnal M, Fernández de Luco D, Deshapriya RMC, Hatoya S, Nishigaki K. Distribution of infectious endogenous retroviruses in mixed-breed and purebred cats. Arch Virol 2019; 165:157-167. [PMID: 31748876 DOI: 10.1007/s00705-019-04454-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/02/2019] [Indexed: 11/24/2022]
Abstract
Endogenous retroviruses of domestic cats (ERV-DCs) are members of the genus Gammaretrovirus that infect domestic cats (Felis silvestris catus). Uniquely, domestic cats harbor replication-competent proviruses such as ERV-DC10 (ERV-DC18) and ERV-DC14 (xenotropic and nonecotropic viruses, respectively). The purpose of this study was to assess invasion by two distinct infectious ERV-DCs, ERV-DC10 and ERV-DC14, in domestic cats. Of a total sample of 1646 cats, 568 animals (34.5%) were positive for ERV-DC10 (heterozygous: 377; homozygous: 191), 68 animals (4.1%) were positive for ERV-DC14 (heterozygous: 67; homozygous: 1), and 10 animals (0.6%) were positive for both ERV-DC10 and ERV-DC14. ERV-DC10 and ERV-DC14 were detected in domestic cats in Japan as well as in Tanzania, Sri Lanka, Vietnam, South Korea and Spain. Breeding cats, including Singapura, Norwegian Forest and Ragdoll cats, showed high frequencies of ERV-DC10 (60-100%). By contrast, ERV-DC14 was detected at low frequency in breeding cats. Our results suggest that ERV-DC10 is widely distributed while ERV-DC14 is maintained in a minor population of cats. Thus, ERV-DC10 and ERV-DC14 have invaded cat populations independently.
Collapse
Affiliation(s)
- Minh Ha Ngo
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Takehisa Soma
- Veterinary Diagnostic Laboratory, Marupi Lifetech Co., Ltd., 103 Fushiocho, Ikeda, Osaka, 563-0011, Japan
| | - Hwa-Young Youn
- Department of Veterinary Internal Medicine, Seoul National University Hospital for Animals, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Taiji Endo
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Isaac Makundi
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Junna Kawasaki
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Ariko Miyake
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Bui Thi To Nga
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Huyen Nguyen
- Animal Care Clinic, 20/424 Thuy Khue Street, Tay Ho District, Hanoi, 100000, Vietnam
| | - MaríaCruz Arnal
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Daniel Fernández de Luco
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - R M C Deshapriya
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Shingo Hatoya
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, 598-8531, Japan
| | - Kazuo Nishigaki
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
14
|
Carneiro CS, de Queiroz GF, Pinto ACBCF, Dagli MLZ, Matera JM. Feline injection site sarcoma: immunohistochemical characteristics. J Feline Med Surg 2019; 21:314-321. [PMID: 29788832 PMCID: PMC10814634 DOI: 10.1177/1098612x18774709] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
OBJECTIVES Feline injection site sarcoma (FISS) is a rapid growing locally aggressive tumor with a low metastatic rate. Its histologic features are clearly defined, but there are few studies regarding its immunohistochemical characteristics. The present study investigated the immunohistochemical characteristics of 21 cases of FISS. METHODS FISSs from 12 male and nine female cats, 20 mixed-breed and one Siamese, were included in the study. After histopathological diagnosis, additional histologic sections were immunostained for vimentin, cytokeratin, desmin, S100 protein, viral feline leukemia virus (FeLV) particles, cyclooxygenase 2 (COX-2) and c-KIT. Positive and negative controls were adopted accordingly. Immunostainings were classified as positive or negative according to the number of positive cells from a total of 1000 cells per tumor section. RESULTS Histopathologic diagnosis of the tumors revealed 18 (85.7%) fibrosarcomas and three (14.3%) other sarcomas; four fibrosarcomas (22.2%) were grade III, five (27.8%) were grade II and nine (50.0%) were grade I. Two sarcomas were grade III and one was grade II. Seventeen (81%) tumors were negative for desmin. All samples were positive for vimentin. Twenty tumors (95.2%) were positive for S-100 protein. Positivity for c-KIT was observed in four (19%) samples; COX-2 was positive in 13 (61.9%) and FeLV viral particles were positive in nine (42.9%) FISSs. CONCLUSIONS AND RELEVANCE Immunohistochemical findings of FISSs revealed positive immunostainings for desmin, vimentin, S-100 protein, c-KIT, COX-2 and FeLV viral particles.
Collapse
Affiliation(s)
- Carolina S Carneiro
- Department of Veterinary Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Genilson F de Queiroz
- Department of Animal Science, Federal Rural University of Semi-Arid, Mossoró, Brazil
| | - Ana CBCF Pinto
- Department of Veterinary Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria LZ Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Julia M Matera
- Department of Veterinary Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Feline Leukemia Virus (FeLV) Disease Outcomes in a Domestic Cat Breeding Colony: Relationship to Endogenous FeLV and Other Chronic Viral Infections. J Virol 2018; 92:JVI.00649-18. [PMID: 29976676 DOI: 10.1128/jvi.00649-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/26/2018] [Indexed: 01/15/2023] Open
Abstract
Exogenous feline leukemia virus (FeLV) is a feline gammaretrovirus that results in a variety of disease outcomes. Endogenous FeLV (enFeLV) is a replication-defective provirus found in species belonging to the Felis genus, which includes the domestic cat (Felis catus). There have been few studies examining interaction between enFeLV genotype and FeLV progression. We examined point-in-time enFeLV and FeLV viral loads, as well as occurrence of FeLV/enFeLV recombinants (FeLV-B), to determine factors relating to clinical disease in a closed breeding colony of cats during a natural infection of FeLV. Coinfections with feline foamy virus (FFV), feline gammaherpesvirus 1 (FcaGHV-1), and feline coronavirus (FCoV) were also documented and analyzed for impact on cat health and FeLV disease. Correlation analysis and structural equation modeling techniques were used to measure interactions among disease parameters. Progressive FeLV disease and FeLV-B presence were associated with higher FeLV proviral and plasma viral loads. Female cats were more likely to have progressive disease and FeLV-B. Conversely, enFeLV copy number was higher in male cats and negatively associated with progressive FeLV disease. Males were more likely to have abortive FeLV disease. FFV proviral load was found to correlate positively with higher FeLV proviral and plasma viral load, detection of FeLV-B, and FCoV status. Male cats were much more likely to be infected with FcaGHV-1 than female cats. This analysis provides insights into the interplay between endogenous and exogenous FeLV during naturally occurring disease and reveals striking variation in the infection patterns among four chronic viral infections of domestic cats.IMPORTANCE Endogenous retroviruses are harbored by many animals, and their interactions with exogenous retroviral infections have not been widely studied. Feline leukemia virus (FeLV) is a relevant model system to examine this question, as endogenous and exogenous forms of the virus exist. In this analysis of a large domestic cat breeding colony naturally infected with FeLV, we documented that enFeLV copy number was higher in males and inversely related to FeLV viral load and associated with better FeLV disease outcomes. Females had lower enFeLV copy numbers and were more likely to have progressive FeLV disease and FeLV-B subtypes. FFV viral load was correlated with FeLV progression. FFV, FcaGHV-1, and FeLV displayed markedly different patterns of infection with respect to host demographics. This investigation revealed complex coinfection outcomes and viral ecology of chronic infections in a closed population.
