1
|
Ellingsen S, Narawane S, Fjose A, Verri T, Rønnestad I. Sequence analysis and spatiotemporal developmental distribution of the Cat-1-type transporter slc7a1a in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2281-2298. [PMID: 32980952 PMCID: PMC7584565 DOI: 10.1007/s10695-020-00873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Cationic amino acid transporter 1 (Cat-1 alias Slc7a1) is a Na+-independent carrier system involved in transport and absorption of the cationic amino acids lysine, arginine, histidine, and ornithine and has also been shown to be indispensable in a large variety of biological processes. Starting from isolated full-length zebrafish (Danio rerio) cDNA for slc7a1a, we performed comparative and phylogenetic sequence analysis, investigated the conservation of the gene during vertebrate evolution, and defined tissue expression during zebrafish development. Whole mount in situ hybridization first detected slc7a1a transcripts in somites, eyes, and brain at 14 h post-fertilization (hpf) with additional expression in the distal nephron at 24 hpf and in branchial arches at 3 days post-fertilization (dpf), with significant increase by 5 dpf. Taken together, the expression analysis of the zebrafish Cat-1 system gene slc7a1a suggests a functional role(s) during the early development of the central nervous system, muscle, gills, and kidney. Graphical abstract.
Collapse
Affiliation(s)
- Ståle Ellingsen
- Department of Molecular Biology, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
| | - Shailesh Narawane
- Department of Molecular Biology, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
| | - Anders Fjose
- Department of Molecular Biology, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Lecce-Monteroni, I-73100, Lecce, Italy
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway.
| |
Collapse
|
2
|
Lu X, Kassner J, Skorski M, Carley S, Shaffer E, Kozak CA. Mutational analysis and glycosylation sensitivity of restrictive XPR1 gammaretrovirus receptors in six mammalian species. Virology 2019; 535:154-161. [PMID: 31302509 PMCID: PMC11002975 DOI: 10.1016/j.virol.2019.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 01/04/2023]
Abstract
Most viruses infect only a few hosts, but the xenotropic and polytropic mouse leukemia viruses (X/P-MLVs) are broadly infectious in mammalian species. X/P-MLVs use the XPR1 receptor for cell entry, and tropism differences are due to polymorphisms in XPR1 and the viral envelope. To characterize these receptor variants and identify blocks to cross-species transmission, we examined the XPR1 receptors in six mammalian species that restrict different subsets of X/P-MLVs. These restrictive receptors have replacement mutations in regions implicated in receptor function, and some entry restrictions can be relieved by glycosylation inhibitors. Mutation of the cow and hamster XPR1 genes identified a shared, previously unrecognized receptor-critical site. This G/Q503N replacement dramatically improves receptor function. While this substitution introduces an N-linked glycosylation site, XPR1 receptors are not glycosylated indicating that this replacement alters the virus-receptor interface independently of glycosylation. Our data also suggest that an unidentified glycosylated cofactor may influence X/P-MLV entry.
Collapse
Affiliation(s)
- Xiaoyu Lu
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20854, USA
| | - Joshua Kassner
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20854, USA
| | - Matthew Skorski
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20854, USA
| | - Samuel Carley
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20854, USA
| | - Esther Shaffer
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20854, USA
| | - Christine A Kozak
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20854, USA.
| |
Collapse
|
3
|
Tolmachov OE. Shielding of non-target cells using RNA vectors conferring gene transfer resistance: A strategy to enhance targeting accuracy and reduce side-effects in therapeutic gene delivery. Med Hypotheses 2019; 132:109328. [PMID: 31421422 DOI: 10.1016/j.mehy.2019.109328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/29/2019] [Accepted: 07/24/2019] [Indexed: 11/18/2022]
|
4
|
Identification of the Receptor Used by the Ecotropic Mouse GLN Endogenous Retrovirus. J Virol 2019; 93:JVI.01125-18. [PMID: 30541852 DOI: 10.1128/jvi.01125-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Approximately 10% of the mouse genome is composed of endogenous retroviruses belonging to different families. In contrast to the situation in the human genome, several of these families correspond to recent, still-infectious elements capable of encoding complete viral particles. The mouse GLN endogenous retrovirus is one of these active families. We previously identified one fully functional provirus from the sequenced genome of the C57BL/6 mouse strain. The GLN envelope protein gives the infectious viral particles an ecotropic host range, and we had demonstrated that the receptor was neither CAT1 nor SMIT1, the two previously identified receptors for mouse ecotropic retroviral envelope proteins. In this study, we have identified SLC19A1, the reduced folate carrier, as the cellular protein used as a receptor by the GLN retrovirus. The ecotropic tropism exhibited by this envelope is due to the presence or absence of an N-linked glycosylation site in the first extracellular loop as well as the specific amino acid sequence of the extracellular domains of the receptor. Like all the other retroviral envelope proteins from the gammaretrovirus genus whose receptors have been identified, the GLN envelope protein uses a member of the solute carrier superfamily as a receptor.IMPORTANCE Endogenous retroviruses are genomic traces of past infections present in all vertebrates. Most of these elements degenerate over time and become nonfunctional, but the mouse genome still contains several families with full infection abilities. The GLN retrovirus is one of them, and its members encode particles that are able to infect only mouse cells. Here, we identified the cellular protein used as a receptor by GLN for cell entry. It is SLC19A1, the reduced folate carrier. We show that GLN infection is limited to mouse cells due to both a mutation in the mouse gene preventing the glycosylation of SLC19A1 and also other residues conserved within the rat but not in the hamster and human proteins. Like all other gammaretroviruses whose receptors have been identified, GLN uses a member of the solute carrier superfamily for cell entry, highlighting the role of these proteins for retroviral infection in mammals.
Collapse
|
5
|
Microglial content-dependent inhibitory effects of calcitonin gene-related peptide (CGRP) on murine retroviral infection of glial cells. J Neuroimmunol 2015; 279:64-70. [PMID: 25670002 PMCID: PMC4325278 DOI: 10.1016/j.jneuroim.2015.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 12/17/2014] [Accepted: 01/26/2015] [Indexed: 12/22/2022]
Abstract
C57BL/6 (B6) mice develop peripheral neuropathy post-LP-BM5 infection, a murine model of HIV-1 infection, along with the up-regulation of select spinal cord cytokines. We investigated if calcitonin gene-related peptide (CGRP) contributed to the development of peripheral neuropathy by stimulating glial responses. An increased expression of lumbar spinal cord CGRP was observed in vivo, post-LP-BM5 infection. Consequently, in vitro CGRP co-treatments led to a microglial content-dependent attenuation of viral loads in spinal cord mixed glia infected with selected doses of LP-BM5. This inhibition was neither caused by the loss of glia nor induced via the direct inhibition of LP-BM5 by CGRP.
