1
|
Sobhy H. A Review of Functional Motifs Utilized by Viruses. Proteomes 2016; 4:proteomes4010003. [PMID: 28248213 PMCID: PMC5217368 DOI: 10.3390/proteomes4010003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 01/05/2023] Open
Abstract
Short linear motifs (SLiM) are short peptides that facilitate protein function and protein-protein interactions. Viruses utilize these motifs to enter into the host, interact with cellular proteins, or egress from host cells. Studying functional motifs may help to predict protein characteristics, interactions, or the putative cellular role of a protein. In virology, it may reveal aspects of the virus tropism and help find antiviral therapeutics. This review highlights the recent understanding of functional motifs utilized by viruses. Special attention was paid to the function of proteins harboring these motifs, and viruses encoding these proteins. The review highlights motifs involved in (i) immune response and post-translational modifications (e.g., ubiquitylation, SUMOylation or ISGylation); (ii) virus-host cell interactions, including virus attachment, entry, fusion, egress and nuclear trafficking; (iii) virulence and antiviral activities; (iv) virion structure; and (v) low-complexity regions (LCRs) or motifs enriched with residues (Xaa-rich motifs).
Collapse
Affiliation(s)
- Haitham Sobhy
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
2
|
An P, Sáenz Robles MT, Pipas JM. Large T antigens of polyomaviruses: amazing molecular machines. Annu Rev Microbiol 2013; 66:213-36. [PMID: 22994493 DOI: 10.1146/annurev-micro-092611-150154] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The large tumor antigen (T antigen) encoded by simian virus 40 is an amazing molecular machine because it orchestrates viral infection by modulating multiple fundamental viral and cellular processes. T antigen is required for viral DNA replication, transcription, and virion assembly. In addition, T antigen targets multiple cellular pathways, including those that regulate cell proliferation, cell death, and the inflammatory response. Ectopic T antigen expression results in the immortalization and transformation of many cell types in culture and T antigen induces neoplasia when expressed in rodents. The analysis of the mechanisms by which T antigen carries out its many functions has proved to be a powerful way of gaining insights into cell biology. The accelerating pace at which new polyomaviruses are being discovered provides a collection of novel T antigens that, like simian virus 40, can be used to discover and study key cellular regulatory systems.
Collapse
Affiliation(s)
- Ping An
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
3
|
Lafontaine J, Rodier F, Ouellet V, Mes-Masson AM. Necdin, a p53-target gene, is an inhibitor of p53-mediated growth arrest. PLoS One 2012; 7:e31916. [PMID: 22355404 PMCID: PMC3280226 DOI: 10.1371/journal.pone.0031916] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/20/2012] [Indexed: 01/09/2023] Open
Abstract
In vitro, cellular immortalization and transformation define a model for multistep carcinogenesis and current ongoing challenges include the identification of specific molecular events associated with steps along this oncogenic pathway. Here, using NIH3T3 cells, we identified transcriptionally related events associated with the expression of Polyomavirus Large-T antigen (PyLT), a potent viral oncogene. We propose that a subset of these alterations in gene expression may be related to the early events that contribute to carcinogenesis. The proposed tumor suppressor Necdin, known to be regulated by p53, was within a group of genes that was consistently upregulated in the presence of PyLT. While Necdin is induced following p53 activation with different genotoxic stresses, Necdin induction by PyLT did not involve p53 activation or the Rb-binding site of PyLT. Necdin depletion by shRNA conferred a proliferative advantage to NIH3T3 and PyLT-expressing NIH3T3 (NIHLT) cells. In contrast, our results demonstrate that although overexpression of Necdin induced a growth arrest in NIH3T3 and NIHLT cells, a growing population rapidly emerged from these arrested cells. This population no longer showed significant proliferation defects despite high Necdin expression. Moreover, we established that Necdin is a negative regulator of p53-mediated growth arrest induced by nutlin-3, suggesting that Necdin upregulation could contribute to the bypass of a p53-response in p53 wild type tumors. To support this, we characterized Necdin expression in low malignant potential ovarian cancer (LMP) where p53 mutations rarely occur. Elevated levels of Necdin expression were observed in LMP when compared to aggressive serous ovarian cancers. We propose that in some contexts, the constitutive expression of Necdin could contribute to cancer promotion by delaying appropriate p53 responses and potentially promote genomic instability.