Collapse
|
16
|
Greenwood AD, Ishida Y, O'Brien SP, Roca AL, Eiden MV. Transmission, Evolution, and Endogenization: Lessons Learned from Recent Retroviral Invasions. Microbiol Mol Biol Rev 2018; 82:e00044-17. [PMID: 29237726 PMCID: PMC5813887 DOI: 10.1128/mmbr.00044-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Viruses of the subfamily Orthoretrovirinae are defined by the ability to reverse transcribe an RNA genome into DNA that integrates into the host cell genome during the intracellular virus life cycle. Exogenous retroviruses (XRVs) are horizontally transmitted between host individuals, with disease outcome depending on interactions between the retrovirus and the host organism. When retroviruses infect germ line cells of the host, they may become endogenous retroviruses (ERVs), which are permanent elements in the host germ line that are subject to vertical transmission. These ERVs sometimes remain infectious and can themselves give rise to XRVs. This review integrates recent developments in the phylogenetic classification of retroviruses and the identification of retroviral receptors to elucidate the origins and evolution of XRVs and ERVs. We consider whether ERVs may recurrently pressure XRVs to shift receptor usage to sidestep ERV interference. We discuss how related retroviruses undergo alternative fates in different host lineages after endogenization, with koala retrovirus (KoRV) receiving notable interest as a recent invader of its host germ line. KoRV is heritable but also infectious, which provides insights into the early stages of germ line invasions as well as XRV generation from ERVs. The relationship of KoRV to primate and other retroviruses is placed in the context of host biogeography and the potential role of bats and rodents as vectors for interspecies viral transmission. Combining studies of extant XRVs and "fossil" endogenous retroviruses in koalas and other Australasian species has broadened our understanding of the evolution of retroviruses and host-retrovirus interactions.
Collapse
Affiliation(s)
- Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sean P O'Brien
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Maribeth V Eiden
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| |
Collapse
|
17
|
Chiu ES, Hoover EA, VandeWoude S. A Retrospective Examination of Feline Leukemia Subgroup Characterization: Viral Interference Assays to Deep Sequencing. Viruses 2018; 10:E29. [PMID: 29320424 PMCID: PMC5795442 DOI: 10.3390/v10010029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 01/10/2023] Open
Abstract
Feline leukemia virus (FeLV) was the first feline retrovirus discovered, and is associated with multiple fatal disease syndromes in cats, including lymphoma. The original research conducted on FeLV employed classical virological techniques. As methods have evolved to allow FeLV genetic characterization, investigators have continued to unravel the molecular pathology associated with this fascinating agent. In this review, we discuss how FeLV classification, transmission, and disease-inducing potential have been defined sequentially by viral interference assays, Sanger sequencing, PCR, and next-generation sequencing. In particular, we highlight the influences of endogenous FeLV and host genetics that represent FeLV research opportunities on the near horizon.
Collapse
Affiliation(s)
- Elliott S Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80524, USA.
| | - Edward A Hoover
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80524, USA.
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80524, USA.
| |
Collapse
|
18
|
Blanco-Melo D, Gifford RJ, Bieniasz PD. Co-option of an endogenous retrovirus envelope for host defense in hominid ancestors. eLife 2017; 6. [PMID: 28397686 PMCID: PMC5388530 DOI: 10.7554/elife.22519] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/26/2017] [Indexed: 12/22/2022] Open
Abstract
Endogenous retroviral sequences provide a molecular fossil record of ancient infections whose analysis might illuminate mechanisms of viral extinction. A close relative of gammaretroviruses, HERV-T, circulated in primates for ~25 million years (MY) before apparent extinction within the past ~8 MY. Construction of a near-complete catalog of HERV-T fossils in primate genomes allowed us to estimate a ~32 MY old ancestral sequence and reconstruct a functional envelope protein (ancHTenv) that could support infection of a pseudotyped modern gammaretrovirus. Using ancHTenv, we identify monocarboxylate transporter-1 (MCT-1) as a receptor used by HERV-T for attachment and infection. A single HERV-T provirus in hominid genomes includes an env gene (hsaHTenv) that has been uniquely preserved. This apparently exapted HERV-T env could not support virion infection but could block ancHTenv mediated infection, by causing MCT-1 depletion from cell surfaces. Thus, hsaHTenv may have contributed to HERV-T extinction, and could also potentially regulate cellular metabolism. DOI:http://dx.doi.org/10.7554/eLife.22519.001 Over millions of years, viruses and the animals that they infect have been locked in a battle for survival, where each has needed to evolve ways to counteract the effects of the other. While the evolution of ancient animals can be studied by looking at the fossilized remains of their extinct relatives, studying how ancient viruses have evolved is more difficult as they usually do not leave behind physical traces of their existence. However, a family of viruses called retroviruses is a notable exception to this rule. Retroviruses have a step in their life cycle in which their genetic material is integrated into the genome (the name for an organism’s complete set of genetic material) of the cell that they have infected. In rare cases, when that cell is a precursor of a sperm or egg cell, then the viral genes may then be passed on to the animal’s offspring, ultimately leaving genetic traces that can be studied in modern animals. This acts as a genetic ‘fossil record’ of extinct viruses. HERV-T was a retrovirus that spread among our primate ancestors for about 25 million years before its extinction roughly 11 million years ago. Blanco-Melo et al. have now analyzed the genetic remains left by HERV-T in the genomes of humans and related primates, and were able to use this information to recreate a protein that made up the outer envelope that surrounded the virus. Further experiments showed that this viral protein helped HERV-T to infect human cells by interacting with a protein called MCT1 on the cell surface. Blanco-Melo et al. also found a particular HERV-T gene that was unexpectedly well preserved in the human genome. The gene retained its ability to produce an envelope protein for about 13 to 19 million years. It is likely that ancient primates ‘hijacked’ the viral gene and used the protein it produced to remove the MCT1 protein from the surface of their own cells. Without MCT1 on the surface, HERV-T was unable to infect the cells. Thus, these findings present an example of how viruses themselves can provide the genetic material that animals use to combat them, potentially leading to their extinction. DOI:http://dx.doi.org/10.7554/eLife.22519.002
Collapse
Affiliation(s)
- Daniel Blanco-Melo
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, United States.,Laboratory of Retrovirology, The Rockefeller University, New York, United States
| | - Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Paul D Bieniasz
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, United States.,Laboratory of Retrovirology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
19
|
Barriers to Infection of Human Cells by Feline Leukemia Virus: Insights into Resistance to Zoonosis. J Virol 2017; 91:JVI.02119-16. [PMID: 28031367 PMCID: PMC5309941 DOI: 10.1128/jvi.02119-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/20/2016] [Indexed: 12/16/2022] Open
Abstract
The human genome displays a rich fossil record of past gammaretrovirus infections, yet no current epidemic is evident, despite environmental exposure to viruses that infect human cells in vitro. Feline leukemia viruses (FeLVs) rank high on this list, but neither domestic nor workplace exposure has been associated with detectable serological responses. Nonspecific inactivation of gammaretroviruses by serum factors appears insufficient to explain these observations. To investigate further, we explored the susceptibilities of primary and established human cell lines to FeLV-B, the most likely zoonotic variant. Fully permissive infection was common in cancer-derived cell lines but was also a feature of nontransformed keratinocytes and lung fibroblasts. Cells of hematopoietic origin were generally less permissive and formed discrete groups on the basis of high or low intracellular protein expression and virion release. Potent repression was observed in primary human blood mononuclear cells and a subset of leukemia cell lines. However, the early steps of reverse transcription and integration appear to be unimpaired in nonpermissive cells. FeLV-B was subject to G→A hypermutation with a predominant APOBEC3G signature in partially permissive cells but was not mutated in permissive cells or in nonpermissive cells that block secondary viral spread. Distinct cellular barriers that protect primary human blood cells are likely to be important in protection against zoonotic infection with FeLV. IMPORTANCE Domestic exposure to gammaretroviruses such as feline leukemia viruses (FeLVs) occurs worldwide, but the basis of human resistance to infection remains incompletely understood. The potential threat is evident from the human genome sequence, which reveals many past epidemics of gammaretrovirus infection, and from recent cross-species jumps of gammaretroviruses from rodents to primates and marsupials. This study examined resistance to infection at the cellular level with the most prevalent human cell-tropic FeLV variant, FeLV-B. We found that blood cells are uniquely resistant to infection with FeLV-B due to the activity of cellular enzymes that mutate the viral genome. A second block, which appears to suppress viral gene expression after the viral genome has integrated into the host cell genome, was identified. Since cells derived from other normal human cell types are fully supportive of FeLV replication, innate resistance of blood cells could be critical in protecting against cross-species infection.