Collapse
|
6
|
Guan BJ, Krokowski D, Majumder M, Schmotzer CL, Kimball SR, Merrick WC, Koromilas AE, Hatzoglou M. Translational control during endoplasmic reticulum stress beyond phosphorylation of the translation initiation factor eIF2α. J Biol Chem 2014; 289:12593-611. [PMID: 24648524 DOI: 10.1074/jbc.m113.543215] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) causes stress to which an unfolded protein response is activated to render cell survival or apoptosis (chronic stress). Transcriptional and translational reprogramming is tightly regulated during the unfolded protein response to ensure specific gene expression. The master regulator of this response is the PERK/eIF2α/ATF4 signaling where eIF2α is phosphorylated (eIF2α-P) by the kinase PERK. This signal leads to global translational shutdown, but it also enables translation of the transcription factor ATF4 mRNA. We showed recently that ATF4 induces an anabolic program through the up-regulation of selected amino acid transporters and aminoacyl-tRNA synthetases. Paradoxically, this anabolic program led cells to apoptosis during chronic ER stress in a manner that involved recovery from stress-induced protein synthesis inhibition. By using eIF2α-P-deficient cells as an experimental system, we identified a communicating network of signaling pathways that contribute to the inhibition of protein synthesis during chronic ER stress. This eIF2α-P-independent network includes (i) inhibition of mammalian target of rapamycin kinase protein complex 1 (mTORC1)-targeted protein phosphorylation, (ii) inhibited translation of a selective group of 5'-terminal oligopyrimidine mRNAs (encoding proteins involved in the translation machinery and translationally controlled by mTORC1 signaling), and (iii) inhibited translation of non-5'-terminal oligopyrimidine ribosomal protein mRNAs and ribosomal RNA biogenesis. We propose that the PERK/eIF2α-P/ATF4 signaling acts as a brake in the decline of protein synthesis during chronic ER stress by positively regulating signaling downstream of the mTORC1 activity. These studies advance our knowledge on the complexity of the communicating signaling pathways in controlling protein synthesis rates during chronic stress.
Collapse
|
7
|
Kakoki K, Shinohara A, Izumida M, Koizumi Y, Honda E, Kato G, Igawa T, Sakai H, Hayashi H, Matsuyama T, Morita T, Koshimoto C, Kubo Y. Susceptibility of muridae cell lines to ecotropic murine leukemia virus and the cationic amino acid transporter 1 viral receptor sequences: implications for evolution of the viral receptor. Virus Genes 2014; 48:448-56. [PMID: 24469466 DOI: 10.1007/s11262-014-1036-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
Ecotropic murine leukemia viruses (Eco-MLVs) infect mouse and rat, but not other mammalian cells, and gain access for infection through binding the cationic amino acid transporter 1 (CAT1). Glycosylation of the rat and hamster CAT1s inhibits Eco-MLV infection, and treatment of rat and hamster cells with a glycosylation inhibitor, tunicamycin, enhances Eco-MLV infection. Although the mouse CAT1 is also glycosylated, it does not inhibit Eco-MLV infection. Comparison of amino acid sequences between the rat and mouse CAT1s shows amino acid insertions in the rat protein near the Eco-MLV-binding motif. In addition to the insertion present in the rat CAT1, the hamster CAT1 has additional amino acid insertions. In contrast, tunicamycin treatment of mink and human cells does not elevate the infection, because their CAT1s do not have the Eco-MLV-binding motif. To define the evolutionary pathway of the Eco-MLV receptor, we analyzed CAT1 sequences and susceptibility to Eco-MLV infection of other several murinae animals, including the southern vole (Microtus rossiaemeridionalis), large Japanese field mouse (Apodemus speciosus), and Eurasian harvest mouse (Micromys minutus). Eco-MLV infection was enhanced by tunicamycin in these cells, and their CAT1 sequences have the insertions like the hamster CAT1. Phylogenetic analysis of mammalian CAT1s suggested that the ancestral CAT1 does not have the Eco-MLV-binding motif, like the human CAT1, and the mouse CAT1 is thought to be generated by the amino acid deletions in the third extracellular loop of CAT1.
Collapse
Affiliation(s)
- Katsura Kakoki
- Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kyriakopoulos S, Polizzi KM, Kontoravdi C. Comparative analysis of amino acid metabolism and transport in CHO variants with different levels of productivity. J Biotechnol 2013; 168:543-51. [PMID: 24056080 DOI: 10.1016/j.jbiotec.2013.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 12/12/2022]
Abstract
Chinese hamster ovary (CHO) cells are widely used for the production of biopharmaceuticals; however, our understanding of several physiological elements that contribute to productivity is limited. One of these is amino acid transport and how its limitation and/or regulation might affect productivity. To further our understanding, we have examined the expression of 40 mammalian amino acid transporter genes during batch cultures of three CHO cell lines: a non-producer and two antibody-producing cell lines with different levels of productivity. In parallel, extracellular and intracellular levels of amino acids were quantified. The aim was to identify differences in gene regulation between cell lines and within culture. Our results show that three transporters associated with transport of taurine and β-alanine, acidic amino acids and branched chain amino acids, are highly upregulated in both antibody-producing cell lines but not in the non-producer. Additionally, genes associated with the transport of amino acids related to the glutathione pathway (alanine, cysteine, cystine, glycine, glutamate) were found to be highly upregulated during the stationary phase of cell culture, correlating well with literature data on the importance of the pathway. Our analysis highlights potential markers for cell line selection and targets for process optimization.
Collapse
Affiliation(s)
- Sarantos Kyriakopoulos
- Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | | | | |
Collapse
|
9
|
Construction of a gammaretrovirus with a novel tropism and wild-type replication kinetics capable of using human APJ as entry receptor. J Virol 2012; 86:10621-7. [PMID: 22811542 DOI: 10.1128/jvi.01028-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have constructed a replication-competent gammaretrovirus (SL3-AP) capable of using the human G-protein-coupled receptor hAPJ as its entry receptor. The envelope protein of the virus was made by insertion of the 13-amino-acid peptide ligand for hAPJ, flanked by linker sequences, into one of the variable loops of the receptor binding domain of SL3-2, a murine leukemia virus (MLV) that uses the xenotropic-polytropic virus receptor Xpr1 and which has a host range limited to murine cells. This envelope protein can utilize hAPJ as well as murine Xpr1 for entry into host cells with equal efficiencies. In addition, the SL3-AP virus replicates in cells expressing either of its receptors, hAPJ and murine Xpr1, and causes resistance to superinfection and downregulation of hAPJ in infected cells. Thus, SL3-AP is the first example of a retargeted replication-competent retrovirus, with replication characteristics and receptor interference properties similar to those of natural isolates.
