1
|
Cackett G, Sýkora M, Portugal R, Dulson C, Dixon L, Werner F. Transcription termination and readthrough in African swine fever virus. Front Immunol 2024; 15:1350267. [PMID: 38545109 PMCID: PMC10965686 DOI: 10.3389/fimmu.2024.1350267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/30/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that encodes its own host-like RNA polymerase (RNAP) and factors required to produce mature mRNA. The formation of accurate mRNA 3' ends by ASFV RNAP depends on transcription termination, likely enabled by a combination of sequence motifs and transcription factors, although these are poorly understood. The termination of any RNAP is rarely 100% efficient, and the transcriptional "readthrough" at terminators can generate long mRNAs which may interfere with the expression of downstream genes. ASFV transcriptome analyses reveal a landscape of heterogeneous mRNA 3' termini, likely a combination of bona fide termination sites and the result of mRNA degradation and processing. While short-read sequencing (SRS) like 3' RNA-seq indicates an accumulation of mRNA 3' ends at specific sites, it cannot inform about which promoters and transcription start sites (TSSs) directed their synthesis, i.e., information about the complete and unprocessed mRNAs at nucleotide resolution. Methods Here, we report a rigorous analysis of full-length ASFV transcripts using long-read sequencing (LRS). We systematically compared transcription termination sites predicted from SRS 3' RNA-seq with 3' ends mapped by LRS during early and late infection. Results Using in-vitro transcription assays, we show that recombinant ASFV RNAP terminates transcription at polyT stretches in the non-template strand, similar to the archaeal RNAP or eukaryotic RNAPIII, unaided by secondary RNA structures or predicted viral termination factors. Our results cement this T-rich motif (U-rich in the RNA) as a universal transcription termination signal in ASFV. Many genes share the usage of the same terminators, while genes can also use a range of terminators to generate transcript isoforms varying enormously in length. A key factor in the latter phenomenon is the highly abundant terminator readthrough we observed, which is more prevalent during late compared with early infection. Discussion This indicates that ASFV mRNAs under the control of late gene promoters utilize different termination mechanisms and factors to early promoters and/or that cellular factors influence the viral transcriptome landscape differently during the late stages of infection.
Collapse
Affiliation(s)
- Gwenny Cackett
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Michal Sýkora
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | | | - Christopher Dulson
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Linda Dixon
- Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Finn Werner
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
2
|
Liu Y, Xie Z, Li Y, Song Y, Di D, Liu J, Gong L, Chen Z, Wu J, Ye Z, Liu J, Yu W, Lv L, Zhong Q, Tian C, Song Q, Wang H, Chen H. Evaluation of an I177L gene-based five-gene-deleted African swine fever virus as a live attenuated vaccine in pigs. Emerg Microbes Infect 2023; 12:2148560. [PMID: 36378022 PMCID: PMC9769145 DOI: 10.1080/22221751.2022.2148560] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
African swine fever (ASF) is a highly contagious disease of domestic and wild pigs caused by the African swine fever virus (ASFV). The current research on ASF vaccines focuses on the development of naturally attenuated, isolated, or genetically engineered live viruses that have been demonstrated to produce reliable immunity. As a result, a genetically engineered virus containing five genes deletion was synthesized based on ASFV Chinese strain GZ201801, named ASFV-GZΔI177LΔCD2vΔMGF. The five-gene-deleted ASFV was safe and fully attenuated in pigs and provides reliable protection against the parental ASFV strain challenge. This indicates that the five-gene-deleted ASFV is a potential candidate for a live attenuated vaccine that could control the spread of ASFV.
Collapse
Affiliation(s)
- Yingnan Liu
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China,Biosafety Research Center, CAAS, Shanghai, People’s Republic of China
| | - Zhenhua Xie
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China
| | - Yao Li
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China
| | - Yingying Song
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China
| | - Dongdong Di
- The Spirit Jinyu Biological Pharmaceutical Co. Ltd, Hohhot, People’s Republic of China
| | - Jingyi Liu
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China,Biosafety Research Center, CAAS, Shanghai, People’s Republic of China
| | - Lang Gong
- South China Agricultural University, Guangdong, People’s Republic of China
| | - Zongyan Chen
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China,Biosafety Research Center, CAAS, Shanghai, People’s Republic of China
| | - Jinxian Wu
- The Spirit Jinyu Biological Pharmaceutical Co. Ltd, Hohhot, People’s Republic of China
| | - Zhengqin Ye
- The Spirit Jinyu Biological Pharmaceutical Co. Ltd, Hohhot, People’s Republic of China
| | - Jianqi Liu
- The Spirit Jinyu Biological Pharmaceutical Co. Ltd, Hohhot, People’s Republic of China
| | - Wanqi Yu
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China
| | - Lu Lv
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China
| | - Qiuping Zhong
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China
| | - Chuanwen Tian
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China
| | - Qingqing Song
- The Spirit Jinyu Biological Pharmaceutical Co. Ltd, Hohhot, People’s Republic of China
| | - Heng Wang
- South China Agricultural University, Guangdong, People’s Republic of China, Hongjun Chen ; Heng Wang
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China,Biosafety Research Center, CAAS, Shanghai, People’s Republic of China, Hongjun Chen ; Heng Wang
| |
Collapse
|
3
|
Han N, Qu H, Xu T, Hu Y, Zhang Y, Ge S. Summary of the Current Status of African Swine Fever Vaccine Development in China. Vaccines (Basel) 2023; 11:vaccines11040762. [PMID: 37112673 PMCID: PMC10145671 DOI: 10.3390/vaccines11040762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
African swine fever (ASF) is a highly lethal and contagious disease of domestic pigs and wild boars. There is still no credible commercially available vaccine. The only existing one, issued in Vietnam, is actually used in limited quantities in limited areas, for large-scale clinical evaluation. ASF virus is a large complex virus, not inducing full neutralizing antibodies, with multiple genotypes and a lack of comprehensive research on virus infection and immunity. Since it was first reported in China in August 2018, ASF has spread rapidly across the country. To prevent, control, further purify and eradicate ASF, joint scientific and technological research on ASF vaccines has been carried out in China. In the past 4 years (2018–2022), several groups in China have been funded for the research and development of various types of ASF vaccines, achieving marked progress and reaching certain milestones. Here, we have provided a comprehensive and systematic summary of all of the relevant data regarding the current status of the development of ASF vaccines in China to provide a reference for further progress worldwide. At present, the further clinical application of the ASF vaccine still needs a lot of tests and research accumulation.