Collapse
Affiliation(s)
- Julie Lafontaine
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Institut du cancer de Montréal, Montréal, Québec, Canada
| | - Francis Rodier
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Institut du cancer de Montréal, Montréal, Québec, Canada
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montréal, Québec, Canada
| | - Véronique Ouellet
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Institut du cancer de Montréal, Montréal, Québec, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Institut du cancer de Montréal, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
4
|
Fluck MM, Schaffhausen BS. Lessons in signaling and tumorigenesis from polyomavirus middle T antigen. Microbiol Mol Biol Rev 2009; 73:542-63, Table of Contents. [PMID: 19721090 PMCID: PMC2738132 DOI: 10.1128/mmbr.00009-09] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The small DNA tumor viruses have provided a very long-lived source of insights into many aspects of the life cycle of eukaryotic cells. In recent years, the emphasis has been on cancer-related signaling. Here we review murine polyomavirus middle T antigen, its mechanisms, and its downstream pathways of transformation. We concentrate on the MMTV-PyMT transgenic mouse, one of the most studied models of breast cancer, which permits the examination of in situ tumor progression from hyperplasia to metastasis.
Collapse
Affiliation(s)
- Michele M Fluck
- Department of Microbiology and Molecular Genetics, Interdepartmental Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
5
|
Schaffhausen BS, Roberts TM. Lessons from polyoma middle T antigen on signaling and transformation: A DNA tumor virus contribution to the war on cancer. Virology 2008; 384:304-16. [PMID: 19022468 DOI: 10.1016/j.virol.2008.09.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 09/30/2008] [Indexed: 01/16/2023]
Abstract
Middle T antigen (MT) is the principal oncogene of murine polyomavirus. Its study has led to the discovery of the roles of tyrosine kinase and phosphoinositide 3-kinase (PI3K) signaling in mammalian growth control and transformation. MT is necessary for viral transformation in tissue culture cells and tumorigenesis in animals. When expressed alone as a transgene, MT causes tumors in a wide variety of tissues. It has no known catalytic activity, but rather acts by assembling cellular signal transduction molecules. Protein phosphatase 2A, protein tyrosine kinases of the src family, PI3K, phospholipase Cgamma1 as well as the Shc/Grb2 adaptors are all assembled on MT. Their activation sets off a series of signaling cascades. Analyses of virus mutants as well as transgenic animals have demonstrated that the effects of a given signal depend not only tissue type, but on the genetic background of the host animal. There remain many opportunities as we seek a full molecular understanding of MT and apply some of its lessons to human cancer.
Collapse
Affiliation(s)
- Brian S Schaffhausen
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
6
|
Mehle A, Thomas ER, Rajendran KS, Gabuzda D. A zinc-binding region in Vif binds Cul5 and determines cullin selection. J Biol Chem 2006; 281:17259-17265. [PMID: 16636053 DOI: 10.1074/jbc.m602413200] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) Vif overcomes the anti-viral activity of APOBEC3G by targeting it for ubiquitination via a Cullin 5-ElonginB-ElonginC (Cul5-EloBC) E3 ligase. Vif associates with Cul5-EloBC through a BC-box motif that binds EloC, but the mechanism by which Vif selectively recruits Cul5 is poorly understood. Here we report that a region of Vif (residues 100-142) upstream of the BC-box binds selectively to Cul5 in the absence of EloC. This region contains a zinc coordination site HX5CX17-18CX3-5H (HCCH), with His/Cys residues at positions 108, 114, 133, and 139 coordinating one zinc ion. The HCCH zinc coordination site, which is conserved among primate lentivirus Vif proteins, does not correspond to any known class of zinc-binding motif. Mutations of His/Cys residues in the HCCH motif impair zinc coordination, Cul5 binding, and APOBEC3G degradation. Mutations of conserved hydrophobic residues (Ile-120, Ala-123, and Leu-124) located between the two Cys residues in the HCCH motif disrupt binding of the zinc-coordinating region to Cul5 and inhibit APOBEC3G degradation. The Vif binding site maps to the first cullin repeat in the N terminus of Cul5. These data suggest that the zinc-binding region in Vif is a novel cullin interaction domain that mediates selective binding to Cul5. We propose that the HCCH zinc-binding motif facilitates Vif-Cul5 binding by playing a structural role in positioning hydrophobic residues for direct contact with Cul5.