Collapse
|
10
|
Naturally Occurring Polymorphisms of the Mouse Gammaretrovirus Receptors CAT-1 and XPR1 Alter Virus Tropism and Pathogenicity. Adv Virol 2011; 2011:975801. [PMID: 22312361 PMCID: PMC3265322 DOI: 10.1155/2011/975801] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/12/2011] [Indexed: 01/29/2023] Open
Abstract
Gammaretroviruses of several different host range subgroups have been isolated from laboratory mice. The ecotropic viruses infect mouse cells and rely on the host CAT-1 receptor. The xenotropic/polytropic viruses, and the related human-derived XMRV, can infect cells of other mammalian species and use the XPR1 receptor for entry. The coevolution of these viruses and their receptors in infected mouse populations provides a good example of how genetic conflicts can drive diversifying selection. Genetic and epigenetic variations in the virus envelope glycoproteins can result in altered host range and pathogenicity, and changes in the virus binding sites of the receptors are responsible for host restrictions that reduce virus entry or block it altogether. These battleground regions are marked by mutational changes that have produced 2 functionally distinct variants of the CAT-1 receptor and 5 variants of the XPR1 receptor in mice, as well as a diverse set of infectious viruses, and several endogenous retroviruses coopted by the host to interfere with entry.
Collapse
|
11
|
Knoper RC, Ferrarone J, Yan Y, Lafont BAP, Kozak CA. Removal of either N-glycan site from the envelope receptor binding domain of Moloney and Friend but not AKV mouse ecotropic gammaretroviruses alters receptor usage. Virology 2009; 391:232-9. [PMID: 19584017 DOI: 10.1016/j.virol.2009.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 04/28/2009] [Accepted: 06/09/2009] [Indexed: 12/01/2022]
Abstract
Three N-linked glycosylation sites were removed from the envelope glycoproteins of Friend, Moloney, and AKV mouse ecotropic gammaretroviruses: gs1 and gs2, in the receptor binding domain; and gs8, in a region implicated in post-binding cell fusion. Mutants were tested for their ability to infect rodent cells expressing 4 CAT-1 receptor variants. Three mutants (Mo-gs1, Mo-gs2, and Fr-gs1) infect NIH 3T3 and rat XC cells, but are severely restricted in Mus dunni cells and Lec8, a Chinese hamster cell line susceptible to ecotropic virus. This restriction is reproduced in ferret cells expressing M. dunni dCAT-1, but not in cells expressing NIH 3T3 mCAT-1. Virus binding assays, pseudotype assays, and the use of glycosylation inhibitors further suggest that restriction is primarily due to receptor polymorphism and, in M. dunni cells, to glycosylation of cellular proteins. Virus envelope glycan size or type does not affect infectivity. Thus, host range variation due to N-glycan deletion is receptor variant-specific, cell-specific, virus type-specific, and glycan site-specific.
Collapse
Affiliation(s)
- Ryan C Knoper
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA
| | | | | | | | | |
Collapse
|
12
|
Yan Y, Jung YT, Wu T, Kozak CA. Role of receptor polymorphism and glycosylation in syncytium induction and host range variation of ecotropic mouse gammaretroviruses. Retrovirology 2008; 5:2. [PMID: 18186934 PMCID: PMC2248597 DOI: 10.1186/1742-4690-5-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 01/10/2008] [Indexed: 12/23/2022] Open
Abstract
Background We previously identified unusual variants of Moloney and Friend ecotropic mouse gammaretroviruses that have altered host range and are cytopathic in cells of the wild mouse species Mus dunni. Cytopathicity was attributed to different amino acid substitutions at the same critical env residue involved in receptor interaction: S82F in the Moloney variant Spl574, and S84A in the Friend mouse leukemia virus F-S MLV. Because M. dunni cells carry a variant CAT-1 cell surface virus receptor (dCAT-1), we examined the role of this receptor variant in cytopathicity and host range. Results We expressed dCAT-1 or mCAT-1 of NIH 3T3 origin in cells that are not normally infectible with ecotropic MLVs and evaluated the transfectants for susceptibility to virus infection and to virus-induced syncytium formation. The dCAT-1 transfectants, but not the mCAT-1 transfectants, were susceptible to virus-induced cytopathicity, and this cytopathic response was accompanied by the accumulation of unintegrated viral DNA. The dCAT-1 transfectants, however, did not also reproduce the relative resistance of M. dunni cells to Moloney MLV, and the mCAT-1 transfectants did not show the relative resistance of NIH 3T3 cells to Spl574. Western analysis, use of glycosylation inhibitors and mutagenesis to remove receptor glycosylation sites identified a possible role for cell-specific glycosylation in the modulation of virus entry. Conclusion Virus entry and virus-induced syncytium formation using the CAT-1 receptor are mediated by a small number of critical amino acid residues in receptor and virus Env. Virus entry is modulated by glycosylation of cellular proteins, and this effect is cell and virus-specific.
Collapse
Affiliation(s)
- Yuhe Yan
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892-0460, USA.
| | | | | | | |
Collapse
|
13
|
Yoshii H, Kamiyama H, Amanuma H, Oishi K, Yamamoto N, Kubo Y. Mechanisms underlying glycosylation-mediated loss of ecotropic receptor function in murine MDTF cells and implications for receptor evolution. J Gen Virol 2008; 89:297-305. [DOI: 10.1099/vir.0.83430-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A Mus dunni tail fibroblast (MDTF) cell line is highly resistant to infection by ecotropic Moloney murine leukemia virus (Mo-MLV). The cationic amino acid transporter type 1 (CAT1) paralogues of murine NIH 3T3 and MDTF cells (mCAT1 and dCAT1, respectively) contain two conserved N-linked glycosylation sites in the third extracellular loop (ECL3, the putative Mo-MLV binding site). Glycosylation of dCAT1 inhibits Mo-MLV infection, but that of mCAT1 does not. Compared with mCAT1, dCAT1 possesses an Ile-to-Val substitution at position 214 and a Gly insertion at position 236 in the ECL3. To determine the residues responsible for the loss of dCAT1 receptor function, mutants of mCAT1 were constructed. The mCAT1/insG receptor (with a Gly residue inserted at mCAT1 position 236) had greatly reduced Mo-MLV receptor function compared with mCAT1. Treatment of mCAT1/insG-expressing cells with tunicamycin, an N-linked glycosylation inhibitor, increased the transduction titre. In addition, the reduced susceptibility to Mo-MLV observed with mCAT1/insG-expressing cells correlated with impaired binding of Mo-MLV. These results show that a single amino acid insertion confers mCAT1 receptor properties on dCAT1 and provide an important insight into the co-evolution of virus–host interactions.