Collapse
|
20
|
Liu Q, Yan Y, Kozak CA. Permissive XPR1 gammaretrovirus receptors in four mammalian species are functionally distinct in interference tests. Virology 2016; 497:53-58. [PMID: 27423269 DOI: 10.1016/j.virol.2016.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/29/2023]
Abstract
Xenotropic/polytropic mouse leukemia viruses (X/P-MLVs) use the XPR1 gammaretrovirus receptor for entry. X/P-MLV host range is defined by usage of naturally occurring restrictive XPR1 receptors, and is governed by polymorphisms in the virus envelope glycoprotein and in XPR1. Here, we examined receptors of four mammalian species permissive to all X/P-MLVs (Mus dunni, human, rabbit, mink). Interference assays showed the four to be functionally distinct. Preinfection with X-MLVs consistently blocked all nine XPR1-dependent viruses, while preinfection with P-MLVs and wild mouse X/P-MLVs produced distinctive interference patterns in the four cells. These patterns indicate shared usage of independent, but not always fully functional, receptor sites. XPR1 sequence comparisons identified candidate sites in receptor-determining regions that correlate with some interference patterns. The evolutionary record suggests that the X/P-MLV tropism variants evolved to adapt to host receptor polymorphisms, to circumvent blocks by competing viruses or to avoid host-encoded envelope glycoproteins acquired for defense.
Collapse
Affiliation(s)
- Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Yuhe Yan
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| |
Collapse
|
21
|
Parrish NF, Tomonaga K. Endogenized viral sequences in mammals. Curr Opin Microbiol 2016; 31:176-183. [PMID: 27128186 DOI: 10.1016/j.mib.2016.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 12/13/2022]
Abstract
Reverse-transcribed RNA molecules compose a significant portion of the human genome. Many of these RNA molecules were retrovirus genomes either infecting germline cells or having done so in a previous generation but retaining transcriptional activity. This mechanism itself accounts for a quarter of the genomic sequence information of mammals for which there is data. We understand relatively little about the causes and consequences of retroviral endogenization. This review highlights functions ascribed to sequences of viral origin endogenized into mammalian genomes and suggests some of the most pressing questions raised by these observations.
Collapse
Affiliation(s)
- Nicholas F Parrish
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| | - Keizo Tomonaga
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
22
|
Abstract
Over 40% of mammalian genomes comprise the products of reverse transcription. Among such retrotransposed sequences are those characterized by the presence of long terminal repeats (LTRs), including the endogenous retroviruses (ERVs), which are inherited genetic elements closely resembling the proviruses formed following exogenous retrovirus infection. Sequences derived from ERVs make up at least 8 to 10% of the human and mouse genomes and range from ancient sequences that predate mammalian divergence to elements that are currently still active. In this chapter we describe the discovery, classification and origins of ERVs in mammals and consider cellular mechanisms that have evolved to control their expression. We also discuss the negative effects of ERVs as agents of genetic disease and cancer and review examples of ERV protein domestication to serve host functions, as in placental development. Finally, we address growing evidence that the gene regulatory potential of ERV LTRs has been exploited multiple times during evolution to regulate genes and gene networks. Thus, although recently endogenized retroviral elements are often pathogenic, those that survive the forces of negative selection become neutral components of the host genome or can be harnessed to serve beneficial roles.
Collapse
|
23
|
Kawamura M, Watanabe S, Odahara Y, Nakagawa S, Endo Y, Tsujimoto H, Nishigaki K. Genetic diversity in the feline leukemia virus gag gene. Virus Res 2015; 204:74-81. [PMID: 25892717 DOI: 10.1016/j.virusres.2015.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 11/30/2022]
Abstract
Feline leukemia virus (FeLV) belongs to the Gammaretrovirus genus and is horizontally transmitted among cats. FeLV is known to undergo recombination with endogenous retroviruses already present in the host during FeLV-subgroup A infection. Such recombinant FeLVs, designated FeLV-subgroup B or FeLV-subgroup D, can be generated by transduced endogenous retroviral env sequences encoding the viral envelope. These recombinant viruses have biologically distinct properties and may mediate different disease outcomes. The generation of such recombinant viruses resulted in structural diversity of the FeLV particle and genetic diversity of the virus itself. FeLV env diversity through mutation and recombination has been studied, while gag diversity and its possible effects are less well understood. In this study, we investigated recombination events in the gag genes of FeLVs isolated from naturally infected cats and reference isolates. Recombination and phylogenetic analyses indicated that the gag genes often contain endogenous FeLV sequences and were occasionally replaced by entire endogenous FeLV gag genes. Phylogenetic reconstructions of FeLV gag sequences allowed for classification into three distinct clusters, similar to those previously established for the env gene. Analysis of the recombination junctions in FeLV gag indicated that these variants have similar recombination patterns within the same genotypes, indicating that the recombinant viruses were horizontally transmitted among cats. It remains to be investigated whether the recombinant sequences affect the molecular mechanism of FeLV transmission. These findings extend our understanding of gammaretrovirus evolutionary patterns in the field.
Collapse
Affiliation(s)
- Maki Kawamura
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Shinya Watanabe
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Yuka Odahara
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Yasuyuki Endo
- Laboratory of Small Animal Internal Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Hajime Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuo Nishigaki
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan; Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.
| |
Collapse
|
24
|
Krunic M, Ertl R, Hagen B, Sedlazeck FJ, Hofmann-Lehmann R, von Haeseler A, Klein D. Decreased expression of endogenous feline leukemia virus in cat lymphomas: a case control study. BMC Vet Res 2015; 11:90. [PMID: 25879730 PMCID: PMC4424575 DOI: 10.1186/s12917-015-0378-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 02/26/2015] [Indexed: 11/18/2022] Open
Abstract
Background Cats infected with exogenous feline leukemia virus (exFeLV) have a higher chance of lymphoma development than uninfected cats. Furthermore, an increased exFeLV transcription has been detected in lymphomas compared to non-malignant tissues. The possible mechanisms of lymphoma development by exFeLV are insertional mutagenesis or persistent stimulation of host immune cells by viral antigens, bringing them at risk for malignant transformation. Vaccination of cats against exFeLV has in recent years decreased the overall infection rate in most countries. Nevertheless, an increasing number of lymphomas have been diagnosed among exFeLV-negative cats. Endogenous feline leukemia virus (enFeLV) is another retrovirus for which transcription has been observed in cat lymphomas. EnFeLV provirus elements are present in the germline of various cat species and share a high sequence similarity with exFeLV but, due to mutations, are incapable of producing infectious viral particles. However, recombination between exFeLV and enFeLV could produce infectious particles. Results We examined the FeLV expression in cats that have developed malignant lymphomas and discussed the possible mechanisms that could have induced malignant transformation. For expression analysis we used next-generation RNA-sequencing (RNA-Seq) and for validation reverse transcription quantitative PCR (RT-qPCR). First, we showed that there was no expression of exFeLV in all samples, which eliminates the possibility of recombination between exFeLV and enFeLV. Next, we analyzed the difference in expression of three enFeLV genes between control and lymphoma samples. Our analysis showed an average of 3.40-fold decreased viral expression for the three genes in lymphoma compared to control samples. The results were confirmed by RT-qPCR. Conclusions There is a decreased expression of enFeLV genes in lymphomas versus control samples, which contradicts previous observations for the exFeLV. Our results suggest that a persistent stimulation of host immune cells is not an appropriate mechanism responsible for malignant transformation caused by feline endogenous retroviruses. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0378-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Milica Krunic
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, A-1030, Vienna, Austria.
