1
|
Lu Z, Wang Y, Zou X, Hung T. Analysis of Fowl Adenovirus 4 Transcriptome by De Novo ORF Prediction Based on Corrected Nanopore Full-Length cDNA Sequencing Data. Viruses 2023; 15:v15020529. [PMID: 36851744 PMCID: PMC9962806 DOI: 10.3390/v15020529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The transcriptome of fowl adenovirus has not been comprehensively revealed. Here, we attempted to analyze the fowl adenovirus 4 (FAdV-4) transcriptome by deep sequencing. RNA samples were extracted from chicken LMH cells at 12, 18 or 26 h post-FAdV-4 infection, and subjected to Illumina strand-specific RNA-seq or nanopore full-length PCR-cDNA sequencing. After removing the reads of host cells, the data of FAdV-4 nanopore full-length cDNAs (transcripts) were corrected with reads from the Illumina RNA-seq, mapped to the viral genome and then used to predict viral open reading frames (ORFs). Other than 42 known ORFs, 39 novel ORFs were annotated to the FAdV-4 genome. Different from human adenovirus 5, one FAdV-4 ORF was often encoded by several transcripts, and more FAdV-4 ORFs were located on two exons. With these data, 18 major transcription start sites and 15 major transcription termination sites were defined, implying 18 viral promoters and 15 polyadenylation signals. The temporal cascade of viral gene transcription was observed in FAdV-4-infected cells, with six promoters possessing considerable activity in the early phase. Unexpectedly, four promoters, instead of one major late promoter, were engaged in the transcription of the viral genus-common genes on the forward strand. The clarification of the FAdV-4 transcriptome laid a solid foundation for the study of viral gene function, virulence and virus evolution, and it would help construct FAdV-4 as a gene transfer vehicle. The strategy of de novo ORF prediction could be used to parse the transcriptome of other novel adenoviruses.
Collapse
Affiliation(s)
- Zhuozhuang Lu
- Correspondence: (X.Z.); (Z.L.); Tel.: +86-10-6351-1368 (Z.L.)
| | | | - Xiaohui Zou
- Correspondence: (X.Z.); (Z.L.); Tel.: +86-10-6351-1368 (Z.L.)
| | | |
Collapse
|
2
|
Alemán MV, Bertzbach LD, Speiseder T, Ip WH, González RA, Dobner T. Global Transcriptome Analyses of Cellular and Viral mRNAs during HAdV-C5 Infection Highlight New Aspects of Viral mRNA Biogenesis and Cytoplasmic Viral mRNA Accumulations. Viruses 2022; 14:2428. [PMID: 36366526 PMCID: PMC9692883 DOI: 10.3390/v14112428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
It is well established that human adenoviruses such as species C, types 2 and 5 (HAdV-C2 and HAdV-C5), induce a nearly complete shutoff of host-cell protein synthesis in the infected cell, simultaneously directing very efficient production of viral proteins. Such preferential expression of viral over cellular genes is thought to be controlled by selective nucleocytoplasmic export and translation of viral mRNA. While detailed knowledge of the regulatory mechanisms responsible for the translation of viral mRNA is available, the viral or cellular mechanisms of mRNA biogenesis are not completely understood. To identify parameters that control the differential export of viral and cellular mRNAs, we performed global transcriptome analyses (RNAseq) and monitored temporal nucleocytoplasmic partitioning of viral and cellular mRNAs during HAdV-C5 infection of A549 cells. Our analyses confirmed previously reported features of the viral mRNA expression program, as a clear shift in viral early to late mRNA accumulation was observed upon transition from the early to the late phase of viral replication. The progression into the late phase of infection, however, did not result in abrogation of cellular mRNA export; rather, viral late mRNAs outnumbered viral early and most cellular mRNAs by several orders of magnitude during the late phase, revealing that viral late mRNAs are not selectively exported but outcompete cellular mRNA biogenesis.
Collapse
Affiliation(s)
- Margarita Valdés Alemán
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Thomas Speiseder
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Wing Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Ramón A. González
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| |
Collapse
|
3
|
Márquez V, Ballesteros G, Dobner T, González RA. Adipocyte commitment of 3T3-L1 cells is required to support human adenovirus 36 productive replication concurrent with altered lipid and glucose metabolism. Front Cell Infect Microbiol 2022; 12:1016200. [PMID: 36237435 PMCID: PMC9553024 DOI: 10.3389/fcimb.2022.1016200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Human adenovirus 36 (HAdV-D36) can cause obesity in animal models, induces an adipogenic effect and increased adipocyte differentiation in cell culture. HAdV-D36 infection alters gene expression and the metabolism of the infected cells resulting in increased glucose internalization and triglyceride accumulation. Although HAdV-D36 prevalence correlates with obesity in humans, whether human preadipocytes may be targeted in vivo has not been determined and metabolic reprogramming of preadipocytes has not been explored in the context of the viral replication cycle. HAdV-D36 infection of the mouse fibroblasts, 3T3-L1 cells, which can differentiate into adipocytes, promotes proliferation and differentiation, but replication of the virus in these cells is abortive as indicated by short-lived transient expression of viral mRNA and a progressive loss of viral DNA. Therefore, we have evaluated whether a productive viral replication cycle can be established in the 3T3-L1 preadipocyte model under conditions that drive the cell differentiation process. For this purpose, viral mRNA levels and viral DNA replication were measured by RT-qPCR and qPCR, respectively, and viral progeny production was determined by plaque assay. The lipogenic effect of infection was evaluated with Oil Red O (ORO) staining, and expression of genes that control lipid and glucose metabolism was measured by RT-qPCR. In the context of a viral productive cycle, HAdV-D36 modulated the expression of the adipogenic genes, C/EBPα, C/EBPβ and PPARγ, as well as intracellular lipid accumulation, and the infection was accompanied by altered expression of glucolytic genes. The results show that only adipocyte-committed 3T3-L1 cells are permissive for the expression of early and late viral mRNAs, as well as viral DNA replication and progeny production, supporting productive HAdV-D36 viral replication, indicating that a greater effect on adipogenesis occurs in adipocytes that support productive viral replication.
Collapse
Affiliation(s)
- Verónica Márquez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Grisel Ballesteros
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg, Germany
| | - Ramón A. González
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- *Correspondence: Ramón A. González,
| |
Collapse
|
4
|
Höttler A, März L, Lübke M, Rammensee HG, Stevanović S. Broad and Efficient Activation of Memory CD4 + T Cells by Novel HAdV- and HCMV-Derived Peptide Pools. Front Immunol 2021; 12:700438. [PMID: 34322126 PMCID: PMC8312486 DOI: 10.3389/fimmu.2021.700438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/03/2022] Open
Abstract
Reactivation of Human Cytomegalovirus (HCMV) and Human Adenovirus (HAdV) in immunocompromised patients following stem cell transplantation (SCT) or solid organ transplantation (SOT) is associated with high morbidity and mortality. The adoptive transfer of virus-specific CD8+ and CD4+ T cells has been shown to re-establish the antiviral T-cell response and improve clinical outcome. The viral load in immunocompromised patients can efficiently be reduced solely by the infusion of virus-specific CD4+ T cells. The identification of CD4+ T-cell epitopes has mainly focused on a limited number of viral proteins that were characterized as immunodominant. Here, we used in silico prediction to determine promiscuous CD4+ T-cell epitopes from the entire proteomes of HCMV and HAdV. Immunogenicity testing with enzyme-linked immuno spot (ELISpot) assays and intracellular cytokine staining (ICS) revealed numerous novel CD4+ T-cell epitopes derived from a broad spectrum of viral antigens. We identified 17 novel HCMV-derived and seven novel HAdV-derived CD4+ T-cell epitopes that were recognized by > 50% of the assessed peripheral blood mononuclear cell (PBMC) samples. The newly identified epitopes were pooled with previously published, retested epitopes to stimulate virus-specific memory T cells in PBMCs from numerous randomly selected blood donors. Our peptide pools induced strong IFNγ secretion in 46 out of 48 (HCMV) and 31 out of 31 (HAdV) PBMC cultures. In conclusion, we applied an efficient method to screen large viral proteomes for promiscuous CD4+ T-cell epitopes to improve the detection and isolation of virus-specific T cells in a clinical setting.
Collapse
Affiliation(s)
- Alexander Höttler
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Léo März
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Maren Lübke
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Kulanayake S, Tikoo SK. Adenovirus Core Proteins: Structure and Function. Viruses 2021; 13:v13030388. [PMID: 33671079 PMCID: PMC7998265 DOI: 10.3390/v13030388] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/04/2023] Open
Abstract
Adenoviruses have served as a model for investigating viral-cell interactions and discovering different cellular processes, such as RNA splicing and DNA replication. In addition, the development and evaluation of adenoviruses as the viral vectors for vaccination and gene therapy has led to detailed investigations about adenovirus biology, including the structure and function of the adenovirus encoded proteins. While the determination of the structure and function of the viral capsid proteins in adenovirus biology has been the subject of numerous reports, the last few years have seen increased interest in elucidating the structure and function of the adenovirus core proteins. Here, we provide a review of research about the structure and function of the adenovirus core proteins in adenovirus biology.
Collapse
Affiliation(s)
- Shermila Kulanayake
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada;
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N5E3, Canada
| | - Suresh K. Tikoo
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada;
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N5E3, Canada
- Correspondence:
| |
Collapse
|
6
|
Jehung JP, Kitamura T, Yanagawa-Matsuda A, Kuroshima T, Towfik A, Yasuda M, Sano H, Kitagawa Y, Minowa K, Shindoh M, Higashino F. Adenovirus infection induces HuR relocalization to facilitate virus replication. Biochem Biophys Res Commun 2017; 495:1795-1800. [PMID: 29225167 DOI: 10.1016/j.bbrc.2017.12.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
HuR is an RNA-binding protein of the embryonic lethal abnormal vision (ELAV) family, which binds to the AU-rich element (ARE) in the 3'-untranslated region (UTR) of certain mRNAs and is involved in the nucleo-cytoplasmic export and stabilization of ARE-mRNAs. The cytoplasmic relocalization of ARE-mRNAs with several proteins such as HuR and pp32 increases in cells transformed by the adenovirus oncogene product E4orf6. Additionally, these ARE-mRNAs were stabilized and acquired the potential to transform cells. Although, the relocalization of HuR and the stabilization of ARE-mRNAs are crucial for cell transformation, evidence regarding the relationship of HuR and ARE-mRNAs with adenovirus replication is lacking. In this report, we demonstrate that adenovirus infection induces the relocation of HuR to the cytoplasm of host cells. Analysis using the luciferase-ARE fusion gene and the tetracycline (tet)-off system revealed that the process of stabilizing ARE-mRNAs is activated in adenovirus-infected cells. Heat shock treatment or knockdown-mediated depletion of HuR reduced adenovirus production. Furthermore, expression of ARE-including viral IVa2 mRNA, decreased in HuR-depleted infected cells. These results indicate that HuR plays an important role in adenovirus replication, at least in part, by up-regulating IVa2 mRNA expression and that ARE-mRNA stabilization is required for both transformation and virus replication.