Collapse
Affiliation(s)
- Hiroaki Yoshii
- Department of Preventive and Therapeutic Research for Infectious Diseases, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Haruka Kamiyama
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | | | - Kazunori Oishi
- International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Preventive and Therapeutic Research for Infectious Diseases, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Naoki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Yoshinao Kubo
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
14
|
Antony JM, Ellestad KK, Hammond R, Imaizumi K, Mallet F, Warren KG, Power C. The human endogenous retrovirus envelope glycoprotein, syncytin-1, regulates neuroinflammation and its receptor expression in multiple sclerosis: a role for endoplasmic reticulum chaperones in astrocytes. THE JOURNAL OF IMMUNOLOGY 2007; 179:1210-24. [PMID: 17617614 DOI: 10.4049/jimmunol.179.2.1210] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Retroviral envelopes are pathogenic glycoproteins which cause neuroinflammation, neurodegeneration, and endoplasmic reticulum stress responses. The human endogenous retrovirus (HERV-W) envelope protein, Syncytin-1, is highly expressed in CNS glia of individuals with multiple sclerosis (MS). In this study, we investigated the mechanisms by which Syncytin-1 mediated neuroimmune activation and oligodendrocytes damage. In brain tissue from individuals with MS, ASCT1, a receptor for Syncytin-1 and a neutral amino acid transporter, was selectively suppressed in astrocytes (p < 0.05). Syncytin-1 induced the expression of the endoplasmic reticulum stress sensor, old astrocyte specifically induced substance (OASIS), in cultured astrocytes, similar to findings in MS brains. Overexpression of OASIS in astrocytes increased inducible NO synthase expression but concurrently down-regulated ASCT1 (p < 0.01). Treatment of astrocytes with a NO donor enhanced expression of early growth response 1, with an ensuing reduction in ASCT1 expression (p < 0.05). Small-interfering RNA molecules targeting Syncytin-1 selectively down-regulated its expression, preventing the suppression of ASCT1 and the release of oligodendrocyte cytotoxins by astrocytes. A Syncytin-1-transgenic mouse expressing Syncytin-1 under the glial fibrillary acidic protein promoter demonstrated neuroinflammation, ASCT1 suppression, and diminished levels of myelin proteins in the corpus callosum, consistent with observations in CNS tissues from MS patients together with neurobehavioral abnormalities compared with wild-type littermates (p < 0.05). Thus, Syncytin-1 initiated an OASIS-mediated suppression of ASCT1 in astrocytes through the induction of inducible NO synthase with ensuing oligodendrocyte injury. These studies provide new insights into the role of HERV-mediated neuroinflammation and its contribution to an autoimmune disease.
Collapse
Affiliation(s)
- Joseph M Antony
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Fujisawa R, Masuda M. Ecotropic murine leukemia virus envelope protein affects interaction of cationic amino acid transporter 1 with clathrin adaptor protein complexes, leading to receptor downregulation. Virology 2007; 368:342-50. [PMID: 17673271 DOI: 10.1016/j.virol.2007.06.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 05/07/2007] [Accepted: 06/15/2007] [Indexed: 11/24/2022]
Abstract
Mouse cationic amino acid transporter 1 (mCAT1) serves as the receptor for ecotropic murine leukemia virus (eMuLV). It has been shown that mCAT1 is expressed on the basolateral surface of polarized epithelial MDCK cells. However, little is known about the mechanisms involved in the intracellular trafficking of mCAT1. Using the green fluorescent protein-tagged mCAT1 expressed in MDCK cells, we report here that mCAT1 is physically associated with clathrin adaptor protein complex 1 (AP-1) implicated in protein trafficking from trans-Golgi network (TGN) to the basolateral surface. When the cells were infected with eMuLV, reduction of cell surface mCAT1, as well as a concomitant decrease in mCAT1-AP-1 association, was observed while association of mCAT1 with AP-3 involved in the TGN-to-lysosome trafficking was increased. Similar results were obtained when eMuLV envelope protein alone was expressed. The results may provide useful insights into the mechanism by which a simple retrovirus downregulates its receptor.
Collapse
Affiliation(s)
- Ryuichi Fujisawa
- Department of Microbiology, Dokkyo Medical University School of Medicine, Kita-kobayashi 880, Mibu, Tochigi 321-0293, Japan.
| | | |
Collapse
|
16
|
Closs EI, Boissel JP, Habermeier A, Rotmann A. Structure and Function of Cationic Amino Acid Transporters (CATs). J Membr Biol 2007; 213:67-77. [PMID: 17417706 DOI: 10.1007/s00232-006-0875-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Indexed: 11/29/2022]
Abstract
The CAT proteins (CAT for cationic amino acid transporter) are amongst the first mammalian amino acid transporters identified on the molecular level and seem to be the major entry path for cationic amino acids in most cells. However, CAT proteins mediate also efflux of their substrates and thus may also deplete cells from cationic amino acids under certain circumstances. The CAT proteins form a subfamily of the solute carrier family 7 (SLC7) that consists of four confirmed transport proteins for cationic amino acids: CAT-1 (SLC7A1), CAT-2A (SLC7A2A), CAT-2B (SLC7A2B), and CAT-3 (SLC7A3). SLC7A4 and SLC7A14 are two related proteins with yet unknown function. One focus of this review lies on structural and functional differences between the different CAT isoforms. The expression of the CAT proteins is highly regulated on the level of transcription, mRNA stability, translation and subcellular localization. Recent advances toward a better understanding of these mechanisms provide a second focus of this review.
Collapse
Affiliation(s)
- E I Closs
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Str. 67, D-55101 Mainz, Germany.
| | | | | | | |
Collapse
|
17
|
Clase AC, Dimcheff DE, Favara C, Dorward D, McAtee FJ, Parrie LE, Ron D, Portis JL. Oligodendrocytes are a major target of the toxicity of spongiogenic murine retroviruses. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1026-38. [PMID: 16936275 PMCID: PMC1698807 DOI: 10.2353/ajpath.2006.051357] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neurovirulent retroviruses FrCasE and Moloney MLV-ts1 cause noninflammatory spongiform neurodegeneration in mice, manifested clinically by progressive spasticity and paralysis. Neurons have been thought to be the primary target of toxicity of these viruses. However the neurons themselves appear not to be infected, and the possible indirect mechanisms driving the neuronal toxicity have remained enigmatic. Here we have re-examined the cells that are damaged by these viruses, using lineage-specific markers. Surprisingly, these cells expressed the basic helix-loop-helix transcription factor Olig2, placing them in the oligodendrocyte lineage. Olig2+ cells were found to be infected, and many of these cells exhibited focal cytoplasmic vacuolation, suggesting that infection by spongiogenic retroviruses is directly toxic to these cells. As cytoplasmic vacuolation progressed, however, signs of viral protein expression appeared to wane, although residual viral RNA was detectable by in situ hybridization. Cells with the most advanced cytoplasmic effacement expressed the C/EBP-homologous protein (CHOP). This protein is up-regulated as a late event in a cellular response termed the integrated stress response. This observation may link the cellular pathology observed in the brain with cellular stress responses known to be induced by these viruses. The relevance of these observations to oligodendropathy in humans is discussed.