Collapse
Affiliation(s)
- Naijun Han
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Hailong Qu
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Tiangang Xu
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
- Key Laboratory of Animal Biosafety Risk Prevention and Control (South), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, No. 369 Nanjing Road, Qingdao 266032, China
| | - Yongxin Hu
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Yongqiang Zhang
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Shengqiang Ge
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
- Key Laboratory of Animal Biosafety Risk Prevention and Control (South), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, No. 369 Nanjing Road, Qingdao 266032, China
- Correspondence: ; Tel.: +86-53-2856-21552
| |
Collapse
|
4
|
Liu Y, Li Y, Xie Z, Ao Q, Di D, Yu W, Lv L, Zhong Q, Song Y, Liao X, Song Q, Wang H, Chen H. Development and in vivo evaluation of MGF100-1R deletion mutant in an African swine fever virus Chinese strain. Vet Microbiol 2021; 261:109208. [PMID: 34419775 DOI: 10.1016/j.vetmic.2021.109208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
African swine fever virus (ASFV) is a large nucleoplasmic DNA virus, in which the genome is around 170-198 kilobases (kb). More than 50 % genes have unknown functions. Here, MGF100-1R gene is chosen to study the primary function and sublocalization. The gene was located at the left variable region of the ASFV genome that belongs to MGF100 families. It located at the cytoplasm without cytotoxic activities. However, it related to induce the transcriptional levels of pro-inflammatory cytokines. A deletion mutant of MGF100-1R gene was constructed based on ASFV Chinese strain GZ201801. The recombinant deletion mutant (ASFV△MGF100-1R) was demonstrated in vitro that the gene is non-essential for virus replication with a similar replication kinetics in bone marrow-derived macrophages (BMDMs) cell cultures when compared to parental virus. In vivo evaluation, ASFV△MGF100-1R was inoculated intramuscularly and led to a similar pathogenesis that caused by the parental ASFV GZ201801, confirming that deletion of MGF100-1R gene from the ASFV genome does not impact virulence.
Collapse
Affiliation(s)
- Yingnan Liu
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Yao Li
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Zhenhua Xie
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Qingying Ao
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Dongdong Di
- The Spirit Jinyu Biological Pharmaceutical Co. Ltd, Inner Mongolia, 010030, China
| | - Wanqi Yu
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Lu Lv
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Qiuping Zhong
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Yingying Song
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Xinxin Liao
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Qingqing Song
- The Spirit Jinyu Biological Pharmaceutical Co. Ltd, Inner Mongolia, 010030, China
| | - Heng Wang
- South China Agricultural University, Guangdong, 510642, China.
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| |
Collapse
|
5
|
Transcriptome view of a killer: African swine fever virus. Biochem Soc Trans 2021; 48:1569-1581. [PMID: 32725217 PMCID: PMC7458399 DOI: 10.1042/bst20191108] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
African swine fever virus (ASFV) represents a severe threat to global agriculture with the world's domestic pig population reduced by a quarter following recent outbreaks in Europe and Asia. Like other nucleocytoplasmic large DNA viruses, ASFV encodes a transcription apparatus including a eukaryote-like RNA polymerase along with a combination of virus-specific, and host-related transcription factors homologous to the TATA-binding protein (TBP) and TFIIB. Despite its high impact, the molecular basis and temporal regulation of ASFV transcription is not well understood. Our lab recently applied deep sequencing approaches to characterise the viral transcriptome and gene expression during early and late ASFV infection. We have characterised the viral promoter elements and termination signatures, by mapping the RNA-5' and RNA-3' termini at single nucleotide resolution. In this review, we discuss the emerging field of ASFV transcripts, transcription, and transcriptomics.