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine Vienna, A-1210, Vienna, Austria.
| | - Benedikt Hagen
- VetCore Facility for Research, University of Veterinary Medicine Vienna, A-1210, Vienna, Austria.
| | - Fritz J Sedlazeck
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, A-1030, Vienna, Austria.
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057, Zurich, Switzerland.
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, A-1030, Vienna, Austria. .,Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, A-1090, Vienna, Austria.
| | - Dieter Klein
- VetCore Facility for Research, University of Veterinary Medicine Vienna, A-1210, Vienna, Austria.
| |
Collapse
|
25
|
Kozak CA. Origins of the endogenous and infectious laboratory mouse gammaretroviruses. Viruses 2014; 7:1-26. [PMID: 25549291 PMCID: PMC4306825 DOI: 10.3390/v7010001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/18/2014] [Indexed: 01/07/2023] Open
Abstract
The mouse gammaretroviruses associated with leukemogenesis are found in the classical inbred mouse strains and in house mouse subspecies as infectious exogenous viruses (XRVs) and as endogenous retroviruses (ERVs) inserted into their host genomes. There are three major mouse leukemia virus (MuLV) subgroups in laboratory mice: ecotropic, xenotropic, and polytropic. These MuLV subgroups differ in host range, pathogenicity, receptor usage and subspecies of origin. The MuLV ERVs are recent acquisitions in the mouse genome as demonstrated by the presence of many full-length nondefective MuLV ERVs that produce XRVs, the segregation of these MuLV subgroups into different house mouse subspecies, and by the positional polymorphism of these loci among inbred strains and individual wild mice. While some ecotropic and xenotropic ERVs can produce XRVs directly, others, especially the pathogenic polytropic ERVs, do so only after recombinations that can involve all three ERV subgroups. Here, I describe individual MuLV ERVs found in the laboratory mice, their origins and geographic distribution in wild mouse subspecies, their varying ability to produce infectious virus and the biological consequences of this expression.
Collapse
|
26
|
Sakaguchi S, Shojima T, Fukui D, Miyazawa T. A soluble envelope protein of endogenous retrovirus (FeLIX) present in serum of domestic cats mediates infection of a pathogenic variant of feline leukemia virus. J Gen Virol 2014; 96:681-687. [PMID: 25395593 DOI: 10.1099/vir.0.071688-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
T-lymphotropic feline leukemia virus (FeLV-T), a highly pathogenic variant of FeLV, induces severe immunosuppression in cats. FeLV-T is fusion defective because in its PHQ motif, a gammaretroviral consensus motif in the N terminus of an envelope protein, histidine is replaced with aspartate. Infection by FeLV-T requires FeLIX, a truncated envelope protein encoded by an endogenous FeLV, for transactivation of infectivity and Pit1 for binding FeLIX. Although Pit1 is present in most tissues in cats, the expression of FeLIX is limited to certain cells in lymphoid organs. Therefore, the host cell range of FeLV-T was thought to be restricted to cells expressing FeLIX. However, because FeLIX is a soluble factor and is expressed constitutively in lymphoid organs, we presumed it to be present in blood and evaluated its activities in sera of various mammalian species using a pseudotype assay. We demonstrated that cat serum has FeLIX activity at a functional level, suggesting that FeLIX is present in the blood and that FeLV-T may be able to infect cells expressing Pit1 regardless of the expression of FeLIX in vivo. In addition, FeLIX activities in sera were detected only in domestic cats and not in other feline species tested. To our knowledge, this is the first report to prove that a large amount of truncated envelope protein of endogenous retrovirus is circulating in the blood to facilitate the infection of a pathogenic exogenous retrovirus.
Collapse
Affiliation(s)
- Shoichi Sakaguchi
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Virolution, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takayuki Shojima
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Daisuke Fukui
- Asahikawa Municipal Asahiyama Zoological Park and Wildlife Conservation Center, Kuranuma, Higashiasahikawa-cho, Asahikawa, Hokkaido 070-8205, Japan
| | - Takayuki Miyazawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Virolution, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
27
|
Refrex-1, a soluble restriction factor against feline endogenous and exogenous retroviruses. J Virol 2013; 87:12029-40. [PMID: 23966402 DOI: 10.1128/jvi.01267-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The host defense against viral infection is acquired during the coevolution or symbiosis of the host and pathogen. Several cellular factors that restrict retroviral infection have been identified in the hosts. Feline leukemia virus (FeLV) is a gammaretrovirus that is classified into several receptor interference groups, including a novel FeLV-subgroup D (FeLV-D) that we recently identified. FeLV-D is generated by transduction of the env gene of feline endogenous gammaretrovirus of the domestic cat (ERV-DCs) into FeLV. Some ERV-DCs are replication competent viruses which are present and hereditary in cats. We report here the determination of new viral receptor interference groups and the discovery of a soluble antiretroviral factor, termed Refrex-1. Detailed analysis of FeLV-D strains and ERV-DCs showed two receptor interference groups that are distinct from other FeLV subgroups, and Refrex-1 specifically inhibited one of them. Refrex-1 is characterized as a truncated envelope protein of ERV-DC and includes the N-terminal region of surface unit, which is a putative receptor-binding domain, but lacks the transmembrane region. Refrex-1 is efficiently secreted from the cells and appears to cause receptor interference extracellularly. Two variants of Refrex-1 encoded by provirus loci, ERV-DC7 and DC16, are expressed in a broad range of feline tissues. The host retains Refrex-1 as an antiretroviral factor, which may potentially prevent reemergence of the ERVs and the emergence of novel ERV-related viruses in cats. Refrex-1 may have been acquired during endogenization of ERV-DCs and may play an important role in retroviral restriction and antiviral defense in cats.
Collapse
|
28
|
Demogines A, Abraham J, Choe H, Farzan M, Sawyer SL. Dual host-virus arms races shape an essential housekeeping protein. PLoS Biol 2013; 11:e1001571. [PMID: 23723737 PMCID: PMC3665890 DOI: 10.1371/journal.pbio.1001571] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/17/2013] [Indexed: 02/07/2023] Open
Abstract
Relentless selective pressures exerted by viruses trigger arms race dynamics that shape the evolution of even critical host genes like those involved in iron homeostasis. Transferrin Receptor (TfR1) is the cell-surface receptor that regulates iron uptake into cells, a process that is fundamental to life. However, TfR1 also facilitates the cellular entry of multiple mammalian viruses. We use evolutionary and functional analyses of TfR1 in the rodent clade, where two families of viruses bind this receptor, to mechanistically dissect how essential housekeeping genes like TFR1 successfully balance the opposing selective pressures exerted by host and virus. We find that while the sequence of rodent TfR1 is generally conserved, a small set of TfR1 residue positions has evolved rapidly over the speciation of rodents. Remarkably, all of these residues correspond to the two virus binding surfaces of TfR1. We show that naturally occurring mutations at these positions block virus entry while simultaneously preserving iron-uptake functionalities, both in rodent and human TfR1. Thus, by constantly replacing the amino acids encoded at just a few residue positions, TFR1 divorces adaptation to ever-changing viruses from preservation of key cellular functions. These dynamics have driven genetic divergence at the TFR1 locus that now enforces species-specific barriers to virus transmission, limiting both the cross-species and zoonotic transmission of these viruses. Genetic differences between mammalian species dictate the patterns of viral infection observed in nature. They also define how viruses must evolve in order to infect new mammalian hosts, giving rise to new and sometimes pandemic diseases. Because viruses must enter cells before they can replicate, new diseases often emerge when existing viruses evolve the ability to bind to the cell-surface receptor of a new species. At the same time, host cell receptors also evolve to counteract virus attacks. This back-and-forth evolution between virus and host can lead to an arms race that shapes the sequences of the proteins involved. In wild rodent populations, the retrovirus MMTV and New World arenaviruses both exploit Transferrin Receptor 1 (TfR1) to enter the cells of their hosts. Here we show that the physical interactions between these viruses and TfR1 have triggered evolutionary arms race dynamics that have directly modified the sequence of TfR1 and at least one of the viruses involved. Computational evolutionary analysis allowed us to identify specific residues in TfR1 that define patterns of viral infection in nature. The approach presented here can theoretically be applied to the study of any virus, through analysis of host genes known to be key to controlling viral infection. As such, this approach can expand our understanding of how viruses emerge from wildlife reservoirs, and how they drive the evolution of host genes.