Collapse
Affiliation(s)
- Amanda C Clase
- Laboratory of Persistent Viral Diseases, The Microscopy Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th St., Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kubo Y, Ishimoto A, Ono T, Yoshii H, Tominaga C, Mitani C, Amanuma H, Yamamoto N. Determinant for the inhibition of ecotropic murine leukemia virus infection by N-linked glycosylation of the rat receptor. Virology 2005; 330:82-91. [PMID: 15527836 DOI: 10.1016/j.virol.2004.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 07/02/2004] [Accepted: 09/13/2004] [Indexed: 10/26/2022]
Abstract
Ecotropic murine leukemia viruses (MLVs) recognize the third extracellular loop of the receptor, cationic amino acid transporter type 1 (CAT1). The CAT1 protein contains two conserved N-linked glycosylation sites in the third extracellular loops of the mouse, rat, and hamster receptors (mCAT1, rCAT1, and hCAT1, respectively). Glycosylation of the rCAT1 and hCAT1 receptors inhibits ecotropic MLV infection of CAT1-expressing cells, but that of the mCAT1 does not afford the cells this protection. As compared to the mCAT1 protein, the rCAT1 and hCAT1 proteins possess three and six amino acid insertions, respectively, in the third extracellular loop. To determine whether these inserted amino acids are associated with ecotropic MLV infection inhibition by glycosylation, several mutants of mCAT1 and rCAT1 receptors were constructed. Of all the mutants generated in the present study, only rCAT1 mutant 1 exhibited detectable protein expression levels. The rCAT1 mutant 1-expressing human NP2 cells were more susceptible to transduction by ecotropic MLV vectors than the wild-type rCAT1-expressing cells. Tunicamycin, an N-glycosylation inhibitor, increased transduction titer in the wild-type rCAT1-expressing cells, but did not do so in the cells expressing either the mCAT1 or rCAT1 mutation 1. An amino acid substitution in the glycosylation site of the wild-type rCAT1 conferred higher infection susceptibility, but that of the rCAT1 mutant 1 did not. As with the wild-type mCAT1 and rCAT1 proteins, the rCAT1 mutants were detected on the cell surface by immunofluorescence microscopy. Tunicamycin treatment did not affect cellular distribution of the rCAT1 mutant 1, wild-type mCAT1 or rCAT1 proteins. These results indicate that the extra amino acids in the rCAT1 (as compared to the mCAT1) are associated with inhibition of ecotropic MLV infection by the rCAT1 glycosylation.
Collapse
Affiliation(s)
- Yoshinao Kubo
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ou W, Xiong Y, Silver J. Quantification of virus-envelope-mediated cell fusion using a tetracycline transcriptional transactivator: fusion does not correlate with syncytium formation. Virology 2004; 324:263-72. [PMID: 15207614 DOI: 10.1016/j.virol.2004.02.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 02/03/2004] [Indexed: 11/19/2022]
Abstract
Cell fusion occurs in many cellular processes and viral infections. We developed a new, quantitative cell fusion assay based on the tetracycline-controlled transactivator (tTA)-induced expression of a luciferase reporter gene. The assay is objective, sensitive, linear over 2-3 orders of magnitude, amenable to microtiter-plate format, and generalizable to study fusion mediated by a variety of genes. Applied to HIV and MLV, cell fusion paralleled virus entry in terms of co-receptor requirements, need for post-translational processing of envelope, and complementation of SU mutations by soluble receptor-binding domain. However, biochemically measured fusion did not correlate with syncytia detected by standard light microscopy. When the assay indicated cell fusion occurred but overt syncytia were not observed, confocal microscopy using fluorescent protein markers showed that fusion was limited mainly to pairs of cells. Such nonprogressive cell fusion suggests that post-translational processing of envelope may be altered in heterokaryons co-expressing envelope and receptor.
Collapse
MESH Headings
- Animals
- Cell Fusion
- Cell Line
- Gene Expression Regulation, Viral/drug effects
- Genes, Reporter
- Giant Cells/cytology
- Giant Cells/virology
- Leukemia Virus, Murine/drug effects
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/physiology
- Luciferases/analysis
- Luciferases/biosynthesis
- Luciferases/genetics
- Microscopy, Confocal
- Protein Synthesis Inhibitors/pharmacology
- Receptors, Virus/biosynthesis
- Receptors, Virus/genetics
- Receptors, Virus/physiology
- Reproducibility of Results
- Tetracycline/pharmacology
- Trans-Activators/pharmacology
- Transcription, Genetic/drug effects
- Transfection
- Viral Fusion Proteins/biosynthesis
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/physiology
- Virus Replication
Collapse
Affiliation(s)
- Wu Ou
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Building 4 Room 336, 4 Center Drive, MSC 4060, Bethesda, MD 20892-0460, USA.
| | | | | |
Collapse
|
20
|
Sakarya S, Ertem GT, Oncu S, Kocak I, Erol N, Oncu S. Escherichia coli bind to urinary bladder epithelium through nonspecific sialic acid mediated adherence. ACTA ACUST UNITED AC 2004; 39:45-50. [PMID: 14556995 DOI: 10.1016/s0928-8244(03)00185-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first step in the bacterial colonization and infection of uropathogenic Escherichia coli is adherence to uroepithelium. Over 80% of all urinary tract infections are caused by E. coli. Uropathogenic E. coli express several adherence factors including type 1 and P fimbriae, which mediate attachment to the uroepithelium through specific binding to different glycoconjugate receptors. We showed that P and type 1 fimbriae are not the sole adhesins on uropathogenic E. coli and sialic acid also mediates nonspecific bacterial adherence of uropathogenic E. coli and urinary bladder epithelium.
Collapse
Affiliation(s)
- Serhan Sakarya
- Division of Infectious Diseases and Clinical Microbiology, Department of Medicine, School of Medicine, Adnan Menderes University, 09100 Aydin, Turkey.
| | | | | | | | | | | |
Collapse
|
21
|
Kubo Y, Ishimoto A, Amanuma H. N-Linked glycosylation is required for XC cell-specific syncytium formation by the R peptide-containing envelope protein of ecotropic murine leukemia viruses. J Virol 2003; 77:7510-6. [PMID: 12805451 PMCID: PMC164801 DOI: 10.1128/jvi.77.13.7510-7516.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The XC cell line undergoes extensive syncytium formation after infection with ecotropic murine leukemia viruses (MLVs) and is frequently used to titrate these viruses. This cell line is unique in its response to the ecotropic MLV envelope protein (Env) in that it undergoes syncytium formation with cells expressing Env protein containing R peptide (R(+) Env), which is known to suppress the fusogenic potential of the Env protein in other susceptible cells. To analyze the ecotropic receptor, CAT1, in XC cells, a mouse CAT1 tagged with the influenza virus hemagglutinin epitope (mCAT1-HA)-expressing retroviral vector was inoculated into XC and NIH 3T3 cells. The molecular size of the mCAT1-HA protein expressed in XC cells was smaller than that in NIH 3T3 cells due to altered N glycosylation in XC cells. Treatment of XC cells with tunicamycin significantly suppressed the formation of XC cell syncytia induced by the R(+) Env protein but not that induced by the R(-) Env protein. This result indicates that N glycosylation is required for XC cell-specific syncytium formation by the R(+) Env protein. The R(+) Env protein induced syncytia in XC cells expressing a mutant mCAT1 lacking both of two N glycosylation sites, and tunicamycin treatment suppressed syncytium formation by R(+) Env in those cells. This suggests that N glycosylation of a molecule(s) other than the receptor is required for the induction of XC cell syncytia by the R(+) Env protein.