Collapse
Affiliation(s)
- Jumond P Jehung
- Department of Restorative Dentistry, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Tetsuya Kitamura
- Department of Oral Pathology and Biology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Aya Yanagawa-Matsuda
- Department of Oral Pathology and Biology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Takeshi Kuroshima
- Department of Oral Diagnosis and Medicine, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Alam Towfik
- Department of Dental Radiology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Motoaki Yasuda
- Department of Oral Molecular Microbiology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Hidehiko Sano
- Department of Restorative Dentistry, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Yoshimasa Kitagawa
- Department of Oral Diagnosis and Medicine, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Kazuyuki Minowa
- Department of Dental Radiology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Masanobu Shindoh
- Department of Oral Pathology and Biology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Fumihiro Higashino
- Department of Oral Pathology and Biology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan; Department of Molecular Oncology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Biomedical Science and Engineering, Sapporo, Japan.
| |
Collapse
|
7
|
Lan S, Kamel W, Punga T, Akusjärvi G. The adenovirus L4-22K protein regulates transcription and RNA splicing via a sequence-specific single-stranded RNA binding. Nucleic Acids Res 2017; 45:1731-1742. [PMID: 27899607 PMCID: PMC5389519 DOI: 10.1093/nar/gkw1145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/11/2016] [Indexed: 01/30/2023] Open
Abstract
The adenovirus L4-22K protein both activates and suppresses transcription from the adenovirus major late promoter (MLP) by binding to DNA elements located downstream of the MLP transcriptional start site: the so-called DE element (positive) and the R1 region (negative). Here we show that L4-22K preferentially binds to the RNA form of the R1 region, both to the double-stranded RNA and the single-stranded RNA of the same polarity as the nascent MLP transcript. Further, L4-22K binds to a 5΄-CAAA-3΄ motif in the single-stranded RNA, which is identical to the sequence motif characterized for L4-22K DNA binding. L4-22K binding to single-stranded RNA results in an enhancement of U1 snRNA recruitment to the major late first leader 5΄ splice site. This increase in U1 snRNA binding results in a suppression of MLP transcription and a concurrent stimulation of major late first intron splicing.
Collapse
Affiliation(s)
- Susan Lan
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | - Wael Kamel
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| |
Collapse
|
8
|
Lan S, Östberg S, Punga T, Akusjärvi G. A suppressive effect of Sp1 recruitment to the first leader 5' splice site region on L4-22K-mediated activation of the adenovirus major late promoter. Virus Res 2015; 210:133-40. [PMID: 26247419 DOI: 10.1016/j.virusres.2015.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 11/16/2022]
Abstract
Transcription from the adenovirus major late promoter (MLP) requires binding of late phase-specific factors to the so-called DE element located approximately 100 base pairs downstream of the MLP transcriptional start site. The adenovirus L4-22K protein binds to the DE element and stimulates transcription from the MLP via a DE sequence-dependent mechanism. Here we use a transient expression approach to show that L4-22K binds to an additional site downstream of the MLP start site, the so-called R1 region, which includes the major late first leader 5' splice site. Binding of L4-22K to R1 has a suppressive effect on MLP transcription. L4-22K binds to the distal part of R1 and stimulates the recruitment of Sp1 and other cellular factors to a site overlapping the first leader 5' splice site. Binding of Sp1 to the 5' splice site region had an inhibitory effect on L4-22K-activated MLP transcription.
Collapse
Affiliation(s)
- Susan Lan
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden.
| | - Sara Östberg
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden.
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden.
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden.
| |
Collapse
|
9
|
Regulation of human adenovirus alternative RNA splicing by the adenoviral L4-33K and L4-22K proteins. Int J Mol Sci 2015; 16:2893-912. [PMID: 25636034 PMCID: PMC4346872 DOI: 10.3390/ijms16022893] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/06/2015] [Accepted: 01/22/2015] [Indexed: 01/12/2023] Open
Abstract
Adenovirus makes extensive use of alternative RNA splicing to produce a complex set of spliced viral mRNAs. Studies aimed at characterizing the interactions between the virus and the host cell RNA splicing machinery have identified three viral proteins of special significance for the control of late viral gene expression: L4-33K, L4-22K, and E4-ORF4. L4-33K is a viral alternative RNA splicing factor that controls L1 alternative splicing via an interaction with the cellular protein kinases Protein Kinase A (PKA) and DNA-dependent protein kinase (DNA-PK). L4-22K is a viral transcription factor that also has been implicated in the splicing of a subset of late viral mRNAs. E4-ORF4 is a viral protein that binds the cellular protein phosphatase IIA (PP2A) and controls Serine/Arginine (SR)-rich protein activity by inducing SR protein dephosphorylation. The L4-33K, and most likely also the L4-22K protein, are highly phosphorylated in vivo. Here we will review the function of these viral proteins in the post-transcriptional control of adenoviral gene expression and further discuss the significance of potential protein kinases phosphorylating the L4-33K and/or L4-22K proteins.
Collapse
|
10
|
Fernandes P, Simão D, Guerreiro MR, Kremer EJ, Coroadinha AS, Alves PM. Impact of adenovirus life cycle progression on the generation of canine helper-dependent vectors. Gene Ther 2014; 22:40-9. [PMID: 25338917 DOI: 10.1038/gt.2014.92] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 09/08/2014] [Accepted: 09/18/2014] [Indexed: 11/09/2022]
Abstract
Helper-dependent adenovirus vectors (HDVs) are safe and efficient tools for gene transfer with high cloning capacity. However, the multiple amplification steps needed to produce HDVs hamper a robust production process and in turn the availability of high-quality vectors. To understand the factors behind the low productivity, we analyzed the progression of HDV life cycle. Canine adenovirus (Ad) type 2 vectors, holding attractive features to overcome immunogenic concerns and treat neurobiological disorders, were the focus of this work. When compared with E1-deleted (ΔE1) vectors, we found a faster helper genome replication during HDV production. This was consistent with an upregulation of the Ad polymerase and pre-terminal protein and led to higher and earlier expression of structural proteins. Although genome packaging occurred similarly to ΔE1 vectors, more immature capsids were obtained during HDV production, which led to a ~4-fold increase in physical-to-infectious particles ratio. The higher viral protein content in HDV-producing cells was also consistent with an increased activation of autophagy and cell death, in which earlier cell death compromised volumetric productivity. The increased empty capsids and earlier cell death found in HDV production may partially contribute to the lower vector infectivity. However, an HDV-specific factor responsible for a defective maturation process should be also involved to fully explain the low infectious titers. This study showed how a deregulated Ad cycle progression affected cell line homeostasis and HDV propagation, highlighting the impact of vector genome design on virus-cell interaction.
Collapse
Affiliation(s)
- P Fernandes
- 1] iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal [2] Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - D Simão
- 1] iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal [2] Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - M R Guerreiro
- 1] iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal [2] Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - E J Kremer
- Institut de Génétique Moléculaire de Montpellier, CNRS-Universities of Montpellier I and II, Montpellier, France
| | - A S Coroadinha
- 1] iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal [2] Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - P M Alves
- 1] iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal [2] Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
11
|
Yang TC, Maluf NK. Characterization of the non-specific DNA binding properties of the Adenoviral IVa2 protein. Biophys Chem 2014; 193-194:1-8. [PMID: 25038409 DOI: 10.1016/j.bpc.2014.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
Abstract
Human Adenovirus (Ad) is a non-enveloped, icosahedral virus with a linear, double-stranded DNA genome. The Ad IVa2 protein is involved in multiple viral processes including viral late gene transcription and virus assembly. Previous studies have shown that IVa2 loads additional viral proteins onto conserved DNA elements within the Ad genome to regulate these viral processes. IVa2 also possesses strong non-specific DNA binding activity, and it is likely it uses this activity to recruit proteins to the conserved DNA elements. Here we have investigated the non-specific DNA binding activity of IVa2 using nitrocellulose/DEAE filter binding and sedimentation equilibrium techniques. We have analyzed our data using the McGhee and Von Hippel approach [1], and find that IVa2 binds with strong, positive nearest-neighbor cooperativity. In addition, we describe how to apply the McGhee and von Hippel approach to directly analyze sedimentation equilibrium data using non-linear least-squares methods. We discuss the implications of these results with respect to current virus assembly mechanisms.
Collapse
Affiliation(s)
- Teng-Chieh Yang
- University of Colorado Denver, School of Pharmacy, Dept. Pharm. Sciences, C238 12850 E. Montview Blvd., V20-4121, Aurora, CO 80045
| | - Nasib Karl Maluf
- University of Colorado Denver, School of Pharmacy, Dept. Pharm. Sciences, C238 12850 E. Montview Blvd., V20-4121, Aurora, CO 80045; Alliance Protein Laboratories, 6042 Cornerstone Ct West A, San Diego, CA 92121.
| |
Collapse
|
12
|
Isolation and characterization of the DNA and protein binding activities of adenovirus core protein V. J Virol 2014; 88:9287-96. [PMID: 24899200 DOI: 10.1128/jvi.00935-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED The structure of adenovirus outer capsid was revealed recently at 3- to 4-Å resolution (V. Reddy, S. Natchiar, P. Stewart, and G. Nemerow, Science 329:1071-1075, 2010, http://dx.doi.org/10.1126/science.1187292); however, precise details on the function and biochemical and structural features for the inner core still are lacking. Protein V is one the most important components of the adenovirus core, as it links the outer capsid via association with protein VI with the inner DNA core. Protein V is a highly basic protein that strongly binds to DNA in a nonspecific manner. We report the expression of a soluble protein V that exists in monomer-dimer equilibrium. Using reversible cross-linking affinity purification in combination with mass spectrometry, we found that protein V contains multiple DNA binding sites. The binding sites from protein V mediate heat-stable nucleic acid associations, with some of the binding sites possibly masked in the virus by other core proteins. We also demonstrate direct interaction between soluble proteins V and VI, thereby revealing the bridging of the inner DNA core with the outer capsid proteins. These findings are consistent with a model of nucleosome-like structures proposed for the adenovirus core and encapsidated DNA. They also suggest an additional role for protein V in linking the inner nucleic acid core with protein VI on the inner capsid shell. IMPORTANCE Scant knowledge exists of how the inner core of adenovirus containing its double-stranded DNA (dsDNA) genome and associated proteins is organized. Here, we report a purification scheme for a recombinant form of protein V that allowed analysis of its interactions with the nucleic acid core region. We demonstrate that protein V exhibits stable associations with dsDNA due to the presence of multiple nucleic acid binding sites identified both in the isolated recombinant protein and in virus particles. As protein V also binds to the membrane lytic protein VI molecules, this core protein may serve as a bridge from the inner dsDNA core to the inner capsid shell.