Collapse
Affiliation(s)
- Andrew Mehle
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115; Departments of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Elaine R Thomas
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115; Departments of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Kottampatty S Rajendran
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115; Departments of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Dana Gabuzda
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115; Departments of Neurology, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
7
|
Love TM, de Jesus R, Kean JA, Sheng Q, Leger A, Schaffhausen B. Activation of CREB/ATF sites by polyomavirus large T antigen. J Virol 2005; 79:4180-90. [PMID: 15767419 PMCID: PMC1061560 DOI: 10.1128/jvi.79.7.4180-4190.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyomavirus large T antigen (LT) has a direct role in viral replication and a profound effect on cell phenotype. It promotes cell cycle progression, immortalizes primary cells, blocks differentiation, and causes apoptosis. While much of large T function is related to its effects on tumor suppressors of the retinoblastoma susceptibility (Rb) gene family, we have previously shown that activation of the cyclin A promoter can occur through a non-Rb-dependent mechanism. Here we show that activation occurs via an ATF/CREB site. Investigation of the mechanism indicates that large T can synergize with CREB family members to activate transcription. Experiments with Gal4-CREB constructs show that synergy is independent of CREB phosphorylation by protein kinase A. Examination of synergy with Gal4-CREB deletion constructs indicates that large T acts on the constitutive activation domain of CREB. Large T can bind to CREB in vivo. Genetic analysis shows that the DNA-binding domain (residues 264 to 420) is sufficient to activate transcription when it is localized to the nucleus. Further analysis of the DNA-binding domain shows that while site-specific DNA binding is not required, non-site-specific DNA binding is important for the activation. Thus, CREB binding and DNA binding are both important for large T activation of CREB/ATF sites. In contrast to previous models where large T transactivation occurred indirectly, these results also suggest that large T can act directly at promoters to activate transcription.
Collapse
Affiliation(s)
- Tara M Love
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
8
|
Nemethova M, Smutny M, Wintersberger E. Transactivation of E2F-regulated genes by polyomavirus large T antigen: evidence for a two-step mechanism. Mol Cell Biol 2004; 24:10986-94. [PMID: 15572699 PMCID: PMC533978 DOI: 10.1128/mcb.24.24.10986-10994.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyomavirus large T antigen transactivates a variety of genes whose products are involved in S phase induction. These genes are regulated by the E2F family of transcription factors, which are under the control of the pocket protein retinoblastoma protein and its relatives p130 and p107. The viral protein causes a dissociation of E2F-pocket protein complexes that results in transactivation of the genes. This reaction requires the N-terminal binding site for pocket proteins and the J domain that binds chaperones. We found earlier that a mutation of the zinc finger located within the C-terminal domain, a region assumed to function mainly in the replication of viral DNA, also interferes with transactivation. Here we show that binding of the histone acetyltransferase coactivator complex CBP/p300-PCAF to the C terminus correlates with the ability of large T antigen to transactivate genes. This interaction results in promoter-specific acetylation of histones. Inactive mutant proteins with changes within the C-terminal domain were nevertheless able to dissociate the E2F pocket protein complexes, indicating that this dissociation is a necessary but insufficient step in the T antigen-induced transactivation of genes. It has to be accompanied by a second step involving the T antigen-mediated recruitment of a histone acetyltransferase complex.
Collapse
Affiliation(s)
- Maria Nemethova
- Medical University of Vienna, Department of Medical Biochemistry, Division of Molecular Biology, Vienna Biocenter, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | | | | |
Collapse
|
9
|
You Z, Ishimi Y, Masai H, Hanaoka F. Roles of Mcm7 and Mcm4 subunits in the DNA helicase activity of the mouse Mcm4/6/7 complex. J Biol Chem 2002; 277:42471-9. [PMID: 12207017 DOI: 10.1074/jbc.m205769200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mcm, which is composed of six structurally related subunits (Mcm2-7), is essential for eukaryotic DNA replication. A subassembly of Mcm, the Mcm4/6/7 double-trimeric complex, possesses DNA helicase activity, and it has been proposed that Mcm may function as a replicative helicase at replication forks. We show here that conserved ATPase motifs of Mcm7 are essential for ATPase and DNA helicase activities of the Mcm4/6/7 complex. Because uncomplexed Mcm7 displayed neither ATPase nor DNA helicase activity, Mcm7 contributes to the DNA helicase activity of the Mcm complex through interaction with other subunits. In contrast, the Mcm4/6/7 complex containing a zinc finger mutant of Mcm4 with partially impaired DNA binding activity exhibited elevated DNA helicase activity. The Mcm4/6/7 complex containing this Mcm4 mutant tended to dissociate into trimeric complexes, suggesting that the zinc finger of Mcm4 is involved in subunit interactions of trimers. The Mcm4 mutants lacking the N-terminal 35 or 112 amino acids could form hexameric Mcm4/6/7 complexes, but displayed very little DNA helicase activity. In conjunction with the previously reported essential role of Mcm6 in ATP binding (You, Z., Komamura, Y., and Ishimi, Y. (1999) Mol. Cell. Biol. 19, 8003-8015), our data indicate distinct roles of Mcm4, Mcm6, and Mcm7 subunits in activation of the DNA helicase activity of the Mcm4/6/7 complex.