Collapse
|
6
|
Masembe C, Phan MVT, Robertson DL, Cotten M. Increased resolution of African swine fever virus genome patterns based on profile HMMs of protein domains. Virus Evol 2020; 6:veaa044. [PMID: 32913663 PMCID: PMC7474929 DOI: 10.1093/ve/veaa044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
African swine fever virus (ASFV), belonging to the Asfarviridae family, was originally described in Africa almost 100 years ago and is now spreading uncontrolled across Europe and Asia and threatening to destroy the domestic pork industry. Neither effective antiviral drugs nor protective vaccines are currently available. Efforts to understand the basis for viral pathogenicity and the development of attenuated potential vaccine strains are complicated by the large and complex nature of the ASFV genome. We report here a novel alignment-free method of documenting viral diversity based on profile hidden Markov model domains on a genome scale. The method can be used to infer genomic relationships independent of genome alignments and also reveal ASFV genome sequence differences that determine the presence and characteristics of functional protein domains in the virus. We show that the method can quickly identify differences and shared patterns between virulent and attenuated ASFV strains and will be a useful tool for developing much-needed vaccines and antiviral agents to help control this virus. The tool is rapid to run and easy to implement, readily available as a simple Docker image.
Collapse
Affiliation(s)
- Charles Masembe
- College of Natural Sciences, Makerere University, Makerere Hill Road, P. O Box 7062 Kampala, Uganda
| | - My V T Phan
- Viral Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.,Department of Viroscience, Erasmus Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - David L Robertson
- MRC University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Glasgow G61 1QH, UK
| | - Matthew Cotten
- Viral Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.,MRC University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Glasgow G61 1QH, UK.,MRC/UVRI & LSHTM Uganda Research Unit, P.O. Box 49, Plot 51-59 Nakiwogo Road, Entebbe, Uganda
| |
Collapse
|
7
|
Abstract
The continuing spread of African swine fever (ASF) outside Africa in Europe, the Russian Federation, China and most recently to Mongolia and Vietnam, has heightened awareness of the threat posed by this devastating disease to the global pig industry and food security. In this review we summarise what we know about the African swine fever virus (ASFV), the disease it causes, how it spreads and the current global situation. We discuss current control methods in domestic and wild pigs and prospects for development of vaccines and other tools for control.
Collapse
|
8
|
Dixon LK, Chapman DAG, Netherton CL, Upton C. African swine fever virus replication and genomics. Virus Res 2012; 173:3-14. [PMID: 23142553 DOI: 10.1016/j.virusres.2012.10.020] [Citation(s) in RCA: 459] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 01/03/2023]
Abstract
African swine fever virus (ASFV) is a large icosahedral DNA virus which replicates predominantly in the cytoplasm of infected cells. The ASFV double-stranded DNA genome varies in length from about 170 to 193 kbp depending on the isolate and contains between 150 and 167 open reading frames. These are closely spaced and read from both DNA strands. The virus genome termini are covalently closed by imperfectly base-paired hairpin loops that are present in two forms that are complimentary and inverted with respect to each other. Adjacent to the termini are inverted arrays of different tandem repeats. Head to head concatemeric genome replication intermediates have been described. A similar mechanism of replication to Poxviruses has been proposed for ASFV. Virus genome transcription occurs independently of the host RNA polymerase II and virus particles contain all of the enzymes and factors required for early gene transcription. DNA replication begins in perinuclear factory areas about 6h post-infection although an earlier stage of nuclear DNA synthesis has been reported. The virus genome encodes enzymes required for transcription and replication of the virus genome and virion structural proteins. Enzymes that are involved in a base excision repair pathway may be an adaptation to enable virus replication in the oxidative environment of the macrophage cytoplasm. Other ASFV genes encode factors involved in evading host defence systems and modulating host cell function. Variation between the genomes of different ASFV isolates is most commonly due to gain or loss of members of multigene families, MGFs 100, 110, 300, 360, 505/530 and family p22. These are located within the left terminal 40kbp and right terminal 20kbp. ASFV is the only member of the Asfarviridae, which is one of the families within the nucleocytoplasmic large DNA virus superfamily.
Collapse
Affiliation(s)
- Linda K Dixon
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom.
| | | | | | | |
Collapse
|
9
|
Rodríguez JM, Salas ML. African swine fever virus transcription. Virus Res 2012; 173:15-28. [PMID: 23041356 DOI: 10.1016/j.virusres.2012.09.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
Abstract
African swine fever virus (ASFV), a large, enveloped, icosahedral dsDNA virus, is currently the only known DNA-containing arbovirus and the only recognized member of the family Asfarviridae. Its genome encodes more than 150 open reading frames that are densely distributed, separated by short intergenic regions. ASFV gene expression follows a complex temporal programming. Four classes of mRNAs have been identified by its distinctive accumulation kinetics. Gene transcription is coordinated with DNA replication that acts as the main switch on ASFV gene expression. Immediate early and early genes are expressed before the onset of DNA replication, whereas intermediate and late genes are expressed afterwards. ASFV mRNAs have a cap 1 structure at its 5'-end and a short poly(A) tail on its 3'-end. Transcription initiation and termination occurs at very precise positions within the genome, producing transcripts of definite length throughout the expression program. ASFV devotes approximately 20% of its genome to encode the 20 genes currently considered to be involved in the transcription and modification of its mRNAs. This transcriptional machinery gives to ASFV a remarkable independence from its host and an accurate positional and temporal control of its gene expression. Here, we review the components of the ASFV transcriptional apparatus, its expression strategies and the relevant data about the transcriptional cis-acting control sequences.