Collapse
|
13
|
The repression domain of the E1B 55-kilodalton protein participates in countering interferon-induced inhibition of adenovirus replication. J Virol 2013; 87:4432-44. [PMID: 23388716 DOI: 10.1128/jvi.03387-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To begin to investigate the mechanism by which the human adenovirus type 5 E1B 55-kDa protein protects against the antiviral effects of type 1 interferon (IFN) (J. S. Chahal, J. Qi, and S. J. Flint, PLoS Pathog. 8:e1002853, 2012 [doi:10.1371/journal.ppat.1002853]), we examined the effects of precise amino acid substitution in this protein on resistance of viral replication to the cytokine. Only substitution of residues 443 to 448 of E1B for alanine (E1B Sub19) specifically impaired production of progeny virus and resulted in a large defect in viral DNA synthesis in IFN-treated normal human fibroblasts. Untreated or IFN-treated cells infected by this mutant virus (AdEasyE1Sub19) contained much higher steady-state concentrations of IFN-inducible GBP1 and IFIT2 mRNAs than did wild-type-infected cells and of the corresponding newly transcribed pre-mRNAs, isolated exploiting 5'-ethynyluridine labeling and click chemistry. These results indicated that the mutations created by substitution of residues 443 to 448 for alanine (Sub19) impair repression of transcription of IFN-inducible genes, by the E1B, 55-kDa protein, consistent with their location in a segment required for repression of p53-dependent transcription. However, when synthesized alone, the E1B 55-kDa protein inhibited expression of the p53-regulated genes BAX and MDM2 but had no impact whatsoever on induction of IFIT2 and GBP1 expression by IFN. These observations correlate repression of transcription of IFN-inducible genes by the E1B 55-kDa protein with protection against inhibition of viral genome replication and indicate that the E1B 55-kDa protein is not sufficient to establish such transcriptional repression.
Collapse
|
14
|
Oneal MJ, Trujillo MA, Davydova J, McDonough S, Yamamoto M, Morris JC. Characterization of infectivity-enhanced conditionally replicating adenovectors for prostate cancer radiovirotherapy. Hum Gene Ther 2012; 23:951-9. [PMID: 22694073 DOI: 10.1089/hum.2012.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed and sixth leading cause of cancer death in American men and one for which no curative therapy exists after metastasis. To meet this need for novel therapies, our laboratory has previously generated conditionally replicating adenovirus (CRAd) vectors expressing the sodium iodide symporter (hNIS). This virus transduced PCa cells and induced functional NIS expression, allowing for noninvasive tumor imaging and combination therapy with radioiodide, referred to as radiovirotherapy. We have now generated two new modified vectors to further improve efficacy. Ad5/3PB-ADP-hNIS and Ad5/3PB-hNIS include a hybrid Ad5/3 fiber knob to improve transduction efficiency, and express NIS from the endogenous major late promoter to restrict NIS expression to target cells. Additionally, Ad5/3PB-ADP-hNIS includes the adenovirus death protein (ADP), which hastens the release of viral particles after assembly. These two vectors specifically induce radioisotope uptake, cytopathic effect, and viral replication in androgen receptor-expressing PCa cell lines with Ad5/3PB-ADP-hNIS showing earlier (131)I uptake and cytolysis at low multiplicity of infection. SPECT-CT imaging of xenograft tumors infected with Ad5/3PB-hNIS showed steady uptake, whereas infection with Ad5/3PB-ADP-hNIS led to increasing uptake, indicating viral spread. Radiovirotherapy of xenograft LNCaP tumors with Ad5/3PB-ADP-hNIS showed the most significant survival extension versus control tumors (p=0.001), but the benefit of radiovirotherapy was not statistically significant compared with virotherapy alone in this model. These results show the potential of Ad5/3PB-ADP-hNIS as a vector for treatment of prostate cancer.
Collapse
Affiliation(s)
- Michael J Oneal
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55904, USA
| | | | | | | | | | | |
Collapse
|
15
|
Christensen JB, Ewing SG, Imperiale MJ. Identification and characterization of a DNA binding domain on the adenovirus IVa2 protein. Virology 2012; 433:124-30. [PMID: 22884292 DOI: 10.1016/j.virol.2012.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/19/2012] [Accepted: 07/12/2012] [Indexed: 01/08/2023]
Abstract
The adenovirus IVa2 protein has been implicated as a transcriptional activator of the viral major late promoter (MLP) and a key component in the packaging of the viral genome. IVa2 functions in packaging through its ability to form a complex with the viral L1 52/55kDa protein, which is required for encapsidation. IVa2, alone and in conjunction with another viral protein, the L4 22K protein, binds to the packaging sequence on the viral genome and to specific elements in the promoter. To define the DNA binding domain on IVa2 and determine its contribution to the viral life cycle, we created a mutant protein that lacks a putative helix-turn-helix motif at the extreme C-terminus. Characterization of this mutant protein showed that while MLP activity is relatively unaffected, it is unable to bind to and package DNA.
Collapse
Affiliation(s)
- Joan B Christensen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | | | | |
Collapse
|
16
|
Inhibition of adenovirus multiplication by short interfering RNAs directly or indirectly targeting the viral DNA replication machinery. Antiviral Res 2012; 94:195-207. [PMID: 22510340 PMCID: PMC3370646 DOI: 10.1016/j.antiviral.2012.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 03/23/2012] [Accepted: 03/28/2012] [Indexed: 01/19/2023]
Abstract
Human adenoviruses are a common threat to immunocompromised patients, e.g., HIV-positive individuals or solid-organ and, in particular, allogeneic stem cell transplant recipients. Antiviral drugs have a limited effect on adenoviruses, and existing treatment modalities often fail to prevent fatal outcome. Silencing of viral genes by short interfering RNAs (siRNAs) holds a great promise in the treatment of viral infections. The aim of the present study was to identify adenoviral candidate targets for RNA interference-mediated inhibition of adenoviral replication. We investigated the impact of silencing of a set of early, middle, and late viral genes on the replication of adenovirus 5 in vitro. Adenovirus replication was inhibited by siRNAs directed against the adenoviral E1A, DNA polymerase, preterminal protein (pTP), IVa2, hexon, and protease genes. Silencing of early and middle genes was more effective in inhibiting adenovirus multiplication than was silencing of late genes. A siRNA directed against the viral DNA polymerase mRNA decreased viral genome copy numbers and infectious virus progeny by several orders of magnitude. Since silencing of any of the early genes directly or indirectly affected viral DNA synthesis, our data suggest that reducing viral genome copy numbers is a more promising strategy for the treatment of adenoviral infections than is reducing the numbers of proteins necessary for capsid generation. Thus, adenoviral DNA replication was identified as a key target for RNAi-mediated inhibition of adenovirus multiplication. In addition, the E1A transcripts emerged as a second important target, because its knockdown markedly improved the viability of cells at late stages of infection.
Collapse
|
17
|
Kato SEM, Huang W, Flint SJ. Role of the RNA recognition motif of the E1B 55 kDa protein in the adenovirus type 5 infectious cycle. Virology 2011; 417:9-17. [PMID: 21605885 DOI: 10.1016/j.virol.2011.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/08/2011] [Accepted: 04/25/2011] [Indexed: 11/30/2022]
Abstract
Although the adenovirus type 5 (Ad5) E1B 55 kDa protein can bind to RNA in vitro, no UV-light-induced crosslinking of this E1B protein to RNA could be detected in infected cells, under conditions in which RNA binding by a known viral RNA-binding protein (the L4 100 kDa protein) was observed readily. Substitution mutations, including substitutions reported to inhibit RNA binding in vitro, did not impair synthesis of viral early or late proteins or alter significantly the efficiency of viral replication in transformed or normal human cells. However, substitutions of conserved residues in the C-terminal segment of an RNA recognition motif specifically inhibited degradation of Mre11. We conclude that, if the E1B 55 kDa protein binds to RNA in infected cells in the same manner as in in vitro assays, this activity is not required for such well established functions as induction of selective export of viral late mRNAs.
Collapse
Affiliation(s)
- Sayuri E M Kato
- Princeton University, Department of Molecular Biology, Lewis Thomas Laboratory, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
18
|
Abstract
Human adenovirus (Ad) is an icosahedral, double-stranded DNA virus that causes infections of the respiratory tract, urinary tract, and gastrointestinal tract. Assembly of virus particles requires condensation and encapsidation of the linear viral genome. This process requires sequence specific binding of two viral proteins, called IVa2 and L4-22K, to a conserved sequence located at the left end of the viral genome, called the packaging sequence (PS). IVa2 and an alternatively spliced form of L4-22K, called L4-33K, also function as transcriptional activators of the major late promoter (MLP), which encodes viral structural and core proteins. IVa2 and L4-33K bind to identical conserved DNA sequences downstream of the MLP, called the downstream element (DE), to activate transcription. To begin to dissect how the IVa2, L4-22K, and L4-33K proteins simultaneously function as transcriptional activators and DNA packaging proteins, we need to understand the thermodynamics of assembly of these proteins on DNA that contains the PS as well as the DE. Toward this end, we have characterized the self-assembly properties of highly purified, recombinant L4-22K protein. We show that L4-22K reversibly assembles into higher-order structures according to an indefinite, isodesmic assembly scheme. We show that the smallest polymerizing unit is likely the L4-22K monomer (s(20,w) = 2.16 ± 0.04 S) and that the monomer assembles with itself and/or other aggregates with an equilibrium association constant, L, of 112 (102, 124) μM(-1) (0.1 M NaCl, pH 7, 25 °C). A mechanistic consequence of an isodesmic, indefinite assembly process is that the free concentration of the smallest polymerizing unit cannot exceed 1/L. We discuss the implications of this observation with respect to the thermodynamics of assembly of L4-22K and IVa2 on the PS.