Collapse
Affiliation(s)
- Zhiying You
- Department of Cell Biology, Tokyo Metropolitan Institute of Medical Science, 18-22 Honkomagome 3-chome, Bunkyo-ku, Tokyo 113-8613, Japan.
| | | | | | | |
Collapse
|
10
|
Polyoma virus middle t-antigen: growth factor receptor mimic. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0168-7069(01)05004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
11
|
Titolo S, Pelletier A, Pulichino AM, Brault K, Wardrop E, White PW, Cordingley MG, Archambault J. Identification of domains of the human papillomavirus type 11 E1 helicase involved in oligomerization and binding to the viral origin. J Virol 2000; 74:7349-61. [PMID: 10906188 PMCID: PMC112255 DOI: 10.1128/jvi.74.16.7349-7361.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E1 helicase of papillomavirus is required, in addition to host cell DNA replication factors, during the initiation and elongation phases of viral episome replication. During initiation, the viral E2 protein promotes the assembly of enzymatically active multimeric E1 complexes at the viral origin of DNA replication. In this study we used the two-hybrid system and chemical cross-linking to demonstrate that human papillomavirus type 11 (HPV11) E1 can self-associate in yeast and form hexamers in vitro in a reaction stimulated by single-stranded DNA. Self-association in yeast was most readily detected using constructs spanning the E1 C-terminal domain (amino acids 353 to 649) and was dependent on a minimal E1-E1 interaction region located between amino acids 353 and 431. The E1 C-terminal domain was also able to oligomerize in vitro but, in contrast to wild-type E1, did so efficiently in the absence of single-stranded DNA. Sequences located between amino acids 191 and 353 were necessary for single-stranded DNA to modulate oligomerization of E1 and were also required, together with the rest of the C terminus, for binding of E1 to the origin. Two regions within the C-terminal domain were identified as important for oligomerization: the ATP-binding domain and region A, which is located within the minimal E1-E1 interaction domain and is one of four regions of E1 that is highly conserved with the large T antigens of simian virus 40 and polyomavirus. Amino acid substitutions of highly conserved residues within the ATP-binding domain and region A were identified that reduced the ability of E1 to oligomerize and bind to the origin in vitro and to support transient DNA replication in vivo. These results support the notion that oligomerization of E1 occurs primarily through the C-terminal domain of the protein and is allosterically regulated by DNA and ATP. The bipartite organization of the E1 C-terminal domain is reminiscent of that found in other hexameric proteins and suggests that these proteins may oligomerize by a similar mechanism.
Collapse
Affiliation(s)
- S Titolo
- Department of Biological Sciences, Research and Development, Boehringer Ingelheim (Canada) Ltd., Laval, Canada H7S 2G5
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sheng Q, Love TM, Schaffhausen B. J domain-independent regulation of the Rb family by polyomavirus large T antigen. J Virol 2000; 74:5280-90. [PMID: 10799605 PMCID: PMC110883 DOI: 10.1128/jvi.74.11.5280-5290.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of polyomavirus large T antigen (LT) to promote cell cycling, to immortalize primary cells, and to block differentiation has been linked to its effects on tumor suppressors of the retinoblastoma susceptibility (Rb) gene family. Our previous studies have shown that LT requires an intact N-terminal DnaJ domain, in addition to an Rb binding site, for activation of simple E2F-containing promoters and stimulation of cell cycle progression. Here we show that some LT effects dependent on interaction with the Rb family are largely DnaJ independent. In differentiating C2C12 myoblasts, overexpression of LT caused apoptosis. Although this activity of LT completely depended on Rb binding, LTs with mutations in the J domain remained able to kill. Comparisons of Rb(-) and J(-) LTs revealed additional differences. Wild-type but not Rb(-) LT activated the cyclin A promoter under serum starvation conditions. Genetic analysis of the promoter linked the Rb requirement to an E2F site in the promoter. LTs with mutations in the J domain were still able to activate the promoter. Finally, J mutant LTs caused changes in phosphorylation of both pRb and p130. In the case of p130, Thr-986 was shown to be a site that is regulated by J mutant LT. Taken together, these observations reveal that LT regulation of Rb function can be separated into both DnaJ-dependent and DnaJ-independent pathways.