Collapse
Affiliation(s)
- Javier M Rodríguez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km 2.2, Majadahonda, 28220 Madrid, Spain.
| | | |
Collapse
|
10
|
Lee M, Jang JJ, Kim YS, Lee SO, Choi SH, Kim SH, Yu E. Clinicopathologic features of q Fever patients with acute hepatitis. KOREAN JOURNAL OF PATHOLOGY 2012; 46:10-4. [PMID: 23109972 PMCID: PMC3479695 DOI: 10.4132/koreanjpathol.2012.46.1.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/04/2011] [Accepted: 11/22/2011] [Indexed: 11/17/2022]
Abstract
Background Q fever caused by Coxiella burnetii presents with diverse clinical and pathological features including subclinical or cholestatic hepatitis. However, the pathological features of liver biopsies from patients with Q fever have not been well described. Methods Clinical features and pathological findings of liver biopsies were reviewed in seven cases of Q fever that were confirmed by serological, microbiological, or molecular tests. Results All cases presented with fever. Liver enzymes were mildly elevated except one case with marked hyperbilirubinemia. Characteristic fibrin ring granulomas were present in three cases, epithelioid granulomas with eosinophilic infiltration in two cases, extensive extravasated fibrins without ring configuration mimicking necrotizing granuloma in one case, and acute cholangitis without granuloma in one case. All cases were treated with antibiotics for 20 days. Six cases were completely cured, but one suffered from multiorgan failure. Conclusions C. burnetii infection is uncommon, but should always be considered in patients with acute hepatitis and fever. Because variable-sized circumferential or radiating fibrin deposition was a consistent feature of the present cases, Q fever can be strongly suggested by pathological features and confirmed by serological and/or molecular tests.
Collapse
Affiliation(s)
- Miji Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Sánchez‐Vizcaíno JM, Martínez‐López B, Martínez‐Avilés M, Martins C, Boinas F, Vialc L, Michaud V, Jori F, Etter E, Albina E, Roger F. Scientific review on African Swine Fever. ACTA ACUST UNITED AC 2009. [DOI: 10.2903/sp.efsa.2009.en-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - Carlos Martins
- Faculdade de Medicina Veterinaria, Universidade Técnica de Lisboa, (FMV‐UTL)
| | - Fernando Boinas
- Faculdade de Medicina Veterinaria, Universidade Técnica de Lisboa, (FMV‐UTL)
| | - Laurence Vialc
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - Vincent Michaud
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - Ferran Jori
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - Eric Etter
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - Emmanuel Albina
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - François Roger
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| |
Collapse
|
12
|
Abstract
African swine fever virus (ASFV) is a large, intracytoplasmically-replicating DNA arbovirus and the sole member of the family Asfarviridae. It is the etiologic agent of a highly lethal hemorrhagic disease of domestic swine and therefore extensively studied to elucidate the structures, genes, and mechanisms affecting viral replication in the host, virus-host interactions, and viral virulence. Increasingly apparent is the complexity with which ASFV replicates and interacts with the host cell during infection. ASFV encodes novel genes involved in host immune response modulation, viral virulence for domestic swine, and in the ability of ASFV to replicate and spread in its tick vector. The unique nature of ASFV has contributed to a broader understanding of DNA virus/host interactions.
Collapse
Affiliation(s)
- E R Tulman
- Department of Pathobiology and Veterinary Science, Center of Excellence for Vaccine Research, University of Connecticut, Storrs 06269, USA.
| | | | | | | |
Collapse
|
13
|
Boinas FS, Hutchings GH, Dixon LK, Wilkinson PJ. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J Gen Virol 2004; 85:2177-2187. [PMID: 15269356 DOI: 10.1099/vir.0.80058-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ten African swine fever virus isolates from the soft tick Ornithodoros erraticus collected on three farms in the province of Alentejo in Portugal were characterized by their ability to cause haemadsorption (HAD) of red blood cells to infected pig macrophages, using restriction enzyme site mapping of the virus genomes and by experimental infection of pigs. Six virus isolates induced haemadsorption and four were non-haemadsorbing (non-HAD) in pig macrophage cell cultures. The restriction enzyme site maps of two non-HAD viruses, when compared with a virulent HAD isolate, showed a deletion of 9.6 kbp in the fragment adjacent to the left terminal fragment and of 1.6 kbp in the right terminal fragment and an insertion of 0.2 kbp in the central region. The six HAD viruses isolated were pathogenic and produced typical acute African swine fever in pigs and the four non-HAD isolates were non-pathogenic. Pigs that were infected with non-HAD viruses were fully resistant or had a delay of up to 14 days in the onset of disease, after challenge with pathogenic Portuguese viruses. Non-HAD viruses could be transmitted by contact but with a lower efficiency (42-50 %) compared with HAD viruses (100 %). The clinical differences found between the virus isolates from the ticks could have implications for the long-term persistence of virus in the field because of the cross-protection produced by the non-pathogenic isolates. This may also explain the presence of seropositive pigs in herds in Alentejo where no clinical disease had been reported.