Collapse
Affiliation(s)
- Teng-Chieh Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, C238-P15, 12700 East 19th Avenue, Aurora, Colorado 80045, United States
| | | |
Collapse
|
19
|
Backström E, Kaufmann KB, Lan X, Akusjärvi G. Adenovirus L4-22K stimulates major late transcription by a mechanism requiring the intragenic late-specific transcription factor-binding site. Virus Res 2010; 151:220-8. [PMID: 20621673 DOI: 10.1016/j.virusres.2010.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 01/08/2023]
Abstract
The adenovirus major late promoter (MLP) generates a primary transcript that undergoes a complex pattern of regulated alternative RNA splicing and polyadenylation events. The late-specific activation of the MLP requires binding of two infected-cell specific transcription factor complexes, DEF-A and DEF-B, to the so-called DE sequence located downstream of the MLP start site. Previous studies have shown that DEF-B is a homodimer of the viral IVa2 protein and suggested that DEF-A is a heterodimer of IVa2 and an unknown protein. Two proteins from the adenoviral L4 unit have been suggested as DEF-A candidates. Here we have examined L4-22K and L4-33K for possible DEF-A activity. We show that L4-22K stimulates transcription from the MLP in a DE sequence dependent manner both in vivo and in vitro, and that L4-22K binds to the DE sequence in vitro. Further, the position of the L4-22K DNA binding site in a promoter does not appear to be critical for function. Thus, tethering L4-22K either to a position upstream or downstream of the MLP start site, or upstream of a minimal E1B promoter, resulted in an activation of transcription. We also show that the viral pIX promoter is a natural target, activated by L4-22K. Collectively, our results are compatible with the hypothesis that L4-22K may be the elusive component of DEF-A that partakes in activation of the MLP.
Collapse
Affiliation(s)
- Ellenor Backström
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Husargatan 3, S-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
20
|
Identification of a previously unrecognized promoter that drives expression of the UXP transcription unit in the human adenovirus type 5 genome. J Virol 2010; 84:11470-8. [PMID: 20739525 DOI: 10.1128/jvi.01338-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously identified an adenovirus (Ad) protein named U exon protein (UXP) encoded by a leftward-strand (l-strand) transcription unit. Here we identify and characterize the UXP promoter. Primer extension and RNase protection assays mapped the transcription initiation site at 32 nucleotides upstream of the UXP gene initiation codon. A series of viral mutants with mutations at two putative inverted CCAAT (I-CCAAT) boxes and two E2F sites were generated. With mutants lacking the proximal I-CCAAT box, the UXP mRNA level decreased significantly to 30% of the Ad type 5 (Ad5) mRNA level as measured by quantitative reverse transcription-PCR. Decreased UXP was also observed by immunoblotting and immunofluorescence. UXP mRNA and protein levels were similar to those of Ad5 for mutants lacking the distal I-CCAAT box or both putative E2F sites. Ad DNA levels were similar in mutant- and wild-type Ad5-infected cells during the late stage of infection, strongly suggesting that the decreased UXP mRNA and protein from mutants lacking the proximal I-CCAAT box was due to decreased promoter activity. Electrophoretic mobility shift assays (EMSA) indicated that a cellular factor binds specifically to the proximal I-CCAAT box of the UXP promoter. An in vitro luciferase reporter assay demonstrated that basal promoter activity lies between bp -158 and +30 of the transcription initiation site. No E1A-mediated promoter transactivation was observed in 293 cells compared with A549 cells. Thus, we propose that there is a previously unidentified Ad5 promoter that drives expression of the UXP transcription unit. This promoter is embedded within the gene for fiber, and it contains a proximal I-CCAAT box critical for UXP mRNA transcription.
Collapse
|
21
|
Inhibition of adenovirus infections by siRNA-mediated silencing of early and late adenoviral gene functions. Antiviral Res 2010; 88:86-94. [PMID: 20708037 DOI: 10.1016/j.antiviral.2010.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 07/28/2010] [Accepted: 08/01/2010] [Indexed: 11/21/2022]
Abstract
Adenoviruses are pathological agents inducing mild respiratory and gastrointestinal infections. Under certain circumstances, for example in immunosuppressed patients, they induce severe infections of the liver, heart and lung, sometimes leading to death. Currently, adenoviral infections are treated by palliative care with no curative antiviral therapy yet available. Gene silencing by RNA interference (RNAi) has been shown to be a potent new therapeutic option for antiviral therapy. In the present study, we examined the potential of RNAi-mediated inhibition of adenovirus 5 infection by the use of small interfering (si)RNAs targeting both early (E1A) and late (hexon, IVa2) adenoviral genes. Several of the initially analyzed siRNAs directed against E1A, hexon and IVa2 showed a distinct antiviral activity. Among them, one siRNA for each gene was selected and used for the further comparative investigations of their efficiency to silence adenoviruses. Silencing of the late genes was more efficient in inhibiting adenoviral replication than comparable silencing of the E1A early gene. A combination strategy involving down-regulation of any two or all three of the targeted genes did not result in an enhanced inhibition of viral replication as compared to the single siRNA approaches targeting the late genes. However, protection against adenovirus-mediated cytotoxicity was substantially improved by combining siRNAs against either of the two late genes with the siRNA against the E1A early gene. Thus, an enhanced anti-adenoviral efficiency of RNAi-based inhibition strategies can be achieved by co-silencing of early and late adenoviral genes, with down regulation of the E1A as a crucial factor.
Collapse
|
22
|
Abstract
During human adenovirus 5 infection, a temporal cascade of gene expression leads ultimately to the production of large amounts of the proteins needed to construct progeny virions. However, the mechanism for the activation of the major late gene that encodes these viral structural proteins has not been well understood. We show here that two key positive regulators of the major late gene, L4-22K and L4-33K, previously thought to be expressed under the control of the major late promoter itself, initially are expressed from a novel promoter that is embedded within the major late gene and dedicated to their expression. This L4 promoter is required for late gene expression and is activated by a combination of viral protein activators produced during the infection, including E1A, E4 Orf3, and the intermediate-phase protein IVa2, and also by viral genome replication. This new understanding redraws the long-established view of how adenoviral gene expression patterns are controlled and offers new ways to manipulate that gene expression cascade for adenovirus vector applications.
Collapse
|
23
|
Szelechowski M, Fournier A, Richardson J, Eloit M, Klonjkowski B. Functional organization of the major late transcriptional unit of canine adenovirus type 2. J Gen Virol 2009; 90:1215-1223. [PMID: 19264594 DOI: 10.1099/vir.0.007773-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vectors derived from canine adenovirus type 2 (CAV-2) are attractive candidates for gene therapy and live recombinant vaccines. CAV-2 vectors described thus far have been generated by modifying the virus genome, most notably early regions 1 and 3 or the fiber gene. Modification of these genes was underpinned by previous descriptions of their mRNA and protein-coding sequences. Similarly, the construction of new CAV-2 vectors bearing changes in other genomic regions, in particular many of those expressed late in the viral cycle, will require prior characterization of the corresponding transcriptional units. In this study, we provide a detailed description of the late transcriptional organization of the CAV-2 genome. We examined the major late transcription unit (MLTU) and determined its six families of mRNAs controlled by the putative major late promoter (MLP). All mRNAs expressed from the MLTU had a common non-coding tripartite leader (224 nt) at their 5' end. In transient transfection assays, the predicted MLP sequence was able to direct luciferase gene expression and the TPL sequence yielded a higher amount of transgene product. Identification of viral transcriptional products following in vitro infection confirmed most of the predicted protein-coding regions that were deduced from computer analysis of the CAV-2 genome. These findings contribute to a better understanding of gene expression in CAV-2 and lay the foundation required for genetic modifications aimed at vector optimization.
Collapse
Affiliation(s)
- Marion Szelechowski
- UMR 1161 Virologie, INRA AFSSA ENVA, Ecole Nationale Vétérinaire d'Alfort, 7 av. du Général de Gaulle, 94700 Maisons Alfort, France
| | - Annie Fournier
- UMR 1161 Virologie, INRA AFSSA ENVA, Ecole Nationale Vétérinaire d'Alfort, 7 av. du Général de Gaulle, 94700 Maisons Alfort, France
| | - Jennifer Richardson
- UMR 1161 Virologie, INRA AFSSA ENVA, Ecole Nationale Vétérinaire d'Alfort, 7 av. du Général de Gaulle, 94700 Maisons Alfort, France
| | - Marc Eloit
- UMR 1161 Virologie, INRA AFSSA ENVA, Ecole Nationale Vétérinaire d'Alfort, 7 av. du Général de Gaulle, 94700 Maisons Alfort, France
| | - Bernard Klonjkowski
- UMR 1161 Virologie, INRA AFSSA ENVA, Ecole Nationale Vétérinaire d'Alfort, 7 av. du Général de Gaulle, 94700 Maisons Alfort, France
| |
Collapse
|
24
|
Adenovirus serotype 5 L4-22K and L4-33K proteins have distinct functions in regulating late gene expression. J Virol 2009; 83:3049-58. [PMID: 19176628 DOI: 10.1128/jvi.02455-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Adenoviruses express up to 20 distinct mRNAs from five major late transcription unit (MLTU) regions, L1 to L5, by differential splicing and polyadenylation of the primary transcript. MLTU expression is regulated at transcriptional and posttranscriptional levels. The L4-33K protein acts as a splicing factor to upregulate several MLTU splice acceptor sites as the late phase progresses. The L4 region also expresses a 22K protein whose sequence is related to the sequence of L4-33K. L4-22K is shown here also to have an important role in regulating the pattern of MLTU gene expression. An adenovirus genome containing a stop codon in the L4-22K open reading frame expressed low levels of both structural and nonstructural late proteins compared to the wild-type (wt) adenovirus genome; a decrease in intermediate proteins, IVa2 and IX, was also observed. However, early protein synthesis and replication were unaffected by the absence of L4-22K. Intermediate and late protein expression was restored to wt levels by L4-22K expressed in trans but not by L4-33K. Increased MLTU promoter activity, resulting from stabilization of the transcriptional activator IVa2 by L4-22K, made a small contribution to this restoration of late gene expression. However, the principal effect of L4-22K was on the processing of MLTU RNA into specific cytoplasmic mRNA. L4-22K selectively increased expression of penton mRNA and protein, whereas splicing to create penton mRNA is known not to be increased by L4-33K. These results indicate that L4-22K plays a key role in the early-late switch in MLTU expression, additional to and distinct from the role of L4-33K.