Collapse
Affiliation(s)
- Ann Demogines
- Department of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Jonathan Abraham
- Department of Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hyeryun Choe
- Department of Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Farzan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sara L. Sawyer
- Department of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Watanabe S, Kawamura M, Odahara Y, Anai Y, Ochi H, Nakagawa S, Endo Y, Tsujimoto H, Nishigaki K. Phylogenetic and structural diversity in the feline leukemia virus env gene. PLoS One 2013; 8:e61009. [PMID: 23593376 PMCID: PMC3623909 DOI: 10.1371/journal.pone.0061009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/05/2013] [Indexed: 12/24/2022] Open
Abstract
Feline leukemia virus (FeLV) belongs to the genus Gammaretrovirus, and causes a variety of neoplastic and non-neoplastic diseases in cats. Alteration of viral env sequences is thought to be associated with disease specificity, but the way in which genetic diversity of FeLV contributes to the generation of such variants in nature is poorly understood. We isolated FeLV env genes from naturally infected cats in Japan and analyzed the evolutionary dynamics of these genes. Phylogenetic reconstructions separated our FeLV samples into three distinct genetic clusters, termed Genotypes I, II, and III. Genotype I is a major genetic cluster and can be further classified into Clades 1-7 in Japan. Genotypes were correlated with geographical distribution; Genotypes I and II were distributed within Japan, whilst FeLV samples from outside Japan belonged to Genotype III. These results may be due to geographical isolation of FeLVs in Japan. The observed structural diversity of the FeLV env gene appears to be caused primarily by mutation, deletion, insertion and recombination, and these variants may be generated de novo in individual cats. FeLV interference assay revealed that FeLV genotypes did not correlate with known FeLV receptor subgroups. We have identified the genotypes which we consider to be reliable for evaluating phylogenetic relationships of FeLV, which embrace the high structural diversity observed in our sample. Overall, these findings extend our understanding of Gammaretrovirus evolutionary patterns in the field, and may provide a useful basis for assessing the emergence of novel strains and understanding the molecular mechanisms of FeLV transmission in cats.
Collapse
Affiliation(s)
- Shinya Watanabe
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Feline leukaemia virus: Half a century since its discovery. Vet J 2013; 195:16-23. [DOI: 10.1016/j.tvjl.2012.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/27/2012] [Accepted: 07/04/2012] [Indexed: 11/30/2022]
|
31
|
Stewart H, Jarrett O, Hosie MJ, Willett BJ. Complete genome sequences of two feline leukemia virus subgroup B isolates with novel recombination sites. GENOME ANNOUNCEMENTS 2013; 1:e00036-12. [PMID: 23405366 PMCID: PMC3569371 DOI: 10.1128/genomea.00036-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 10/25/2012] [Indexed: 11/20/2022]
Abstract
It is generally accepted that all primary isolates of feline leukemia virus (FeLV) contain a subgroup A virus (FeLV-A) that is essential for transmission. In contrast, FeLV-B is thought to arise de novo in the infected animal through RNA recombination events with endogenous FeLV transcripts, presumably through copackaging of RNA from endogenous FeLV and exogenous FeLV-A. Here, we report the complete genome sequences of two novel strains of FeLV-B (FeLV-2518 and FeLV-4314) that were isolated in the absence of FeLV-A. The env genes of these isolates have been characterized previously, and the 3' recombination sites have been identified. We describe herein the 5' recombination breakpoints of each virus. These breakpoints were found to be within the signal peptide of the env gene and the reverse transcriptase-coding region, respectively. This is the first report of a recombination site within the pol gene of an FeLV-B genome and the first genetic characterization of multiple independently arising FeLV-B isolates that have been identified without a functional FeLV-A ancestral virus.
Collapse
Affiliation(s)
- H Stewart
- Medical Research Council, University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
32
|
Aswad A, Katzourakis A. Paleovirology and virally derived immunity. Trends Ecol Evol 2012; 27:627-36. [PMID: 22901901 DOI: 10.1016/j.tree.2012.07.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/11/2012] [Accepted: 07/16/2012] [Indexed: 01/04/2023]
Abstract
Paleovirology, the study of viruses on evolutionary timescales, can exploit information from endogenous viral elements (EVEs), which are the result of heritable horizontal gene transfer (HGT) from viruses to hosts. The availability of genomic data has increased opportunities to study EVEs, and bioinformatics techniques have been crucial in cataloguing EVE diversity and taxonomic coverage. Recent advances show that some EVEs have been co-opted as cellular genes, often as inhibitors of viral infection. These genes are an intriguing strategy in virus-host evolutionary battles in that genetic material is transferred from virus to host, and then used by the host against the virus. In this review, we consider the genes and processes involved in EVE-derived immunity (EDI), assess factors leading to its emergence, and outline how future work will benefit from incorporating evolutionary approaches.