Collapse
Affiliation(s)
- F S Boinas
- Laboratório de Doenças Infecciosas, CIISA, Faculdade de Medicina Veterinária, R. Professor Cid dos Santos, Polo Universitário do Alto da Ajuda, 1300-477 Lisboa, Portugal
| | - G H Hutchings
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 ONF, UK
| | - L K Dixon
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 ONF, UK
| | - P J Wilkinson
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 ONF, UK
| |
Collapse
|
14
|
Netherton C, Rouiller I, Wileman T. The subcellular distribution of multigene family 110 proteins of African swine fever virus is determined by differences in C-terminal KDEL endoplasmic reticulum retention motifs. J Virol 2004; 78:3710-21. [PMID: 15016891 PMCID: PMC371041 DOI: 10.1128/jvi.78.7.3710-3721.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African swine fever virus (ASFV) is a large double-stranded DNA virus that replicates in discrete areas in the cytosol of infected cells called viral factories. Recent studies have shown that assembling virions acquire their internal envelopes through enwrapment by membranes derived from the endoplasmic reticulum (ER). However, the mechanisms that underlie the formation of viral factories and progenitor viral membranes are as yet unclear. Analysis of the published genome of the virus revealed a conserved multigene family that encodes proteins with hydrophobic signal sequences, indicating possible translocation into the ER lumen. Strikingly, two of these genes, XP124L and Y118L, encoded proteins with KDEL-like ER retention motifs. Analysis of XP124L and Y118L gene product by biochemical and immunofluorescence techniques showed that the proteins were localized to pre-Golgi compartments and that the KEDL motif at the C terminus of pXP124L was functional. XP124L expression, in the absence of other ASFV genes, had a dramatic effect on the contents of the ER that was dependent precisely on the C-terminal sequence KEDL. The normal subcellular distribution of a number of proteins resident to this important, cellular organelle was drastically altered in cells expressing wild-type XP124L gene product. PXP124L formed unusual perinuclear structures that contained resident ER proteins, as well as proteins of the ER-Golgi intermediate compartment. The data presented here hint at a role for MGF110 gene product in preparing the ER for its role in viral morphogenesis; this and other potential functions are discussed.
Collapse
Affiliation(s)
- Christopher Netherton
- Division of Immunology, Pirbright Laboratory, Institute for Animal Health, Pirbright, Surrey GU24 0NF, United Kingdom
| | | | | |
Collapse
|
15
|
Burrage TG, Lu Z, Neilan JG, Rock DL, Zsak L. African swine fever virus multigene family 360 genes affect virus replication and generalization of infection in Ornithodoros porcinus ticks. J Virol 2004; 78:2445-53. [PMID: 14963141 PMCID: PMC369235 DOI: 10.1128/jvi.78.5.2445-2453.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Accepted: 10/29/2003] [Indexed: 01/18/2023] Open
Abstract
Recently, we reported that African swine fever virus (ASFV) multigene family (MGF) 360 and 530 genes are significant swine macrophage host range determinants that function by promoting infected-cell survival. To examine the function of these genes in ASFV's arthropod host, Ornithodoros porcinus porcinus, an MGF360/530 gene deletion mutant (Pr4Delta35) was constructed from an ASFV isolate of tick origin, Pr4. Pr4Delta35 exhibited a significant growth defect in ticks. The deletion of six MGF360 and two MGF530 genes from Pr4 markedly reduced viral replication in infected ticks 100- to 1,000-fold. To define the minimal set of MGF360/530 genes required for tick host range, additional gene deletion mutants lacking individual or multiple MGF genes were constructed. The deletion mutant Pr4Delta3-C2, which lacked three MGF360 genes (3HL, 3Il, and 3LL), exhibited reduced viral growth in ticks. Pr4Delta3-C2 virus titers in ticks were significantly reduced 100- to 1,000-fold compared to control values at various times postinfection. In contrast to the parental virus, with which high levels of virus replication were observed in the tissues of infected adults, Pr4Delta3-C2 replication was not detected in the midgut, hemolymph, salivary gland, coxal gland, or reproductive organs at 15 weeks postinfection. These data indicate that ASFV MGF360 genes are significant tick host range determinants and that they are required for efficient virus replication and generalization of infection. The impaired virus replication of Pr4Delta3-C2 in the tick midgut likely accounts for the absence of the generalized infection that is necessary for the natural transmission of virus from ticks to pigs.
Collapse
Affiliation(s)
- T G Burrage
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York 11944-0848, USA
| | | | | | | | | |
Collapse
|
16
|
Bideshi DK, Renault S, Stasiak K, Federici BA, Bigot Y. Phylogenetic analysis and possible function of bro-like genes, a multigene family widespread among large double-stranded DNA viruses of invertebrates and bacteria. J Gen Virol 2003; 84:2531-2544. [PMID: 12917475 DOI: 10.1099/vir.0.19256-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Baculovirus repeated open reading frame (bro) genes and their relatives constitute a multigene family, typically with multiple copies per genome, known to occur among certain insect dsDNA viruses and bacteriophages. Little is known about the evolutionary history and function of the proteins encoded by these genes. Here we have shown that bro and bro-like (bro-l) genes occur among viruses of two additional invertebrate viral families, Ascoviridae and Iridoviridae, and in prokaryotic class II transposons. Analysis of over 100 sequences showed that the N-terminal region, consisting of two subdomains, is the most conserved region and contains a DNA-binding motif that has been characterized previously. Phylogenetic analysis indicated that these proteins are distributed among eight groups, Groups 1-7 consisting of invertebrate virus proteins and Group 8 of proteins in bacteriophages and bacterial transposons. No bro genes were identified in databases of invertebrate or vertebrate genomes, vertebrate viruses and transposons, nor in prokaryotic genomes, except in prophages or transposons of the latter. The phylogenetic relationship between bro genes suggests that they have resulted from recombination of viral genomes that allowed the duplication and loss of genes, but also the acquisition of genes by horizontal transfer over evolutionary time. In addition, the maintenance and diversity of bro-l genes in different types of invertebrate dsDNA viruses, but not in vertebrate viruses, suggests that these proteins play an important role in invertebrate virus biology. Experiments with the unique orf2 bro gene of Autographa californica multicapsid nucleopolyhedrovirus showed that it is not required for replication, but may enhance replication during the occlusion phase of reproduction.