Collapse
Affiliation(s)
- Q Sheng
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | |
Collapse
|
13
|
Abstract
We have characterized two polyomavirus large T antigen mutants with different properties in viral DNA replication. dl-97, a mutant active in immortalization, exerts a dominant negative effect in viral DNA replication. 13val, which is defective in both immortalization and viral DNA replication, has a lesion in the putative DnaJ domain affecting the block of Rb function.
Collapse
Affiliation(s)
- B Lemieux
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | |
Collapse
|
14
|
Peng YC, Acheson NH. Enhanced binding to origin DNA at low pH enables easy detection of polyomavirus large T antigen by gel mobility shift assay of unfixed complexes. J Virol Methods 1999; 78:13-9. [PMID: 10204693 DOI: 10.1016/s0166-0934(98)00160-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Enhanced, stable binding by polyomavirus large T antigen to the viral DNA replication origin at pH 6 allowed the development of a gel mobility shift assay for the detection of large T antigen. Such assays were not possible at pH 7.6 without previous fixation, due to instability of the complexes. We demonstrated that the gel mobility shift assay at pH 6 is very sensitive, allowing the detection of as little as 5 ng large T antigen, and is highly specific for DNA containing G(A/G)GGC target sequences. This method was used to detect large T antigen in crude cell lysates from transformed yeast cell lines or nuclear extracts from infected insect cells. Large T antigen-DNA complexes remained at or near the loading well in 5% acrylamide or 1.5% agarose gels, indicating that these complexes are very large. Glycerol gradient analysis showed that protein-DNA complexes formed at pH 6 were massive, and that large T antigen also formed large complexes when incubated at low pH in the absence of DNA. These results show that pH has a major effect on binding of large T antigen to its multiple target sites in the viral origin of DNA replication, presumably by affecting protein-protein interactions that are important for the stability of large T antigen-DNA complexes.
Collapse
Affiliation(s)
- Y C Peng
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
15
|
Bird AJ, Turner-Cavet JS, Lakey JH, Robinson NJ. A carboxyl-terminal Cys2/His2-type zinc-finger motif in DNA primase influences DNA content in Synechococcus PCC 7942. J Biol Chem 1998; 273:21246-52. [PMID: 9694883 DOI: 10.1074/jbc.273.33.21246] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA primase gene, dnaG, has been isolated from the cyanobacterium Synechococcus PCC 7942. It is not part of a macromolecular synthesis operon but is co-transcribed with pheT and located adjacent to the metallothionein divergon, smt. At the carboxyl terminus of this DnaG is a Cys2/His2 zinc-finger motif. The carboxyl-terminal 91 residues bound 65Zn and 0.95 g atom of Zn2+ mol-1 were detected with 4-(2-pyridylazo)resorcinol. Following exposure to Cd2+, 0.95 g atom of Cd2+ was displaced by 2 equivalents of p-(hydroxymercuri) phenylsulfonate mol-1, while only 0.03 g atom of Cd2+ was displaced mol-1 polypeptide missing the carboxyl-terminal (residue 592 onward) zinc-finger motif. Zn2+ caused an increase in intensity, and a reduction in wavelength, of Trp fluorescence at the tip of the predicted zinc-finger, while EDTA caused the converse. Cells containing a single chromosomal codon substitution (C597S), altering the zinc-finger, were generated by exploiting Zn2+-sensitive smt mutants and the proximity of dnaG to smt. Cells in which smt and dnaG(C597S) had integrated into the chromosome were selected via restored Zn2+ tolerance. Synechococcus PCC 7942 and its dnaG(C597S) mutant grew at equivalent rates, but the latter had a reduced number of chromosomes.