Collapse
Affiliation(s)
- Yoshinao Kubo
- Molecular Cell Science Laboratory, RIKEN, Wako, Saitama 351-0198, USA.
| | | | | |
Collapse
|
22
|
Hein S, Prassolov V, Zhang Y, Ivanov D, Löhler J, Ross SR, Stocking C. Sodium-dependent myo-inositol transporter 1 is a cellular receptor for Mus cervicolor M813 murine leukemia virus. J Virol 2003; 77:5926-32. [PMID: 12719585 PMCID: PMC154034 DOI: 10.1128/jvi.77.10.5926-5932.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Retrovirus infection is initiated by binding of the surface (SU) portion of the viral envelope glycoprotein (Env) to specific receptors on cells. This binding triggers conformational changes in the transmembrane portion of Env, leading to membrane fusion and cell entry, and is thus a major determinant of retrovirus tissue and species tropism. The M813 murine leukemia virus (MuLV) is a highly fusogenic gammaretrovirus, isolated from Mus cervicolor, whose host range is limited to mouse cells. To delineate the molecular mechanisms of its restricted host range and its high fusogenic potential, we initiated studies to characterize the cell surface protein that mediates M813 infection. Screening of the T31 mouse-hamster radiation hybrid panel for M813 infectivity localized the receptor gene to the distal end of mouse chromosome 16. Expression of one of the likely candidate genes (slc5a3) within this region in human cells conferred susceptibility to both M813 infection and M813-induced fusogenicity. slc5a3 encodes sodium myo-inositol transporter 1 (SMIT1), thus adding another sodium-dependent transporter to the growing list of proteins used by MuLVs for cell entry. Characterization of SMIT1 orthologues in different species identified several amino acid variations within two extracellular loops that may restrict susceptibility to M813 infection.
Collapse
Affiliation(s)
- Sibyll Hein
- Department of Cell and Virus Genetics, Heinrich-Pette-Institute for Experimental ImmunologyVirology, D-20251 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Cross AS, Sakarya S, Rifat S, Held TK, Drysdale BE, Grange PA, Cassels FJ, Wang LX, Stamatos N, Farese A, Casey D, Powell J, Bhattacharjee AK, Kleinberg M, Goldblum SE. Recruitment of murine neutrophils in vivo through endogenous sialidase activity. J Biol Chem 2003; 278:4112-20. [PMID: 12446694 DOI: 10.1074/jbc.m207591200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon activation with various noncytokine stimuli, polymorphonuclear leukocytes (PMNs) mobilize intracellular sialidase to the plasma membrane, where the sialidase releases sialic acid from the cell surface. This desialylation enhances PMN adherence, spreading, deformability, and motility, functions critical to diapedesis. We now have examined the role of sialidase activity in PMN adhesion to and migration across the endothelium in vivo. A polyclonal antibody prepared against Clostridium perfringens neuraminidase 1) detected surface expression of sialidase on human PMNs stimulated with IL-8 in vitro and on murine PMNs stimulated in vivo, but not on that of unstimulated cells, 2) recognized proteins in human PMN lysates and granule preparations that were not detected by preimmune antibody, 3) inhibited bacterial neuraminidase and human PMN sialidase activities in vitro, and 4) inhibited both pulmonary leukostasis in mice systemically infused with cobra venom factor and intrapulmonary transendothelial migration of PMNs into the bronchoalveolar compartment of mice intranasally challenged with interleukin-8. We conclude that the chemokine interleukin-8, like other PMN agonists, induces the translocation of sialidase to the PMN surface and that surface expression of this sialidase is a prerequisite to PMN recruitment in vivo. The ability of antibodies raised against a prokaryotic neuraminidase to recognize eukaryotic sialidase extends the concept of the neuraminidase superfamily to mammalian enzymes. Inhibition of mobilized endogenous sialidase may provide a novel strategy for limiting the inflammatory response.
Collapse
Affiliation(s)
- Alan S Cross
- Department of Medicine, Veterans Affairs Medical Center, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kizhatil K, Albritton LM. System y+ localizes to different membrane subdomains in the basolateral plasma membrane of epithelial cells. Am J Physiol Cell Physiol 2002; 283:C1784-94. [PMID: 12388095 DOI: 10.1152/ajpcell.00061.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report here that the system y+ cationic amino acid transporter ATRC1 localized to clusters within the basolateral membrane of polarized Madin-Darby canine kidney and human embryonic kidney (HEK) cells, suggesting that the transporters are restricted to discrete membrane microdomains in epithelial cells. Based on solubility in nonionic detergents, two populations of ATRC1 molecules existed: approximately half of the total ATRC1 in HEK cells associated with the actin membrane cytoskeleton, whereas another one-fourth resided in detergent-resistant membranes (DRM). In agreement with these findings, cytochalasin D reduced the amount of ATRC1 associated with the actin membrane cytoskeleton. Although some ATRC1 clusters in HEK cells colocalized with caveolin, the majority of ATRC1 did not colocalize with this marker protein for a type of DRM called caveolae. This distribution of ATRC1 is somewhat different from that reported for pulmonary artery endothelial cells in which transporters cluster predominantly in caveolae, suggesting that differences in the proportion of ATRC1 in specific membrane microdomains correlate with differences in the physiological role of the transporter in polarized kidney epithelial vs. vascular endothelial cells.
Collapse
Affiliation(s)
- Krishnakumar Kizhatil
- Department of Molecular Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
25
|
Kubo Y, Ono T, Ogura M, Ishimoto A, Amanuma H. A glycosylation-defective variant of the ecotropic murine retrovirus receptor is expressed in rat XC cells. Virology 2002; 303:338-44. [PMID: 12490395 DOI: 10.1006/viro.2002.1641] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The XC rat sarcoma cell line undergoes extensive cell-to-cell fusion (syncytium formation) after infection with ecotropic murine leukemia viruses (MLVs) and is frequently used to titrate these viruses. This cell line is unique in its response to the ecotropic MLV envelope (Env) protein in that it undergoes syncytium formation with cells expressing Env protein containing R peptide (R+ Env), which is known to suppress the fusogenic potential of the Env protein in other susceptible cells. To assess whether this property of the XC cell line arises from differences in its ecotropic MLV receptor, CAT1, we isolated CAT1 cDNA clones from XC cells. A variant CAT1 (xcCAT1) was found together with the wild-type rat CAT1 (rCAT1). xcCAT1 cDNA encodes a protein with a single amino acid change that destroys a conserved N-linked glycosylation site proximal to the Env-binding motif. We found that xcCAT1 expressed in Chinese hamster ovary (CHO) cells undergoes less glycosylation than rCAT1 and that the expression of xcCAT1 rendered the CHO cells more susceptible to infection with Moloney MLV. Thus, N-glycosylation negatively regulates the receptor activity of rCAT1. This is supported by the observation that treatment of rat F10 cells with the N-glycosylation inhibitor tunicamycin enhanced their susceptibility to Mo-MLV. However, xcCAT1-expressing CHO cells did not fuse with 293T cells expressing R+ Env, indicating that xcCAT1 expression is not sufficient to induce the XC cell-specific characteristic of forming syncytia in response to R+ Env.