Collapse
Affiliation(s)
- Dennis K Bideshi
- California Baptist University, 8432 Magnolia Avenue, Riverside, CA 92504-3297, USA
- Department of Entomology and Interdepartmental Graduate Program in Genetics, University of California, Riverside, CA 92521, USA
| | - Sylvaine Renault
- Laboratoire d'Etude des Parasites Génétiques, FRE CNRS 2535, Université François Rabelais, UFR des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Karine Stasiak
- Laboratoire d'Etude des Parasites Génétiques, FRE CNRS 2535, Université François Rabelais, UFR des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
- Department of Entomology and Interdepartmental Graduate Program in Genetics, University of California, Riverside, CA 92521, USA
| | - Brian A Federici
- Department of Entomology and Interdepartmental Graduate Program in Genetics, University of California, Riverside, CA 92521, USA
| | - Yves Bigot
- Laboratoire d'Etude des Parasites Génétiques, FRE CNRS 2535, Université François Rabelais, UFR des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
- Department of Entomology and Interdepartmental Graduate Program in Genetics, University of California, Riverside, CA 92521, USA
| |
Collapse
|
17
|
Neilan JG, Zsak L, Lu Z, Kutish GF, Afonso CL, Rock DL. Novel swine virulence determinant in the left variable region of the African swine fever virus genome. J Virol 2002; 76:3095-104. [PMID: 11884534 PMCID: PMC136047 DOI: 10.1128/jvi.76.7.3095-3104.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2001] [Accepted: 12/18/2001] [Indexed: 02/06/2023] Open
Abstract
Previously we have shown that the African swine fever virus (ASFV) NL gene deletion mutant E70DeltaNL is attenuated in pigs. Our recent observations that NL gene deletion mutants of two additional pathogenic ASFV isolates, Malawi Lil-20/1 and Pr4, remained highly virulent in swine (100% mortality) suggested that these isolates encoded an additional virulence determinant(s) that was absent from E70. To map this putative virulence determinant, in vivo marker rescue experiments were performed by inoculating swine with infection-transfection lysates containing E70 NL deletion mutant virus (E70DeltaNL) and cosmid DNA clones from the Malawi NL gene deletion mutant (MalDeltaNL). A cosmid clone representing the left-hand 38-kb region (map units 0.05 to 0.26) of the MalDeltaNL genome was capable of restoring full virulence to E70DeltaNL. Southern blot analysis of recovered virulent viruses confirmed that they were recombinant E70DeltaNL genomes containing a 23- to 28-kb DNA fragment of the Malawi genome. These recombinants exhibited an unaltered MalDeltaNL disease and virulence phenotype when inoculated into swine. Additional in vivo marker rescue experiments identified a 20-kb fragment, encoding members of multigene families (MGF) 360 and 530, as being capable of fully restoring virulence to E70DeltaNL. Comparative nucleotide sequence analysis of the left variable region of the E70DeltaNL and Malawi Lil-20/1 genomes identified an 8-kb deletion in the E70DeltaNL isolate which resulted in the deletion and/or truncation of three MGF 360 genes and four MGF 530 genes. A recombinant MalDeltaNL deletion mutant lacking three members of each MGF gene family was constructed and evaluated for virulence in swine. The mutant virus replicated normally in macrophage cell culture but was avirulent in swine. Together, these results indicate that a region within the left variable region of the ASFV genome containing the MGF 360 and 530 genes represents a previously unrecognized virulence determinant for domestic swine.
Collapse
Affiliation(s)
- J G Neilan
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, New York 11944-0848, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Zsak L, Lu Z, Burrage TG, Neilan JG, Kutish GF, Moore DM, Rock DL. African swine fever virus multigene family 360 and 530 genes are novel macrophage host range determinants. J Virol 2001; 75:3066-76. [PMID: 11238833 PMCID: PMC114100 DOI: 10.1128/jvi.75.7.3066-3076.2001] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2000] [Accepted: 01/10/2001] [Indexed: 11/20/2022] Open
Abstract
Pathogenic African swine fever virus (ASFV) isolates primarily target cells of the mononuclear-phagocytic system in infected swine and replicate efficiently in primary macrophage cell cultures in vitro. ASFVs can, however, be adapted to grow in monkey cell lines. Characterization of two cell culture-adapted viruses, MS16 and BA71V, revealed that neither virus replicated in macrophage cell cultures. Cell viability experiments and ultrastructural analysis showed that infection with these viruses resulted in early macrophage cell death, which occurred prior to viral progeny production. Genomic cosmid clones from pathogenic ASFV isolate E70 were used in marker rescue experiments to identify sequences capable of restoring MS16 and BA71V growth in macrophage cell cultures. A cosmid clone representing a 38-kbp region at the left terminus of the genome completely restored the growth of both viruses. In subsequent fine-mapping experiments, an 11-kbp subclone from this region was sufficient for complete rescue of BA71V growth. Sequence analysis indicated that both MS16 and BA71V had significant deletions in the region containing members of multigene family 360 (MGF 360) and MGF530. Deletion of this same region from highly pathogenic ASFV isolate Pr4 significantly reduced viral growth in macrophage cell cultures. These findings indicate that ASFV MGF360 and MGF530 genes perform an essential macrophage host range function(s) that involves promotion of infected-cell survival.