Collapse
Affiliation(s)
- A J Bird
- Department of Biochemistry and Genetics, The Medical School, University of Newcastle, Newcastle NE2 4HH, United Kingdom
| | | | | | | |
Collapse
|
16
|
Weihua X, Ramanujam S, Lindner DJ, Kudaravalli RD, Freund R, Kalvakolanu DV. The polyoma virus T antigen interferes with interferon-inducible gene expression. Proc Natl Acad Sci U S A 1998; 95:1085-90. [PMID: 9448289 PMCID: PMC18681 DOI: 10.1073/pnas.95.3.1085] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Murine polyoma virus (MPyV) is a small DNA virus that induces tumors in multiple tissues of infected host. In this investigation, we show that cell lines derived from wild type virus-induced breast tumors are resistant to the growth inhibitory action of interferon beta (IFN-beta). Furthermore, replication of heterologous viruses such as vesicular stomatitis virus and encephalomyocarditis virus was not inhibited by IFN-beta in these cells. This effect was due to inhibition of IFN-stimulated gene expression by viral T antigen. Activation of IFN-stimulated gene factor 3 was inhibited in cells derived from a tumor induced by wild-type MPyV but not those from a mutant that lacks the pRB binding site of the large T antigen. Similarly IFN-gamma-inducible gene expression was also inhibited in cells transformed by wild-type virus. The levels of components of IFN-stimulated gene factor 3 and signal transducing Janus tyrosine kinases were comparable between the cells transformed by the wild-type and mutant viruses. The viral large T antigen bound to Janus tyrosine kinase 1 and inactivated signaling through IFN receptors. Thus, these studies identify a mechanism of viral resistance to IFN action.
Collapse
Affiliation(s)
- X Weihua
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
17
|
Sheng Q, Denis D, Ratnofsky M, Roberts TM, DeCaprio JA, Schaffhausen B. The DnaJ domain of polyomavirus large T antigen is required to regulate Rb family tumor suppressor function. J Virol 1997; 71:9410-6. [PMID: 9371601 PMCID: PMC230245 DOI: 10.1128/jvi.71.12.9410-9416.1997] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tumor suppressors of the retinoblastoma susceptibility gene family regulate cell growth and differentiation. Polyomavirus large T antigens (large T) bind Rb family members and block their function. Mutations of large T sequences conserved with the DnaJ family affect large T binding to a cellular DnaK, heat shock protein 70. The same mutations abolish large T activation of E2F-containing promoters and Rb binding-dependent large T activation of cell cycle progression. Cotransfection of a cellular DnaJ domain blocks wild-type large T action, showing that the connection between the chaperone system and tumor suppressors is direct. Although they are inactive in assays dependent on Rb family binding, mutants in the J region retain the ability to associate with pRb, p107, and p130. This suggests that binding of Rb family members by large T is not sufficient for their inactivation and that a functional J domain is required as well. This work connects the DnaJ and DnaK molecular chaperones to regulation of tumor suppressors by polyomavirus large T.
Collapse
Affiliation(s)
- Q Sheng
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
18
|
Chatterjee A, Bockus BJ, Gjørup OV, Schaffhausen BS. Phosphorylation sites in polyomavirus large T antigen that regulate its function in viral, but not cellular, DNA synthesis. J Virol 1997; 71:6472-8. [PMID: 9261365 PMCID: PMC191921 DOI: 10.1128/jvi.71.9.6472-6478.1997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Polyomavirus large T antigen (large T) is a highly phosphorylated protein that can be separated by proteolysis into two domains that have independent function. A cluster of phosphorylation sites was found in the protease-sensitive region connecting the N-terminal and C-terminal domains. Edman degradation of 32P-labeled protein identified serines 267, 271, and 274 and threonine 278 as sites of phosphorylation. Analysis of site-directed mutants confirmed directly that residues 271, 274, and 278 were phosphorylated. Threonine 278, shown here to be phosphorylated by cyclin/cyclin-dependent kinase activity, is required for viral DNA replication in either the full-length large T or C-terminal domain context. The serine phosphorylations are unimportant in the C-terminal domain context even though their mutations activates viral DNA replication in full-length large T. This finding suggests that these sites may function in relating the two domains to each other. Although the phosphorylation sites were involved in viral DNA replication, none was important for the ability of large T to drive cellular DNA replication as measured by bromodeoxyuridine incorporation, and they did not affect large T interactions with the Rb tumor suppressor family.