Collapse
Affiliation(s)
- Amr Aswad
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | | |
Collapse
|
33
|
Stewart H, Adema KW, McMonagle EL, Hosie MJ, Willett BJ. Identification of novel subgroup A variants with enhanced receptor binding and replicative capacity in primary isolates of anaemogenic strains of feline leukaemia virus. Retrovirology 2012; 9:48. [PMID: 22650160 PMCID: PMC3403869 DOI: 10.1186/1742-4690-9-48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/31/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The development of anaemia in feline leukaemia virus (FeLV)-infected cats is associated with the emergence of a novel viral subgroup, FeLV-C. FeLV-C arises from the subgroup that is transmitted, FeLV-A, through alterations in the amino acid sequence of the receptor binding domain (RBD) of the envelope glycoprotein that result in a shift in the receptor usage and the cell tropism of the virus. The factors that influence the transition from subgroup A to subgroup C remain unclear, one possibility is that a selective pressure in the host drives the acquisition of mutations in the RBD, creating A/C intermediates with enhanced abilities to interact with the FeLV-C receptor, FLVCR. In order to understand further the emergence of FeLV-C in the infected cat, we examined primary isolates of FeLV-C for evidence of FeLV-A variants that bore mutations consistent with a gradual evolution from FeLV-A to FeLV-C. RESULTS Within each isolate of FeLV-C, we identified variants that were ostensibly subgroup A by nucleic acid sequence comparisons, but which bore mutations in the RBD. One such mutation, N91D, was present in multiple isolates and when engineered into a molecular clone of the prototypic FeLV-A (Glasgow-1), enhanced replication was noted in feline cells. Expression of the N91D Env on murine leukaemia virus (MLV) pseudotypes enhanced viral entry mediated by the FeLV-A receptor THTR1 while soluble FeLV-A Env bearing the N91D mutation bound more efficiently to mouse or guinea pig cells bearing the FeLV-A and -C receptors. Long-term in vitro culture of variants bearing the N91D substitution in the presence of anti-FeLV gp70 antibodies did not result in the emergence of FeLV-C variants, suggesting that additional selective pressures in the infected cat may drive the subsequent evolution from subgroup A to subgroup C. CONCLUSIONS Our data support a model in which variants of FeLV-A, bearing subtle differences in the RBD of Env, may be predisposed towards enhanced replication in vivo and subsequent conversion to FeLV-C. The selection pressures in vivo that drive the emergence of FeLV-C in a proportion of infected cats remain to be established.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Cats
- Cell Line
- Cloning, Molecular
- Fibroblasts/virology
- Glycoproteins/genetics
- Guinea Pigs
- HEK293 Cells
- Humans
- Leukemia Virus, Feline/classification
- Leukemia Virus, Feline/pathogenicity
- Leukemia Virus, Feline/physiology
- Leukemia Virus, Murine/genetics
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Neutralization Tests
- Protein Binding
- RNA, Viral/genetics
- Receptors, Virus/metabolism
- Selection, Genetic
- Viral Envelope Proteins/genetics
- Virus Attachment
- Virus Internalization
- Virus Replication
Collapse
Affiliation(s)
- Hazel Stewart
- Medical Research Council-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, UK
| | - Karen W Adema
- Medical Research Council-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, UK
| | - Elizabeth L McMonagle
- Medical Research Council-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, UK
| | - Margaret J Hosie
- Medical Research Council-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, UK
| | - Brian J Willett
- Medical Research Council-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, UK
| |
Collapse
|
34
|
Abstract
Retroviral replication involves the formation of a DNA provirus integrated into the host genome. Through this process, retroviruses can colonize the germ line to form endogenous retroviruses (ERVs). ERV inheritance can have multiple adverse consequences for the host, some resembling those resulting from exogenous retrovirus infection but others arising by mechanisms unique to ERVs. Inherited retroviruses can also confer benefits on the host. To meet the different threats posed by endogenous and exogenous retroviruses, various host defences have arisen during evolution, acting at various stages on the retrovirus life cycle. In this Review, I describe our current understanding of the distribution and architecture of ERVs, the consequences of their acquisition for the host and the emerging details of the intimate evolutionary relationship between virus and vertebrate host.
Collapse
|
35
|
Naturally Occurring Polymorphisms of the Mouse Gammaretrovirus Receptors CAT-1 and XPR1 Alter Virus Tropism and Pathogenicity. Adv Virol 2011; 2011:975801. [PMID: 22312361 PMCID: PMC3265322 DOI: 10.1155/2011/975801] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/12/2011] [Indexed: 01/29/2023] Open
Abstract
Gammaretroviruses of several different host range subgroups have been isolated from laboratory mice. The ecotropic viruses infect mouse cells and rely on the host CAT-1 receptor. The xenotropic/polytropic viruses, and the related human-derived XMRV, can infect cells of other mammalian species and use the XPR1 receptor for entry. The coevolution of these viruses and their receptors in infected mouse populations provides a good example of how genetic conflicts can drive diversifying selection. Genetic and epigenetic variations in the virus envelope glycoproteins can result in altered host range and pathogenicity, and changes in the virus binding sites of the receptors are responsible for host restrictions that reduce virus entry or block it altogether. These battleground regions are marked by mutational changes that have produced 2 functionally distinct variants of the CAT-1 receptor and 5 variants of the XPR1 receptor in mice, as well as a diverse set of infectious viruses, and several endogenous retroviruses coopted by the host to interfere with entry.
Collapse
|
36
|
Stewart H, Jarrett O, Hosie M, Willett B. Are endogenous feline leukemia viruses really endogenous? Vet Immunol Immunopathol 2011; 143:325-31. [DOI: 10.1016/j.vetimm.2011.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Bolin LL, Ahmad S, Levy LS. The surface glycoprotein of a natural feline leukemia virus subgroup A variant, FeLV-945, as a determinant of disease outcome. Vet Immunol Immunopathol 2011; 143:221-6. [PMID: 21764142 DOI: 10.1016/j.vetimm.2011.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Feline leukemia virus (FeLV) is a natural retrovirus of domestic cats associated with degenerative, proliferative and malignant diseases. Studies of FeLV infection in a cohort of naturally infected cats were undertaken to examine FeLV variation, the selective pressures operative in FeLV infection that lead to predominance of natural variants, and the consequences for infection and disease progression. A unique variant, designated FeLV-945, was identified as the predominant isolate in the cohort and was associated with non-T-cell diseases including multicentric lymphoma. FeLV-945 was assigned to the FeLV-A subgroup based on sequence analysis and receptor utilization, but was shown to differ in sequence from a prototype member of FeLV-A, designated FeLV-A/61E, in the long terminal repeat (LTR) and the surface glycoprotein gene (SU). A unique sequence motif in the FeLV-945 LTR was shown to function as a transcriptional enhancer and to confer a replicative advantage. The FeLV-945 SU protein was observed to differ in sequence as compared to FeLV-A/61E within functional domains known to determine receptor selection and binding. Experimental infection of newborn cats was performed using wild type FeLV-A/61E or recombinant FeLV-A/61E in which the LTR (61E/945L) or LTR and SU (61E/945SL) were exchanged for that of FeLV-945. Infection with either FeLV-A/61E or 61E/945L resulted in T-cell lymphoma of the thymus, although 61E/945L caused disease significantly more rapidly. In contrast, infection with 61E/945SL resulted in the rapid induction of a multicentric lymphoma of B-cell origin, thus recapitulating the outcome of natural infection and implicating FeLV-945 SU as a determinant of disease outcome. Recombinant FeLV-B was detected infrequently and at low levels in multicentric lymphomas, and was thereby not implicated in disease induction. Preliminary studies of receptor interaction indicated that virus particles bearing FeLV-945 SU bind to the FeLV-A receptor more efficiently than do particles bearing FeLV-A/61E SU, and that soluble SU proteins expressed from the viruses demonstrate the same differential binding phenotype. Preliminary mutational analysis of FeLV-945 was performed by exchanging regions containing either the primary receptor binding determinant, VRA, the secondary determinant, VRB, or a proline-rich region, PRR, with that of FeLV-A/61E. Results implicated a region containing VRA as a minor contributor, while a region containing VRB largely conferred increased binding efficiency.
Collapse
Affiliation(s)
- Lisa L Bolin
- Department of Microbiology and Immunology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Avenue SL-38, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
38
|
Kozak CA. The mouse "xenotropic" gammaretroviruses and their XPR1 receptor. Retrovirology 2010; 7:101. [PMID: 21118532 PMCID: PMC3009702 DOI: 10.1186/1742-4690-7-101] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 11/30/2010] [Indexed: 11/29/2022] Open
Abstract
The xenotropic/polytropic subgroup of mouse leukemia viruses (MLVs) all rely on the XPR1 receptor for entry, but these viruses vary in tropism, distribution among wild and laboratory mice, pathogenicity, strategies used for transmission, and sensitivity to host restriction factors. Most, but not all, isolates have typical xenotropic or polytropic host range, and these two MLV tropism types have now been detected in humans as viral sequences or as infectious virus, termed XMRV, or xenotropic murine leukemia virus-related virus. The mouse xenotropic MLVs (X-MLVs) were originally defined by their inability to infect cells of their natural mouse hosts. It is now clear, however, that X-MLVs actually have the broadest host range of the MLVs. Nearly all nonrodent mammals are susceptible to X-MLVs, and all species of wild mice and several common strains of laboratory mice are X-MLV susceptible. The polytropic MLVs, named for their apparent broad host range, show a more limited host range than the X-MLVs in that they fail to infect cells of many mouse species as well as many nonrodent mammals. The co-evolution of these viruses with their receptor and other host factors that affect their replication has produced a heterogeneous group of viruses capable of inducing various diseases, as well as endogenized viral genomes, some of which have been domesticated by their hosts to serve in antiviral defense.