Collapse
Affiliation(s)
- L Zsak
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York 11944-0848, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Galindo I, Almazán F, Bustos MJ, Viñuela E, Carrascosa AL. African swine fever virus EP153R open reading frame encodes a glycoprotein involved in the hemadsorption of infected cells. Virology 2000; 266:340-51. [PMID: 10639320 DOI: 10.1006/viro.1999.0080] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The open reading frame EP153R, located within the EcoRI E' fragment of the African swine fever (ASF) virus genome, is predicted to encode a membrane protein of 153 amino acids that presents significant homology to the N-terminal region of several CD44 molecules. EP153R contains multiple putative sites for N-glycosylation, phosphorylation, and myristoylation, a central transmembrane region, a C-type animal lectin-like domain, and a cell attachment sequence. Transcription of EP153R takes place at both early and late times during the virus infection. The disruption of the gene, achieved by insertion of the marker gene LacZ within EP153R, did not change either the in vitro virus growth rate or the virus-sensitive/resistant condition of up to 17 established cell lines, but abrogated the hemadsorption phenomenon induced in ASF virus-infected cells. As the sequence and expression of the ASF virus protein pEP402R, a CD2 homolog responsible for the adhesion of erythrocytes to susceptible cells, was unaffected in cultures infected with the EP153R deletion mutant, we conclude that the gene EP153R is needed to induce and/or maintain the interaction between the viral CD2 homolog and its corresponding cell receptor.
Collapse
Affiliation(s)
- I Galindo
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | | | | | | | | |
Collapse
|
20
|
Galindo I, Viñuela E, Carrascosa AL. Characterization of the african swine fever virus protein p49: a new late structural polypeptide. J Gen Virol 2000; 81:59-65. [PMID: 10640542 DOI: 10.1099/0022-1317-81-1-59] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The open reading frame B438L, located within the EcoRI B fragment of the African swine fever virus genome, is predicted to encode a protein of 438 amino acids with a molecular mass of 49.3 kDa. It presents a cell attachment RGD (Arg-Gly-Asp) motif but no other significant similarity to protein sequences in databases. Northern blot and primer extension analysis showed that B438L is transcribed only at late times during virus infection. The B438L gene product has been expressed in Escherichia coli, purified and used as an antigen for antibody production. The rabbit antiserum specific for pB438L recognized a protein of about 49 kDa in virus-infected cell extracts. This protein was synthesized late in infection by all the virus strains tested, was located in cytoplasmic virus factories and appeared as a structural component of purified virus particles.
Collapse
Affiliation(s)
- I Galindo
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
21
|
Kang W, Suzuki M, Zemskov E, Okano K, Maeda S. Characterization of baculovirus repeated open reading frames (bro) in Bombyx mori nucleopolyhedrovirus. J Virol 1999; 73:10339-45. [PMID: 10559352 PMCID: PMC113089 DOI: 10.1128/jvi.73.12.10339-10345.1999] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) contains five related open reading frames (ORFs). Recent sequence analyses of several other baculovirus genomes reveal that these ORFs belong to a unique multigene family called the baculovirus repeated ORFs (bro) family. Here we have characterized these five genes from BmNPV at the transcriptional and translational levels. Reverse transcription-PCR and primer extension analyses indicated that transcription of all bro genes occurs by 2 to 4 h postinfection (p.i.) and reaches maximal levels between at 8 and 12 h p.i. Transcription of all genes is initiated between 50 and 70 nucleotides upstream of the start codon, at a characteristic C(T)AGT motif. Expression of a cat reporter gene under the control of each bro promoter provides evidence that a viral factor(s) is required for the transcription of all bro genes. Immunoblot analysis indicated that a population of BRO proteins is produced vigorously between at 8 and 14 h p.i. Immunohistochemical analysis by confocal microscopy showed that BRO proteins are localized in both the nucleus and the cytoplasm at 8 h p.i. Four BmNPV mutants, in which the bro-a, bro-b, bro-c, and bro-e genes were individually inactivated, were successfully isolated. However, exhaustive efforts failed to isolate a bro-d-deficient mutant. Similarly, it was not possible to isolate a double-deletion bro-a bro-c mutant. The bro-d gene may play an irreplaceable functional role(s) during viral infection, while bro-a and bro-c may functionally complement each other.
Collapse
Affiliation(s)
- W Kang
- Laboratory of Molecular Entomology, RIKEN (The Institute of Physical and Chemical Research), Wako, Japan.
| | | | | | | | | |
Collapse
|
22
|
Pires S, Ribeiro G, Costa JV. Sequence and organization of the left multigene family 110 region of the Vero-adapted L60V strain of African swine fever virus. Virus Genes 1998; 15:271-4. [PMID: 9482593 DOI: 10.1023/a:1007992806818] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sequencing of the left variable region of the L60V Vero cell-adapted strain of African swine fever virus (ASFV) showed the presence of three genes belonging to multigene family 110 (MGF110) and of a fourth unrelated gene. This gene was separated from the MGF110 genes by a region rich in direct repeats. The first MGF110 gene, V1L, with 104 codons, was only moderately related to the other two, W1L and W2L, with 124 and 80 codons, respectively. These two genes were closely related, W2L being a truncated duplication of W1L. Homology matrix analysis of the sequence against itself showed the existence of a repeated block corresponding to the central conserved domain of the three genes, flanked by two other repeated blocks in W1L and W2L. The comparison of the organization of the left variable region of ASFV L60V with that of field isolates and other adapted viruses revealed that adaptation of unrelated viruses resulted in similar large deletions that map, in their right boundaries, exactly at the same positions in the intergenic repeat-rich region.