Collapse
|
25
|
Yang TC, Yang Q, Maluf NK. Interaction of the adenoviral IVa2 protein with a truncated viral DNA packaging sequence. Biophys Chem 2008; 140:78-90. [PMID: 19150169 DOI: 10.1016/j.bpc.2008.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/25/2008] [Accepted: 11/25/2008] [Indexed: 10/21/2022]
Abstract
Adenoviral (Ad) infection typically poses little health risk for immunosufficient individuals. However, for immunocompromised individuals, such as AIDS patients and organ transplant recipients, especially pediatric heart transplant recipients, Ad infection is common and can be lethal. Ad DNA packaging is the process whereby the Ad genome becomes encapsulated by the viral capsid. Specific packaging is dependent upon the packaging sequence (PS), which is composed of seven repeated elements called A repeats. The Ad protein, IVa2, which is required for viral DNA packaging, has been shown to bind specifically to synthetic DNA probes containing A repeats I and II, however, the molecular details of this interaction have not been investigated. In this work we have studied the binding of a truncated form of the IVa2 protein, that has previously been shown to be sufficient for virus viability, to a DNA probe containing A repeats I and II. We find that the IVa2 protein exists as a monomer in solution, and that a single IVa2 monomer binds to this DNA with high affinity (K(d)< approximately 10 nM), and moderate specificity, and that the trIVa2 protein interacts in a fundamentally different way with DNA containing A repeats than it does with non-specific DNA. We also find that at elevated IVa2 concentrations, additional binding, beyond the singly ligated complex, is observed. When this reaction is modeled as representing the binding of a second IVa2 monomer to the singly ligated complex, the K(d) is 1.4+/-0.7 microM, implying a large degree of negative cooperativity exists for placing two IVa2 monomers on a DNA with adjacent A repeats.
Collapse
Affiliation(s)
- Teng-Chieh Yang
- University of Colorado Denver, Department of Pharmaceutical Sciences, School of Pharmacy C238-P15, P.O Box 6511, Aurora, CO 80045, USA
| | | | | |
Collapse
|
26
|
Abstract
IVa2 is an essential, multifunctional protein of adenovirus (Ad) supporting packaging of the viral genome into the capsid, assisting in assembly of the capsid, and activating Ad late transcription. A comparison of IVa2 protein sequences from different species of Adenoviridae shows conserved motifs associated with binding and hydrolysis of ATP (Walker A and B motifs). ATPases are essential proteins of bacteriophage packaging motors, and such activity may be required for Ad packaging. Results presented here show that the Ad2 IVa2 protein binds ATP in vitro and that sequences in the Walker A and B motifs are necessary for this activity.
Collapse
|
27
|
Abstract
The results of studies of Adenovirus have contributed to our basic understanding of the molecular biology of the cell. While a great body of knowledge has been developed concerning Ad gene expression, viral replication, and effects on the infected host, the molecular details of the assembly process of Adenovirus particles are largely unknown. In this article, we would like to propose a theoretical model for the packaging and assembly of Adenovirus and present an overview of the studies that have contributed to our present understanding. In particular, we will summarize the molecular details of the process for packaging of viral DNA into virus particles and highlight the events in packaging and assembly that require further study.
Collapse
Affiliation(s)
- Philomena Ostapchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | | |
Collapse
|
28
|
Miller DL, Myers CL, Rickards B, Coller HA, Flint SJ. Adenovirus type 5 exerts genome-wide control over cellular programs governing proliferation, quiescence, and survival. Genome Biol 2007; 8:R58. [PMID: 17430596 PMCID: PMC1896011 DOI: 10.1186/gb-2007-8-4-r58] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 10/20/2006] [Accepted: 04/12/2007] [Indexed: 02/05/2023] Open
Abstract
The effects of the adenovirus Ad5 on basic host cell programs, such as cell-cycle regulation, were studied in a microarray analysis of human fibroblasts. About 2,000 genes were up- or down-regulated after Ad5 infection and Ad5 infection was shown to induce reversal of the quiescence program and recapitulation of the core serum response. Background Human adenoviruses, such as serotype 5 (Ad5), encode several proteins that can perturb cellular mechanisms that regulate cell cycle progression and apoptosis, as well as those that mediate mRNA production and translation. However, a global view of the effects of Ad5 infection on such programs in normal human cells is not available, despite widespread efforts to develop adenoviruses for therapeutic applications. Results We used two-color hybridization and oligonucleotide microarrays to monitor changes in cellular RNA concentrations as a function of time after Ad5 infection of quiescent, normal human fibroblasts. We observed that the expression of some 2,000 genes, about 10% of those examined, increased or decreased by a factor of two or greater following Ad5 infection, but were not altered in mock-infected cells. Consensus k-means clustering established that the temporal patterns of these changes were unexpectedly complex. Gene Ontology terms associated with cell proliferation were significantly over-represented in several clusters. The results of comparative analyses demonstrate that Ad5 infection induces reversal of the quiescence program and recapitulation of the core serum response, and that only a small subset of the observed changes in cellular gene expression can be ascribed to well characterized functions of the viral E1A and E1B proteins. Conclusion These findings establish that the impact of adenovirus infection on host cell programs is far greater than appreciated hitherto. Furthermore, they provide a new framework for investigating the molecular functions of viral early proteins and information relevant to the design of conditionally replicating adenoviral vectors.
Collapse
Affiliation(s)
- Daniel L Miller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Laboratory of Genetics, University of Wisconsin, 425-G Henry Mall, Madison, Wisconsin 53706, USA
| | - Chad L Myers
- Lewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA
- Department of Computer Science, Princeton University, Princeton, New Jersey 08544, USA
| | - Brenden Rickards
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Hilary A Coller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - S Jane Flint
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
29
|
Tyler RE, Ewing SG, Imperiale MJ. Formation of a multiple protein complex on the adenovirus packaging sequence by the IVa2 protein. J Virol 2007; 81:3447-54. [PMID: 17229683 PMCID: PMC1866038 DOI: 10.1128/jvi.02097-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
During adenovirus virion assembly, the packaging sequence mediates the encapsidation of the viral genome. This sequence is composed of seven functional units, termed A repeats. Recent evidence suggests that the adenovirus IVa2 protein binds the packaging sequence and is involved in packaging of the genome. Study of the IVa2-packaging sequence interaction has been hindered by difficulty in purifying the protein produced in virus-infected cells or by recombinant techniques. We report the first purification of a recombinant untagged version of the adenovirus IVa2 protein and characterize its binding to the packaging sequence in vitro. Our data indicate that there is more than one IVa2 binding site within the packaging sequence and that IVa2 binding to DNA requires the A-repeat consensus, 5'-TTTG-(N(8))-CG-3'. Furthermore, we present evidence that IVa2 forms a multimeric complex on the packaging sequence. These data support a model in which adenovirus DNA packaging occurs via the formation of a IVa2 multiprotein complex on the packaging sequence.
Collapse
Affiliation(s)
- Ryan E Tyler
- University of Michigan Medical School, 1500 East Medical Center Drive, 6304 Cancer Center, Ann Arbor, MI 48109-0942, USA
| | | | | |
Collapse
|
30
|
Perez-Romero P, Imperiale MJ. Assaying Protein-DNA Interactions In Vivo and In Vitro Using Chromatin Immunoprecipitation and Electrophoretic Mobility Shift Assays. ACTA ACUST UNITED AC 2007; 131:123-139. [PMID: 17656780 DOI: 10.1007/978-1-59745-277-9_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Many events in the viral life cycle involve protein binding to defined sequences on the viral chromosome. Chromatin immunoprecipitation allows the detection of the in vivo interaction of specific proteins with specific genomic regions. In this technique, living cells are treated with formaldehyde to crosslink neighboring protein-protein and protein-DNA molecules. The crosslink with formaldehyde is reversible and covers a short distance (2 A); the components that are crosslinked are therefore in close proximity. Nuclear fractions are isolated, and the genomic DNA is sheared to reduce the average DNA fragment size to around 500 bp. These nuclear lysates are used in immunoprecipitations with an antibody against the protein of interest. The DNA bound to the studied protein is enriched after the immunoprecipitation. After reversal of the crosslinking, the resulting DNA and proteins can be independently studied. The electrophoretic mobility shift assay provides a rapid method to study DNA-binding protein interactions in vitro. This assay is based on the observation that complexes of protein and DNA migrate through a nondenaturing polyacrylamide gel more slowly than free DNA fragments. The assay is performed by incubating a purified protein, or a complex mixture of proteins, with a 32P end-labeled DNA probe containing the protein-binding site. The reaction products are analyzed on a nondenaturing polyacrylamide gel. The specificity of the DNA-binding protein for the putative binding site is established by competition experiments using specific and nonspecific nonradiolabeled DNA probes. The components of the complexes can be identified with antibodies to the protein of interest.
Collapse
|
31
|
Ali H, LeRoy G, Bridge G, Flint SJ. The adenovirus L4 33-kilodalton protein binds to intragenic sequences of the major late promoter required for late phase-specific stimulation of transcription. J Virol 2006; 81:1327-38. [PMID: 17093188 PMCID: PMC1797539 DOI: 10.1128/jvi.01584-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The adenovirus late IVa2 protein is required for maximally efficient transcription from the viral major late (ML) promoter, and hence, the synthesis of the majority of viral late proteins. This protein is a sequence-specific DNA-binding protein that also promotes the assembly of progeny virus particles. Previous studies have established that a IVa2 protein dimer (DEF-B) binds specifically to an intragenic ML promoter sequence necessary for late phase-specific stimulation of ML transcription. However, activation of transcription from the ML promoter correlates with binding of at least one additional infected-cell-specific protein, termed DEF-A, to the promoter. Using an assay for the DNA-binding activity of DEF-A, we identified the unknown protein by using conventional purification methods, purification of FLAG-tagged IVa2-protein-containing complexes, and transient synthesis of viral late proteins. The results of these experiments established that the viral L4 33-kDa protein is the only component of DEF-A: the IVa2 and L4 33-kDa proteins are necessary and sufficient for formation of all previously described complexes in the intragenic control region of the ML promoter. Furthermore, the L4 33-kDa protein binds to the promoter with the specificity characteristic of DEF-A and stimulates transcription from the ML promoter in transient-expression assays.