Collapse
Affiliation(s)
- Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
39
|
Polani S, Roca AL, Rosensteel BB, Kolokotronis SO, Bar-Gal GK. Evolutionary dynamics of endogenous feline leukemia virus proliferation among species of the domestic cat lineage. Virology 2010; 405:397-407. [DOI: 10.1016/j.virol.2010.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 04/22/2010] [Accepted: 06/03/2010] [Indexed: 01/18/2023]
|
40
|
Ahmad S, Levy LS. The frequency of occurrence and nature of recombinant feline leukemia viruses in the induction of multicentric lymphoma by infection of the domestic cat with FeLV-945. Virology 2010; 403:103-10. [PMID: 20451235 DOI: 10.1016/j.virol.2010.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/22/2010] [Accepted: 04/12/2010] [Indexed: 12/24/2022]
Abstract
During feline leukemia virus (FeLV) infection in the domestic cat, viruses with a novel envelope gene arise by recombination between endogenous FeLV-related elements and the exogenous infecting species. These recombinant viruses (FeLV-B) are of uncertain disease association, but have been linked to the induction of thymic lymphoma. To assess the role of FeLV-B in the induction of multicentric lymphoma and other non-T-cell disease, the frequency of occurrence and nature of FeLV-B were examined in diseased tissues from a large collection of FeLV-infected animals. Diseased tissues were examined by Southern blot and PCR amplification to detect the presence of FeLV-B. Further analysis was performed to establish the recombination junctions and infectivity of FeLV-B in diseased tissues. The results confirmed the frequent association of FeLV-B with thymic lymphoma but showed infrequent generation, low levels and lack of infectivity of FeLV-B in non-T-cell diseases including multicentric lymphoma.
Collapse
Affiliation(s)
- Shamim Ahmad
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| | | |
Collapse
|
41
|
Miyazawa T. Endogenous retroviruses as potential hazards for vaccines. Biologicals 2010; 38:371-6. [PMID: 20378372 DOI: 10.1016/j.biologicals.2010.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 03/12/2010] [Indexed: 11/26/2022] Open
|
42
|
[Receptors for animal retroviruses]. Uirusu 2010; 59:223-42. [PMID: 20218331 DOI: 10.2222/jsv.59.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Diseases caused by animal retroviruses have been recognized since 19th century in veterinary field. Most livestock and companion animals have own retroviruses. To disclose the receptors for these retroviruses will be useful for understanding retroviral pathogenesis, developments of anti-retroviral drugs and vectors for human and animal gene therapies. Of retroviruses in veterinary field, receptors for the following viruses have been identified; equine infectious anemia virus, feline immunodeficiency virus, feline leukemia virus subgroups A, B, C, and T, Jaagsiekte sheep retrovirus, enzootic nasal tumor virus, avian leukosis virus subgroups A, B, C, D, E, and J, reticuloendotheliosis virus, RD-114 virus (a feline endogenous retrovirus), and porcine endogenous retrovirus subgroup A. Primate lentiviruses require two molecules (CD4 and chemokine receptors such as CXCR4) as receptors. Likewise, feline immunodeficiency virus also requires two molecules, i.e., CD134 (an activation marker of CD4 T cells) and CXCR4 in infection. Gammaretroviruses utilize multi-spanning transmembrane proteins, most of which are transporters of amino acids, vitamins and inorganic ions. Betaretroviruses and alpharetroviruses utilize transmembrane and/or GPI-anchored proteins as receptors. In this review, I overviewed receptors for animal retroviruses in veterinary field.
Collapse
|
43
|
Nakaya Y, Shojima T, Hoshino S, Miyazawa T. Focus assay on FeLIX-dependent feline leukemia virus. J Vet Med Sci 2009; 72:117-21. [PMID: 19915325 DOI: 10.1292/jvms.09-0194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
T-lymphotropic feline leukemia virus (FeLV-T) induces immunodeficiency in cats. FeLV-T is fusion-defective and requires a cofactor, termed FeLIX, for infection. FeLIX is a truncated envelope glycoprotein of an endogenous FeLV and mediates infection by binding a phosphate transporter Pit-1. In this study, we established a feline sarcoma-positive leukemia-negative cell line expressing FeLIX, named QN/FeLIX cells. Upon infection, FeLV-T induced prominent foci with syncytia in QN/FeLIX cells and could be titrated by the focus assay. In addition, we established a FeLIX-expressing feline fibroblast cell line, named AH/FeLIX cells. FeLV-T productively infected AH/FeLIX cells and induced severe CPE with syncytia. QN/FeLIX and AH/FeLIX cells will be useful for the study of FeLIX-dependent mutants in FeLV-infected cats.
Collapse
Affiliation(s)
- Yuki Nakaya
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
44
|
Tandon R, Cattori V, Pepin AC, Riond B, Meli ML, McDonald M, Doherr MG, Lutz H, Hofmann-Lehmann R. Association between endogenous feline leukemia virus loads and exogenous feline leukemia virus infection in domestic cats. Virus Res 2008; 135:136-43. [DOI: 10.1016/j.virusres.2008.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 11/25/2022]
|
45
|
Torres AN, O'Halloran KP, Larson LJ, Schultz RD, Hoover EA. Development and application of a quantitative real-time PCR assay to detect feline leukemia virus RNA. Vet Immunol Immunopathol 2008; 123:81-9. [PMID: 18321595 DOI: 10.1016/j.vetimm.2008.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We previously defined four categories of feline leukemia virus (FeLV) infection, designated as abortive, regressive, latent, and progressive. To determine if detectable viral DNA is transcriptionally active in the absence of antigenemia, we developed and validated a real-time viral RNA qPCR assay. This assay proved to be highly sensitive, specific, reproducible, and allowed reliable quantitation. We then applied this methodology, together with real-time DNA qPCR and p27 capsid antigen capture ELISA, to examine cats challenged with FeLV. We found that circulating viral RNA and DNA levels were highly correlated and the assays were almost in perfect agreement. This indicates that the vast majority of viral DNA is transcriptionally active, even in the absence of antigenemia. The real-time qPCR assays are more sensitive than the most commonly used FeLV diagnostic assay, the p27 capsid antigen capture ELISA. Application of qPCR assays may add greater depth in understanding of FeLV-host relationships.