Collapse
Affiliation(s)
- Yoshinao Kubo
- Molecular Cell Science Laboratory, RIKEN Tsukuba Institute, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- J L Portis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, Hamilton, Montana 59840, USA
| |
Collapse
|
27
|
Wentworth DE, Holmes KV. Molecular determinants of species specificity in the coronavirus receptor aminopeptidase N (CD13): influence of N-linked glycosylation. J Virol 2001; 75:9741-52. [PMID: 11559807 PMCID: PMC114546 DOI: 10.1128/jvi.75.20.9741-9752.2001] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aminopeptidase N (APN), a 150-kDa metalloprotease also called CD13, serves as a receptor for serologically related coronaviruses of humans (human coronavirus 229E [HCoV-229E]), pigs, and cats. These virus-receptor interactions can be highly species specific; for example, the human coronavirus can use human APN (hAPN) but not porcine APN (pAPN) as its cellular receptor, and porcine coronaviruses can use pAPN but not hAPN. Substitution of pAPN amino acids 283 to 290 into hAPN for the corresponding amino acids 288 to 295 introduced an N-glycosylation sequon at amino acids 291 to 293 that blocked HCoV-229E receptor activity of hAPN. Substitution of two amino acids that inserted an N-glycosylation site at amino acid 291 also resulted in a mutant hAPN that lacked receptor activity because it failed to bind HCoV-229E. Single amino acid revertants that removed this sequon at amino acids 291 to 293 but had one or five pAPN amino acid substitution(s) in this region all regained HCoV-229E binding and receptor activities. To determine if other N-linked glycosylation differences between hAPN, feline APN (fAPN), and pAPN account for receptor specificity of pig and cat coronaviruses, a mutant hAPN protein that, like fAPN and pAPN, lacked a glycosylation sequon at 818 to 820 was studied. This sequon is within the region that determines receptor activity for porcine and feline coronaviruses. Mutant hAPN lacking the sequon at amino acids 818 to 820 maintained HCoV-229E receptor activity but did not gain receptor activity for porcine or feline coronaviruses. Thus, certain differences in glycosylation between coronavirus receptors from different species are critical determinants in the species specificity of infection.
Collapse
Affiliation(s)
- D E Wentworth
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | |
Collapse
|
28
|
Overbaugh J, Miller AD, Eiden MV. Receptors and entry cofactors for retroviruses include single and multiple transmembrane-spanning proteins as well as newly described glycophosphatidylinositol-anchored and secreted proteins. Microbiol Mol Biol Rev 2001; 65:371-89, table of contents. [PMID: 11528001 PMCID: PMC99032 DOI: 10.1128/mmbr.65.3.371-389.2001] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the past few years, many retrovirus receptors, coreceptors, and cofactors have been identified. These molecules are important for some aspects of viral entry, although in some cases it remains to be determined whether they are required for binding or postbinding stages in entry, such as fusion. There are certain common features to the molecules that many retroviruses use to gain entry into the cell. For example, the receptors for most mammalian oncoretroviruses are multiple membrane-spanning transport proteins. However, avian retroviruses use single-pass membrane proteins, and a sheep retrovirus uses a glycosylphosphatidylinositol-anchored molecule as its receptor. For some retroviruses, particularly the lentiviruses, two cell surface molecules are required for efficient entry. More recently, a soluble protein that is required for viral entry has been identified for a feline oncoretrovirus. In this review, we will focus on the various strategies used by mammalian retroviruses to gain entry into the cell. The choice of receptors will also be discussed in light of pressures that drive viral evolution and persistence.
Collapse
Affiliation(s)
- J Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave., Seattle, WA 98109-1024, USA.
| | | | | |
Collapse
|
29
|
Soong NW, Nomura L, Pekrun K, Reed M, Sheppard L, Dawes G, Stemmer WP. Molecular breeding of viruses. Nat Genet 2000; 25:436-9. [PMID: 10932190 DOI: 10.1038/78132] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic recombination is a major force driving the evolution of many viruses. Recombination between two copackaged retroviral genomes may occur at rates as high as 40% per replication cycle. This enables genetic information to be shuffled rapidly, leading to recombinants with new patterns of mutations and phenotypes. The in vitro process of DNA shuffling (molecular breeding) mimics this mechanism on a vastly parallel and accelerated scale. Multiple homologous parental sequences are recombined in parallel, leading to a diverse library of complex recombinants from which desired improvements can be selected. Different proteins and enzymes have been improved using DNA shuffling. We report here the first application of molecular breeding to viruses. A single round of shuffling envelope sequences from six murine leukaemia viruses (MLV) followed by selection yielded a chimaeric clone with a completely new tropism for Chinese Hamster Ovary (CHOK1) cells. The composition and properties of the selected clone indicated that this particular permutation of parental sequences cannot be readily attained by natural retroviral recombination. This example demonstrates that molecular breeding can enhance the inherently high evolutionary potential of retroviruses to obtain desired phenotypes. It can be an effective tool, when information is limited, to optimize viruses for gene therapy and vaccine applications when multiple complex functions must be simultaneously balanced.
Collapse
Affiliation(s)
- N W Soong
- Maxygen Inc., Redwood City, California, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Asković S, McAtee FJ, Favara C, Portis JL. Brain infection by neuroinvasive but avirulent murine oncornaviruses. J Virol 2000; 74:465-73. [PMID: 10590136 PMCID: PMC111558 DOI: 10.1128/jvi.74.1.465-473.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chimeric murine oncornavirus FrCas(E) causes a rapidly progressive noninflammatory spongiform encephalomyelopathy after neonatal inoculation. The virus was constructed by the introduction of pol-env sequences from the wild mouse virus CasBrE into the genome of a neuroinvasive but nonneurovirulent strain of Friend murine leukemia virus (FMuLV), FB29. Although the brain infection by FrCas(E) as well as that by other neurovirulent murine retroviruses has been described in detail, little attention has been paid to the neuroinvasive but nonneurovirulent viruses. The purpose of the present study was to compare brain infection by FrCas(E) with that by FB29 and another nonneurovirulent virus, F43, which contains pol-env sequences from FMuLV 57. Both FB29 and F43 infected the same spectrum of cell types in the brain as that infected by FrCas(E), including endothelial cells, microglia, and populations of neurons which divide postnatally. Viral burdens achieved by the two nonneurovirulent viruses in the brain were actually higher than that of FrCas(E). The widespread infection of microglia by the two nonneurovirulent viruses is notable because it is infection of these cells by FrCas(E) which is thought to be a critical determinant of its neuropathogenicity. These results indicate that although the sequence of the envelope gene determines neurovirulence, this effect appears to operate through a mechanism which does not influence either viral tropism or viral burden in the brain. Although all three viruses exhibited similar tropism for granule neurons in the cerebellar cortex, there was a striking difference in the distribution of envelope proteins in those cells in vivo. The FrCas(E) envelope protein accumulated in terminal axons, whereas those of FB29 and F43 remained predominantly in the cell bodies. These observations suggest that differences in the intracellular sorting of these proteins may exist and that these differences appear to correlate with neurovirulence.