Collapse
Affiliation(s)
- S Pires
- Laboratory of Molecular Virology, Gulbenkian Institute of Science, Portugal
| | | | | |
Collapse
|
23
|
Revilla Y, Cebrián A, Baixerás E, Martínez C, Viñuela E, Salas ML. Inhibition of apoptosis by the African swine fever virus Bcl-2 homologue: role of the BH1 domain. Virology 1997; 228:400-4. [PMID: 9123849 DOI: 10.1006/viro.1996.8395] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The function of the African swine fever virus (ASFV) bcl-2 homologue, gene A179L, in the regulation of apoptosis was investigated using as a model system the human myeloid leukemia cell line K562 induced to die by apoptosis with inhibitors of macromolecular synthesis, a process that is prevented by overexpression of human bcl-2. It is shown that transfection of K562 cells with the ASFV A179L gene protects these cells from apoptotic cell death induced by a combination of cycloheximide and actinomycin D or by treatment with cytosine arabinoside. To test the functional role of the highly conserved BH1 domain present in the A179L protein, the Gly residue at position 85 was mutated to Ala, since it has been shown that substitution of the corresponding Gly in human Bcl-2 abrogates its death-repressor activity. It was found that the Gly-to-Ala mutation in the BH1 domain of the viral protein abolished its capacity to protect the K562 cells from apoptosis, indicating that this Gly is essential for A179L action. This finding stresses the functional similarity of the BH1 domains of the viral protein and cellular Bcl-2.
Collapse
Affiliation(s)
- Y Revilla
- Centro de Biologíe Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Ferreira C. Expression of ubiquitin, actin, and actin-like genes in African swine fever virus infected cells. Virus Res 1996; 44:11-21. [PMID: 8873409 DOI: 10.1016/0168-1702(96)01334-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Northern blot hybridisation was used to study the accumulation of specific cellular mRNAs (ubiquitin and actin) in Vero cells infected with African swine fever virus (ASFV). ASFV modulates the cytoplasmic levels of ubiquitin and actin mRNAs throughout infection. Before viral DNA replication, degradation of ubiquitin mRNAs is dependent on de novo protein synthesis, since treatment with cycloheximide (CH) allowed the accumulation of ubiquitin mRNAs, while treatment with cytosine arabinoside (araC) induced a reduction in ubiquitin transcripts. Nevertheless, viral DNA replication is essential to the final increase observed in ubiquitin mRNA degradation. Furthermore, ubiquitin transcription seems to be tightly related to viral gene transcription, since before viral DNA replication ubiquitin and viral transcripts accumulate at opposite rates. Concerning actin transcription, the first step in actin mRNA degradation does not depend on de novo protein synthesis, since treatment with CH induced a reduction in actin mRNA. The second step in actin mRNA degradation, similarly to ubiquitin, depends on viral DNA replication. Finally, in the present study it has also been shown that ASFV codifies for actin-like genes. This is the first report of a virus encoding an actin-like gene.
Collapse
Affiliation(s)
- C Ferreira
- Gulbenkian Institute of Science, Oeiras, Portugal.
| |
Collapse
|
25
|
Summers MD, Dib-Hajj SD. Polydnavirus-facilitated endoparasite protection against host immune defenses. Proc Natl Acad Sci U S A 1995; 92:29-36. [PMID: 7816835 PMCID: PMC42812 DOI: 10.1073/pnas.92.1.29] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The polydnavirus of Campoletis sonorensis has evolved with an unusual life cycle in which the virus exists as an obligate symbiont with the parasite insect and causes significant physiological and developmental alterations in the parasite's host. The segmented polydnavirus genome consists of double-stranded superhelical molecules; each segment is apparently integrated into the chromosomal DNA of each male and female wasp. The virus replicates in the nucleus of calyx cells and is secreted into the oviduct. When the virus is transferred to the host insect during oviposition, gene expression induces host immunosuppression and developmental arrest, which ensures successful development of the immature endoparasite. In the host, polydnavirus expression is detected by 2 hr and during endoparasite development. Most of the abundantly expressed viral genes expressed very early after parasitization belong to multigene families. Among these families, the "cysteine-rich" gene family is the most studied, and it may be important in inducing host manifestations resulting in parasite survival. This gene family is characterized by a similar gene structure with introns at comparable positions within the 5' untranslated sequence and just 5' to a specific cysteine codon (*C) within a cysteine motif, C-*C-CC-C-C. Another unusual feature is that the nucleotide sequences of introns 2 in the subfamily WHv1.0/WHv1.6 are more conserved than those of the flanking exons. The structures of these viral genes and possible functions for their encoded protein are considered within the context of their endoparasite and virus strategy for genetic adaptation and successful parasitization.
Collapse
Affiliation(s)
- M D Summers
- Department of Entomology, Texas A & M University, College Station 77843
| | | |
Collapse
|