Collapse
Affiliation(s)
- Humayra Ali
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
32
|
Ostapchuk P, Anderson ME, Chandrasekhar S, Hearing P. The L4 22-kilodalton protein plays a role in packaging of the adenovirus genome. J Virol 2006; 80:6973-81. [PMID: 16809303 PMCID: PMC1489068 DOI: 10.1128/jvi.00123-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Packaging of the adenovirus (Ad) genome into a capsid is absolutely dependent upon the presence of a cis-acting region located at the left end of the genome referred to as the packaging domain. The functionally significant sequences within this domain consist of at least seven similar repeats, referred to as the A repeats, which have the consensus sequence 5' TTTG-N(8)-CG 3'. In vitro and in vivo binding studies have demonstrated that the adenovirus protein IVa2 binds to the CG motif of the packaging sequences. In conjunction with IVa2, another virus-specific protein binds to the TTTG motifs in vitro. The efficient formation of these protein-DNA complexes in vitro was precisely correlated with efficient packaging activity in vivo. We demonstrate that the binding activity to the TTTG packaging sequence motif is the product of the L4 22-kDa open reading frame. Previously, no function had been ascribed to this protein. Truncation of the L4 22-kDa protein in the context of the viral genome did not reduce viral gene expression or viral DNA replication but eliminated the production of infectious virus. We suggest that the L4 22-kDa protein, in conjunction with IVa2, plays a critical role in the recognition of the packaging domain of the Ad genome that leads to viral DNA encapsidation. The L4 22-kDa protein is also involved in recognition of transcription elements of the Ad major late promoter.
Collapse
Affiliation(s)
- Philomena Ostapchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, NY 11794, USA
| | | | | | | |
Collapse
|
33
|
Corredor JC, Krell PJ, Nagy E. Sequence Analysis of the Left End of Fowl Adenovirus Genomes. Virus Genes 2006; 33:95-106. [PMID: 16791424 DOI: 10.1007/s11262-005-0031-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 11/15/2005] [Indexed: 11/24/2022]
Abstract
Nucleotide sequence analysis of the left end of the genome of fowl adenoviruses (FAdV) representing species group C (FAdV-4 and -10), D (FAdV-2) and E (FAdV-8) were carried out, and the sequence data was compared to those of FAdV-1 (FAdV-A) and FAdV-9 (FAdV-D). The viruses were propagated in chicken hepatoma cell line for viral DNA isolation. Restriction endonuclease analysis was performed followed by hybridization with two DNA probes representing the left end of FAdV-9. The identified fragments were sequenced, and the generated data were compared with the GenBank database. Nucleotide sequence homology and amino acid sequence identities were high between members of the same species group, FAdV-2 and -9, and FAdV-4 and -10, whereas different degrees of variations were observed among all FAdVs. Gene arrangement and position of ORFs at the left end of FAdV genomes were largely conserved suggesting similar gene functions. All previously characterized left end ORFs in CELO virus and FAdV-9 were found in all analyzed FAdVs. However, ORF 1C was absent in FAdV-4 and -10, but additional ORFs, most likely corresponding to duplicates of ORF 14, were observed in these viruses.
Collapse
Affiliation(s)
- Juan Carlos Corredor
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, N1G 2W1, Guelph, Ontario, Canada
| | | | | |
Collapse
|
34
|
Abstract
Human adenoviruses (HAdVs) can cause mild respiratory, gastrointestinal, urogenital and ocular disease. Knowledge about HAdVs has been expanding for more than five decades putting them amongst the most-studied viruses. This continued interest stems, to a great extent, from the fact that these double-stranded DNA viruses have proven to be a versatile tool to probe the basic phenomena of eukaryotic cells. HAdV research has led to the discovery of, for instance, RNA splicing and greatly contributed to our knowledge of processes as fundamental as replication, transcription and translation. Moreover, the transformation of rodent cells by HAdVs has provided a system to unravel the molecular pathways that control cell proliferation. As a result, the genetic organisation of these agents is known in great detail allowing the straightforward manipulation of their genomes. In addition, the virus itself became renowned for its ability to produce large amounts of progeny and to efficiently infect mammalian cells regardless of their cell cycle status. These features contributed to the broad use of recombinant HAdVs as gene carriers particularly in in vivo settings where the vast majority of target cells are post-mitotic. The most advanced type of HAdV vectors can accommodate up to 37 kb of foreign DNA and are devoid of viral genes. With the aid of these high-capacity HAdV vectors large physiologically responsive transcriptional elements and/or genes can be efficiently introduced into target cells while minimising adaptive immune responses against the transduced cells. This article provides information on HAdV especially on the aspects pertinent to the design, production and performance of its recombinant forms. The development and characteristics of the main HAdV-based vector types are also briefly reviewed.
Collapse
Affiliation(s)
- Manuel A F V Gonçalves
- Gene Therapy Section, Department of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands.
| | | |
Collapse
|
35
|
Reddy PS, Ganesh S, Knowles NJ, Kaleko M, Connelly S, Bristol A. Complete sequence and organization of the human adenovirus serotype 46 genome. Virus Res 2006; 116:119-28. [PMID: 16242804 DOI: 10.1016/j.virusres.2005.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 09/17/2005] [Accepted: 09/17/2005] [Indexed: 10/25/2022]
Abstract
Out of 51 human adenoviral serotypes recognized to date, 32 of them belong to species D. Members of species D adenoviruses are commonly isolated from immune suppressed patients (organ transplant) and patients suffering from AIDS. The role of species D adenoviruses in pathogenesis is currently unclear. To derive new insights into the genetic content and evolution of species D adenoviruses and as a first step towards development of human adenovirus serotype 46 (Ad46) as vector, the complete nucleotide sequence of the virus was determined. The size of the genome is 35,178 bp in length with a G+C content of 56.9%. All the early and late region genes are present in the expected locations of the genome. The deduced amino acid sequences of all late region genes, with the exception of fiber, exhibited high degree of homology with the corresponding proteins of other adenoviruses. The deduced amino acid sequences of early regions E1, E3 and E4 showed a high degree of homology with the corresponding proteins of adenoviruses belonging to species D and less homology with the corresponding proteins of adenoviruses of other species. The homologues of Ad5 E3 region genes encoding 12.5K, gp19K, 10.4K, 14.5K and 14.7K are conserved in the genome of Ad46. However, the E3 region of Ad46 lacks genes encoding 6.7K and adenovirus death protein (ADP) but contains two additional open reading frames with a coding capacity of 433 and 281 amino acids. The fiber protein of Ad46 is 200 amino acids smaller than the fiber protein of Ad5 and contains only 10 pseudo-repeats in the shaft region. To facilitate the manipulation of the genome, the complete genome of Ad46 was cloned into a single bacterial plasmid. Following transfection into E1 complementing cell lines, the virus was recovered demonstrating the feasibility of viral genome manipulation for generation of recombinant viruses.
Collapse
Affiliation(s)
- P Seshidhar Reddy
- Genetic Therapy Inc., A Novartis Company, 9 West Watkins Mill Road Gaithersburg, MD 20878, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Perez-Romero P, Gustin KE, Imperiale MJ. Dependence of the encapsidation function of the adenovirus L1 52/55-kilodalton protein on its ability to bind the packaging sequence. J Virol 2006; 80:1965-71. [PMID: 16439552 PMCID: PMC1367168 DOI: 10.1128/jvi.80.4.1965-1971.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The adenovirus IVa2 and L1 52/55-kDa proteins are involved in the assembly of new virus particles. Both proteins bind to the packaging sequence of the viral chromosome, and the lack of expression of either protein results in no virus progeny: the absence of the L1 52/55-kDa protein leads to formation of only empty capsids, and the absence of the IVa2 protein results in no capsid assembly. Furthermore, the IVa2 and L1 52/55-kDa proteins interact with each other during adenovirus infection. However, what is not yet clear is when and how this interaction occurs during the course of the viral infection. We defined the domains of the L1 52/55-kDa protein required for interaction with the IVa2 protein, DNA binding, and virus replication by constructing L1 52/55-kDa protein truncations. We found that the N-terminal 173 amino acids of the L1 52/55-kDa protein are essential for interaction with the IVa2 protein. However, for both DNA binding and complementation of the pm8001 mutant virus, which does not express the L1 52/55-kDa protein, the amino-terminal 331 amino acids of the L1 52/55-kDa protein are necessary. These results suggest that the production of infectious virus particles depends on the ability of the L1 52/55-kDa protein to bind to DNA.
Collapse
Affiliation(s)
- Pilar Perez-Romero
- University of Michigan Medical School, 6304 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI 48109-0942, USA.
| | | | | |
Collapse
|
37
|
Gonzalez R, Huang W, Finnen R, Bragg C, Flint SJ. Adenovirus E1B 55-kilodalton protein is required for both regulation of mRNA export and efficient entry into the late phase of infection in normal human fibroblasts. J Virol 2006; 80:964-74. [PMID: 16378998 PMCID: PMC1346875 DOI: 10.1128/jvi.80.2.964-974.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human adenovirus type 5 (Ad5) E1B 55-kDa protein is required for selective nuclear export of viral late mRNAs from the nucleus and concomitant inhibition of export of cellular mRNAs in HeLa cells and some other human cell lines, but its contributions(s) to replication in normal human cells is not well understood. We have therefore examined the phenotypes exhibited by viruses carrying mutations in the E1B 55-kDa protein coding sequence in normal human fibroblast (HFFs). Ad5 replicated significantly more slowly in HFFs than it does in tumor cells, a difference that is the result of delayed entry into the late phase of infection. The A143 mutation, which specifically impaired export of viral late mRNAs from the nucleus in infected HeLa cells (R. A. Gonzalez and S. J. Flint, J. Virol. 76:4507-4519, 2002), induced a more severe defect in viral mRNA export in HFFs. This observation indicates that the E1B 55-kDa protein regulates mRNA export during the late phase of infection of normal human cells. Other mutants exhibited phenotypes not observed in HeLa cells. In HFFs infected by the null mutant Hr6, synthesis of viral late mRNAs and proteins was severely impaired. Such defects in late gene expression were the result of inefficient progression into the late phase of infection, for viral DNA synthesis was 10-fold less efficient in Hr6-infected HFFs than in cells infected by Ad5. Similar, but less severe, defects in viral DNA synthesis were induced by the insertion mutation H224, which has been reported to inhibit binding of the E1B 55-kDa protein to p53 (C. C. Kao, P. R. Yew, and A. J. Berk, Virology 179:806-814, 1990).