Collapse
Affiliation(s)
- A Chatterjee
- Department of Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
19
|
Pilon AA, Mes-Masson AM. Polyomavirus large T antigen zinc finger is not required for efficient cellular immortalization of primary rat embryo fibroblasts. Virus Res 1996; 46:171-5. [PMID: 9029789 DOI: 10.1016/s0168-1702(96)01382-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The polyomavirus large T antigen contains a zinc finger domain required for the formation of hexamers involved in viral DNA replication. Since mutations within the zinc finger domains of transforming proteins like SV40 large T antigen and human papilloma virus E7 protein generally decrease their overall transforming activity, we have examined the ability of a mutant polyomavirus large T antigen that harbors a deletion in sequences within the zinc finger motif to immortalize primary rat embryo fibroblasts. In contrast to result obtained with SV40 large T antigen and the human papilloma virus E7 protein we show that deletion of the entire zinc finger motif enhances the immortalization efficiency of this mutant T antigen.
Collapse
Affiliation(s)
- A A Pilon
- Centre de recherche Louis-Charles Simard Institut du cancer de Montréal, Québec, Canada
| | | |
Collapse
|
20
|
Howes SH, Bockus BJ, Schaffhausen BS. Genetic analysis of polyomavirus large T nuclear localization: nuclear localization is required for productive association with pRb family members. J Virol 1996; 70:3581-8. [PMID: 8648692 PMCID: PMC190233 DOI: 10.1128/jvi.70.6.3581-3588.1996] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Polyomavirus large T antigen (LT) is a multifunctional nuclear protein. LT has two nuclear localization signals (NLS2), one spanning residues 189 to 195 (NLS1) and another spanning residues 280 to 286 (NLS2). Site-directed mutagenesis showed that each signal contains at least two critical residues. The possibility of connections between NLSs and adjacent phosphorylations has attracted much attention. Cytoplasmic LT (CyT) mutants were underphosphorylated, particularly at sites adjacent to NLS2. However, since a nuclear LT bearing an inactivated NLS2 was phosphorylated normally at adjacent sites, the signal was not directly required for phosphorylation. Conversely, LT could be translocated to the nucleus via NLS2 even when the adjacent phosphorylation sites were deleted. CyT was examined to probe the importance of LT localization. CyT was unable to perform LT functions related to interactions with retinoblastoma susceptibility gene (pRb) family members. Hence, CyT was unable to immortalize primary cells or to transactivate an E2F-responsive promoter. Consistent with these findings, CyT, though capable of binding pRb in vitro, did not cause relocalization of pRb in cells. Assays of transactivation of the simian virus 40 late promoter and of the human c-fos promoter showed that defects of CyT were not limited to functions dependent on pRb interactions.
Collapse
Affiliation(s)
- S H Howes
- Department of Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
21
|
Shepard DA, Ehnstrom JG, Skinner PJ, Schiff LA. Mutations in the zinc-binding motif of the reovirus capsid protein delta 3 eliminate its ability to associate with capsid protein mu 1. J Virol 1996; 70:2065-8. [PMID: 8627738 PMCID: PMC190041 DOI: 10.1128/jvi.70.3.2065-2068.1996] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Reovirus capsid protein delta 3 binds both double-stranded RNA (dsRNA) and zinc. Previous studies have revealed that the amino-terminal zinc finger is not required for the ability of delta 3 to bind dsRNA. We expressed wild-type and mutant delta 3 molecules by in vitro transcription/translation to evaluate the importance of the zinc finger for other functions of delta 3. delta 3 molecules with mutations in the zinc finger did not form complexes with capsid protein mu 1 but bound dsRNA more efficiently than wild-type delta 3 did. In contrast, a dsRNA-binding mutant was unimpaired in its ability to associate with mu 1. Studies with delta 3 fragments support these findings and indicate that sequences critical for delta 3's interaction with mu 1 lie in the amino terminus of the molecule. Our finding that mu 1 and dsRNA do not compete for identical binding sites on delta 3 has implications for its function as a translational regulator in infected cells.
Collapse
Affiliation(s)
- D A Shepard
- Department of Microbiology, University of Minnesota, Minneapolis 55455, USA
| | | | | | | |
Collapse
|