Collapse
Affiliation(s)
- S Asković
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA.
| | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Maja A Sommerfelt
- Centre for Research in Virology, Department of Microbiology and Immunology, The Gade Institute, University of Bergen, Bergen High Technology Centre, N-5020 Bergen, Norway1
| |
Collapse
|
32
|
Takase-Yoden S, Watanabe R. Contribution of virus-receptor interaction to distinct viral proliferation of neuropathogenic and nonneuropathogenic murine leukemia viruses in rat glial cells. J Virol 1999; 73:4461-4. [PMID: 10196347 PMCID: PMC104233 DOI: 10.1128/jvi.73.5.4461-4464.1999] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The efficiency of receptor-mediated entry of pseudotyped virus carrying the surface protein (SU) of clone A8, a neuropathogenic variant of Friend murine leukemia virus (FrMLV), to rat glial cell line F10 was 1 order of magnitude greater than that of pseudotyped virus carrying SU of nonneuropathogenic FrMLV clone 57. Introduction of the gene coding for ecotropic MLV receptor on F10 cells (F10-ecoR) into SIRC cells, which are naturally resistant to FrMLV infection, also revealed the difference in receptor recognition between the A8 and the 57 viruses. Our results show that the difference in receptor utilization between A8-SU and 57-SU only partially explains the 3-order-of-magnitude difference in proliferation between A8 and 57 viruses in F10 cells.
Collapse
Affiliation(s)
- S Takase-Yoden
- Institute of Life Science, Soka University, Hachioji, Tokyo 192-8577, Japan.
| | | |
Collapse
|
33
|
Lee JC, Chen HH, Chao YC. Persistent baculovirus infection results from deletion of the apoptotic suppressor gene p35. J Virol 1998; 72:9157-65. [PMID: 9765462 PMCID: PMC110334 DOI: 10.1128/jvi.72.11.9157-9165.1998] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with the wild-type baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) results in complete death of Spodoptera frugiperda (Sf) cells. However, infection of Sf cells with AcMNPV carrying a mutation or deletion of the apoptotic suppressor gene p35 allowed the cloning of surviving Sf cells that harbored persistent viral genomes. Persistent infection established with the virus with p35 mutated or deleted was blocked by stable transfection of p35 in the host genome or by insertion of the inhibitor of apoptosis (iap) gene into the viral genome. These artificially established persistently virus-infected cells became resistant to subsequent viral challenge, and some of the cell lines carried large quantities of viral DNA capable of early gene expression. Continuous release of viral progenies was evident in some of the persistently virus-infected cells, and transfection of p35 further stimulated viral activation of the persistent cells, including the reactivation of viruses in those cell lines without original continuous virus release. These results have demonstrated the successful establishment of persistent baculovirus infections under laboratory conditions and that their establishment may provide a novel continuous, nonlytic baculovirus expression system in the future.
Collapse
Affiliation(s)
- J C Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 115, Taiwan, Republic of China
| | | | | |
Collapse
|
34
|
Abstract
The envelope glycoprotein (Env) of Moloney murine leukemia virus (MoMuLV) is proteolytically processed and transported to the cell surface where it can be incorporated into budding virions. Cell surface Env is frequently detected using an indirect immunofluorescence assay and fluorescence-activated cell sorting (FACS). We found that the detection of Env in this manner requires the expression of the MoMuLV receptor (ATRC-1) on the cell surface, and the level of envelope protein detected correlates with the level of receptors expressed on the cell. In addition, Env detection corresponds to the Env protein's ability to bind to its receptor and can be competed out by the addition of a truncated form of the Env protein. These data suggest that Env detected on the cell surface by the FACS assay is protein that has rebound to its receptor after being secreted or shed, rather than actual surface-expressed protein. In contrast, a combined immunoprecipitation and biotinylation assay detected equal amounts of Env on the surface of both receptor-lacking and receptor-expressing cell lines. The immunoprecipitation-biotinylation assay is therefore a more appropriate method for detecting surface expression of the MoMuLV envelope protein.
Collapse
Affiliation(s)
- H Yu
- Gene Therapy Laboratories, Norris Cancer Center, School of Medicine, University of Southern California, Los Angeles 90033, USA
| | | | | | | |
Collapse
|
35
|
Tavoloni N, Rudenholz A. Variable transduction efficiency of murine leukemia retroviral vector on mammalian cells: role of cellular glycosylation. Virology 1997; 229:49-56. [PMID: 9123877 DOI: 10.1006/viro.1996.8412] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To elucidate the cellular tropism of Moloney murine leukemia virus (MuLV), we have studied the transduction efficiency of a recombinant MuLV vector carrying the beta-galactosidase reporter gene on a variety of rodent cells. Under optimal conditions for in vitro cell transduction, primary cultures of adult rat fibroblasts derived from various organs were very poorly transduced by the ecotropic MuLV vector (0.02-0.12%) when compared to immortalized cells such as the F2408 (42%) and 3Y1 (defined as 100%) lines. Primary cultures of fibroblasts from neonatal (3.7%) or embryonic rat tissues (4.6%) and primary cultures of rat mammary epithelial cells (3-4%) were somewhat more susceptible. Immortalization of rodent fibroblasts with Polyomavirus Large T. SV40 Large T, and E6-E7 genes of human papilloma virus resulted in a modest or minimal increase in transduction efficiency, and introduction of the transforming genes v-Src, v-Ras, and v-Raf was in most instances associated with a decrease in MuLV vector entry. Variability of transduction efficiency was not related to differences in cellular growth rate and treatment of MuLV vectors in vitro with deoxyribonucleoside triphosphates and treatment of cells in culture with protease inhibitors failed to modify cellular entry of the MuLV vector. On the other hand, inhibition of cellular glycosylation with swansonine, 1-deoxymannojirimycin and, primarily, tunicamycin enhanced entry of the ecotropic vector by up to 220-fold, particularly into cells which were otherwise highly resistant. These findings demonstrate major differences in transduction efficiency of the ecotropic MuLV vector on rodent cells and indicate that cellular glycosylation plays a critical role in determining MuLV cellular tropism.
Collapse
Affiliation(s)
- N Tavoloni
- Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|