Collapse
Affiliation(s)
- Ramon Gonzalez
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
38
|
Perez-Romero P, Tyler RE, Abend JR, Dus M, Imperiale MJ. Analysis of the interaction of the adenovirus L1 52/55-kilodalton and IVa2 proteins with the packaging sequence in vivo and in vitro. J Virol 2005; 79:2366-74. [PMID: 15681437 PMCID: PMC546600 DOI: 10.1128/jvi.79.4.2366-2374.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We previously showed that the adenovirus IVa2 and L1 52/55-kDa proteins interact in infected cells and the IVa2 protein is part of two virus-specific complexes (x and y) formed in vitro with repeated elements of the packaging sequence called the A1-A2 repeats. Here we demonstrate that both the IVa2 and L1 52/55-kDa proteins bind in vivo to the packaging sequence and that each protein-DNA interaction is independent of the other. There is a strong and direct interaction of the IVa2 protein with DNA in vitro. This interaction is observed when probes containing the A1-A2 or A4-A5 repeats are used, but it is not found by using an A5-A6 probe. Furthermore, we show that complex x is likely a heterodimer of IVa2 and an unknown viral protein, while complex y is a monomer or multimer of IVa2. No in vitro interaction of purified L1 52/55-kDa protein with the packaging sequence was found, suggesting that the L1 52/55-kDa protein-DNA interaction may be mediated by an intermediate protein. Results support roles for both the L1 52/55-kDa and IVa2 proteins in DNA encapsidation.
Collapse
Affiliation(s)
- Pilar Perez-Romero
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, 1500 E. Medical Center Dr., Ann Arbor, MI 48109-0942, USA
| | | | | | | | | |
Collapse
|
39
|
Flint SJ, Huang W, Goodhouse J, Kyin S. A peptide inhibitor of exportin1 blocks shuttling of the adenoviral E1B 55 kDa protein but not export of viral late mRNAs. Virology 2005; 337:7-17. [PMID: 15914216 DOI: 10.1016/j.virol.2005.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 12/20/2004] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
The human subgroup C adenoviral E1B 55 kDa and E4 Orf6 proteins are required for efficient nuclear export of viral late mRNAs, but the cellular pathway that mediates such export has not been identified. As a first step to develop a general approach to address this issue, we have assessed the utility of cell-permeable peptide inhibitors of cellular export receptors. As both E1B and E4 proteins have been reported to contain a leucine-rich nuclear export signal (NES), we synthesized a cell-permeable peptide containing such an NES. This peptide induced substantial inhibition of export of the E1B protein, whereas a control, non-functional peptide did not. However, under the same conditions, the NES peptide had no effect on export of viral late mRNAs. These observations establish that viral late mRNAs are not exported by exportin1, as well as the value of peptide inhibitors in investigation of mRNA export regulation in adenovirus-infected cells.
Collapse
Affiliation(s)
- S J Flint
- Department of Molecular Biology, Princeton University, NJ 08544, USA.
| | | | | | | |
Collapse
|
40
|
Singh M, Shmulevitz M, Tikoo SK. A newly identified interaction between IVa2 and pVIII proteins during porcine adenovirus type 3 infection. Virology 2005; 336:60-9. [PMID: 15866071 DOI: 10.1016/j.virol.2005.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 03/01/2005] [Accepted: 03/02/2005] [Indexed: 11/27/2022]
Abstract
The adenovirus IVa2 is an intermediate viral gene product that appears to perform multiple essential roles in viral infection. Using IVa2 as bait in the yeast two-hybrid system, we screened selected open reading frames (ORFs) of porcine adenovirus (PAdV)-3 for potential interaction with IVa2. Interestingly, pVIII showed specific interaction with IVa2. The yeast two-hybrid findings were validated by GST pull-down assays, in vitro binding studies employing cell-free coupled transcription-translation products and in vitro co-immunoprecipitations using protein-specific antibodies. Finally, we demonstrated that IVa2 specifically interacts with pVIII during PAdV-3 infection.
Collapse
Affiliation(s)
- Mahavir Singh
- Vaccine and Infectious Disease Organization, 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E3
| | | | | |
Collapse
|
41
|
Ostapchuk P, Yang J, Auffarth E, Hearing P. Functional interaction of the adenovirus IVa2 protein with adenovirus type 5 packaging sequences. J Virol 2005; 79:2831-8. [PMID: 15709002 PMCID: PMC548476 DOI: 10.1128/jvi.79.5.2831-2838.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Adenovirus type 5 (Ad5) DNA packaging is initiated in a polar fashion from the left end of the genome. The packaging process is dependent on the cis-acting packaging domain located between nucleotides 230 and 380. Seven AT-rich repeats that direct packaging have been identified within this domain. A1, A2, A5, and A6 are the most important repeats functionally and share a bipartite sequence motif. Several lines of evidence suggest that there is a limiting trans-acting factor(s) that plays a role in packaging. Both cellular and viral proteins that interact with adenovirus packaging elements in vitro have been identified. In this study, we characterized a group of recombinant viruses that carry site-specific point mutations within a minimal packaging domain. The mutants were analyzed for growth properties in vivo and for the ability to bind cellular and viral proteins in vitro. Our results are consistent with a requirement of the viral IVa2 protein for DNA packaging via a direct interaction with packaging sequences. Our results also indicate that higher-order IVa2-containing complexes that form on adjacent packaging repeats in vitro are the complexes required for the packaging activity of these sites in vivo. Chromatin immunoprecipitation was used to study proteins that bind directly to the packaging sequences. These results demonstrate site-specific interaction of the viral IVa2 and L1 52/55K proteins with the Ad5 packaging domain in vivo. These results confirm and extend those previously reported and provide a framework on which to model the adenovirus assembly process.
Collapse
Affiliation(s)
- Philomena Ostapchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
42
|
Amon W, Binné UK, Bryant H, Jenkins PJ, Karstegl CE, Farrell PJ. Lytic cycle gene regulation of Epstein-Barr virus. J Virol 2004; 78:13460-9. [PMID: 15564457 PMCID: PMC533939 DOI: 10.1128/jvi.78.24.13460-13469.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Episomal reporter plasmids containing the Epstein-Barr virus (EBV) oriP sequence stably transfected into Akata Burkitt's lymphoma cells were used to analyze EBV lytic cycle gene regulation. First, we found that the Zp promoter of EBV, but not the Rp promoter, can be activated in the absence of protein synthesis in these oriP plasmids, casting doubt on the immediate early status of Rp. An additional level of regulation of Zp was implied by analysis of a mutation of the ZV element. Second, our analysis of late lytic cycle promoters revealed that the correct relative timing, dependence on ori lyt in cis, and sensitivity to inhibitors of DNA replication were reconstituted on the oriP plasmids. Late promoter luciferase activity from oriP plasmids also incorporating replication-competent ori lyt was phosphonoacetic acid sensitive, a hallmark of EBV late genes. A minimal ori lyt, which only replicates weakly, was sufficient to confer late timing of expression specifically on late promoters. Finally, deletion analysis of EBV late promoter sequences upstream of the transcription start site confirmed that sequences between -49 and +30 are sufficient for late gene expression, which is dependent on ori lyt in cis. However, the TATT version of the TATA box found in many late genes was not essential for late expression.
Collapse
Affiliation(s)
- Wolfgang Amon
- Ludwig Institute for Cancer Research and Department of Virology, Imperial College Faculty of Medicine, St. Mary's Campus, Norfolk Place, London W2 1PG, United Kingdom
| | | | | | | | | | | |
Collapse
|
43
|
Iftode C, Flint SJ. Viral DNA synthesis-dependent titration of a cellular repressor activates transcription of the human adenovirus type 2 IVa2 gene. Proc Natl Acad Sci U S A 2004; 101:17831-6. [PMID: 15591107 PMCID: PMC539761 DOI: 10.1073/pnas.0407786101] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Indexed: 12/27/2022] Open
Abstract
Synthesis of progeny DNA genomes in cells infected by human subgroup C adenoviruses leads to several changes in viral gene expression. These changes include transcription from previously silent, late promoters, such as the IV(a2) promoter, and a large increase in the efficiency of major-late (ML) transcription. Some of these changes appear to take place sequentially, because the product of the IV(a2) gene has been implicated in stimulation of ML transcription. Our previous biochemical studies suggested that IV(a2) transcription is regulated by viral DNA synthesis-dependent relief of transcriptional repression by a cellular protein that we termed IV(a2)-RF. To test the relevance of such a repressor-titration mechanism during the viral infectious cycle, we introduced into the endogenous IV(a2) promoter two mutations that impair in vitro-binding of IV(a2)-RF, but introduce no change (Rep7) or one conservative amino acid substitution (Rep6) into the overlapping coding sequence for the viral DNA polymerase. The results of run-on transcription assays indicated that both mutations induced earlier-than-normal and more efficient IV(a2) transcription. Both mutations were also observed to result in modest increases in the efficiency of viral DNA synthesis. However, measurement of the concentration of IV(a2) transcripts as a function of IV(a2) template concentration demonstrated that the Rep mutations increased by up to 60-fold the efficiency with which IV(a2) templates were used during the initial period of the late phase of infection, as predicted by the repressor titration hypothesis. These mutations also increased the efficiency of ML transcription in infected cells.
Collapse
Affiliation(s)
- C Iftode
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
44
|
Pardo-Mateos A, Young CSH. Adenovirus IVa2 protein plays an important role in transcription from the major late promoter in vivo. Virology 2004; 327:50-9. [PMID: 15327897 DOI: 10.1016/j.virol.2004.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 04/01/2004] [Accepted: 06/01/2004] [Indexed: 10/26/2022]
Abstract
Adenovirus IVa2 protein is essential and multifunctional, with roles in encapsidation and transcriptional activation of the Major Late Promoter (MLP), but the importance of the transcriptional function to viability has not been assessed. To address this question, viral genomes with multiple nonbinding mutations in the MLP downstream elements DE1 and DE2, alone or in combination with nonbinding mutations in the UPE (USF0), were constructed. The results show that DE1/2 and the UPE are functionally redundant, suggesting an important role of IVa2 protein in the activation of the MLP in vivo. Previously, a virus (vIVa2) expressing a 40-kDa IVa2 isoform was created. Neither the DE1/2 mutations nor the USF0 mutations could be recovered in this genetic background. These results suggest that this 40-kDa isoform can play a role in transcription.