Collapse
Affiliation(s)
- Andrea N Torres
- Department of Microbiology, Immunology, and Pathology, 1619 Campus Delivery, Colorado State University, Ft. Collins, CO 80523-1619, USA
| | | | | | | | | |
Collapse
|
46
|
Pontius JU, Mullikin JC, Smith DR, Lindblad-Toh K, Gnerre S, Clamp M, Chang J, Stephens R, Neelam B, Volfovsky N, Schäffer AA, Agarwala R, Narfström K, Murphy WJ, Giger U, Roca AL, Antunes A, Menotti-Raymond M, Yuhki N, Pecon-Slattery J, Johnson WE, Bourque G, Tesler G, O'Brien SJ. Initial sequence and comparative analysis of the cat genome. Genome Res 2008; 17:1675-89. [PMID: 17975172 DOI: 10.1101/gr.6380007] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The genome sequence (1.9-fold coverage) of an inbred Abyssinian domestic cat was assembled, mapped, and annotated with a comparative approach that involved cross-reference to annotated genome assemblies of six mammals (human, chimpanzee, mouse, rat, dog, and cow). The results resolved chromosomal positions for 663,480 contigs, 20,285 putative feline gene orthologs, and 133,499 conserved sequence blocks (CSBs). Additional annotated features include repetitive elements, endogenous retroviral sequences, nuclear mitochondrial (numt) sequences, micro-RNAs, and evolutionary breakpoints that suggest historic balancing of translocation and inversion incidences in distinct mammalian lineages. Large numbers of single nucleotide polymorphisms (SNPs), deletion insertion polymorphisms (DIPs), and short tandem repeats (STRs), suitable for linkage or association studies were characterized in the context of long stretches of chromosome homozygosity. In spite of the light coverage capturing approximately 65% of euchromatin sequence from the cat genome, these comparative insights shed new light on the tempo and mode of gene/genome evolution in mammals, promise several research applications for the cat, and also illustrate that a comparative approach using more deeply covered mammals provides an informative, preliminary annotation of a light (1.9-fold) coverage mammal genome sequence.
Collapse
Affiliation(s)
- Joan U Pontius
- Laboratory of Genomic Diversity, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tandon R, Cattori V, Willi B, Meli ML, Gomes-Keller MA, Lutz H, Hofmann-Lehmann R. Copy number polymorphism of endogenous feline leukemia virus-like sequences. Mol Cell Probes 2007; 21:257-66. [PMID: 17329079 DOI: 10.1016/j.mcp.2007.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 12/22/2006] [Accepted: 01/09/2007] [Indexed: 11/25/2022]
Abstract
In the cat genome, endogenous feline leukemia virus (enFeLV) exists as multiple, nearly full-length proviral sequences. Even though no infectious virus is produced from enFeLV sequences, transcription and translation have been demonstrated in tissues of healthy cats and in feline cell lines. To test the hypothesis that the enFeLV loads play a role in exogenous FeLV-A infection and pathogenesis, we designed three real-time PCR assays to quantify U3 and env enFeLV loads (two within U3 amplifying different sequences; one within env). Applying these assays, we investigated the loads in blood samples derived from Swiss privately owned domestic cats, specific pathogen-free (SPF) cats and European wildcats (Felis silvestris silvestris). Significant differences in enFeLV loads were observed between privately owned cats and SPF cats as well as among SPF cats originating from different catteries and among domestic cats of different breeds. Within privately owned cats, FeLV-infected cats had higher loads than uninfected cats. In addition, higher enFeLV loads were found in wildcats compared to domestic cats. The assays described herein are important prerequisites to quantify enFeLV loads and thus to investigate the influence of enFeLV loads on the course of FeLV infection.
Collapse
Affiliation(s)
- Ravi Tandon
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
48
|
Shojima T, Nakata R, Miyazawa T. Host cell range of T-lymphotropic feline leukemia virus in vitro. Biochem Biophys Res Commun 2006; 345:1466-70. [PMID: 16730653 DOI: 10.1016/j.bbrc.2006.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 05/08/2006] [Indexed: 11/20/2022]
Abstract
We compared the host cell range of T-lymphotropic feline leukemia virus (FeLV-T) with that of FeLV subgroup B (FeLV-B) by pseudotype assay in the presence of FeLIX, a truncated envelope glycoprotein of endogenous FeLV. Although both viruses use Pit1 as a receptor and FeLIX does not hamper FeLV-B infection by receptor interference, the host ranges of FeLV-T and -B were not exactly the same, suggesting a different Pit1 usage at the post-binding level. A comparison of Pit1 sequences of various mammalian species indicated that extracellular loop 1 in a topology model deduced with the PHD PredictProtein algorism may be one of the regions responsible for efficient infection by FeLV-T.
Collapse
Affiliation(s)
- Takayuki Shojima
- Laboratory of Veterinary Infectious Diseases, Department of Applied Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | | | | |
Collapse
|
49
|
Wu T, Yan Y, Kozak CA. Rmcf2, a xenotropic provirus in the Asian mouse species Mus castaneus, blocks infection by polytropic mouse gammaretroviruses. J Virol 2005; 79:9677-84. [PMID: 16014929 PMCID: PMC1181588 DOI: 10.1128/jvi.79.15.9677-9684.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cells from the Asian wild mouse species Mus castaneus are resistant to infection by the polytropic host range group of mouse gammaretroviruses. Two factors are responsible for this resistance: a defective XPR1 cell surface receptor for polytropic murine leukemia viruses (P-MLVs), and a resistance factor detectable only in interspecies hybrids between M. castaneus and mice with an XPR1 variant that permits infection by xenotropic MLVs (X-MLVs) as well as P-MLVs. This second novel virus resistance phenotype has been associated with expression of viral Env glycoprotein; Northern blotting with specific hybridization probes identified a spliced X-MLV env message unique to virus-resistant mice. These observations suggest that resistance is due to expression of one or more endogenous X-MLV envelope genes that interfere with infection by exogenous P-MLVs. M. castaneus contains multiple X-MLV proviruses, but serial backcrosses reduced this proviral content and permitted identification of a single proviral env sequence inherited with resistance. The resistance phenotype and the provirus were mapped to the same site on distal chromosome 18. The provirus was shown to be a full-length provirus highly homologous to previously described X-MLVs. Use of viral pseudotypes confirmed that this resistance gene, termed Rmcf2, prevents entry of P-MLVs. Rmcf2 resembles the virus resistance genes Fv4 and Rmcf in that it produces Env glycoprotein but fails to produce infectious virus; the proviruses associated with all three resistance genes have fatal defects. This type of provirus Env-mediated resistance represents an important defense mechanism in wild mouse populations exposed to endemic infections.
Collapse
Affiliation(s)
- Tiyun Wu
- Laboratory of Molecular Microbiology, National Institute and Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA
| | | | | |
Collapse
|
50
|
Roca AL, Nash WG, Menninger JC, Murphy WJ, O'Brien SJ. Insertional polymorphisms of endogenous feline leukemia viruses. J Virol 2005; 79:3979-86. [PMID: 15767400 PMCID: PMC1061563 DOI: 10.1128/jvi.79.7.3979-3986.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The number, chromosomal distribution, and insertional polymorphisms of endogenous feline leukemia viruses (enFeLVs) were determined in four domestic cats (Burmese, Egyptian Mau, Persian, and nonbreed) using fluorescent in situ hybridization and radiation hybrid mapping. Twenty-nine distinct enFeLV loci were detected across 12 of the 18 autosomes. Each cat carried enFeLV at only 9 to 16 of the loci, and many loci were heterozygous for presence of the provirus. Thus, an average of 19 autosomal copies of enFeLV were present per cat diploid genome. Only five of the autosomal enFeLV sites were present in all four cats, and at only one autosomal locus, B4q15, was enFeLV present in both homologues of all four cats. A single enFeLV occurred in the X chromosome of the Burmese cat, while three to five enFeLV proviruses occurred in each Y chromosome. The X chromosome and nine autosomal enFeLV loci were telomeric, suggesting that ectopic recombination between nonhomologous subtelomeres may contribute to enFeLV distribution. Since endogenous FeLVs may affect the infectiousness or pathogenicity of exogenous FeLVs, genomic variation in enFeLVs represents a candidate for genetic influences on FeLV leukemogenesis in cats.
Collapse
Affiliation(s)
- Alfred L Roca
- Laboratory of Genomic Diversity, Basic Research Program, SAIC-Frederick, Maryland, USA.
| | | | | | | | | |
Collapse
|