Collapse
Affiliation(s)
- Almudena Pardo-Mateos
- Department of Microbiology, College of Physicians and Surgeons, Hammer Health Sciences Center, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
45
|
Pardo-Mateos A, Young CSH. A 40 kDa isoform of the type 5 adenovirus IVa2 protein is sufficient for virus viability. Virology 2004; 324:151-64. [PMID: 15183062 DOI: 10.1016/j.virol.2004.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Accepted: 03/03/2004] [Indexed: 10/26/2022]
Abstract
The multifunctional IVa2 protein is essential for adenovirus replication [J. Virol. 77 (2003) 3586], but the relative importance of the transcriptional and encapsidation functions is unknown. As part of a study of IVa2 function, we created a set of mutations in the IVa2 gene in the correct location in the viral genome. Unexpectedly, an opal stop codon at position 6 was recovered in virus twice. Isolate #2 showed defective viral replication, but produced late proteins at almost wild-type levels. Analysis of IVa2 mRNA showed an additional species, larger and more abundant than the equivalent wild-type species. It was a hybrid of the 5' UTR of L3 23 kDa attached to the IVa2 second exon, so that M75 is the 5' proximal methionine. This mRNA arises from a corresponding hybrid DNA, present in the virus stock. A protein of approximately 40 kDa, consistent with translation from the hybrid mRNA, was detected. It is able to bind to the packaging sequence and to the MLP downstream elements (DE1/2). Isolate #8 was more defective in replication than #2. No hybrid mRNA or DNA was detected, but it also produces a 40 kDa isoform, which is present in wild-type-infected cells. Mutational analysis of M75 and M101 revealed that the 40 kDa isoform is produced by initiation at Met75. This might be the origin of the previously unidentified 40 kDa factor present in the heterodimer DEF-A, which binds to DE1 and DE2a.
Collapse
|
46
|
Xing L, Tikoo SK. Viral RNAs detected in virions of porcine adenovirus type 3. Virology 2004; 321:372-82. [PMID: 15051396 DOI: 10.1016/j.virol.2003.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 12/29/2003] [Accepted: 12/29/2003] [Indexed: 11/18/2022]
Abstract
It has been demonstrated that cellular and viral RNAs were packaged in the virions of human cytomegalovirus (CMV) and herpes simplex virus 1 (HSV 1), members of the Herpesviridae family, both of which are enveloped double-stranded DNA viruses. Here, we provide evidence suggesting that RNAs are packaged in the virions of porcine adenovirus type 3 (PAdV-3), which is a member of the Adenoviridae family, a non-enveloped double-stranded DNA virus. The RNAs packaged in PAdV-3 virions were enriched in the size range of 300-1000 bases long. By reverse transcription (RT) of RNAs isolated from purified PAdV-3 virions, PCR amplification, and DNA sequence analysis of PCR products, we determined the identities of some viral RNAs contained in PAdV-3 virions. The results indicated that the RNAs representing transcripts from E1A, E1B, DNA binding protein (DBP), DNA polymerase (POL), E4 and some of the late genes including pIIIA, pIII, pV, Hexon, 33 K, and fiber were detected from purified PAdV-3 virions. In contrast, we could not detect the RNAs representing transcripts of precursor terminal protein (pTP), 52 kDa, pX, or 100-kDa protein genes in purified virions. Because the transcripts of pIX, IVa2, E3, protease, pVI, pVII, and pVIII overlap with those of other genes in PAdV-3, we could not definitely conclude that RNAs representing these transcripts were packaged in virions although the expected DNA fragments were produced by RT-PCR in the RNAs isolated from purified virions.
Collapse
Affiliation(s)
- Li Xing
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | | |
Collapse
|
47
|
Huang W, Kiefer J, Whalen D, Flint SJ. DNA synthesis-dependent relief of repression of transcription from the adenovirus type 2 IVa(2) promoter by a cellular protein. Virology 2003; 314:394-402. [PMID: 14517091 DOI: 10.1016/s0042-6822(03)00431-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The promoter of the human adenovirus type 2 IVa(2) gene, which becomes active only during the late phase of infection, is built largely from sequences spanning, and downstream of, the sites of initiation of transcription. These sequences comprise an initiator, an intragenic sequence necessary for efficient transcription from the promoter by RNA polymerase II, and an intragenic binding site for a cellular repressor of IVa(2) transcription. The properties of the latter protein, which is termed IVa(2)-RF, suggested that it might account for the viral DNA synthesis-dependent activation of IVa(2) transcription during the adenoviral productive cycle. Here we report the results of experiments to assess the contributions of DNA template concentration and IVa(2)-RF binding to the activity of the IVa(2) promoter using a transient expression system. When a IVa(2)-EGFP reporter gene was introduced into HeLa cells, in which IVa(2)-RF was identified, no EFGP synthesis could be detected. In contrast, in IVa(2)-RF-containing cells in which the plasmid carrying the chimeric gene replicated, synthesis of both the EGFP protein and the IVa(2)-EGFP mRNA was readily detected. A vector mutation that blocked plasmid replication reduced IVa(2) promoter activity to undetectable levels. In contrast, a IVa(2) promoter substitution that impaired binding of IVa(2)-RF increased IVa(2) promoter activity under all conditions examined. Furthermore, introduction of DNA containing the IV-RF binding site with the chimeric reporter genes resulted in increased transcription from the IVa(2) promoter in the absence of plasmid replication. These properties are consistent with the hypothesis that the relative concentration of the IVa(2) promoter and of the cellular repressor that binds to it governs transcription from this adenoviral promoter.
Collapse
Affiliation(s)
- Wenying Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
48
|
Mei YF, Skog J, Lindman K, Wadell G. Comparative analysis of the genome organization of human adenovirus 11, a member of the human adenovirus species B, and the commonly used human adenovirus 5 vector, a member of species C. J Gen Virol 2003; 84:2061-2071. [PMID: 12867636 DOI: 10.1099/vir.0.19178-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adenovirus type 11 (Ad11), a member of the human adenovirus species B (HAdV-B), has a tropism for the urinary tract. The genome of Ad11 was found to comprise 34 794 bp and is 1141 bp shorter than the Ad5 genome of species HAdV-C. The G+C content of the Ad11 genome is 48.9 %, whereas that of Ad5 is 55.2 %. Ad11 and Ad5 share 57 % nucleotide identity and possess the same four early regions, but the E3 region of Ad11 could not be divided into E3A and E3B. The late genes of Ad11 and Ad5 are organized into six and five regions, respectively. Thirty-eight putative ORFs were identified in the Ad11 genome. The ORFs in the late regions, the E2B region and IVa2 show high amino acid identity between Ad11 and Ad5, whereas the ORFs in E1, E2A, E3 and E4, protein IX and the fibre protein show low amino acid identity. The highest and lowest identities were noted in the pre-terminal protein and fibre proteins: 85 % and 24.6 %, respectively. The E3 20.3K and 20.6K ORFs and the L6 agnoprotein were present in the Ad11 genome only, whereas the E3 11.6K cell death protein was identified only in Ad5. All ORFs but the E3 10.3K and L4 pVIII protein vary not only in composition but also in size. Ad11 may have a higher vector capacity than Ad5, since it has a shorter genome and a shorter fibre. Furthermore, in the E3 region, two additional ORFs can be deleted to give extra capacity for foreign DNA.
Collapse
Affiliation(s)
- Ya-Fang Mei
- Department of Virology, Umeå University, SE-901 85 Umeå, Sweden
| | - Johan Skog
- Department of Virology, Umeå University, SE-901 85 Umeå, Sweden
| | | | - Göran Wadell
- Department of Virology, Umeå University, SE-901 85 Umeå, Sweden
| |
Collapse
|
49
|
Löhr K, Hartmann O, Schäfer H, Dobbelstein M. Mutual interference of adenovirus infection and myc expression. J Virol 2003; 77:7936-44. [PMID: 12829833 PMCID: PMC161938 DOI: 10.1128/jvi.77.14.7936-7944.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During infection with adenovirus, massive changes in the transcription of virus genes are observed, suggesting that the expression of cellular genes may also be modulated. To characterize the levels of cellular RNA species in infected cells, cDNA arrays were screened 24 h after infection of HeLa cells with wild-type adenovirus type 5, strain dl309. Despite complete transduction of the cells, fewer than 20 cellular genes (out of 4,600 analyzed and 1,200 found detectable and expressed above background) were altered more than threefold in their corresponding RNA levels compared to mock-infected cells. In particular, the expression of the myc oncogene was reduced at the mRNA level. This reduction was dependent on the replication of virus DNA and partially dependent on the presence of the adenovirus gene products E1B-55 kDa and E4orf6, but not E4orf3. On the other hand, MYC protein had an increased half-life in infected cells, resulting in roughly constant steady-state protein levels. The adenovirus E1A gene product is necessary and sufficient to stabilize MYC. Overexpressed MYC inhibited adenovirus replication and the proper formation of the virus replication centers. We conclude that adenovirus infection leads to the stabilization of MYC, perhaps as a side effect of E1A activities. On the other hand, myc mRNA levels are negatively regulated during adenovirus infection, and this may avoid the detrimental effect of excessive MYC on adenovirus replication.
Collapse
Affiliation(s)
- Kristina Löhr
- Institut für Virologie, Philipps-Universität Marburg, Robert Koch Strasse 17, 35037 Marburg, Germany
| | | | | | | |
Collapse
|
50
|
Bridge E, Mattsson K, Aspegren A, Sengupta A. Adenovirus early region 4 promotes the localization of splicing factors and viral RNA in late-phase interchromatin granule clusters. Virology 2003; 311:40-50. [PMID: 12832201 DOI: 10.1016/s0042-6822(03)00189-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adenovirus early region 4 (E4) mutants are defective for late gene expression and show reduced levels of late RNA in both the cytoplasm and the nucleus. These reductions reflect a posttranscriptional defect in the production of viral late RNA. We find that E4 mutants form replication centers during the initial stages of infection and are able to redistribute splicing factors to transcription sites that surround viral replication centers. However, E4 mutant infected cultures have reduced numbers of cells with splicing factors localized in enlarged interchromatin granule clusters during the late phase. Although the late-phase interchromatin granule clusters that formed in wild-type and E4 mutant infected cells had similar levels of poly(A) RNA, they contained reduced levels of viral RNA. These results suggest that E4 mutants do not efficiently accumulate viral late RNA in late-phase interchromatin granule clusters following the onset of late RNA transcription.
Collapse
Affiliation(s)
- Eileen Bridge
- Department of Microbiology, 32 Pearson Hall, Miami University, Oxford, OH 45056, USA.
| | | | | | | |
Collapse
|